linux/mm/vmstat.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmstat.c
   4 *
   5 *  Manages VM statistics
   6 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 *
   8 *  zoned VM statistics
   9 *  Copyright (C) 2006 Silicon Graphics, Inc.,
  10 *              Christoph Lameter <christoph@lameter.com>
  11 *  Copyright (C) 2008-2014 Christoph Lameter
  12 */
  13#include <linux/fs.h>
  14#include <linux/mm.h>
  15#include <linux/err.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/cpu.h>
  19#include <linux/cpumask.h>
  20#include <linux/vmstat.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/debugfs.h>
  24#include <linux/sched.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include <linux/compaction.h>
  28#include <linux/mm_inline.h>
  29#include <linux/page_ext.h>
  30#include <linux/page_owner.h>
  31
  32#include "internal.h"
  33
  34#define NUMA_STATS_THRESHOLD (U16_MAX - 2)
  35
  36#ifdef CONFIG_NUMA
  37int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
  38
  39/* zero numa counters within a zone */
  40static void zero_zone_numa_counters(struct zone *zone)
  41{
  42        int item, cpu;
  43
  44        for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
  45                atomic_long_set(&zone->vm_numa_stat[item], 0);
  46                for_each_online_cpu(cpu)
  47                        per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
  48                                                = 0;
  49        }
  50}
  51
  52/* zero numa counters of all the populated zones */
  53static void zero_zones_numa_counters(void)
  54{
  55        struct zone *zone;
  56
  57        for_each_populated_zone(zone)
  58                zero_zone_numa_counters(zone);
  59}
  60
  61/* zero global numa counters */
  62static void zero_global_numa_counters(void)
  63{
  64        int item;
  65
  66        for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
  67                atomic_long_set(&vm_numa_stat[item], 0);
  68}
  69
  70static void invalid_numa_statistics(void)
  71{
  72        zero_zones_numa_counters();
  73        zero_global_numa_counters();
  74}
  75
  76static DEFINE_MUTEX(vm_numa_stat_lock);
  77
  78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
  79                void *buffer, size_t *length, loff_t *ppos)
  80{
  81        int ret, oldval;
  82
  83        mutex_lock(&vm_numa_stat_lock);
  84        if (write)
  85                oldval = sysctl_vm_numa_stat;
  86        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  87        if (ret || !write)
  88                goto out;
  89
  90        if (oldval == sysctl_vm_numa_stat)
  91                goto out;
  92        else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
  93                static_branch_enable(&vm_numa_stat_key);
  94                pr_info("enable numa statistics\n");
  95        } else {
  96                static_branch_disable(&vm_numa_stat_key);
  97                invalid_numa_statistics();
  98                pr_info("disable numa statistics, and clear numa counters\n");
  99        }
 100
 101out:
 102        mutex_unlock(&vm_numa_stat_lock);
 103        return ret;
 104}
 105#endif
 106
 107#ifdef CONFIG_VM_EVENT_COUNTERS
 108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
 109EXPORT_PER_CPU_SYMBOL(vm_event_states);
 110
 111static void sum_vm_events(unsigned long *ret)
 112{
 113        int cpu;
 114        int i;
 115
 116        memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
 117
 118        for_each_online_cpu(cpu) {
 119                struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
 120
 121                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 122                        ret[i] += this->event[i];
 123        }
 124}
 125
 126/*
 127 * Accumulate the vm event counters across all CPUs.
 128 * The result is unavoidably approximate - it can change
 129 * during and after execution of this function.
 130*/
 131void all_vm_events(unsigned long *ret)
 132{
 133        get_online_cpus();
 134        sum_vm_events(ret);
 135        put_online_cpus();
 136}
 137EXPORT_SYMBOL_GPL(all_vm_events);
 138
 139/*
 140 * Fold the foreign cpu events into our own.
 141 *
 142 * This is adding to the events on one processor
 143 * but keeps the global counts constant.
 144 */
 145void vm_events_fold_cpu(int cpu)
 146{
 147        struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
 148        int i;
 149
 150        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
 151                count_vm_events(i, fold_state->event[i]);
 152                fold_state->event[i] = 0;
 153        }
 154}
 155
 156#endif /* CONFIG_VM_EVENT_COUNTERS */
 157
 158/*
 159 * Manage combined zone based / global counters
 160 *
 161 * vm_stat contains the global counters
 162 */
 163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
 164atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
 165atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
 166EXPORT_SYMBOL(vm_zone_stat);
 167EXPORT_SYMBOL(vm_numa_stat);
 168EXPORT_SYMBOL(vm_node_stat);
 169
 170#ifdef CONFIG_SMP
 171
 172int calculate_pressure_threshold(struct zone *zone)
 173{
 174        int threshold;
 175        int watermark_distance;
 176
 177        /*
 178         * As vmstats are not up to date, there is drift between the estimated
 179         * and real values. For high thresholds and a high number of CPUs, it
 180         * is possible for the min watermark to be breached while the estimated
 181         * value looks fine. The pressure threshold is a reduced value such
 182         * that even the maximum amount of drift will not accidentally breach
 183         * the min watermark
 184         */
 185        watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 186        threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 187
 188        /*
 189         * Maximum threshold is 125
 190         */
 191        threshold = min(125, threshold);
 192
 193        return threshold;
 194}
 195
 196int calculate_normal_threshold(struct zone *zone)
 197{
 198        int threshold;
 199        int mem;        /* memory in 128 MB units */
 200
 201        /*
 202         * The threshold scales with the number of processors and the amount
 203         * of memory per zone. More memory means that we can defer updates for
 204         * longer, more processors could lead to more contention.
 205         * fls() is used to have a cheap way of logarithmic scaling.
 206         *
 207         * Some sample thresholds:
 208         *
 209         * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
 210         * ------------------------------------------------------------------
 211         * 8            1               1       0.9-1 GB        4
 212         * 16           2               2       0.9-1 GB        4
 213         * 20           2               2       1-2 GB          5
 214         * 24           2               2       2-4 GB          6
 215         * 28           2               2       4-8 GB          7
 216         * 32           2               2       8-16 GB         8
 217         * 4            2               2       <128M           1
 218         * 30           4               3       2-4 GB          5
 219         * 48           4               3       8-16 GB         8
 220         * 32           8               4       1-2 GB          4
 221         * 32           8               4       0.9-1GB         4
 222         * 10           16              5       <128M           1
 223         * 40           16              5       900M            4
 224         * 70           64              7       2-4 GB          5
 225         * 84           64              7       4-8 GB          6
 226         * 108          512             9       4-8 GB          6
 227         * 125          1024            10      8-16 GB         8
 228         * 125          1024            10      16-32 GB        9
 229         */
 230
 231        mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
 232
 233        threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 234
 235        /*
 236         * Maximum threshold is 125
 237         */
 238        threshold = min(125, threshold);
 239
 240        return threshold;
 241}
 242
 243/*
 244 * Refresh the thresholds for each zone.
 245 */
 246void refresh_zone_stat_thresholds(void)
 247{
 248        struct pglist_data *pgdat;
 249        struct zone *zone;
 250        int cpu;
 251        int threshold;
 252
 253        /* Zero current pgdat thresholds */
 254        for_each_online_pgdat(pgdat) {
 255                for_each_online_cpu(cpu) {
 256                        per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
 257                }
 258        }
 259
 260        for_each_populated_zone(zone) {
 261                struct pglist_data *pgdat = zone->zone_pgdat;
 262                unsigned long max_drift, tolerate_drift;
 263
 264                threshold = calculate_normal_threshold(zone);
 265
 266                for_each_online_cpu(cpu) {
 267                        int pgdat_threshold;
 268
 269                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 270                                                        = threshold;
 271
 272                        /* Base nodestat threshold on the largest populated zone. */
 273                        pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
 274                        per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
 275                                = max(threshold, pgdat_threshold);
 276                }
 277
 278                /*
 279                 * Only set percpu_drift_mark if there is a danger that
 280                 * NR_FREE_PAGES reports the low watermark is ok when in fact
 281                 * the min watermark could be breached by an allocation
 282                 */
 283                tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 284                max_drift = num_online_cpus() * threshold;
 285                if (max_drift > tolerate_drift)
 286                        zone->percpu_drift_mark = high_wmark_pages(zone) +
 287                                        max_drift;
 288        }
 289}
 290
 291void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 292                                int (*calculate_pressure)(struct zone *))
 293{
 294        struct zone *zone;
 295        int cpu;
 296        int threshold;
 297        int i;
 298
 299        for (i = 0; i < pgdat->nr_zones; i++) {
 300                zone = &pgdat->node_zones[i];
 301                if (!zone->percpu_drift_mark)
 302                        continue;
 303
 304                threshold = (*calculate_pressure)(zone);
 305                for_each_online_cpu(cpu)
 306                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 307                                                        = threshold;
 308        }
 309}
 310
 311/*
 312 * For use when we know that interrupts are disabled,
 313 * or when we know that preemption is disabled and that
 314 * particular counter cannot be updated from interrupt context.
