linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->private: points to zspage
  20 *      page->freelist(index): links together all component pages of a zspage
  21 *              For the huge page, this is always 0, so we use this field
  22 *              to store handle.
  23 *      page->units: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *      PG_private: identifies the first component page
  27 *      PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
  42#include <linux/pgtable.h>
  43#include <asm/tlbflush.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/pseudo_fs.h>
  56#include <linux/migrate.h>
  57#include <linux/wait.h>
  58#include <linux/pagemap.h>
  59#include <linux/fs.h>
  60
  61#define ZSPAGE_MAGIC    0x58
  62
  63/*
  64 * This must be power of 2 and greater than of equal to sizeof(link_free).
  65 * These two conditions ensure that any 'struct link_free' itself doesn't
  66 * span more than 1 page which avoids complex case of mapping 2 pages simply
  67 * to restore link_free pointer values.
  68 */
  69#define ZS_ALIGN                8
  70
  71/*
  72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  74 */
  75#define ZS_MAX_ZSPAGE_ORDER 2
  76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  77
  78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  79
  80/*
  81 * Object location (<PFN>, <obj_idx>) is encoded as
  82 * a single (unsigned long) handle value.
  83 *
  84 * Note that object index <obj_idx> starts from 0.
  85 *
  86 * This is made more complicated by various memory models and PAE.
  87 */
  88
  89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  90#ifdef MAX_PHYSMEM_BITS
  91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  92#else
  93/*
  94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  95 * be PAGE_SHIFT
  96 */
  97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  98#endif
  99#endif
 100
 101#define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 102
 103/*
 104 * Memory for allocating for handle keeps object position by
 105 * encoding <page, obj_idx> and the encoded value has a room
 106 * in least bit(ie, look at obj_to_location).
 107 * We use the bit to synchronize between object access by
 108 * user and migration.
 109 */
 110#define HANDLE_PIN_BIT  0
 111
 112/*
 113 * Head in allocated object should have OBJ_ALLOCATED_TAG
 114 * to identify the object was allocated or not.
 115 * It's okay to add the status bit in the least bit because
 116 * header keeps handle which is 4byte-aligned address so we
 117 * have room for two bit at least.
 118 */
 119#define OBJ_ALLOCATED_TAG 1
 120#define OBJ_TAG_BITS 1
 121#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 122#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 123
 124#define FULLNESS_BITS   2
 125#define CLASS_BITS      8
 126#define ISOLATED_BITS   3
 127#define MAGIC_VAL_BITS  8
 128
 129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 131#define ZS_MIN_ALLOC_SIZE \
 132        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 133/* each chunk includes extra space to keep handle */
 134#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 135
 136/*
 137 * On systems with 4K page size, this gives 255 size classes! There is a
 138 * trader-off here:
 139 *  - Large number of size classes is potentially wasteful as free page are
 140 *    spread across these classes
 141 *  - Small number of size classes causes large internal fragmentation
 142 *  - Probably its better to use specific size classes (empirically
 143 *    determined). NOTE: all those class sizes must be set as multiple of
 144 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 145 *
 146 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 147 *  (reason above)
 148 */
 149#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
 150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 151                                      ZS_SIZE_CLASS_DELTA) + 1)
 152
 153enum fullness_group {
 154        ZS_EMPTY,
 155        ZS_ALMOST_EMPTY,
 156        ZS_ALMOST_FULL,
 157        ZS_FULL,
 158        NR_ZS_FULLNESS,
 159};
 160
 161enum zs_stat_type {
 162        CLASS_EMPTY,
 163        CLASS_ALMOST_EMPTY,
 164        CLASS_ALMOST_FULL,
 165        CLASS_FULL,
 166        OBJ_ALLOCATED,
 167        OBJ_USED,
 168        NR_ZS_STAT_TYPE,
 169};
 170
 171struct zs_size_stat {
 172        unsigned long objs[NR_ZS_STAT_TYPE];
 173};
 174
 175#ifdef CONFIG_ZSMALLOC_STAT
 176static struct dentry *zs_stat_root;
 177#endif
 178
 179#ifdef CONFIG_COMPACTION
 180static struct vfsmount *zsmalloc_mnt;
 181#endif
 182
 183/*
 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 185 *      n <= N / f, where
 186 * n = number of allocated objects
 187 * N = total number of objects zspage can store
 188 * f = fullness_threshold_frac
 189 *
 190 * Similarly, we assign zspage to:
 191 *      ZS_ALMOST_FULL  when n > N / f
 192 *      ZS_EMPTY        when n == 0
 193 *      ZS_FULL         when n == N
 194 *
 195 * (see: fix_fullness_group())
 196 */
 197static const int fullness_threshold_frac = 4;
 198static size_t huge_class_size;
 199
 200struct size_class {
 201        spinlock_t lock;
 202        struct list_head fullness_list[NR_ZS_FULLNESS];
 203        /*
 204         * Size of objects stored in this class. Must be multiple
 205         * of ZS_ALIGN.
 206         */
 207        int size;
 208        int objs_per_zspage;
 209        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 210        int pages_per_zspage;
 211
 212        unsigned int index;
 213        struct zs_size_stat stats;
 214};
 215
 216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 217static void SetPageHugeObject(struct page *page)
 218{
 219        SetPageOwnerPriv1(page);
 220}
 221
 222static void ClearPageHugeObject(struct page *page)
 223{
 224        ClearPageOwnerPriv1(page);
 225}
 226
 227static int PageHugeObject(struct page *page)
 228{
 229        return PageOwnerPriv1(page);
 230}
 231
 232/*
 233 * Placed within free objects to form a singly linked list.
 234 * For every zspage, zspage->freeobj gives head of this list.
 235 *
 236 * This must be power of 2 and less than or equal to ZS_ALIGN
 237 */
 238struct link_free {
 239        union {
 240                /*
 241                 * Free object index;
 242                 * It's valid for non-allocated object
 243                 */
 244                unsigned long next;
 245                /*
 246                 * Handle of allocated object.
