linux/mm/slob.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLOB Allocator: Simple List Of Blocks
   4 *
   5 * Matt Mackall <mpm@selenic.com> 12/30/03
   6 *
   7 * NUMA support by Paul Mundt, 2007.
   8 *
   9 * How SLOB works:
  10 *
  11 * The core of SLOB is a traditional K&R style heap allocator, with
  12 * support for returning aligned objects. The granularity of this
  13 * allocator is as little as 2 bytes, however typically most architectures
  14 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
  15 *
  16 * The slob heap is a set of linked list of pages from alloc_pages(),
  17 * and within each page, there is a singly-linked list of free blocks
  18 * (slob_t). The heap is grown on demand. To reduce fragmentation,
  19 * heap pages are segregated into three lists, with objects less than
  20 * 256 bytes, objects less than 1024 bytes, and all other objects.
  21 *
  22 * Allocation from heap involves first searching for a page with
  23 * sufficient free blocks (using a next-fit-like approach) followed by
  24 * a first-fit scan of the page. Deallocation inserts objects back
  25 * into the free list in address order, so this is effectively an
  26 * address-ordered first fit.
  27 *
  28 * Above this is an implementation of kmalloc/kfree. Blocks returned
  29 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
  30 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
  31 * alloc_pages() directly, allocating compound pages so the page order
  32 * does not have to be separately tracked.
  33 * These objects are detected in kfree() because PageSlab()
  34 * is false for them.
  35 *
  36 * SLAB is emulated on top of SLOB by simply calling constructors and
  37 * destructors for every SLAB allocation. Objects are returned with the
  38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
  39 * case the low-level allocator will fragment blocks to create the proper
  40 * alignment. Again, objects of page-size or greater are allocated by
  41 * calling alloc_pages(). As SLAB objects know their size, no separate
  42 * size bookkeeping is necessary and there is essentially no allocation
  43 * space overhead, and compound pages aren't needed for multi-page
  44 * allocations.
  45 *
  46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
  47 * logic down to the page allocator, and simply doing the node accounting
  48 * on the upper levels. In the event that a node id is explicitly
  49 * provided, __alloc_pages_node() with the specified node id is used
  50 * instead. The common case (or when the node id isn't explicitly provided)
  51 * will default to the current node, as per numa_node_id().
  52 *
  53 * Node aware pages are still inserted in to the global freelist, and
  54 * these are scanned for by matching against the node id encoded in the
  55 * page flags. As a result, block allocations that can be satisfied from
  56 * the freelist will only be done so on pages residing on the same node,
  57 * in order to prevent random node placement.
  58 */
  59
  60#include <linux/kernel.h>
  61#include <linux/slab.h>
  62
  63#include <linux/mm.h>
  64#include <linux/swap.h> /* struct reclaim_state */
  65#include <linux/cache.h>
  66#include <linux/init.h>
  67#include <linux/export.h>
  68#include <linux/rcupdate.h>
  69#include <linux/list.h>
  70#include <linux/kmemleak.h>
  71
  72#include <trace/events/kmem.h>
  73
  74#include <linux/atomic.h>
  75
  76#include "slab.h"
  77/*
  78 * slob_block has a field 'units', which indicates size of block if +ve,
  79 * or offset of next block if -ve (in SLOB_UNITs).
  80 *
  81 * Free blocks of size 1 unit simply contain the offset of the next block.
  82 * Those with larger size contain their size in the first SLOB_UNIT of
  83 * memory, and the offset of the next free block in the second SLOB_UNIT.
  84 */
  85#if PAGE_SIZE <= (32767 * 2)
  86typedef s16 slobidx_t;
  87#else
  88typedef s32 slobidx_t;
  89#endif
  90
  91struct slob_block {
  92        slobidx_t units;
  93};
  94typedef struct slob_block slob_t;
  95
  96/*
  97 * All partially free slob pages go on these lists.
  98 */
  99#define SLOB_BREAK1 256
 100#define SLOB_BREAK2 1024
 101static LIST_HEAD(free_slob_small);
 102static LIST_HEAD(free_slob_medium);
 103static LIST_HEAD(free_slob_large);
 104
 105/*
 106 * slob_page_free: true for pages on free_slob_pages list.
 107 */
 108static inline int slob_page_free(struct page *sp)
 109{
 110        return PageSlobFree(sp);
 111}
 112
 113static void set_slob_page_free(struct page *sp, struct list_head *list)
 114{
 115        list_add(&sp->slab_list, list);
 116        __SetPageSlobFree(sp);
 117}
 118
 119static inline void clear_slob_page_free(struct page *sp)
 120{
 121        list_del(&sp->slab_list);
 122        __ClearPageSlobFree(sp);
 123}
 124
 125#define SLOB_UNIT sizeof(slob_t)
 126#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
 127
 128/*
 129 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 130 * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
 131 * the block using call_rcu.