 315 */
 316void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 317                           long delta)
 318{
 319        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 320        s8 __percpu *p = pcp->vm_stat_diff + item;
 321        long x;
 322        long t;
 323
 324        x = delta + __this_cpu_read(*p);
 325
 326        t = __this_cpu_read(pcp->stat_threshold);
 327
 328        if (unlikely(x > t || x < -t)) {
 329                zone_page_state_add(x, zone, item);
 330                x = 0;
 331        }
 332        __this_cpu_write(*p, x);
 333}
 334EXPORT_SYMBOL(__mod_zone_page_state);
 335
 336void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 337                                long delta)
 338{
 339        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 340        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 341        long x;
 342        long t;
 343
 344        if (vmstat_item_in_bytes(item)) {
 345                VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 346                delta >>= PAGE_SHIFT;
 347        }
 348
 349        x = delta + __this_cpu_read(*p);
 350
 351        t = __this_cpu_read(pcp->stat_threshold);
 352
 353        if (unlikely(x > t || x < -t)) {
 354                node_page_state_add(x, pgdat, item);
 355                x = 0;
 356        }
 357        __this_cpu_write(*p, x);
 358}
 359EXPORT_SYMBOL(__mod_node_page_state);
 360
 361/*
 362 * Optimized increment and decrement functions.
 363 *
 364 * These are only for a single page and therefore can take a struct page *
 365 * argument instead of struct zone *. This allows the inclusion of the code
 366 * generated for page_zone(page) into the optimized functions.
 367 *
 368 * No overflow check is necessary and therefore the differential can be
 369 * incremented or decremented in place which may allow the compilers to
 370 * generate better code.
 371 * The increment or decrement is known and therefore one boundary check can
 372 * be omitted.
 373 *
 374 * NOTE: These functions are very performance sensitive. Change only
 375 * with care.
 376 *
 377 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 378 * However, the code must first determine the differential location in a zone
 379 * based on the processor number and then inc/dec the counter. There is no
 380 * guarantee without disabling preemption that the processor will not change
 381 * in between and therefore the atomicity vs. interrupt cannot be exploited
 382 * in a useful way here.
 383 */
 384void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 385{
 386        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 387        s8 __percpu *p = pcp->vm_stat_diff + item;
 388        s8 v, t;
 389
 390        v = __this_cpu_inc_return(*p);
 391        t = __this_cpu_read(pcp->stat_threshold);
 392        if (unlikely(v > t)) {
 393                s8 overstep = t >> 1;
 394
 395                zone_page_state_add(v + overstep, zone, item);
 396                __this_cpu_write(*p, -overstep);
 397        }
 398}
 399
 400void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 401{
 402        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 403        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 404        s8 v, t;
 405
 406        VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 407
 408        v = __this_cpu_inc_return(*p);
 409        t = __this_cpu_read(pcp->stat_threshold);
 410        if (unlikely(v > t)) {
 411                s8 overstep = t >> 1;
 412
 413                node_page_state_add(v + overstep, pgdat, item);
 414                __this_cpu_write(*p, -overstep);
 415        }
 416}
 417
 418void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 419{
 420        __inc_zone_state(page_zone(page), item);
 421}
 422EXPORT_SYMBOL(__inc_zone_page_state);
 423
 424void __inc_node_page_state(struct page *page, enum node_stat_item item)
 425{
 426        __inc_node_state(page_pgdat(page), item);
 427}
 428EXPORT_SYMBOL(__inc_node_page_state);
 429
 430void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 431{
 432        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 433        s8 __percpu *p = pcp->vm_stat_diff + item;
 434        s8 v, t;
 435
 436        v = __this_cpu_dec_return(*p);
 437        t = __this_cpu_read(pcp->stat_threshold);
 438        if (unlikely(v < - t)) {
 439                s8 overstep = t >> 1;
 440
 441                zone_page_state_add(v - overstep, zone, item);
 442                __this_cpu_write(*p, overstep);
 443        }
 444}
 445
 446void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 447{
 448        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 449        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 450        s8 v, t;
 451
 452        VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 453
 454        v = __this_cpu_dec_return(*p);
 455        t = __this_cpu_read(pcp->stat_threshold);
 456        if (unlikely(v < - t)) {
 457                s8 overstep = t >> 1;
 458
 459                node_page_state_add(v - overstep, pgdat, item);
 460                __this_cpu_write(*p, overstep);
 461        }
 462}
 463
 464void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 465{
 466        __dec_zone_state(page_zone(page), item);
 467}
 468EXPORT_SYMBOL(__dec_zone_page_state);
 469
 470void __dec_node_page_state(struct page *page, enum node_stat_item item)
 471{
 472        __dec_node_state(page_pgdat(page), item);
 473}
 474EXPORT_SYMBOL(__dec_node_page_state);
 475
 476#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 477/*
 478 * If we have cmpxchg_local support then we do not need to incur the overhead
 479 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 480 *
 481 * mod_state() modifies the zone counter state through atomic per cpu
 482 * operations.
 483 *
 484 * Overstep mode specifies how overstep should handled:
 485 *     0       No overstepping
 486 *     1       Overstepping half of threshold
 487 *     -1      Overstepping minus half of threshold
 488*/
 489static inline void mod_zone_state(struct zone *zone,
 490       enum zone_stat_item item, long delta, int overstep_mode)
 491{
 492        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 493        s8 __percpu *p = pcp->vm_stat_diff + item;
 494        long o, n, t, z;
 495
 496        do {
 497                z = 0;  /* overflow to zone counters */
 498
 499                /*
 500                 * The fetching of the stat_threshold is racy. We may apply
 501                 * a counter threshold to the wrong the cpu if we get
 502                 * rescheduled while executing here. However, the next
 503                 * counter update will apply the threshold again and
 504                 * therefore bring the counter under the threshold again.
 505                 *
 506                 * Most of the time the thresholds are the same anyways
 507                 * for all cpus in a zone.
 508                 */
 509                t = this_cpu_read(pcp->stat_threshold);
 510
 511                o = this_cpu_read(*p);
 512                n = delta + o;
 513
 514                if (n > t || n < -t) {
 515                        int os = overstep_mode * (t >> 1) ;
 516
 517                        /* Overflow must be added to zone counters */
 518                        z = n + os;
 519                        n = -os;
 520                }
 521        } while (this_cpu_cmpxchg(*p, o, n) != o);
 522
 523        if (z)
 524                zone_page_state_add(z, zone, item);
 525}
 526
 527void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 528                         long delta)
 529{
 530        mod_zone_state(zone, item, delta, 0);
 531}
 532EXPORT_SYMBOL(mod_zone_page_state);
 533
 534void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 535{
 536        mod_zone_state(page_zone(page), item, 1, 1);
 537}
 538EXPORT_SYMBOL(inc_zone_page_state);
 539
 540void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 541{
 542        mod_zone_state(page_zone(page), item, -1, -1);
 543}
 544EXPORT_SYMBOL(dec_zone_page_state);
 545
 546static inline void mod_node_state(struct pglist_data *pgdat,
 547       enum node_stat_item item, int delta, int overstep_mode)
 548{
 549        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 550        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 551        long o, n, t, z;
 552
 553        if (vmstat_item_in_bytes(item)) {
 554                VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 555                delta >>= PAGE_SHIFT;
 556        }
 557
 558        do {
 559                z = 0;  /* overflow to node counters */
 560
 561                /*
 562                 * The fetching of the stat_threshold is racy. We may apply
 563                 * a counter threshold to the wrong the cpu if we get
 564                 * rescheduled while executing here. However, the next
 565                 * counter update will apply the threshold again and
 566                 * therefore bring the counter under the threshold again.