 247                 */
 248                unsigned long handle;
 249        };
 250};
 251
 252struct zs_pool {
 253        const char *name;
 254
 255        struct size_class *size_class[ZS_SIZE_CLASSES];
 256        struct kmem_cache *handle_cachep;
 257        struct kmem_cache *zspage_cachep;
 258
 259        atomic_long_t pages_allocated;
 260
 261        struct zs_pool_stats stats;
 262
 263        /* Compact classes */
 264        struct shrinker shrinker;
 265
 266#ifdef CONFIG_ZSMALLOC_STAT
 267        struct dentry *stat_dentry;
 268#endif
 269#ifdef CONFIG_COMPACTION
 270        struct inode *inode;
 271        struct work_struct free_work;
 272        /* A wait queue for when migration races with async_free_zspage() */
 273        struct wait_queue_head migration_wait;
 274        atomic_long_t isolated_pages;
 275        bool destroying;
 276#endif
 277};
 278
 279struct zspage {
 280        struct {
 281                unsigned int fullness:FULLNESS_BITS;
 282                unsigned int class:CLASS_BITS + 1;
 283                unsigned int isolated:ISOLATED_BITS;
 284                unsigned int magic:MAGIC_VAL_BITS;
 285        };
 286        unsigned int inuse;
 287        unsigned int freeobj;
 288        struct page *first_page;
 289        struct list_head list; /* fullness list */
 290#ifdef CONFIG_COMPACTION
 291        rwlock_t lock;
 292#endif
 293};
 294
 295struct mapping_area {
 296#ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
 297        struct vm_struct *vm; /* vm area for mapping object that span pages */
 298#else
 299        char *vm_buf; /* copy buffer for objects that span pages */
 300#endif
 301        char *vm_addr; /* address of kmap_atomic()'ed pages */
 302        enum zs_mapmode vm_mm; /* mapping mode */
 303};
 304
 305#ifdef CONFIG_COMPACTION
 306static int zs_register_migration(struct zs_pool *pool);
 307static void zs_unregister_migration(struct zs_pool *pool);
 308static void migrate_lock_init(struct zspage *zspage);
 309static void migrate_read_lock(struct zspage *zspage);
 310static void migrate_read_unlock(struct zspage *zspage);
 311static void kick_deferred_free(struct zs_pool *pool);
 312static void init_deferred_free(struct zs_pool *pool);
 313static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 314#else
 315static int zsmalloc_mount(void) { return 0; }
 316static void zsmalloc_unmount(void) {}
 317static int zs_register_migration(struct zs_pool *pool) { return 0; }
 318static void zs_unregister_migration(struct zs_pool *pool) {}
 319static void migrate_lock_init(struct zspage *zspage) {}
 320static void migrate_read_lock(struct zspage *zspage) {}
 321static void migrate_read_unlock(struct zspage *zspage) {}
 322static void kick_deferred_free(struct zs_pool *pool) {}
 323static void init_deferred_free(struct zs_pool *pool) {}
 324static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 325#endif
 326
 327static int create_cache(struct zs_pool *pool)
 328{
 329        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 330                                        0, 0, NULL);
 331        if (!pool->handle_cachep)
 332                return 1;
 333
 334        pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 335                                        0, 0, NULL);
 336        if (!pool->zspage_cachep) {
 337                kmem_cache_destroy(pool->handle_cachep);
 338                pool->handle_cachep = NULL;
 339                return 1;
 340        }
 341
 342        return 0;
 343}
 344
 345static void destroy_cache(struct zs_pool *pool)
 346{
 347        kmem_cache_destroy(pool->handle_cachep);
 348        kmem_cache_destroy(pool->zspage_cachep);
 349}
 350
 351static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 352{
 353        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 354                        gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 355}
 356
 357static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 358{
 359        kmem_cache_free(pool->handle_cachep, (void *)handle);
 360}
 361
 362static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 363{
 364        return kmem_cache_alloc(pool->zspage_cachep,
 365                        flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 366}
 367
 368static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 369{
 370        kmem_cache_free(pool->zspage_cachep, zspage);
 371}
 372
 373static void record_obj(unsigned long handle, unsigned long obj)
 374{
 375        /*
 376         * lsb of @obj represents handle lock while other bits
 377         * represent object value the handle is pointing so
 378         * updating shouldn't do store tearing.
 379         */
 380        WRITE_ONCE(*(unsigned long *)handle, obj);
 381}
 382
 383/* zpool driver */
 384
 385#ifdef CONFIG_ZPOOL
 386
 387static void *zs_zpool_create(const char *name, gfp_t gfp,
 388                             const struct zpool_ops *zpool_ops,
 389                             struct zpool *zpool)
 390{
 391        /*
 392         * Ignore global gfp flags: zs_malloc() may be invoked from
 393         * different contexts and its caller must provide a valid
 394         * gfp mask.
 395         */
 396        return zs_create_pool(name);
 397}
 398
 399static void zs_zpool_destroy(void *pool)
 400{
 401        zs_destroy_pool(pool);
 402}
 403
 404static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 405                        unsigned long *handle)
 406{
 407        *handle = zs_malloc(pool, size, gfp);
 408        return *handle ? 0 : -1;
 409}
 410static void zs_zpool_free(void *pool, unsigned long handle)
 411{
 412        zs_free(pool, handle);
 413}
 414
 415static void *zs_zpool_map(void *pool, unsigned long handle,
 416                        enum zpool_mapmode mm)
 417{
 418        enum zs_mapmode zs_mm;
 419
 420        switch (mm) {
 421        case ZPOOL_MM_RO:
 422                zs_mm = ZS_MM_RO;
 423                break;
 424        case ZPOOL_MM_WO:
 425                zs_mm = ZS_MM_WO;
 426                break;
 427        case ZPOOL_MM_RW:
 428        default:
 429                zs_mm = ZS_MM_RW;
 430                break;
 431        }
 432
 433        return zs_map_object(pool, handle, zs_mm);
 434}
 435static void zs_zpool_unmap(void *pool, unsigned long handle)
 436{
 437        zs_unmap_object(pool, handle);
 438}
 439
 440static u64 zs_zpool_total_size(void *pool)
 441{
 442        return zs_get_total_pages(pool) << PAGE_SHIFT;
 443}
 444
 445static struct zpool_driver zs_zpool_driver = {
 446        .type =                   "zsmalloc",
 447        .owner =                  THIS_MODULE,
 448        .create =                 zs_zpool_create,
 449        .destroy =                zs_zpool_destroy,
 450        .malloc_support_movable = true,
 451        .malloc =                 zs_zpool_malloc,
 452        .free =                   zs_zpool_free,
 453        .map =                    zs_zpool_map,
 454        .unmap =                  zs_zpool_unmap,
 455        .total_size =             zs_zpool_total_size,
 456};
 457
 458MODULE_ALIAS("zpool-zsmalloc");
 459#endif /* CONFIG_ZPOOL */
 460
 461/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 462static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 463
 464static bool is_zspage_isolated(struct zspage *zspage)
 465{
 466        return zspage->isolated;
 467}
 468
 469static __maybe_unused int is_first_page(struct page *page)
 470{
 471        return PagePrivate(page);
 472}
 473
 474/* Protected by class->lock */
 475static inline int get_zspage_inuse(struct zspage *zspage)
 476{
 477        return zspage->inuse;
 478}
 479
 480
 481static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 482{
 483        zspage->inuse += val;
 484}
 485
 486static inline struct page *get_first_page(struct zspage *zspage)
 487{
 488        struct page *first_page = zspage->first_page;
 489
 490        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 491        return first_page;
 492}
 493
 494static inline int get_first_obj_offset(struct page *page)
 495{
 496        return page->units;
 497}
 498
 499static inline void set_first_obj_offset(struct page *page, int offset)
 500{
 501        page->units = offset;
 502}
 503
 504static inline unsigned int get_freeobj(struct zspage *zspage)
 505{
 506        return zspage->freeobj;
 507}
 508
 509static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 510{
 511        zspage->freeobj = obj;
 512}
 513
 514static void get_zspage_mapping(struct zspage *zspage,
 515                                unsigned int *class_idx,
 516                                enum fullness_group *fullness)
 517{
 518        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 519
 520        *fullness = zspage->fullness;
 521        *class_idx = zspage->class;
 522}
 523
 524static void set_zspage_mapping(struct zspage *zspage,
 525                                unsigned int class_idx,
 526                                enum fullness_group fullness)
 527{
 528        zspage->class = class_idx;
 529        zspage->fullness = fullness;
 530}
 531
 532/*
 533 * zsmalloc divides the pool into various size classes where each
 534 * class maintains a list of zspages where each zspage is divided
 535 * into equal sized chunks. Each allocation falls into one of these
 536 * classes depending on its size. This function returns index of the
 537 * size class which has chunk size big enough to hold the give size.