 132 */
 133struct slob_rcu {
 134        struct rcu_head head;
 135        int size;
 136};
 137
 138/*
 139 * slob_lock protects all slob allocator structures.
 140 */
 141static DEFINE_SPINLOCK(slob_lock);
 142
 143/*
 144 * Encode the given size and next info into a free slob block s.
 145 */
 146static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
 147{
 148        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 149        slobidx_t offset = next - base;
 150
 151        if (size > 1) {
 152                s[0].units = size;
 153                s[1].units = offset;
 154        } else
 155                s[0].units = -offset;
 156}
 157
 158/*
 159 * Return the size of a slob block.
 160 */
 161static slobidx_t slob_units(slob_t *s)
 162{
 163        if (s->units > 0)
 164                return s->units;
 165        return 1;
 166}
 167
 168/*
 169 * Return the next free slob block pointer after this one.
 170 */
 171static slob_t *slob_next(slob_t *s)
 172{
 173        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 174        slobidx_t next;
 175
 176        if (s[0].units < 0)
 177                next = -s[0].units;
 178        else
 179                next = s[1].units;
 180        return base+next;
 181}
 182
 183/*
 184 * Returns true if s is the last free block in its page.
 185 */
 186static int slob_last(slob_t *s)
 187{
 188        return !((unsigned long)slob_next(s) & ~PAGE_MASK);
 189}
 190
 191static void *slob_new_pages(gfp_t gfp, int order, int node)
 192{
 193        struct page *page;
 194
 195#ifdef CONFIG_NUMA
 196        if (node != NUMA_NO_NODE)
 197                page = __alloc_pages_node(node, gfp, order);
 198        else
 199#endif
 200                page = alloc_pages(gfp, order);
 201
 202        if (!page)
 203                return NULL;
 204
 205        mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
 206                            PAGE_SIZE << order);
 207        return page_address(page);
 208}
 209
 210static void slob_free_pages(void *b, int order)
 211{
 212        struct page *sp = virt_to_page(b);
 213
 214        if (current->reclaim_state)
 215                current->reclaim_state->reclaimed_slab += 1 << order;
 216
 217        mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
 218                            -(PAGE_SIZE << order));
 219        __free_pages(sp, order);
 220}
 221
 222/*
 223 * slob_page_alloc() - Allocate a slob block within a given slob_page sp.
 224 * @sp: Page to look in.
 225 * @size: Size of the allocation.
 226 * @align: Allocation alignment.
 227 * @align_offset: Offset in the allocated block that will be aligned.
 228 * @page_removed_from_list: Return parameter.
 229 *
 230 * Tries to find a chunk of memory at least @size bytes big within @page.
 231 *
 232 * Return: Pointer to memory if allocated, %NULL otherwise.  If the
 233 *         allocation fills up @page then the page is removed from the
 234 *         freelist, in this case @page_removed_from_list will be set to
 235 *         true (set to false otherwise).
 236 */
 237static void *slob_page_alloc(struct page *sp, size_t size, int align,
 238                              int align_offset, bool *page_removed_from_list)
 239{
 240        slob_t *prev, *cur, *aligned = NULL;
 241        int delta = 0, units = SLOB_UNITS(size);
 242
 243        *page_removed_from_list = false;
 244        for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
 245                slobidx_t avail = slob_units(cur);
 246
 247                /*
 248                 * 'aligned' will hold the address of the slob block so that the
 249                 * address 'aligned'+'align_offset' is aligned according to the
 250                 * 'align' parameter. This is for kmalloc() which prepends the
 251                 * allocated block with its size, so that the block itself is
 252                 * aligned when needed.