 567                 *
 568                 * Most of the time the thresholds are the same anyways
 569                 * for all cpus in a node.
 570                 */
 571                t = this_cpu_read(pcp->stat_threshold);
 572
 573                o = this_cpu_read(*p);
 574                n = delta + o;
 575
 576                if (n > t || n < -t) {
 577                        int os = overstep_mode * (t >> 1) ;
 578
 579                        /* Overflow must be added to node counters */
 580                        z = n + os;
 581                        n = -os;
 582                }
 583        } while (this_cpu_cmpxchg(*p, o, n) != o);
 584
 585        if (z)
 586                node_page_state_add(z, pgdat, item);
 587}
 588
 589void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 590                                        long delta)
 591{
 592        mod_node_state(pgdat, item, delta, 0);
 593}
 594EXPORT_SYMBOL(mod_node_page_state);
 595
 596void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 597{
 598        mod_node_state(pgdat, item, 1, 1);
 599}
 600
 601void inc_node_page_state(struct page *page, enum node_stat_item item)
 602{
 603        mod_node_state(page_pgdat(page), item, 1, 1);
 604}
 605EXPORT_SYMBOL(inc_node_page_state);
 606
 607void dec_node_page_state(struct page *page, enum node_stat_item item)
 608{
 609        mod_node_state(page_pgdat(page), item, -1, -1);
 610}
 611EXPORT_SYMBOL(dec_node_page_state);
 612#else
 613/*
 614 * Use interrupt disable to serialize counter updates
 615 */
 616void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 617                         long delta)
 618{
 619        unsigned long flags;
 620
 621        local_irq_save(flags);
 622        __mod_zone_page_state(zone, item, delta);
 623        local_irq_restore(flags);
 624}
 625EXPORT_SYMBOL(mod_zone_page_state);
 626
 627void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 628{
 629        unsigned long flags;
 630        struct zone *zone;
 631
 632        zone = page_zone(page);
 633        local_irq_save(flags);
 634        __inc_zone_state(zone, item);
 635        local_irq_restore(flags);
 636}
 637EXPORT_SYMBOL(inc_zone_page_state);
 638
 639void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 640{
 641        unsigned long flags;
 642
 643        local_irq_save(flags);
 644        __dec_zone_page_state(page, item);
 645        local_irq_restore(flags);
 646}
 647EXPORT_SYMBOL(dec_zone_page_state);
 648
 649void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 650{
 651        unsigned long flags;
 652
 653        local_irq_save(flags);
 654        __inc_node_state(pgdat, item);
 655        local_irq_restore(flags);
 656}
 657EXPORT_SYMBOL(inc_node_state);
 658
 659void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 660                                        long delta)
 661{
 662        unsigned long flags;
 663
 664        local_irq_save(flags);
 665        __mod_node_page_state(pgdat, item, delta);
 666        local_irq_restore(flags);
 667}
 668EXPORT_SYMBOL(mod_node_page_state);
 669
 670void inc_node_page_state(struct page *page, enum node_stat_item item)
 671{
 672        unsigned long flags;
 673        struct pglist_data *pgdat;
 674
 675        pgdat = page_pgdat(page);
 676        local_irq_save(flags);
 677        __inc_node_state(pgdat, item);
 678        local_irq_restore(flags);
 679}
 680EXPORT_SYMBOL(inc_node_page_state);
 681
 682void dec_node_page_state(struct page *page, enum node_stat_item item)
 683{
 684        unsigned long flags;
 685
 686        local_irq_save(flags);
 687        __dec_node_page_state(page, item);
 688        local_irq_restore(flags);
 689}
 690EXPORT_SYMBOL(dec_node_page_state);
 691#endif
 692
 693/*
 694 * Fold a differential into the global counters.
 695 * Returns the number of counters updated.
 696 */
 697#ifdef CONFIG_NUMA
 698static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
 699{
 700        int i;
 701        int changes = 0;
 702
 703        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 704                if (zone_diff[i]) {
 705                        atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 706                        changes++;
 707        }
 708
 709        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 710                if (numa_diff[i]) {
 711                        atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
 712                        changes++;
 713        }
 714
 715        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 716                if (node_diff[i]) {
 717                        atomic_long_add(node_diff[i], &vm_node_stat[i]);
 718                        changes++;
 719        }
 720        return changes;
 721}
 722#else
 723static int fold_diff(int *zone_diff, int *node_diff)
 724{
 725        int i;
 726        int changes = 0;
 727
 728        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 729                if (zone_diff[i]) {
 730                        atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 731                        changes++;
 732        }
 733
 734        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 735                if (node_diff[i]) {
 736                        atomic_long_add(node_diff[i], &vm_node_stat[i]);
 737                        changes++;
 738        }
 739        return changes;
 740}
 741#endif /* CONFIG_NUMA */
 742
 743/*
 744 * Update the zone counters for the current cpu.
 745 *
 746 * Note that refresh_cpu_vm_stats strives to only access
 747 * node local memory. The per cpu pagesets on remote zones are placed
 748 * in the memory local to the processor using that pageset. So the
 749 * loop over all zones will access a series of cachelines local to
 750 * the processor.
 751 *
 752 * The call to zone_page_state_add updates the cachelines with the
 753 * statistics in the remote zone struct as well as the global cachelines
 754 * with the global counters. These could cause remote node cache line
 755 * bouncing and will have to be only done when necessary.
 756 *
 757 * The function returns the number of global counters updated.
 758 */
 759static int refresh_cpu_vm_stats(bool do_pagesets)
 760{
 761        struct pglist_data *pgdat;
 762        struct zone *zone;
 763        int i;
 764        int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 765#ifdef CONFIG_NUMA
 766        int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
 767#endif
 768        int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 769        int changes = 0;
 770
 771        for_each_populated_zone(zone) {
 772                struct per_cpu_pageset __percpu *p = zone->pageset;
 773
 774                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 775                        int v;
 776
 777                        v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 778                        if (v) {
 779
 780                                atomic_long_add(v, &zone->vm_stat[i]);
 781                                global_zone_diff[i] += v;
 782#ifdef CONFIG_NUMA
 783                                /* 3 seconds idle till flush */
 784                                __this_cpu_write(p->expire, 3);
 785#endif
 786                        }
 787                }
 788#ifdef CONFIG_NUMA
 789                for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
 790                        int v;
 791
 792                        v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
 793                        if (v) {
 794
 795                                atomic_long_add(v, &zone->vm_numa_stat[i]);
 796                                global_numa_diff[i] += v;
 797                                __this_cpu_write(p->expire, 3);
 798                        }
 799                }
 800
 801                if (do_pagesets) {
 802                        cond_resched();
 803                        /*
 804                         * Deal with draining the remote pageset of this
 805                         * processor
 806                         *
 807                         * Check if there are pages remaining in this pageset
 808                         * if not then there is nothing to expire.
 809                         */
 810                        if (!__this_cpu_read(p->expire) ||
 811                               !__this_cpu_read(p->pcp.count))
 812                                continue;
 813
 814                        /*
 815                         * We never drain zones local to this processor.
 816                         */
 817                        if (zone_to_nid(zone) == numa_node_id()) {
 818                                __this_cpu_write(p->expire, 0);
 819                                continue;
 820                        }
 821
 822                        if (__this_cpu_dec_return(p->expire))
 823                                continue;
 824
 825                        if (__this_cpu_read(p->pcp.count)) {
 826                                drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 827                                changes++;
 828                        }
 829                }
 830#endif
 831        }
 832
 833        for_each_online_pgdat(pgdat) {
 834                struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
 835
 836                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 837                        int v;
 838
 839                        v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
 840                        if (v) {
 841                                atomic_long_add(v, &pgdat->vm_stat[i]);
 842                                global_node_diff[i] += v;
 843                        }
 844                }
 845        }
 846
 847#ifdef CONFIG_NUMA
 848        changes += fold_diff(global_zone_diff, global_numa_diff,
 849                             global_node_diff);
 850#else
 851        changes += fold_diff(global_zone_diff, global_node_diff);
 852#endif
 853        return changes;
 854}
 855
 856/*
 857 * Fold the data for an offline cpu into the global array.