 538 */
 539static int get_size_class_index(int size)
 540{
 541        int idx = 0;
 542
 543        if (likely(size > ZS_MIN_ALLOC_SIZE))
 544                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 545                                ZS_SIZE_CLASS_DELTA);
 546
 547        return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 548}
 549
 550/* type can be of enum type zs_stat_type or fullness_group */
 551static inline void zs_stat_inc(struct size_class *class,
 552                                int type, unsigned long cnt)
 553{
 554        class->stats.objs[type] += cnt;
 555}
 556
 557/* type can be of enum type zs_stat_type or fullness_group */
 558static inline void zs_stat_dec(struct size_class *class,
 559                                int type, unsigned long cnt)
 560{
 561        class->stats.objs[type] -= cnt;
 562}
 563
 564/* type can be of enum type zs_stat_type or fullness_group */
 565static inline unsigned long zs_stat_get(struct size_class *class,
 566                                int type)
 567{
 568        return class->stats.objs[type];
 569}
 570
 571#ifdef CONFIG_ZSMALLOC_STAT
 572
 573static void __init zs_stat_init(void)
 574{
 575        if (!debugfs_initialized()) {
 576                pr_warn("debugfs not available, stat dir not created\n");
 577                return;
 578        }
 579
 580        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 581}
 582
 583static void __exit zs_stat_exit(void)
 584{
 585        debugfs_remove_recursive(zs_stat_root);
 586}
 587
 588static unsigned long zs_can_compact(struct size_class *class);
 589
 590static int zs_stats_size_show(struct seq_file *s, void *v)
 591{
 592        int i;
 593        struct zs_pool *pool = s->private;
 594        struct size_class *class;
 595        int objs_per_zspage;
 596        unsigned long class_almost_full, class_almost_empty;
 597        unsigned long obj_allocated, obj_used, pages_used, freeable;
 598        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 599        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 600        unsigned long total_freeable = 0;
 601
 602        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 603                        "class", "size", "almost_full", "almost_empty",
 604                        "obj_allocated", "obj_used", "pages_used",
 605                        "pages_per_zspage", "freeable");
 606
 607        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 608                class = pool->size_class[i];
 609
 610                if (class->index != i)
 611                        continue;
 612
 613                spin_lock(&class->lock);
 614                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 615                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 616                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 617                obj_used = zs_stat_get(class, OBJ_USED);
 618                freeable = zs_can_compact(class);
 619                spin_unlock(&class->lock);
 620
 621                objs_per_zspage = class->objs_per_zspage;
 622                pages_used = obj_allocated / objs_per_zspage *
 623                                class->pages_per_zspage;
 624
 625                seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 626                                " %10lu %10lu %16d %8lu\n",
 627                        i, class->size, class_almost_full, class_almost_empty,
 628                        obj_allocated, obj_used, pages_used,
 629                        class->pages_per_zspage, freeable);
 630
 631                total_class_almost_full += class_almost_full;
 632                total_class_almost_empty += class_almost_empty;
 633                total_objs += obj_allocated;
 634                total_used_objs += obj_used;
 635                total_pages += pages_used;
 636                total_freeable += freeable;
 637        }
 638
 639        seq_puts(s, "\n");
 640        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 641                        "Total", "", total_class_almost_full,
 642                        total_class_almost_empty, total_objs,
 643                        total_used_objs, total_pages, "", total_freeable);
 644
 645        return 0;
 646}
 647DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 648
 649static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 650{
 651        if (!zs_stat_root) {
 652                pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 653                return;
 654        }
 655
 656        pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 657
 658        debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 659                            &zs_stats_size_fops);
 660}
 661
 662static void zs_pool_stat_destroy(struct zs_pool *pool)
 663{
 664        debugfs_remove_recursive(pool->stat_dentry);
 665}
 666
 667#else /* CONFIG_ZSMALLOC_STAT */
 668static void __init zs_stat_init(void)
 669{
 670}
 671
 672static void __exit zs_stat_exit(void)
 673{
 674}
 675
 676static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 677{
 678}
 679
 680static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 681{
 682}
 683#endif
 684
 685
 686/*
 687 * For each size class, zspages are divided into different groups
 688 * depending on how "full" they are. This was done so that we could
 689 * easily find empty or nearly empty zspages when we try to shrink
 690 * the pool (not yet implemented). This function returns fullness
 691 * status of the given page.
 692 */
 693static enum fullness_group get_fullness_group(struct size_class *class,
 694                                                struct zspage *zspage)
 695{
 696        int inuse, objs_per_zspage;
 697        enum fullness_group fg;
 698
 699        inuse = get_zspage_inuse(zspage);
 700        objs_per_zspage = class->objs_per_zspage;
 701
 702        if (inuse == 0)
 703                fg = ZS_EMPTY;
 704        else if (inuse == objs_per_zspage)
 705                fg = ZS_FULL;
 706        else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 707                fg = ZS_ALMOST_EMPTY;
 708        else
 709                fg = ZS_ALMOST_FULL;
 710
 711        return fg;
 712}
 713
 714/*
 715 * Each size class maintains various freelists and zspages are assigned
 716 * to one of these freelists based on the number of live objects they
 717 * have. This functions inserts the given zspage into the freelist
 718 * identified by <class, fullness_group>.
 719 */
 720static void insert_zspage(struct size_class *class,
 721                                struct zspage *zspage,
 722                                enum fullness_group fullness)
 723{
 724        struct zspage *head;
 725
 726        zs_stat_inc(class, fullness, 1);
 727        head = list_first_entry_or_null(&class->fullness_list[fullness],
 728                                        struct zspage, list);
 729        /*
 730         * We want to see more ZS_FULL pages and less almost empty/full.
 731         * Put pages with higher ->inuse first.
 732         */
 733        if (head) {
 734                if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
 735                        list_add(&zspage->list, &head->list);
 736                        return;
 737                }
 738        }
 739        list_add(&zspage->list, &class->fullness_list[fullness]);
 740}
 741
 742/*
 743 * This function removes the given zspage from the freelist identified
 744 * by <class, fullness_group>.
 745 */
 746static void remove_zspage(struct size_class *class,
 747                                struct zspage *zspage,
 748                                enum fullness_group fullness)
 749{
 750        VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 751        VM_BUG_ON(is_zspage_isolated(zspage));
 752
 753        list_del_init(&zspage->list);
 754        zs_stat_dec(class, fullness, 1);
 755}
 756
 757/*
 758 * Each size class maintains zspages in different fullness groups depending
 759 * on the number of live objects they contain. When allocating or freeing
 760 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 761 * to ALMOST_EMPTY when freeing an object. This function checks if such
 762 * a status change has occurred for the given page and accordingly moves the
 763 * page from the freelist of the old fullness group to that of the new
 764 * fullness group.
 765 */
 766static enum fullness_group fix_fullness_group(struct size_class *class,
 767                                                struct zspage *zspage)
 768{
 769        int class_idx;
 770        enum fullness_group currfg, newfg;
 771
 772        get_zspage_mapping(zspage, &class_idx, &currfg);
 773        newfg = get_fullness_group(class, zspage);
 774        if (newfg == currfg)
 775                goto out;
 776
 777        if (!is_zspage_isolated(zspage)) {
 778                remove_zspage(class, zspage, currfg);
 779                insert_zspage(class, zspage, newfg);
 780        }
 781
 782        set_zspage_mapping(zspage, class_idx, newfg);
 783
 784out:
 785        return newfg;
 786}
 787
 788/*
 789 * We have to decide on how many pages to link together
 790 * to form a zspage for each size class. This is important
 791 * to reduce wastage due to unusable space left at end of
 792 * each zspage which is given as:
 793 *     wastage = Zp % class_size
 794 *     usage = Zp - wastage
 795 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 796 *
 797 * For example, for size class of 3/8 * PAGE_SIZE, we should
 798 * link together 3 PAGE_SIZE sized pages to form a zspage
 799 * since then we can perfectly fit in 8 such objects.