 253                 */
 254                if (align) {
 255                        aligned = (slob_t *)
 256                                (ALIGN((unsigned long)cur + align_offset, align)
 257                                 - align_offset);
 258                        delta = aligned - cur;
 259                }
 260                if (avail >= units + delta) { /* room enough? */
 261                        slob_t *next;
 262
 263                        if (delta) { /* need to fragment head to align? */
 264                                next = slob_next(cur);
 265                                set_slob(aligned, avail - delta, next);
 266                                set_slob(cur, delta, aligned);
 267                                prev = cur;
 268                                cur = aligned;
 269                                avail = slob_units(cur);
 270                        }
 271
 272                        next = slob_next(cur);
 273                        if (avail == units) { /* exact fit? unlink. */
 274                                if (prev)
 275                                        set_slob(prev, slob_units(prev), next);
 276                                else
 277                                        sp->freelist = next;
 278                        } else { /* fragment */
 279                                if (prev)
 280                                        set_slob(prev, slob_units(prev), cur + units);
 281                                else
 282                                        sp->freelist = cur + units;
 283                                set_slob(cur + units, avail - units, next);
 284                        }
 285
 286                        sp->units -= units;
 287                        if (!sp->units) {
 288                                clear_slob_page_free(sp);
 289                                *page_removed_from_list = true;
 290                        }
 291                        return cur;
 292                }
 293                if (slob_last(cur))
 294                        return NULL;
 295        }
 296}
 297
 298/*
 299 * slob_alloc: entry point into the slob allocator.
 300 */
 301static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
 302                                                        int align_offset)
 303{
 304        struct page *sp;
 305        struct list_head *slob_list;
 306        slob_t *b = NULL;
 307        unsigned long flags;
 308        bool _unused;
 309
 310        if (size < SLOB_BREAK1)
 311                slob_list = &free_slob_small;
 312        else if (size < SLOB_BREAK2)
 313                slob_list = &free_slob_medium;
 314        else
 315                slob_list = &free_slob_large;
 316
 317        spin_lock_irqsave(&slob_lock, flags);
 318        /* Iterate through each partially free page, try to find room */
 319        list_for_each_entry(sp, slob_list, slab_list) {
 320                bool page_removed_from_list = false;
 321#ifdef CONFIG_NUMA
 322                /*
 323                 * If there's a node specification, search for a partial
 324                 * page with a matching node id in the freelist.
 325                 */
 326                if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
 327                        continue;
 328#endif
 329                /* Enough room on this page? */
 330                if (sp->units < SLOB_UNITS(size))
 331                        continue;
 332
 333                b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list);
 334                if (!b)
 335                        continue;
 336
 337                /*
 338                 * If slob_page_alloc() removed sp from the list then we
 339                 * cannot call list functions on sp.  If so allocation
 340                 * did not fragment the page anyway so optimisation is
 341                 * unnecessary.
 342                 */
 343                if (!page_removed_from_list) {
 344                        /*
 345                         * Improve fragment distribution and reduce our average
 346                         * search time by starting our next search here. (see
 347                         * Knuth vol 1, sec 2.5, pg 449)
 348                         */
 349                        if (!list_is_first(&sp->slab_list, slob_list))
 350                                list_rotate_to_front(&sp->slab_list, slob_list);
 351                }
 352                break;
 353        }
 354        spin_unlock_irqrestore(&slob_lock, flags);
 355
 356        /* Not enough space: must allocate a new page */
 357        if (!b) {
 358                b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
 359                if (!b)
 360                        return NULL;
 361                sp = virt_to_page(b);
 362                __SetPageSlab(sp);
 363
 364                spin_lock_irqsave(&slob_lock, flags);
 365                sp->units = SLOB_UNITS(PAGE_SIZE);
 366                sp->freelist = b;
 367                INIT_LIST_HEAD(&sp->slab_list);
 368                set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
 369                set_slob_page_free(sp, slob_list);
 370                b = slob_page_alloc(sp, size, align, align_offset, &_unused);
 371                BUG_ON(!b);
 372                spin_unlock_irqrestore(&slob_lock, flags);
 373        }
 374        if (unlikely(gfp & __GFP_ZERO))
 375                memset(b, 0, size);
 376        return b;
 377}
 378
 379/*
 380 * slob_free: entry point into the slob allocator.
 381 */
 382static void slob_free(void *block, int size)
 383{
 384        struct page *sp;
 385        slob_t *prev, *next, *b = (slob_t *)block;
 386        slobidx_t units;
 387        unsigned long flags;
 388        struct list_head *slob_list;
 389
 390        if (unlikely(ZERO_OR_NULL_PTR(block)))
 391                return;
 392        BUG_ON(!size);
 393
 394        sp = virt_to_page(block);
 395        units = SLOB_UNITS(size);
 396
 397        spin_lock_irqsave(&slob_lock, flags);
 398
 399        if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
 400                /* Go directly to page allocator. Do not pass slob allocator */
 401                if (slob_page_free(sp))
 402                        clear_slob_page_free(sp);
 403                spin_unlock_irqrestore(&slob_lock, flags);
 404                __ClearPageSlab(sp);
 405                page_mapcount_reset(sp);
 406                slob_free_pages(b, 0);
 407                return;
 408        }
 409
 410        if (!slob_page_free(sp)) {
 411                /* This slob page is about to become partially free. Easy! */
 412                sp->units = units;
 413                sp->freelist = b;
 414                set_slob(b, units,
 415                        (void *)((unsigned long)(b +
 416                                        SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
 417                if (size < SLOB_BREAK1)
 418                        slob_list = &free_slob_small;
 419                else if (size < SLOB_BREAK2)
 420                        slob_list = &free_slob_medium;
 421                else
 422                        slob_list = &free_slob_large;
 423                set_slob_page_free(sp, slob_list);
 424                goto out;
 425        }
 426
 427        /*
 428         * Otherwise the page is already partially free, so find reinsertion
 429         * point.