 858 * There cannot be any access by the offline cpu and therefore
 859 * synchronization is simplified.
 860 */
 861void cpu_vm_stats_fold(int cpu)
 862{
 863        struct pglist_data *pgdat;
 864        struct zone *zone;
 865        int i;
 866        int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 867#ifdef CONFIG_NUMA
 868        int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
 869#endif
 870        int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 871
 872        for_each_populated_zone(zone) {
 873                struct per_cpu_pageset *p;
 874
 875                p = per_cpu_ptr(zone->pageset, cpu);
 876
 877                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 878                        if (p->vm_stat_diff[i]) {
 879                                int v;
 880
 881                                v = p->vm_stat_diff[i];
 882                                p->vm_stat_diff[i] = 0;
 883                                atomic_long_add(v, &zone->vm_stat[i]);
 884                                global_zone_diff[i] += v;
 885                        }
 886
 887#ifdef CONFIG_NUMA
 888                for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 889                        if (p->vm_numa_stat_diff[i]) {
 890                                int v;
 891
 892                                v = p->vm_numa_stat_diff[i];
 893                                p->vm_numa_stat_diff[i] = 0;
 894                                atomic_long_add(v, &zone->vm_numa_stat[i]);
 895                                global_numa_diff[i] += v;
 896                        }
 897#endif
 898        }
 899
 900        for_each_online_pgdat(pgdat) {
 901                struct per_cpu_nodestat *p;
 902
 903                p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 904
 905                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 906                        if (p->vm_node_stat_diff[i]) {
 907                                int v;
 908
 909                                v = p->vm_node_stat_diff[i];
 910                                p->vm_node_stat_diff[i] = 0;
 911                                atomic_long_add(v, &pgdat->vm_stat[i]);
 912                                global_node_diff[i] += v;
 913                        }
 914        }
 915
 916#ifdef CONFIG_NUMA
 917        fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
 918#else
 919        fold_diff(global_zone_diff, global_node_diff);
 920#endif
 921}
 922
 923/*
 924 * this is only called if !populated_zone(zone), which implies no other users of
 925 * pset->vm_stat_diff[] exsist.
 926 */
 927void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 928{
 929        int i;
 930
 931        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 932                if (pset->vm_stat_diff[i]) {
 933                        int v = pset->vm_stat_diff[i];
 934                        pset->vm_stat_diff[i] = 0;
 935                        atomic_long_add(v, &zone->vm_stat[i]);
 936                        atomic_long_add(v, &vm_zone_stat[i]);
 937                }
 938
 939#ifdef CONFIG_NUMA
 940        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 941                if (pset->vm_numa_stat_diff[i]) {
 942                        int v = pset->vm_numa_stat_diff[i];
 943
 944                        pset->vm_numa_stat_diff[i] = 0;
 945                        atomic_long_add(v, &zone->vm_numa_stat[i]);
 946                        atomic_long_add(v, &vm_numa_stat[i]);
 947                }
 948#endif
 949}
 950#endif
 951
 952#ifdef CONFIG_NUMA
 953void __inc_numa_state(struct zone *zone,
 954                                 enum numa_stat_item item)
 955{
 956        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 957        u16 __percpu *p = pcp->vm_numa_stat_diff + item;
 958        u16 v;
 959
 960        v = __this_cpu_inc_return(*p);
 961
 962        if (unlikely(v > NUMA_STATS_THRESHOLD)) {
 963                zone_numa_state_add(v, zone, item);
 964                __this_cpu_write(*p, 0);
 965        }
 966}
 967
 968/*
 969 * Determine the per node value of a stat item. This function
 970 * is called frequently in a NUMA machine, so try to be as
 971 * frugal as possible.
 972 */
 973unsigned long sum_zone_node_page_state(int node,
 974                                 enum zone_stat_item item)
 975{
 976        struct zone *zones = NODE_DATA(node)->node_zones;
 977        int i;
 978        unsigned long count = 0;
 979
 980        for (i = 0; i < MAX_NR_ZONES; i++)
 981                count += zone_page_state(zones + i, item);
 982
 983        return count;
 984}
 985
 986/*
 987 * Determine the per node value of a numa stat item. To avoid deviation,
 988 * the per cpu stat number in vm_numa_stat_diff[] is also included.
 989 */
 990unsigned long sum_zone_numa_state(int node,
 991                                 enum numa_stat_item item)
 992{
 993        struct zone *zones = NODE_DATA(node)->node_zones;
 994        int i;
 995        unsigned long count = 0;
 996
 997        for (i = 0; i < MAX_NR_ZONES; i++)
 998                count += zone_numa_state_snapshot(zones + i, item);
 999
1000        return count;
1001}
1002
1003/*
1004 * Determine the per node value of a stat item.
1005 */
1006unsigned long node_page_state_pages(struct pglist_data *pgdat,
1007                                    enum node_stat_item item)
1008{
1009        long x = atomic_long_read(&pgdat->vm_stat[item]);
1010#ifdef CONFIG_SMP
1011        if (x < 0)
1012                x = 0;
1013#endif
1014        return x;
1015}
1016
1017unsigned long node_page_state(struct pglist_data *pgdat,
1018                              enum node_stat_item item)
1019{
1020        VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1021
1022        return node_page_state_pages(pgdat, item);
1023}
1024#endif
1025
1026#ifdef CONFIG_COMPACTION
1027
1028struct contig_page_info {
1029        unsigned long free_pages;
1030        unsigned long free_blocks_total;
1031        unsigned long free_blocks_suitable;
1032};
1033
1034/*
1035 * Calculate the number of free pages in a zone, how many contiguous
1036 * pages are free and how many are large enough to satisfy an allocation of
1037 * the target size. Note that this function makes no attempt to estimate
1038 * how many suitable free blocks there *might* be if MOVABLE pages were
1039 * migrated. Calculating that is possible, but expensive and can be
1040 * figured out from userspace
1041 */
1042static void fill_contig_page_info(struct zone *zone,
1043                                unsigned int suitable_order,
1044                                struct contig_page_info *info)
1045{
1046        unsigned int order;
1047
1048        info->free_pages = 0;
1049        info->free_blocks_total = 0;
1050        info->free_blocks_suitable = 0;
1051
1052        for (order = 0; order < MAX_ORDER; order++) {
1053                unsigned long blocks;
1054
1055                /* Count number of free blocks */
1056                blocks = zone->free_area[order].nr_free;
1057                info->free_blocks_total += blocks;
1058
1059                /* Count free base pages */
1060                info->free_pages += blocks << order;
1061
1062                /* Count the suitable free blocks */
1063                if (order >= suitable_order)
1064                        info->free_blocks_suitable += blocks <<
1065                                                (order - suitable_order);
1066        }
1067}
1068
1069/*
1070 * A fragmentation index only makes sense if an allocation of a requested
1071 * size would fail. If that is true, the fragmentation index indicates
1072 * whether external fragmentation or a lack of memory was the problem.
1073 * The value can be used to determine if page reclaim or compaction
1074 * should be used
1075 */
1076static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1077{
1078        unsigned long requested = 1UL << order;
1079
1080        if (WARN_ON_ONCE(order >= MAX_ORDER))
1081                return 0;
1082
1083        if (!info->free_blocks_total)
1084                return 0;
1085
1086        /* Fragmentation index only makes sense when a request would fail */
1087        if (info->free_blocks_suitable)
1088                return -1000;
1089
1090        /*
1091         * Index is between 0 and 1 so return within 3 decimal places
1092         *
1093         * 0 => allocation would fail due to lack of memory
1094         * 1 => allocation would fail due to fragmentation
1095         */
1096        return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1097}
1098
1099/*
1100 * Calculates external fragmentation within a zone wrt the given order.
1101 * It is defined as the percentage of pages found in blocks of size
1102 * less than 1 << order. It returns values in range [0, 100].