 800 */
 801static int get_pages_per_zspage(int class_size)
 802{
 803        int i, max_usedpc = 0;
 804        /* zspage order which gives maximum used size per KB */
 805        int max_usedpc_order = 1;
 806
 807        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 808                int zspage_size;
 809                int waste, usedpc;
 810
 811                zspage_size = i * PAGE_SIZE;
 812                waste = zspage_size % class_size;
 813                usedpc = (zspage_size - waste) * 100 / zspage_size;
 814
 815                if (usedpc > max_usedpc) {
 816                        max_usedpc = usedpc;
 817                        max_usedpc_order = i;
 818                }
 819        }
 820
 821        return max_usedpc_order;
 822}
 823
 824static struct zspage *get_zspage(struct page *page)
 825{
 826        struct zspage *zspage = (struct zspage *)page->private;
 827
 828        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 829        return zspage;
 830}
 831
 832static struct page *get_next_page(struct page *page)
 833{
 834        if (unlikely(PageHugeObject(page)))
 835                return NULL;
 836
 837        return page->freelist;
 838}
 839
 840/**
 841 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 842 * @obj: the encoded object value
 843 * @page: page object resides in zspage
 844 * @obj_idx: object index
 845 */
 846static void obj_to_location(unsigned long obj, struct page **page,
 847                                unsigned int *obj_idx)
 848{
 849        obj >>= OBJ_TAG_BITS;
 850        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 851        *obj_idx = (obj & OBJ_INDEX_MASK);
 852}
 853
 854/**
 855 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 856 * @page: page object resides in zspage
 857 * @obj_idx: object index
 858 */
 859static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 860{
 861        unsigned long obj;
 862
 863        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 864        obj |= obj_idx & OBJ_INDEX_MASK;
 865        obj <<= OBJ_TAG_BITS;
 866
 867        return obj;
 868}
 869
 870static unsigned long handle_to_obj(unsigned long handle)
 871{
 872        return *(unsigned long *)handle;
 873}
 874
 875static unsigned long obj_to_head(struct page *page, void *obj)
 876{
 877        if (unlikely(PageHugeObject(page))) {
 878                VM_BUG_ON_PAGE(!is_first_page(page), page);
 879                return page->index;
 880        } else
 881                return *(unsigned long *)obj;
 882}
 883
 884static inline int testpin_tag(unsigned long handle)
 885{
 886        return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 887}
 888
 889static inline int trypin_tag(unsigned long handle)
 890{
 891        return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 892}
 893
 894static void pin_tag(unsigned long handle) __acquires(bitlock)
 895{
 896        bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 897}
 898
 899static void unpin_tag(unsigned long handle) __releases(bitlock)
 900{
 901        bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 902}
 903
 904static void reset_page(struct page *page)
 905{
 906        __ClearPageMovable(page);
 907        ClearPagePrivate(page);
 908        set_page_private(page, 0);
 909        page_mapcount_reset(page);
 910        ClearPageHugeObject(page);
 911        page->freelist = NULL;
 912}
 913
 914static int trylock_zspage(struct zspage *zspage)
 915{
 916        struct page *cursor, *fail;
 917
 918        for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 919                                        get_next_page(cursor)) {
 920                if (!trylock_page(cursor)) {
 921                        fail = cursor;
 922                        goto unlock;
 923                }
 924        }
 925
 926        return 1;
 927unlock:
 928        for (cursor = get_first_page(zspage); cursor != fail; cursor =
 929                                        get_next_page(cursor))
 930                unlock_page(cursor);
 931
 932        return 0;
 933}
 934
 935static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 936                                struct zspage *zspage)
 937{
 938        struct page *page, *next;
 939        enum fullness_group fg;
 940        unsigned int class_idx;
 941
 942        get_zspage_mapping(zspage, &class_idx, &fg);
 943
 944        assert_spin_locked(&class->lock);
 945
 946        VM_BUG_ON(get_zspage_inuse(zspage));
 947        VM_BUG_ON(fg != ZS_EMPTY);
 948
 949        next = page = get_first_page(zspage);
 950        do {
 951                VM_BUG_ON_PAGE(!PageLocked(page), page);
 952                next = get_next_page(page);
 953                reset_page(page);
 954                unlock_page(page);
 955                dec_zone_page_state(page, NR_ZSPAGES);
 956                put_page(page);
 957                page = next;
 958        } while (page != NULL);
 959
 960        cache_free_zspage(pool, zspage);
 961
 962        zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 963        atomic_long_sub(class->pages_per_zspage,
 964                                        &pool->pages_allocated);
 965}
 966
 967static void free_zspage(struct zs_pool *pool, struct size_class *class,
 968                                struct zspage *zspage)
 969{
 970        VM_BUG_ON(get_zspage_inuse(zspage));
 971        VM_BUG_ON(list_empty(&zspage->list));
 972
 973        if (!trylock_zspage(zspage)) {
 974                kick_deferred_free(pool);
 975                return;
 976        }
 977
 978        remove_zspage(class, zspage, ZS_EMPTY);
 979        __free_zspage(pool, class, zspage);
 980}
 981
 982/* Initialize a newly allocated zspage */
 983static void init_zspage(struct size_class *class, struct zspage *zspage)
 984{
 985        unsigned int freeobj = 1;
 986        unsigned long off = 0;
 987        struct page *page = get_first_page(zspage);
 988
 989        while (page) {
 990                struct page *next_page;
 991                struct link_free *link;
 992                void *vaddr;
 993
 994                set_first_obj_offset(page, off);
 995
 996                vaddr = kmap_atomic(page);
 997                link = (struct link_free *)vaddr + off / sizeof(*link);
 998
 999                while ((off += class->size) < PAGE_SIZE) {
1000                        link->next = freeobj++ << OBJ_TAG_BITS;
1001                        link += class->size / sizeof(*link);
1002                }
1003
1004                /*
1005                 * We now come to the last (full or partial) object on this
1006                 * page, which must point to the first object on the next
1007                 * page (if present)
1008                 */
1009                next_page = get_next_page(page);
1010                if (next_page) {
1011                        link->next = freeobj++ << OBJ_TAG_BITS;
1012                } else {
1013                        /*
1014                         * Reset OBJ_TAG_BITS bit to last link to tell
1015                         * whether it's allocated object or not.
1016                         */
1017                        link->next = -1UL << OBJ_TAG_BITS;
1018                }
1019                kunmap_atomic(vaddr);
1020                page = next_page;
1021                off %= PAGE_SIZE;
1022        }
1023
1024        set_freeobj(zspage, 0);
1025}
1026
1027static void create_page_chain(struct size_class *class, struct zspage *zspage,
1028                                struct page *pages[])
1029{
1030        int i;
1031        struct page *page;
1032        struct page *prev_page = NULL;
1033        int nr_pages = class->pages_per_zspage;
1034
1035        /*
1036         * Allocate individual pages and link them together as:
1037         * 1. all pages are linked together using page->freelist
1038         * 2. each sub-page point to zspage using page->private
1039         *
1040         * we set PG_private to identify the first page (i.e. no other sub-page
1041         * has this flag set).