 430         */
 431        sp->units += units;
 432
 433        if (b < (slob_t *)sp->freelist) {
 434                if (b + units == sp->freelist) {
 435                        units += slob_units(sp->freelist);
 436                        sp->freelist = slob_next(sp->freelist);
 437                }
 438                set_slob(b, units, sp->freelist);
 439                sp->freelist = b;
 440        } else {
 441                prev = sp->freelist;
 442                next = slob_next(prev);
 443                while (b > next) {
 444                        prev = next;
 445                        next = slob_next(prev);
 446                }
 447
 448                if (!slob_last(prev) && b + units == next) {
 449                        units += slob_units(next);
 450                        set_slob(b, units, slob_next(next));
 451                } else
 452                        set_slob(b, units, next);
 453
 454                if (prev + slob_units(prev) == b) {
 455                        units = slob_units(b) + slob_units(prev);
 456                        set_slob(prev, units, slob_next(b));
 457                } else
 458                        set_slob(prev, slob_units(prev), b);
 459        }
 460out:
 461        spin_unlock_irqrestore(&slob_lock, flags);
 462}
 463
 464/*
 465 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 466 */
 467
 468static __always_inline void *
 469__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
 470{
 471        unsigned int *m;
 472        int minalign = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 473        void *ret;
 474
 475        gfp &= gfp_allowed_mask;
 476
 477        fs_reclaim_acquire(gfp);
 478        fs_reclaim_release(gfp);
 479
 480        if (size < PAGE_SIZE - minalign) {
 481                int align = minalign;
 482
 483                /*
 484                 * For power of two sizes, guarantee natural alignment for
 485                 * kmalloc()'d objects.
 486                 */
 487                if (is_power_of_2(size))
 488                        align = max(minalign, (int) size);
 489
 490                if (!size)
 491                        return ZERO_SIZE_PTR;
 492
 493                m = slob_alloc(size + minalign, gfp, align, node, minalign);
 494
 495                if (!m)
 496                        return NULL;
 497                *m = size;
 498                ret = (void *)m + minalign;
 499
 500                trace_kmalloc_node(caller, ret,
 501                                   size, size + minalign, gfp, node);
 502        } else {
 503                unsigned int order = get_order(size);
 504
 505                if (likely(order))
 506                        gfp |= __GFP_COMP;
 507                ret = slob_new_pages(gfp, order, node);
 508
 509                trace_kmalloc_node(caller, ret,
 510                                   size, PAGE_SIZE << order, gfp, node);
 511        }
 512
 513        kmemleak_alloc(ret, size, 1, gfp);
 514        return ret;
 515}
 516
 517void *__kmalloc(size_t size, gfp_t gfp)
 518{
 519        return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
 520}
 521EXPORT_SYMBOL(__kmalloc);
 522
 523void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
 524{
 525        return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
 526}
 527EXPORT_SYMBOL(__kmalloc_track_caller);
 528
 529#ifdef CONFIG_NUMA
 530void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
 531                                        int node, unsigned long caller)
 532{
 533        return __do_kmalloc_node(size, gfp, node, caller);
 534}
 535EXPORT_SYMBOL(__kmalloc_node_track_caller);
 536#endif
 537
 538void kfree(const void *block)
 539{
 540        struct page *sp;
 541
 542        trace_kfree(_RET_IP_, block);
 543
 544        if (unlikely(ZERO_OR_NULL_PTR(block)))
 545                return;
 546        kmemleak_free(block);
 547
 548        sp = virt_to_page(block);
 549        if (PageSlab(sp)) {
 550                int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 551                unsigned int *m = (unsigned int *)(block - align);
 552                slob_free(m, *m + align);
 553        } else {
 554                unsigned int order = compound_order(sp);
 555                mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
 556                                    -(PAGE_SIZE << order));
 557                __free_pages(sp, order);
 558
 559        }
 560}
 561EXPORT_SYMBOL(kfree);
 562
 563/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 564size_t __ksize(const void *block)
 565{
 566        struct page *sp;
 567        int align;
 568        unsigned int *m;
 569