1103 */
1104unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1105{
1106        struct contig_page_info info;
1107
1108        fill_contig_page_info(zone, order, &info);
1109        if (info.free_pages == 0)
1110                return 0;
1111
1112        return div_u64((info.free_pages -
1113                        (info.free_blocks_suitable << order)) * 100,
1114                        info.free_pages);
1115}
1116
1117/* Same as __fragmentation index but allocs contig_page_info on stack */
1118int fragmentation_index(struct zone *zone, unsigned int order)
1119{
1120        struct contig_page_info info;
1121
1122        fill_contig_page_info(zone, order, &info);
1123        return __fragmentation_index(order, &info);
1124}
1125#endif
1126
1127#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1128    defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1129#ifdef CONFIG_ZONE_DMA
1130#define TEXT_FOR_DMA(xx) xx "_dma",
1131#else
1132#define TEXT_FOR_DMA(xx)
1133#endif
1134
1135#ifdef CONFIG_ZONE_DMA32
1136#define TEXT_FOR_DMA32(xx) xx "_dma32",
1137#else
1138#define TEXT_FOR_DMA32(xx)
1139#endif
1140
1141#ifdef CONFIG_HIGHMEM
1142#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1143#else
1144#define TEXT_FOR_HIGHMEM(xx)
1145#endif
1146
1147#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1148                                        TEXT_FOR_HIGHMEM(xx) xx "_movable",
1149
1150const char * const vmstat_text[] = {
1151        /* enum zone_stat_item counters */
1152        "nr_free_pages",
1153        "nr_zone_inactive_anon",
1154        "nr_zone_active_anon",
1155        "nr_zone_inactive_file",
1156        "nr_zone_active_file",
1157        "nr_zone_unevictable",
1158        "nr_zone_write_pending",
1159        "nr_mlock",
1160        "nr_page_table_pages",
1161        "nr_bounce",
1162#if IS_ENABLED(CONFIG_ZSMALLOC)
1163        "nr_zspages",
1164#endif
1165        "nr_free_cma",
1166
1167        /* enum numa_stat_item counters */
1168#ifdef CONFIG_NUMA
1169        "numa_hit",
1170        "numa_miss",
1171        "numa_foreign",
1172        "numa_interleave",
1173        "numa_local",
1174        "numa_other",
1175#endif
1176
1177        /* enum node_stat_item counters */
1178        "nr_inactive_anon",
1179        "nr_active_anon",
1180        "nr_inactive_file",
1181        "nr_active_file",
1182        "nr_unevictable",
1183        "nr_slab_reclaimable",
1184        "nr_slab_unreclaimable",
1185        "nr_isolated_anon",
1186        "nr_isolated_file",
1187        "workingset_nodes",
1188        "workingset_refault_anon",
1189        "workingset_refault_file",
1190        "workingset_activate_anon",
1191        "workingset_activate_file",
1192        "workingset_restore_anon",
1193        "workingset_restore_file",
1194        "workingset_nodereclaim",
1195        "nr_anon_pages",
1196        "nr_mapped",
1197        "nr_file_pages",
1198        "nr_dirty",
1199        "nr_writeback",
1200        "nr_writeback_temp",
1201        "nr_shmem",
1202        "nr_shmem_hugepages",
1203        "nr_shmem_pmdmapped",
1204        "nr_file_hugepages",
1205        "nr_file_pmdmapped",
1206        "nr_anon_transparent_hugepages",
1207        "nr_vmscan_write",
1208        "nr_vmscan_immediate_reclaim",
1209        "nr_dirtied",
1210        "nr_written",
1211        "nr_kernel_misc_reclaimable",
1212        "nr_foll_pin_acquired",
1213        "nr_foll_pin_released",
1214        "nr_kernel_stack",
1215#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1216        "nr_shadow_call_stack",
1217#endif
1218
1219        /* enum writeback_stat_item counters */
1220        "nr_dirty_threshold",
1221        "nr_dirty_background_threshold",
1222
1223#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1224        /* enum vm_event_item counters */
1225        "pgpgin",
1226        "pgpgout",
1227        "pswpin",
1228        "pswpout",
1229
1230        TEXTS_FOR_ZONES("pgalloc")
1231        TEXTS_FOR_ZONES("allocstall")
1232        TEXTS_FOR_ZONES("pgskip")
1233
1234        "pgfree",
1235        "pgactivate",
1236        "pgdeactivate",
1237        "pglazyfree",
1238
1239        "pgfault",
1240        "pgmajfault",
1241        "pglazyfreed",
1242
1243        "pgrefill",
1244        "pgreuse",
1245        "pgsteal_kswapd",
1246        "pgsteal_direct",
1247        "pgscan_kswapd",
1248        "pgscan_direct",
1249        "pgscan_direct_throttle",
1250        "pgscan_anon",
1251        "pgscan_file",
1252        "pgsteal_anon",
1253        "pgsteal_file",
1254
1255#ifdef CONFIG_NUMA
1256        "zone_reclaim_failed",
1257#endif
1258        "pginodesteal",
1259        "slabs_scanned",
1260        "kswapd_inodesteal",
1261        "kswapd_low_wmark_hit_quickly",
1262        "kswapd_high_wmark_hit_quickly",
1263        "pageoutrun",
1264
1265        "pgrotated",
1266
1267        "drop_pagecache",
1268        "drop_slab",
1269        "oom_kill",
1270
1271#ifdef CONFIG_NUMA_BALANCING
1272        "numa_pte_updates",
1273        "numa_huge_pte_updates",
1274        "numa_hint_faults",
1275        "numa_hint_faults_local",
1276        "numa_pages_migrated",
1277#endif
1278#ifdef CONFIG_MIGRATION
1279        "pgmigrate_success",
1280        "pgmigrate_fail",
1281        "thp_migration_success",
1282        "thp_migration_fail",
1283        "thp_migration_split",
1284#endif
1285#ifdef CONFIG_COMPACTION
1286        "compact_migrate_scanned",
1287        "compact_free_scanned",
1288        "compact_isolated",
1289        "compact_stall",
1290        "compact_fail",
1291        "compact_success",
1292        "compact_daemon_wake",
1293        "compact_daemon_migrate_scanned",
1294        "compact_daemon_free_scanned",
1295#endif
1296
1297#ifdef CONFIG_HUGETLB_PAGE
1298        "htlb_buddy_alloc_success",
1299        "htlb_buddy_alloc_fail",
1300#endif
1301        "unevictable_pgs_culled",
1302        "unevictable_pgs_scanned",
1303        "unevictable_pgs_rescued",
1304        "unevictable_pgs_mlocked",
1305        "unevictable_pgs_munlocked",
1306        "unevictable_pgs_cleared",
1307        "unevictable_pgs_stranded",
1308
1309#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1310        "thp_fault_alloc",
1311        "thp_fault_fallback",
1312        "thp_fault_fallback_charge",
1313        "thp_collapse_alloc",
1314        "thp_collapse_alloc_failed",
1315        "thp_file_alloc",
1316        "thp_file_fallback",
1317        "thp_file_fallback_charge",
1318        "thp_file_mapped",
1319        "thp_split_page",
1320        "thp_split_page_failed",
1321        "thp_deferred_split_page",
1322        "thp_split_pmd",
1323#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1324        "thp_split_pud",
1325#endif
1326        "thp_zero_page_alloc",
1327        "thp_zero_page_alloc_failed",
1328        "thp_swpout",
1329        "thp_swpout_fallback",
1330#endif
1331#ifdef CONFIG_MEMORY_BALLOON
1332        "balloon_inflate",
1333        "balloon_deflate",
1334#ifdef CONFIG_BALLOON_COMPACTION
1335        "balloon_migrate",
1336#endif
1337#endif /* CONFIG_MEMORY_BALLOON */
1338#ifdef CONFIG_DEBUG_TLBFLUSH
1339        "nr_tlb_remote_flush",
1340        "nr_tlb_remote_flush_received",
1341        "nr_tlb_local_flush_all",
1342        "nr_tlb_local_flush_one",
1343#endif /* CONFIG_DEBUG_TLBFLUSH */
1344
1345#ifdef CONFIG_DEBUG_VM_VMACACHE
1346        "vmacache_find_calls",
1347        "vmacache_find_hits",
1348#endif
1349#ifdef CONFIG_SWAP
1350        "swap_ra",
1351        "swap_ra_hit",
1352#endif
1353#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1354};
1355#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1356
1357#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1358     defined(CONFIG_PROC_FS)
1359static void *frag_start(struct seq_file *m, loff_t *pos)
1360{
1361        pg_data_t *pgdat;
1362        loff_t node = *pos;
1363
1364        for (pgdat = first_online_pgdat();
1365             pgdat && node;
1366             pgdat = next_online_pgdat(pgdat))
1367                --node;
1368
1369        return pgdat;
1370}
1371
1372static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1373{
1374        pg_data_t *pgdat = (pg_data_t *)arg;
1375
1376        (*pos)++;
1377        return next_online_pgdat(pgdat);
1378}
1379
1380static void frag_stop(struct seq_file *m, void *arg)
1381{
1382}
1383
1384/*
1385 * Walk zones in a node and print using a callback.