1042         */
1043        for (i = 0; i < nr_pages; i++) {
1044                page = pages[i];
1045                set_page_private(page, (unsigned long)zspage);
1046                page->freelist = NULL;
1047                if (i == 0) {
1048                        zspage->first_page = page;
1049                        SetPagePrivate(page);
1050                        if (unlikely(class->objs_per_zspage == 1 &&
1051                                        class->pages_per_zspage == 1))
1052                                SetPageHugeObject(page);
1053                } else {
1054                        prev_page->freelist = page;
1055                }
1056                prev_page = page;
1057        }
1058}
1059
1060/*
1061 * Allocate a zspage for the given size class
1062 */
1063static struct zspage *alloc_zspage(struct zs_pool *pool,
1064                                        struct size_class *class,
1065                                        gfp_t gfp)
1066{
1067        int i;
1068        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1069        struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1070
1071        if (!zspage)
1072                return NULL;
1073
1074        memset(zspage, 0, sizeof(struct zspage));
1075        zspage->magic = ZSPAGE_MAGIC;
1076        migrate_lock_init(zspage);
1077
1078        for (i = 0; i < class->pages_per_zspage; i++) {
1079                struct page *page;
1080
1081                page = alloc_page(gfp);
1082                if (!page) {
1083                        while (--i >= 0) {
1084                                dec_zone_page_state(pages[i], NR_ZSPAGES);
1085                                __free_page(pages[i]);
1086                        }
1087                        cache_free_zspage(pool, zspage);
1088                        return NULL;
1089                }
1090
1091                inc_zone_page_state(page, NR_ZSPAGES);
1092                pages[i] = page;
1093        }
1094
1095        create_page_chain(class, zspage, pages);
1096        init_zspage(class, zspage);
1097
1098        return zspage;
1099}
1100
1101static struct zspage *find_get_zspage(struct size_class *class)
1102{
1103        int i;
1104        struct zspage *zspage;
1105
1106        for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1107                zspage = list_first_entry_or_null(&class->fullness_list[i],
1108                                struct zspage, list);
1109                if (zspage)
1110                        break;
1111        }
1112
1113        return zspage;
1114}
1115
1116#ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
1117static inline int __zs_cpu_up(struct mapping_area *area)
1118{
1119        /*
1120         * Make sure we don't leak memory if a cpu UP notification
1121         * and zs_init() race and both call zs_cpu_up() on the same cpu
1122         */
1123        if (area->vm)
1124                return 0;
1125        area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1126        if (!area->vm)
1127                return -ENOMEM;
1128        return 0;
1129}
1130
1131static inline void __zs_cpu_down(struct mapping_area *area)
1132{
1133        if (area->vm)
1134                free_vm_area(area->vm);
1135        area->vm = NULL;
1136}
1137
1138static inline void *__zs_map_object(struct mapping_area *area,
1139                                struct page *pages[2], int off, int size)
1140{
1141        unsigned long addr = (unsigned long)area->vm->addr;
1142
1143        BUG_ON(map_kernel_range(addr, PAGE_SIZE * 2, PAGE_KERNEL, pages) < 0);
1144        area->vm_addr = area->vm->addr;
1145        return area->vm_addr + off;
1146}
1147
1148static inline void __zs_unmap_object(struct mapping_area *area,
1149                                struct page *pages[2], int off, int size)
1150{
1151        unsigned long addr = (unsigned long)area->vm_addr;
1152
1153        unmap_kernel_range(addr, PAGE_SIZE * 2);
1154}
1155
1156#else /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
1157
1158static inline int __zs_cpu_up(struct mapping_area *area)
1159{
1160        /*
1161         * Make sure we don't leak memory if a cpu UP notification
1162         * and zs_init() race and both call zs_cpu_up() on the same cpu
1163         */
1164        if (area->vm_buf)
1165                return 0;
1166        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1167        if (!area->vm_buf)
1168                return -ENOMEM;
1169        return 0;
1170}
1171
1172static inline void __zs_cpu_down(struct mapping_area *area)
1173{
1174        kfree(area->vm_buf);
1175        area->vm_buf = NULL;
1176}
1177
1178static void *__zs_map_object(struct mapping_area *area,
1179                        struct page *pages[2], int off, int size)
1180{
1181        int sizes[2];
1182        void *addr;
1183        char *buf = area->vm_buf;
1184
1185        /* disable page faults to match kmap_atomic() return conditions */
1186        pagefault_disable();
1187
1188        /* no read fastpath */
1189        if (area->vm_mm == ZS_MM_WO)
1190                goto out;
1191
1192        sizes[0] = PAGE_SIZE - off;
1193        sizes[1] = size - sizes[0];
1194
1195        /* copy object to per-cpu buffer */
1196        addr = kmap_atomic(pages[0]);
1197        memcpy(buf, addr + off, sizes[0]);
1198        kunmap_atomic(addr);
1199        addr = kmap_atomic(pages[1]);
1200        memcpy(buf + sizes[0], addr, sizes[1]);
1201        kunmap_atomic(addr);
1202out:
1203        return area->vm_buf;
1204}
1205
1206static void __zs_unmap_object(struct mapping_area *area,
1207                        struct page *pages[2], int off, int size)
1208{
1209        int sizes[2];
1210        void *addr;
1211        char *buf;
1212
1213        /* no write fastpath */
1214        if (area->vm_mm == ZS_MM_RO)
1215                goto out;
1216
1217        buf = area->vm_buf;
1218        buf = buf + ZS_HANDLE_SIZE;
1219        size -= ZS_HANDLE_SIZE;
1220        off += ZS_HANDLE_SIZE;
1221
1222        sizes[0] = PAGE_SIZE - off;
1223        sizes[1] = size - sizes[0];
1224
1225        /* copy per-cpu buffer to object */
1226        addr = kmap_atomic(pages[0]);
1227        memcpy(addr + off, buf, sizes[0]);
1228        kunmap_atomic(addr);
1229        addr = kmap_atomic(pages[1]);
1230        memcpy(addr, buf + sizes[0], sizes[1]);
1231        kunmap_atomic(addr);
1232
1233out:
1234        /* enable page faults to match kunmap_atomic() return conditions */
1235        pagefault_enable();
1236}
1237
1238#endif /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
1239
1240static int zs_cpu_prepare(unsigned int cpu)
1241{
1242        struct mapping_area *area;
1243
1244        area = &per_cpu(zs_map_area, cpu);
1245        return __zs_cpu_up(area);
1246}
1247
1248static int zs_cpu_dead(unsigned int cpu)
1249{
1250        struct mapping_area *area;
1251
1252        area = &per_cpu(zs_map_area, cpu);
1253        __zs_cpu_down(area);
1254        return 0;
1255}
1256
1257static bool can_merge(struct size_class *prev, int pages_per_zspage,
1258                                        int objs_per_zspage)
1259{
1260        if (prev->pages_per_zspage == pages_per_zspage &&
1261                prev->objs_per_zspage == objs_per_zspage)
1262                return true;
1263
1264        return false;
1265}
1266
1267static bool zspage_full(struct size_class *class, struct zspage *zspage)
1268{
1269        return get_zspage_inuse(zspage) == class->objs_per_zspage;
1270}
1271
1272unsigned long zs_get_total_pages(struct zs_pool *pool)
1273{
1274        return atomic_long_read(&pool->pages_allocated);
1275}
1276EXPORT_SYMBOL_GPL(zs_get_total_pages);
1277
1278/**
1279 * zs_map_object - get address of allocated object from handle.
1280 * @pool: pool from which the object was allocated
1281 * @handle: handle returned from zs_malloc
1282 * @mm: maping mode to use
1283 *
1284 * Before using an object allocated from zs_malloc, it must be mapped using
1285 * this function. When done with the object, it must be unmapped using
1286 * zs_unmap_object.
1287 *
1288 * Only one object can be mapped per cpu at a time. There is no protection
1289 * against nested mappings.
1290 *
1291 * This function returns with preemption and page faults disabled.
1292 */
1293void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1294                        enum zs_mapmode mm)
1295{
1296        struct zspage *zspage;
1297        struct page *page;
1298        unsigned long obj, off;
1299        unsigned int obj_idx;
1300
1301        unsigned int class_idx;
1302        enum fullness_group fg;
1303        struct size_class *class;
1304        struct mapping_area *area;
1305        struct page *pages[2];
1306        void *ret;
1307
1308        /*
1309         * Because we use per-cpu mapping areas shared among the
1310         * pools/users, we can't allow mapping in interrupt context
1311         * because it can corrupt another users mappings.
1312         */
1313        BUG_ON(in_interrupt());
1314
1315        /* From now on, migration cannot move the object */
1316        pin_tag(handle);
1317
1318        obj = handle_to_obj(handle);
1319        obj_to_location(obj, &page, &obj_idx);
1320        zspage = get_zspage(page);
1321
1322        /* migration cannot move any subpage in this zspage */
1323        migrate_read_lock(zspage);
1324
1325        get_zspage_mapping(zspage, &class_idx, &fg);
1326        class = pool->size_class[class_idx];
1327        off = (class->size * obj_idx) & ~PAGE_MASK;
1328
1329        area = &get_cpu_var(zs_map_area);
1330        area->vm_mm = mm;
1331        if (off + class->size <= PAGE_SIZE) {
1332                /* this object is contained entirely within a page */
1333                area->vm_addr = kmap_atomic(page);
1334                ret = area->vm_addr + off;
1335                goto out;
1336        }
1337
1338        /* this object spans two pages */
1339        pages[0] = page;
1340        pages[1] = get_next_page(page);
1341        BUG_ON(!pages[1]);
1342
1343        ret = __zs_map_object(area, pages, off, class->size);
1344out:
1345        if (likely(!PageHugeObject(page)))
1346                ret += ZS_HANDLE_SIZE;
1347
1348        return ret;
1349}
1350EXPORT_SYMBOL_GPL(zs_map_object);
1351
1352void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1353{
1354        struct zspage *zspage;
1355        struct page *page;
1356        unsigned long obj, off;
1357        unsigned int obj_idx;
1358
1359        unsigned int class_idx;
1360        enum fullness_group fg;
1361        struct size_class *class;
1362        struct mapping_area *area;
1363
1364        obj = handle_to_obj(handle);
1365        obj_to_location(obj, &page, &obj_idx);
1366        zspage = get_zspage(page);
1367        get_zspage_mapping(zspage, &class_idx, &fg);
1368        class = pool->size_class[class_idx];
1369        off = (class->size * obj_idx) & ~PAGE_MASK;
1370
1371        area = this_cpu_ptr(&zs_map_area);
1372        if (off + class->size <= PAGE_SIZE)
1373                kunmap_atomic(area->vm_addr);
1374        else {
1375                struct page *pages[2];
1376
1377                pages[0] = page;
1378                pages[1] = get_next_page(page);
1379                BUG_ON(!pages[1]);
1380
1381                __zs_unmap_object(area, pages, off, class->size);
1382        }
1383        put_cpu_var(zs_map_area);
1384
1385        migrate_read_unlock(zspage);
1386        unpin_tag(handle);
1387}
1388EXPORT_SYMBOL_GPL(zs_unmap_object);
1389
1390/**
1391 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1392 *                        zsmalloc &size_class.