 570        BUG_ON(!block);
 571        if (unlikely(block == ZERO_SIZE_PTR))
 572                return 0;
 573
 574        sp = virt_to_page(block);
 575        if (unlikely(!PageSlab(sp)))
 576                return page_size(sp);
 577
 578        align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 579        m = (unsigned int *)(block - align);
 580        return SLOB_UNITS(*m) * SLOB_UNIT;
 581}
 582EXPORT_SYMBOL(__ksize);
 583
 584int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
 585{
 586        if (flags & SLAB_TYPESAFE_BY_RCU) {
 587                /* leave room for rcu footer at the end of object */
 588                c->size += sizeof(struct slob_rcu);
 589        }
 590        c->flags = flags;
 591        return 0;
 592}
 593
 594static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
 595{
 596        void *b;
 597
 598        flags &= gfp_allowed_mask;
 599
 600        fs_reclaim_acquire(flags);
 601        fs_reclaim_release(flags);
 602
 603        if (c->size < PAGE_SIZE) {
 604                b = slob_alloc(c->size, flags, c->align, node, 0);
 605                trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 606                                            SLOB_UNITS(c->size) * SLOB_UNIT,
 607                                            flags, node);
 608        } else {
 609                b = slob_new_pages(flags, get_order(c->size), node);
 610                trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 611                                            PAGE_SIZE << get_order(c->size),
 612                                            flags, node);
 613        }
 614
 615        if (b && c->ctor) {
 616                WARN_ON_ONCE(flags & __GFP_ZERO);
 617                c->ctor(b);
 618        }
 619
 620        kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
 621        return b;
 622}
 623
 624void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 625{
 626        return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
 627}
 628EXPORT_SYMBOL(kmem_cache_alloc);
 629
 630#ifdef CONFIG_NUMA
 631void *__kmalloc_node(size_t size, gfp_t gfp, int node)
 632{
 633        return __do_kmalloc_node(size, gfp, node, _RET_IP_);
 634}
 635EXPORT_SYMBOL(__kmalloc_node);
 636
 637void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
 638{
 639        return slob_alloc_node(cachep, gfp, node);
 640}
 641EXPORT_SYMBOL(kmem_cache_alloc_node);
 642#endif
 643
 644static void __kmem_cache_free(void *b, int size)
 645{
 646        if (size < PAGE_SIZE)
 647                slob_free(b, size);
 648        else
 649                slob_free_pages(b, get_order(size));
 650}
 651
 652static void kmem_rcu_free(struct rcu_head *head)
 653{
 654        struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
 655        void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
 656
 657        __kmem_cache_free(b, slob_rcu->size);
 658}
 659
 660void kmem_cache_free(struct kmem_cache *c, void *b)
 661{
 662        kmemleak_free_recursive(b, c->flags);
 663        if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
 664                struct slob_rcu *slob_rcu;
 665                slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 666                slob_rcu->size = c->size;
 667                call_rcu(&slob_rcu->head, kmem_rcu_free);
 668        } else {
 669                __kmem_cache_free(b, c->size);
 670        }
 671
 672        trace_kmem_cache_free(_RET_IP_, b);
 673}
 674EXPORT_SYMBOL(kmem_cache_free);
 675
 676void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 677{
 678        __kmem_cache_free_bulk(s, size, p);
 679}
 680EXPORT_SYMBOL(kmem_cache_free_bulk);
 681
 682int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 683                                                                void **p)
 684{
 685        return __kmem_cache_alloc_bulk(s, flags, size, p);
 686}
 687EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 688
 689int __kmem_cache_shutdown(struct kmem_cache *c)
 690{
 691        /* No way to check for remaining objects */
 692        return 0;
 693}
 694
 695void __kmem_cache_release(struct kmem_cache *c)
 696{
 697}
 698
 699int __kmem_cache_shrink(struct kmem_cache *d)
 700{
 701        return 0;
 702}
 703
 704struct kmem_cache kmem_cache_boot = {
 705        .name = "kmem_cache",
 706        .size = sizeof(struct kmem_cache),
 707        .flags = SLAB_PANIC,
 708        .align = ARCH_KMALLOC_MINALIGN,
 709};
 710
 711void __init kmem_cache_init(void)
 712{
 713        kmem_cache = &kmem_cache_boot;
 714        slab_state = UP;
 715}
 716
 717void __init kmem_cache_init_late(void)
 718{
 719        slab_state = FULL;
 720}
 721