1386 * If @assert_populated is true, only use callback for zones that are populated.
1387 */
1388static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1389                bool assert_populated, bool nolock,
1390                void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1391{
1392        struct zone *zone;
1393        struct zone *node_zones = pgdat->node_zones;
1394        unsigned long flags;
1395
1396        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1397                if (assert_populated && !populated_zone(zone))
1398                        continue;
1399
1400                if (!nolock)
1401                        spin_lock_irqsave(&zone->lock, flags);
1402                print(m, pgdat, zone);
1403                if (!nolock)
1404                        spin_unlock_irqrestore(&zone->lock, flags);
1405        }
1406}
1407#endif
1408
1409#ifdef CONFIG_PROC_FS
1410static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1411                                                struct zone *zone)
1412{
1413        int order;
1414
1415        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1416        for (order = 0; order < MAX_ORDER; ++order)
1417                seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1418        seq_putc(m, '\n');
1419}
1420
1421/*
1422 * This walks the free areas for each zone.
1423 */
1424static int frag_show(struct seq_file *m, void *arg)
1425{
1426        pg_data_t *pgdat = (pg_data_t *)arg;
1427        walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1428        return 0;
1429}
1430
1431static void pagetypeinfo_showfree_print(struct seq_file *m,
1432                                        pg_data_t *pgdat, struct zone *zone)
1433{
1434        int order, mtype;
1435
1436        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1437                seq_printf(m, "Node %4d, zone %8s, type %12s ",
1438                                        pgdat->node_id,
1439                                        zone->name,
1440                                        migratetype_names[mtype]);
1441                for (order = 0; order < MAX_ORDER; ++order) {
1442                        unsigned long freecount = 0;
1443                        struct free_area *area;
1444                        struct list_head *curr;
1445                        bool overflow = false;
1446
1447                        area = &(zone->free_area[order]);
1448
1449                        list_for_each(curr, &area->free_list[mtype]) {
1450                                /*
1451                                 * Cap the free_list iteration because it might
1452                                 * be really large and we are under a spinlock
1453                                 * so a long time spent here could trigger a
1454                                 * hard lockup detector. Anyway this is a
1455                                 * debugging tool so knowing there is a handful
1456                                 * of pages of this order should be more than
1457                                 * sufficient.
1458                                 */
1459                                if (++freecount >= 100000) {
1460                                        overflow = true;
1461                                        break;
1462                                }
1463                        }
1464                        seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1465                        spin_unlock_irq(&zone->lock);
1466                        cond_resched();
1467                        spin_lock_irq(&zone->lock);
1468                }
1469                seq_putc(m, '\n');
1470        }
1471}
1472
1473/* Print out the free pages at each order for each migatetype */
1474static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1475{
1476        int order;
1477        pg_data_t *pgdat = (pg_data_t *)arg;
1478
1479        /* Print header */
1480        seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1481        for (order = 0; order < MAX_ORDER; ++order)
1482                seq_printf(m, "%6d ", order);
1483        seq_putc(m, '\n');
1484
1485        walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1486
1487        return 0;
1488}
1489
1490static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1491                                        pg_data_t *pgdat, struct zone *zone)
1492{
1493        int mtype;
1494        unsigned long pfn;
1495        unsigned long start_pfn = zone->zone_start_pfn;
1496        unsigned long end_pfn = zone_end_pfn(zone);
1497        unsigned long count[MIGRATE_TYPES] = { 0, };
1498
1499        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1500                struct page *page;
1501
1502                page = pfn_to_online_page(pfn);
1503                if (!page)
1504                        continue;
1505
1506                /* Watch for unexpected holes punched in the memmap */
1507                if (!memmap_valid_within(pfn, page, zone))
1508                        continue;
1509
1510                if (page_zone(page) != zone)
1511                        continue;
1512
1513                mtype = get_pageblock_migratetype(page);
1514
1515                if (mtype < MIGRATE_TYPES)
1516                        count[mtype]++;
1517        }
1518
1519        /* Print counts */
1520        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1521        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1522                seq_printf(m, "%12lu ", count[mtype]);
1523        seq_putc(m, '\n');
1524}
1525
1526/* Print out the number of pageblocks for each migratetype */
1527static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1528{
1529        int mtype;
1530        pg_data_t *pgdat = (pg_data_t *)arg;
1531
1532        seq_printf(m, "\n%-23s", "Number of blocks type ");
1533        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1534                seq_printf(m, "%12s ", migratetype_names[mtype]);
1535        seq_putc(m, '\n');
1536        walk_zones_in_node(m, pgdat, true, false,
1537                pagetypeinfo_showblockcount_print);
1538
1539        return 0;
1540}
1541
1542/*
1543 * Print out the number of pageblocks for each migratetype that contain pages
1544 * of other types. This gives an indication of how well fallbacks are being
1545 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1546 * to determine what is going on
1547 */
1548static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1549{
1550#ifdef CONFIG_PAGE_OWNER
1551        int mtype;
1552
1553        if (!static_branch_unlikely(&page_owner_inited))
1554                return;
1555
1556        drain_all_pages(NULL);
1557
1558        seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1559        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1560                seq_printf(m, "%12s ", migratetype_names[mtype]);
1561        seq_putc(m, '\n');
1562
1563        walk_zones_in_node(m, pgdat, true, true,
1564                pagetypeinfo_showmixedcount_print);
1565#endif /* CONFIG_PAGE_OWNER */
1566}
1567
1568/*
1569 * This prints out statistics in relation to grouping pages by mobility.
1570 * It is expensive to collect so do not constantly read the file.