1393 * @pool: zsmalloc pool to use
1394 *
1395 * The function returns the size of the first huge class - any object of equal
1396 * or bigger size will be stored in zspage consisting of a single physical
1397 * page.
1398 *
1399 * Context: Any context.
1400 *
1401 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1402 */
1403size_t zs_huge_class_size(struct zs_pool *pool)
1404{
1405        return huge_class_size;
1406}
1407EXPORT_SYMBOL_GPL(zs_huge_class_size);
1408
1409static unsigned long obj_malloc(struct size_class *class,
1410                                struct zspage *zspage, unsigned long handle)
1411{
1412        int i, nr_page, offset;
1413        unsigned long obj;
1414        struct link_free *link;
1415
1416        struct page *m_page;
1417        unsigned long m_offset;
1418        void *vaddr;
1419
1420        handle |= OBJ_ALLOCATED_TAG;
1421        obj = get_freeobj(zspage);
1422
1423        offset = obj * class->size;
1424        nr_page = offset >> PAGE_SHIFT;
1425        m_offset = offset & ~PAGE_MASK;
1426        m_page = get_first_page(zspage);
1427
1428        for (i = 0; i < nr_page; i++)
1429                m_page = get_next_page(m_page);
1430
1431        vaddr = kmap_atomic(m_page);
1432        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1433        set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1434        if (likely(!PageHugeObject(m_page)))
1435                /* record handle in the header of allocated chunk */
1436                link->handle = handle;
1437        else
1438                /* record handle to page->index */
1439                zspage->first_page->index = handle;
1440
1441        kunmap_atomic(vaddr);
1442        mod_zspage_inuse(zspage, 1);
1443        zs_stat_inc(class, OBJ_USED, 1);
1444
1445        obj = location_to_obj(m_page, obj);
1446
1447        return obj;
1448}
1449
1450
1451/**
1452 * zs_malloc - Allocate block of given size from pool.
1453 * @pool: pool to allocate from
1454 * @size: size of block to allocate
1455 * @gfp: gfp flags when allocating object
1456 *
1457 * On success, handle to the allocated object is returned,
1458 * otherwise 0.
1459 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1460 */
1461unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1462{
1463        unsigned long handle, obj;
1464        struct size_class *class;
1465        enum fullness_group newfg;
1466        struct zspage *zspage;
1467
1468        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1469                return 0;
1470
1471        handle = cache_alloc_handle(pool, gfp);
1472        if (!handle)
1473                return 0;
1474
1475        /* extra space in chunk to keep the handle */
1476        size += ZS_HANDLE_SIZE;
1477        class = pool->size_class[get_size_class_index(size)];
1478
1479        spin_lock(&class->lock);
1480        zspage = find_get_zspage(class);
1481        if (likely(zspage)) {
1482                obj = obj_malloc(class, zspage, handle);
1483                /* Now move the zspage to another fullness group, if required */
1484                fix_fullness_group(class, zspage);
1485                record_obj(handle, obj);
1486                spin_unlock(&class->lock);
1487
1488                return handle;
1489        }
1490
1491        spin_unlock(&class->lock);
1492
1493        zspage = alloc_zspage(pool, class, gfp);
1494        if (!zspage) {
1495                cache_free_handle(pool, handle);
1496                return 0;
1497        }
1498
1499        spin_lock(&class->lock);
1500        obj = obj_malloc(class, zspage, handle);
1501        newfg = get_fullness_group(class, zspage);
1502        insert_zspage(class, zspage, newfg);
1503        set_zspage_mapping(zspage, class->index, newfg);
1504        record_obj(handle, obj);
1505        atomic_long_add(class->pages_per_zspage,
1506                                &pool->pages_allocated);
1507        zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1508
1509        /* We completely set up zspage so mark them as movable */
1510        SetZsPageMovable(pool, zspage);
1511        spin_unlock(&class->lock);
1512
1513        return handle;
1514}
1515EXPORT_SYMBOL_GPL(zs_malloc);
1516
1517static void obj_free(struct size_class *class, unsigned long obj)
1518{
1519        struct link_free *link;
1520        struct zspage *zspage;
1521        struct page *f_page;
1522        unsigned long f_offset;
1523        unsigned int f_objidx;
1524        void *vaddr;
1525
1526        obj &= ~OBJ_ALLOCATED_TAG;
1527        obj_to_location(obj, &f_page, &f_objidx);
1528        f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1529        zspage = get_zspage(f_page);
1530
1531        vaddr = kmap_atomic(f_page);
1532
1533        /* Insert this object in containing zspage's freelist */
1534        link = (struct link_free *)(vaddr + f_offset);
1535        link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1536        kunmap_atomic(vaddr);
1537        set_freeobj(zspage, f_objidx);
1538        mod_zspage_inuse(zspage, -1);
1539        zs_stat_dec(class, OBJ_USED, 1);
1540}
1541
1542void zs_free(struct zs_pool *pool, unsigned long handle)
1543{
1544        struct zspage *zspage;
1545        struct page *f_page;
1546        unsigned long obj;
1547        unsigned int f_objidx;
1548        int class_idx;
1549        struct size_class *class;
1550        enum fullness_group fullness;
1551        bool isolated;
1552
1553        if (unlikely(!handle))
1554                return;
1555
1556        pin_tag(handle);
1557        obj = handle_to_obj(handle);
1558        obj_to_location(obj, &f_page, &f_objidx);
1559        zspage = get_zspage(f_page);
1560
1561        migrate_read_lock(zspage);
1562
1563        get_zspage_mapping(zspage, &class_idx, &fullness);
1564        class = pool->size_class[class_idx];
1565
1566        spin_lock(&class->lock);
1567        obj_free(class, obj);
1568        fullness = fix_fullness_group(class, zspage);
1569        if (fullness != ZS_EMPTY) {
1570                migrate_read_unlock(zspage);
1571                goto out;
1572        }
1573
1574        isolated = is_zspage_isolated(zspage);
1575        migrate_read_unlock(zspage);
1576        /* If zspage is isolated, zs_page_putback will free the zspage */
1577        if (likely(!isolated))
1578                free_zspage(pool, class, zspage);
1579out:
1580
1581        spin_unlock(&class->lock);
1582        unpin_tag(handle);
1583        cache_free_handle(pool, handle);
1584}
1585EXPORT_SYMBOL_GPL(zs_free);
1586
1587static void zs_object_copy(struct size_class *class, unsigned long dst,
1588                                unsigned long src)
1589{
1590        struct page *s_page, *d_page;
1591        unsigned int s_objidx, d_objidx;
1592        unsigned long s_off, d_off;
1593        void *s_addr, *d_addr;
1594        int s_size, d_size, size;
1595        int written = 0;
1596
1597        s_size = d_size = class->size;
1598
1599        obj_to_location(src, &s_page, &s_objidx);
1600        obj_to_location(dst, &d_page, &d_objidx);
1601
1602        s_off = (class->size * s_objidx) & ~PAGE_MASK;
1603        d_off = (class->size * d_objidx) & ~PAGE_MASK;
1604
1605        if (s_off + class->size > PAGE_SIZE)
1606                s_size = PAGE_SIZE - s_off;
1607
1608        if (d_off + class->size > PAGE_SIZE)
1609                d_size = PAGE_SIZE - d_off;
1610
1611        s_addr = kmap_atomic(s_page);
1612        d_addr = kmap_atomic(d_page);
1613
1614        while (1) {
1615                size = min(s_size, d_size);
1616                memcpy(d_addr + d_off, s_addr + s_off, size);
1617                written += size;
1618
1619                if (written == class->size)
1620                        break;
1621
1622                s_off += size;
1623                s_size -= size;
1624                d_off += size;
1625                d_size -= size;
1626
1627                if (s_off >= PAGE_SIZE) {
1628                        kunmap_atomic(d_addr);
1629                        kunmap_atomic(s_addr);
1630                        s_page = get_next_page(s_page);
1631                        s_addr = kmap_atomic(s_page);
1632                        d_addr = kmap_atomic(d_page);
1633                        s_size = class->size - written;
1634                        s_off = 0;
1635                }
1636
1637                if (d_off >= PAGE_SIZE) {
1638                        kunmap_atomic(d_addr);
1639                        d_page = get_next_page(d_page);
1640                        d_addr = kmap_atomic(d_page);
1641                        d_size = class->size - written;
1642                        d_off = 0;
1643                }
1644        }
1645
1646        kunmap_atomic(d_addr);
1647        kunmap_atomic(s_addr);
1648}
1649
1650/*
1651 * Find alloced object in zspage from index object and
1652 * return handle.
1653 */
1654static unsigned long find_alloced_obj(struct size_class *class,
1655                                        struct page *page, int *obj_idx)
1656{
1657        unsigned long head;
1658        int offset = 0;
1659        int index = *obj_idx;
1660        unsigned long handle = 0;
1661        void *addr = kmap_atomic(page);
1662
1663        offset = get_first_obj_offset(page);
1664        offset += class->size * index;
1665
1666        while (offset < PAGE_SIZE) {
1667                head = obj_to_head(page, addr + offset);
1668                if (head & OBJ_ALLOCATED_TAG) {
1669                        handle = head & ~OBJ_ALLOCATED_TAG;
1670                        if (trypin_tag(handle))
1671                                break;
1672                        handle = 0;
1673                }
1674
1675                offset += class->size;
1676                index++;
1677        }
1678
1679        kunmap_atomic(addr);
1680
1681        *obj_idx = index;
1682
1683        return handle;
1684}
1685
1686struct zs_compact_control {
1687        /* Source spage for migration which could be a subpage of zspage */
1688        struct page *s_page;
1689        /* Destination page for migration which should be a first page
1690         * of zspage. */
1691        struct page *d_page;
1692         /* Starting object index within @s_page which used for live object
1693          * in the subpage. */
1694        int obj_idx;
1695};
1696
1697static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1698                                struct zs_compact_control *cc)
1699{
1700        unsigned long used_obj, free_obj;
1701        unsigned long handle;
1702        struct page *s_page = cc->s_page;
1703        struct page *d_page = cc->d_page;
1704        int obj_idx = cc->obj_idx;
1705        int ret = 0;
1706
1707        while (1) {
1708                handle = find_alloced_obj(class, s_page, &obj_idx);
1709                if (!handle) {
1710                        s_page = get_next_page(s_page);
1711                        if (!s_page)
1712                                break;
1713                        obj_idx = 0;
1714                        continue;
1715                }
1716
1717                /* Stop if there is no more space */
1718                if (zspage_full(class, get_zspage(d_page))) {
1719                        unpin_tag(handle);
1720                        ret = -ENOMEM;
1721                        break;
1722                }
1723
1724                used_obj = handle_to_obj(handle);
1725                free_obj = obj_malloc(class, get_zspage(d_page), handle);
1726                zs_object_copy(class, free_obj, used_obj);
1727                obj_idx++;
1728                /*
1729                 * record_obj updates handle's value to free_obj and it will
1730                 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1731                 * breaks synchronization using pin_tag(e,g, zs_free) so
1732                 * let's keep the lock bit.
1733                 */
1734                free_obj |= BIT(HANDLE_PIN_BIT);
1735                record_obj(handle, free_obj);
1736                unpin_tag(handle);
1737                obj_free(class, used_obj);
1738        }
1739
1740        /* Remember last position in this iteration */
1741        cc->s_page = s_page;
1742        cc->obj_idx = obj_idx;
1743
1744        return ret;
1745}
1746
1747static struct zspage *isolate_zspage(struct size_class *class, bool source)
1748{
1749        int i;
1750        struct zspage *zspage;
1751        enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1752
1753        if (!source) {
1754                fg[0] = ZS_ALMOST_FULL;
1755                fg[1] = ZS_ALMOST_EMPTY;
1756        }
1757
1758        for (i = 0; i < 2; i++) {
1759                zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1760                                                        struct zspage, list);
1761                if (zspage) {
1762                        VM_BUG_ON(is_zspage_isolated(zspage));
1763                        remove_zspage(class, zspage, fg[i]);
1764                        return zspage;
1765                }
1766        }
1767
1768        return zspage;
1769}
1770
1771/*
1772 * putback_zspage - add @zspage into right class's fullness list
1773 * @class: destination class
1774 * @zspage: target page
1775 *
1776 * Return @zspage's fullness_group
1777 */
1778static enum fullness_group putback_zspage(struct size_class *class,
1779                        struct zspage *zspage)
1780{
1781        enum fullness_group fullness;
1782
1783        VM_BUG_ON(is_zspage_isolated(zspage));
1784
1785        fullness = get_fullness_group(class, zspage);
1786        insert_zspage(class, zspage, fullness);
1787        set_zspage_mapping(zspage, class->index, fullness);
1788
1789        return fullness;
1790}
1791
1792#ifdef CONFIG_COMPACTION
1793/*
1794 * To prevent zspage destroy during migration, zspage freeing should
1795 * hold locks of all pages in the zspage.
1796 */
1797static void lock_zspage(struct zspage *zspage)
1798{
1799        struct page *page = get_first_page(zspage);
1800
1801        do {
1802                lock_page(page);
1803        } while ((page = get_next_page(page)) != NULL);
1804}
1805
1806static int zs_init_fs_context(struct fs_context *fc)
1807{
1808        return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1809}
1810
1811static struct file_system_type zsmalloc_fs = {
1812        .name           = "zsmalloc",
1813        .init_fs_context = zs_init_fs_context,
1814        .kill_sb        = kill_anon_super,
1815};
1816
1817static int zsmalloc_mount(void)
1818{
1819        int ret = 0;
1820
1821        zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1822        if (IS_ERR(zsmalloc_mnt))
1823                ret = PTR_ERR(zsmalloc_mnt);
1824
1825        return ret;
1826}
1827
1828static void zsmalloc_unmount(void)
1829{
1830        kern_unmount(zsmalloc_mnt);
1831}
1832
1833static void migrate_lock_init(struct zspage *zspage)
1834{
1835        rwlock_init(&zspage->lock);
1836}
1837
1838static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1839{
1840        read_lock(&zspage->lock);
1841}
1842
1843static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1844{
1845        read_unlock(&zspage->lock);
1846}
1847
1848static void migrate_write_lock(struct zspage *zspage)
1849{
1850        write_lock(&zspage->lock);
1851}
1852
1853static void migrate_write_unlock(struct zspage *zspage)
1854{
1855        write_unlock(&zspage->lock);
1856}
1857
1858/* Number of isolated subpage for *page migration* in this zspage */
1859static void inc_zspage_isolation(struct zspage *zspage)
1860{
1861        zspage->isolated++;
1862}
1863
1864static void dec_zspage_isolation(struct zspage *zspage)
1865{
1866        zspage->isolated--;
1867}
1868
1869static void putback_zspage_deferred(struct zs_pool *pool,
1870                                    struct size_class *class,
1871                                    struct zspage *zspage)
1872{
1873        enum fullness_group fg;
1874
1875        fg = putback_zspage(class, zspage);
1876        if (fg == ZS_EMPTY)
1877                schedule_work(&pool->free_work);
1878
1879}
1880
1881static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1882{
1883        VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1884        atomic_long_dec(&pool->isolated_pages);
1885        /*
1886         * There's no possibility of racing, since wait_for_isolated_drain()
1887         * checks the isolated count under &class->lock after enqueuing
1888         * on migration_wait.