1571 */
1572static int pagetypeinfo_show(struct seq_file *m, void *arg)
1573{
1574        pg_data_t *pgdat = (pg_data_t *)arg;
1575
1576        /* check memoryless node */
1577        if (!node_state(pgdat->node_id, N_MEMORY))
1578                return 0;
1579
1580        seq_printf(m, "Page block order: %d\n", pageblock_order);
1581        seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1582        seq_putc(m, '\n');
1583        pagetypeinfo_showfree(m, pgdat);
1584        pagetypeinfo_showblockcount(m, pgdat);
1585        pagetypeinfo_showmixedcount(m, pgdat);
1586
1587        return 0;
1588}
1589
1590static const struct seq_operations fragmentation_op = {
1591        .start  = frag_start,
1592        .next   = frag_next,
1593        .stop   = frag_stop,
1594        .show   = frag_show,
1595};
1596
1597static const struct seq_operations pagetypeinfo_op = {
1598        .start  = frag_start,
1599        .next   = frag_next,
1600        .stop   = frag_stop,
1601        .show   = pagetypeinfo_show,
1602};
1603
1604static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1605{
1606        int zid;
1607
1608        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1609                struct zone *compare = &pgdat->node_zones[zid];
1610
1611                if (populated_zone(compare))
1612                        return zone == compare;
1613        }
1614
1615        return false;
1616}
1617
1618static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1619                                                        struct zone *zone)
1620{
1621        int i;
1622        seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1623        if (is_zone_first_populated(pgdat, zone)) {
1624                seq_printf(m, "\n  per-node stats");
1625                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1626                        seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1627                                   node_page_state_pages(pgdat, i));
1628                }
1629        }
1630        seq_printf(m,
1631                   "\n  pages free     %lu"
1632                   "\n        min      %lu"
1633                   "\n        low      %lu"
1634                   "\n        high     %lu"
1635                   "\n        spanned  %lu"
1636                   "\n        present  %lu"
1637                   "\n        managed  %lu",
1638                   zone_page_state(zone, NR_FREE_PAGES),
1639                   min_wmark_pages(zone),
1640                   low_wmark_pages(zone),
1641                   high_wmark_pages(zone),
1642                   zone->spanned_pages,
1643                   zone->present_pages,
1644                   zone_managed_pages(zone));
1645
1646        seq_printf(m,
1647                   "\n        protection: (%ld",
1648                   zone->lowmem_reserve[0]);
1649        for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1650                seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1651        seq_putc(m, ')');
1652
1653        /* If unpopulated, no other information is useful */
1654        if (!populated_zone(zone)) {
1655                seq_putc(m, '\n');
1656                return;
1657        }
1658
1659        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1660                seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1661                           zone_page_state(zone, i));
1662
1663#ifdef CONFIG_NUMA
1664        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1665                seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1666                           zone_numa_state_snapshot(zone, i));
1667#endif
1668
1669        seq_printf(m, "\n  pagesets");
1670        for_each_online_cpu(i) {
1671                struct per_cpu_pageset *pageset;
1672
1673                pageset = per_cpu_ptr(zone->pageset, i);
1674                seq_printf(m,
1675                           "\n    cpu: %i"
1676                           "\n              count: %i"
1677                           "\n              high:  %i"
1678                           "\n              batch: %i",
1679                           i,
1680                           pageset->pcp.count,
1681                           pageset->pcp.high,
1682                           pageset->pcp.batch);
1683#ifdef CONFIG_SMP
1684                seq_printf(m, "\n  vm stats threshold: %d",
1685                                pageset->stat_threshold);
1686#endif
1687        }
1688        seq_printf(m,
1689                   "\n  node_unreclaimable:  %u"
1690                   "\n  start_pfn:           %lu",
1691                   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1692                   zone->zone_start_pfn);
1693        seq_putc(m, '\n');
1694}
1695
1696/*
1697 * Output information about zones in @pgdat.  All zones are printed regardless
1698 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1699 * set of all zones and userspace would not be aware of such zones if they are
1700 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1701 */
1702static int zoneinfo_show(struct seq_file *m, void *arg)
1703{
1704        pg_data_t *pgdat = (pg_data_t *)arg;
1705        walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1706        return 0;
1707}
1708
1709static const struct seq_operations zoneinfo_op = {
1710        .start  = frag_start, /* iterate over all zones. The same as in
1711                               * fragmentation. */
1712        .next   = frag_next,
1713        .stop   = frag_stop,
1714        .show   = zoneinfo_show,
1715};
1716
1717#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1718                         NR_VM_NUMA_STAT_ITEMS + \
1719                         NR_VM_NODE_STAT_ITEMS + \
1720                         NR_VM_WRITEBACK_STAT_ITEMS + \
1721                         (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1722                          NR_VM_EVENT_ITEMS : 0))
1723
1724static void *vmstat_start(struct seq_file *m, loff_t *pos)
1725{
1726        unsigned long *v;
1727        int i;
1728
1729        if (*pos >= NR_VMSTAT_ITEMS)
1730                return NULL;
1731
1732        BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1733        v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1734        m->private = v;
1735        if (!v)
1736                return ERR_PTR(-ENOMEM);
1737        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1738                v[i] = global_zone_page_state(i);
1739        v += NR_VM_ZONE_STAT_ITEMS;
1740
1741#ifdef CONFIG_NUMA
1742        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1743                v[i] = global_numa_state(i);
1744        v += NR_VM_NUMA_STAT_ITEMS;
1745#endif
1746
1747        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1748                v[i] = global_node_page_state_pages(i);
1749        v += NR_VM_NODE_STAT_ITEMS;
1750
1751        global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1752                            v + NR_DIRTY_THRESHOLD);
1753        v += NR_VM_WRITEBACK_STAT_ITEMS;
1754
1755#ifdef CONFIG_VM_EVENT_COUNTERS
1756        all_vm_events(v);
1757        v[PGPGIN] /= 2;         /* sectors -> kbytes */
1758        v[PGPGOUT] /= 2;
1759#endif
1760        return (unsigned long *)m->private + *pos;
1761}
1762
1763static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1764{
1765        (*pos)++;
1766        if (*pos >= NR_VMSTAT_ITEMS)
1767                return NULL;
1768        return (unsigned long *)m->private + *pos;
1769}
1770
1771static int vmstat_show(struct seq_file *m, void *arg)
1772{
1773        unsigned long *l = arg;
1774        unsigned long off = l - (unsigned long *)m->private;
1775
1776        seq_puts(m, vmstat_text[off]);
1777        seq_put_decimal_ull(m, " ", *l);
1778        seq_putc(m, '\n');
1779
1780        if (off == NR_VMSTAT_ITEMS - 1) {
1781                /*
1782                 * We've come to the end - add any deprecated counters to avoid
1783                 * breaking userspace which might depend on them being present.
1784                 */
1785                seq_puts(m, "nr_unstable 0\n");
1786        }
1787        return 0;
1788}
1789
1790static void vmstat_stop(struct seq_file *m, void *arg)
1791{
1792        kfree(m->private);
1793        m->private = NULL;
1794}
1795
1796static const struct seq_operations vmstat_op = {
1797        .start  = vmstat_start,
1798        .next   = vmstat_next,
1799        .stop   = vmstat_stop,
1800        .show   = vmstat_show,
1801};
1802#endif /* CONFIG_PROC_FS */
1803
1804#ifdef CONFIG_SMP
1805static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1806int sysctl_stat_interval __read_mostly = HZ;
1807
1808#ifdef CONFIG_PROC_FS
1809static void refresh_vm_stats(struct work_struct *work)
1810{
1811        refresh_cpu_vm_stats(true);
1812}
1813
1814int vmstat_refresh(struct ctl_table *table, int write,
1815                   void *buffer, size_t *lenp, loff_t *ppos)
1816{
1817        long val;
1818        int err;
1819        int i;
1820
1821        /*
1822         * The regular update, every sysctl_stat_interval, may come later
1823         * than expected: leaving a significant amount in per_cpu buckets.
1824         * This is particularly misleading when checking a quantity of HUGE
1825         * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1826         * which can equally be echo'ed to or cat'ted from (by root),
1827         * can be used to update the stats just before reading them.
1828         *
1829         * Oh, and since global_zone_page_state() etc. are so careful to hide
1830         * transiently negative values, report an error here if any of
1831         * the stats is negative, so we know to go looking for imbalance.
1832         */
1833        err = schedule_on_each_cpu(refresh_vm_stats);
1834        if (err)
1835                return err;
1836        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1837                val = atomic_long_read(&vm_zone_stat[i]);
1838                if (val < 0) {
1839                        pr_warn("%s: %s %ld\n",
1840                                __func__, zone_stat_name(i), val);
1841                        err = -EINVAL;
1842                }
1843        }
1844#ifdef CONFIG_NUMA
1845        for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1846                val = atomic_long_read(&vm_numa_stat[i]);
1847                if (val < 0) {
1848                        pr_warn("%s: %s %ld\n",
1849                                __func__, numa_stat_name(i), val);
1850                        err = -EINVAL;
1851                }
1852        }
1853#endif
1854        if (err)
1855                return err;
1856        if (write)
1857                *ppos += *lenp;
1858        else
1859                *lenp = 0;
1860        return 0;
1861}
1862#endif /* CONFIG_PROC_FS */
1863
1864static void vmstat_update(struct work_struct *w)
1865{
1866        if (refresh_cpu_vm_stats(true)) {
1867                /*
1868                 * Counters were updated so we expect more updates
1869                 * to occur in the future. Keep on running the
1870                 * update worker thread.
1871                 */
1872                queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1873                                this_cpu_ptr(&vmstat_work),
1874                                round_jiffies_relative(sysctl_stat_interval));
1875        }
1876}
1877
1878/*
1879 * Switch off vmstat processing and then fold all the remaining differentials
1880 * until the diffs stay at zero. The function is used by NOHZ and can only be
1881 * invoked when tick processing is not active.
1882 */
1883/*
1884 * Check if the diffs for a certain cpu indicate that
1885 * an update is needed.
1886 */
1887static bool need_update(int cpu)
1888{
1889        struct zone *zone;
1890
1891        for_each_populated_zone(zone) {
1892                struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1893
1894                BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1895#ifdef CONFIG_NUMA
1896                BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1897#endif
1898
1899                /*
1900                 * The fast way of checking if there are any vmstat diffs.
1901                 */
1902                if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1903                               sizeof(p->vm_stat_diff[0])))
1904                        return true;
1905#ifdef CONFIG_NUMA
1906                if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1907                               sizeof(p->vm_numa_stat_diff[0])))
1908                        return true;
1909#endif
1910        }
1911        return false;
1912}
1913
1914/*
1915 * Switch off vmstat processing and then fold all the remaining differentials
1916 * until the diffs stay at zero. The function is used by NOHZ and can only be
1917 * invoked when tick processing is not active.
1918 */
1919void quiet_vmstat(void)
1920{
1921        if (system_state != SYSTEM_RUNNING)
1922                return;
1923
1924        if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1925                return;
1926
1927        if (!need_update(smp_processor_id()))
1928                return;
1929
1930        /*
1931         * Just refresh counters and do not care about the pending delayed
1932         * vmstat_update. It doesn't fire that often to matter and canceling
1933         * it would be too expensive from this path.
1934         * vmstat_shepherd will take care about that for us.
1935         */
1936        refresh_cpu_vm_stats(false);
1937}
1938
1939/*
1940 * Shepherd worker thread that checks the
1941 * differentials of processors that have their worker
1942 * threads for vm statistics updates disabled because of
1943 * inactivity.
1944 */
1945static void vmstat_shepherd(struct work_struct *w);
1946
1947static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1948
1949static void vmstat_shepherd(struct work_struct *w)
1950{
1951        int cpu;
1952
1953        get_online_cpus();
1954        /* Check processors whose vmstat worker threads have been disabled */
1955        for_each_online_cpu(cpu) {
1956                struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1957
1958                if (!delayed_work_pending(dw) && need_update(cpu))
1959                        queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1960        }
1961        put_online_cpus();
1962
1963        schedule_delayed_work(&shepherd,
1964                round_jiffies_relative(sysctl_stat_interval));
1965}
1966
1967static void __init start_shepherd_timer(void)
1968{
1969        int cpu;
1970
1971        for_each_possible_cpu(cpu)
1972                INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1973                        vmstat_update);
1974
1975        schedule_delayed_work(&shepherd,
1976                round_jiffies_relative(sysctl_stat_interval));
1977}
1978
1979static void __init init_cpu_node_state(void)
1980{
1981        int node;
1982
1983        for_each_online_node(node) {
1984                if (cpumask_weight(cpumask_of_node(node)) > 0)
1985                        node_set_state(node, N_CPU);
1986        }
1987}
1988
1989static int vmstat_cpu_online(unsigned int cpu)
1990{
1991        refresh_zone_stat_thresholds();
1992        node_set_state(cpu_to_node(cpu), N_CPU);
1993        return 0;
1994}
1995
1996static int vmstat_cpu_down_prep(unsigned int cpu)
1997{
1998        cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1999        return 0;
2000}
2001
2002static int vmstat_cpu_dead(unsigned int cpu)
2003{
2004        const struct cpumask *node_cpus;
2005        int node;
2006
2007        node = cpu_to_node(cpu);
2008
2009        refresh_zone_stat_thresholds();
2010        node_cpus = cpumask_of_node(node);
2011        if (cpumask_weight(node_cpus) > 0)
2012                return 0;
2013
2014        node_clear_state(node, N_CPU);
2015        return 0;
2016}
2017
2018#endif
2019
2020struct workqueue_struct *mm_percpu_wq;
2021
2022void __init init_mm_internals(void)
2023{
2024        int ret __maybe_unused;
2025
2026        mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2027
2028#ifdef CONFIG_SMP
2029        ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2030                                        NULL, vmstat_cpu_dead);
2031        if (ret < 0)
2032                pr_err("vmstat: failed to register 'dead' hotplug state\n");
2033
2034        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2035                                        vmstat_cpu_online,
2036                                        vmstat_cpu_down_prep);
2037        if (ret < 0)
2038                pr_err("vmstat: failed to register 'online' hotplug state\n");
2039
2040        get_online_cpus();
2041        init_cpu_node_state();
2042        put_online_cpus();
2043
2044        start_shepherd_timer();
2045#endif
2046#ifdef CONFIG_PROC_FS
2047        proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2048        proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2049        proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2050        proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2051#endif
2052}
2053
2054#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2055
2056/*
2057 * Return an index indicating how much of the available free memory is
2058 * unusable for an allocation of the requested size.
2059 */
2060static int unusable_free_index(unsigned int order,
2061                                struct contig_page_info *info)
2062{
2063        /* No free memory is interpreted as all free memory is unusable */
2064        if (info->free_pages == 0)
2065                return 1000;
2066
2067        /*
2068         * Index should be a value between 0 and 1. Return a value to 3
2069         * decimal places.
2070         *
2071         * 0 => no fragmentation
2072         * 1 => high fragmentation
2073         */
2074        return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2075
2076}
2077
2078static void unusable_show_print(struct seq_file *m,
2079                                        pg_data_t *pgdat, struct zone *zone)
2080{
2081        unsigned int order;
2082        int index;
2083        struct contig_page_info info;
2084
2085        seq_printf(m, "Node %d, zone %8s ",
2086                                pgdat->node_id,
2087                                zone->name);
2088        for (order = 0; order < MAX_ORDER; ++order) {
2089                fill_contig_page_info(zone, order, &info);
2090                index = unusable_free_index(order, &info);
2091                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2092        }
2093
2094        seq_putc(m, '\n');
2095}
2096
2097/*
2098 * Display unusable free space index
2099 *
2100 * The unusable free space index measures how much of the available free
2101 * memory cannot be used to satisfy an allocation of a given size and is a
2102 * value between 0 and 1. The higher the value, the more of free memory is
2103 * unusable and by implication, the worse the external fragmentation is. This
2104 * can be expressed as a percentage by multiplying by 100.
2105 */
2106static int unusable_show(struct seq_file *m, void *arg)
2107{
2108        pg_data_t *pgdat = (pg_data_t *)arg;
2109
2110        /* check memoryless node */
2111        if (!node_state(pgdat->node_id, N_MEMORY))
2112                return 0;
2113
2114        walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2115
2116        return 0;
2117}
2118
2119static const struct seq_operations unusable_sops = {
2120        .start  = frag_start,
2121        .next   = frag_next,
2122        .stop   = frag_stop,
2123        .show   = unusable_show,
2124};
2125
2126DEFINE_SEQ_ATTRIBUTE(unusable);
2127
2128static void extfrag_show_print(struct seq_file *m,
2129                                        pg_data_t *pgdat, struct zone *zone)
2130{
2131        unsigned int order;
2132        int index;
2133
2134        /* Alloc on stack as interrupts are disabled for zone walk */
2135        struct contig_page_info info;
2136
2137        seq_printf(m, "Node %d, zone %8s ",
2138                                pgdat->node_id,
2139                                zone->name);
2140        for (order = 0; order < MAX_ORDER; ++order) {
2141                fill_contig_page_info(zone, order, &info);
2142                index = __fragmentation_index(order, &info);
2143                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2144        }
2145
2146        seq_putc(m, '\n');
2147}
2148
2149/*
2150 * Display fragmentation index for orders that allocations would fail for
2151 */
2152static int extfrag_show(struct seq_file *m, void *arg)
2153{
2154        pg_data_t *pgdat = (pg_data_t *)arg;
2155
2156        walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2157
2158        return 0;
2159}
2160
2161static const struct seq_operations extfrag_sops = {
2162        .start  = frag_start,
2163        .next   = frag_next,
2164        .stop   = frag_stop,
2165        .show   = extfrag_show,
2166};
2167
2168DEFINE_SEQ_ATTRIBUTE(extfrag);
2169
2170static int __init extfrag_debug_init(void)
2171{
2172        struct dentry *extfrag_debug_root;
2173
2174        extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2175
2176        debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2177                            &unusable_fops);
2178
2179        debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2180                            &extfrag_fops);
2181
2182        return 0;
2183}
2184
2185module_init(extfrag_debug_init);
2186#endif
2187