1889         */
1890        if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1891                wake_up_all(&pool->migration_wait);
1892}
1893
1894static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1895                                struct page *newpage, struct page *oldpage)
1896{
1897        struct page *page;
1898        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1899        int idx = 0;
1900
1901        page = get_first_page(zspage);
1902        do {
1903                if (page == oldpage)
1904                        pages[idx] = newpage;
1905                else
1906                        pages[idx] = page;
1907                idx++;
1908        } while ((page = get_next_page(page)) != NULL);
1909
1910        create_page_chain(class, zspage, pages);
1911        set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1912        if (unlikely(PageHugeObject(oldpage)))
1913                newpage->index = oldpage->index;
1914        __SetPageMovable(newpage, page_mapping(oldpage));
1915}
1916
1917static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1918{
1919        struct zs_pool *pool;
1920        struct size_class *class;
1921        int class_idx;
1922        enum fullness_group fullness;
1923        struct zspage *zspage;
1924        struct address_space *mapping;
1925
1926        /*
1927         * Page is locked so zspage couldn't be destroyed. For detail, look at
1928         * lock_zspage in free_zspage.
1929         */
1930        VM_BUG_ON_PAGE(!PageMovable(page), page);
1931        VM_BUG_ON_PAGE(PageIsolated(page), page);
1932
1933        zspage = get_zspage(page);
1934
1935        /*
1936         * Without class lock, fullness could be stale while class_idx is okay
1937         * because class_idx is constant unless page is freed so we should get
1938         * fullness again under class lock.
1939         */
1940        get_zspage_mapping(zspage, &class_idx, &fullness);
1941        mapping = page_mapping(page);
1942        pool = mapping->private_data;
1943        class = pool->size_class[class_idx];
1944
1945        spin_lock(&class->lock);
1946        if (get_zspage_inuse(zspage) == 0) {
1947                spin_unlock(&class->lock);
1948                return false;
1949        }
1950
1951        /* zspage is isolated for object migration */
1952        if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1953                spin_unlock(&class->lock);
1954                return false;
1955        }
1956
1957        /*
1958         * If this is first time isolation for the zspage, isolate zspage from
1959         * size_class to prevent further object allocation from the zspage.
1960         */
1961        if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1962                get_zspage_mapping(zspage, &class_idx, &fullness);
1963                atomic_long_inc(&pool->isolated_pages);
1964                remove_zspage(class, zspage, fullness);
1965        }
1966
1967        inc_zspage_isolation(zspage);
1968        spin_unlock(&class->lock);
1969
1970        return true;
1971}
1972
1973static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1974                struct page *page, enum migrate_mode mode)
1975{
1976        struct zs_pool *pool;
1977        struct size_class *class;
1978        int class_idx;
1979        enum fullness_group fullness;
1980        struct zspage *zspage;
1981        struct page *dummy;
1982        void *s_addr, *d_addr, *addr;
1983        int offset, pos;
1984        unsigned long handle, head;
1985        unsigned long old_obj, new_obj;
1986        unsigned int obj_idx;
1987        int ret = -EAGAIN;
1988
1989        /*
1990         * We cannot support the _NO_COPY case here, because copy needs to
1991         * happen under the zs lock, which does not work with
1992         * MIGRATE_SYNC_NO_COPY workflow.
1993         */
1994        if (mode == MIGRATE_SYNC_NO_COPY)
1995                return -EINVAL;
1996
1997        VM_BUG_ON_PAGE(!PageMovable(page), page);
1998        VM_BUG_ON_PAGE(!PageIsolated(page), page);
1999
2000        zspage = get_zspage(page);
2001
2002        /* Concurrent compactor cannot migrate any subpage in zspage */
2003        migrate_write_lock(zspage);
2004        get_zspage_mapping(zspage, &class_idx, &fullness);
2005        pool = mapping->private_data;
2006        class = pool->size_class[class_idx];
2007        offset = get_first_obj_offset(page);
2008
2009        spin_lock(&class->lock);
2010        if (!get_zspage_inuse(zspage)) {
2011                /*
2012                 * Set "offset" to end of the page so that every loops
2013                 * skips unnecessary object scanning.
2014                 */
2015                offset = PAGE_SIZE;
2016        }
2017
2018        pos = offset;
2019        s_addr = kmap_atomic(page);
2020        while (pos < PAGE_SIZE) {
2021                head = obj_to_head(page, s_addr + pos);
2022                if (head & OBJ_ALLOCATED_TAG) {
2023                        handle = head & ~OBJ_ALLOCATED_TAG;
2024                        if (!trypin_tag(handle))
2025                                goto unpin_objects;
2026                }
2027                pos += class->size;
2028        }
2029
2030        /*
2031         * Here, any user cannot access all objects in the zspage so let's move.
2032         */
2033        d_addr = kmap_atomic(newpage);
2034        memcpy(d_addr, s_addr, PAGE_SIZE);
2035        kunmap_atomic(d_addr);
2036
2037        for (addr = s_addr + offset; addr < s_addr + pos;
2038                                        addr += class->size) {
2039                head = obj_to_head(page, addr);
2040                if (head & OBJ_ALLOCATED_TAG) {
2041                        handle = head & ~OBJ_ALLOCATED_TAG;
2042                        if (!testpin_tag(handle))
2043                                BUG();
2044
2045                        old_obj = handle_to_obj(handle);
2046                        obj_to_location(old_obj, &dummy, &obj_idx);
2047                        new_obj = (unsigned long)location_to_obj(newpage,
2048                                                                obj_idx);
2049                        new_obj |= BIT(HANDLE_PIN_BIT);
2050                        record_obj(handle, new_obj);
2051                }
2052        }
2053
2054        replace_sub_page(class, zspage, newpage, page);
2055        get_page(newpage);
2056
2057        dec_zspage_isolation(zspage);
2058
2059        /*
2060         * Page migration is done so let's putback isolated zspage to
2061         * the list if @page is final isolated subpage in the zspage.
2062         */
2063        if (!is_zspage_isolated(zspage)) {
2064                /*
2065                 * We cannot race with zs_destroy_pool() here because we wait
2066                 * for isolation to hit zero before we start destroying.
2067                 * Also, we ensure that everyone can see pool->destroying before
2068                 * we start waiting.
2069                 */
2070                putback_zspage_deferred(pool, class, zspage);
2071                zs_pool_dec_isolated(pool);
2072        }
2073
2074        if (page_zone(newpage) != page_zone(page)) {
2075                dec_zone_page_state(page, NR_ZSPAGES);
2076                inc_zone_page_state(newpage, NR_ZSPAGES);
2077        }
2078
2079        reset_page(page);
2080        put_page(page);
2081        page = newpage;
2082
2083        ret = MIGRATEPAGE_SUCCESS;
2084unpin_objects:
2085        for (addr = s_addr + offset; addr < s_addr + pos;
2086                                                addr += class->size) {
2087                head = obj_to_head(page, addr);
2088                if (head & OBJ_ALLOCATED_TAG) {
2089                        handle = head & ~OBJ_ALLOCATED_TAG;
2090                        if (!testpin_tag(handle))
2091                                BUG();
2092                        unpin_tag(handle);
2093                }
2094        }
2095        kunmap_atomic(s_addr);
2096        spin_unlock(&class->lock);
2097        migrate_write_unlock(zspage);
2098
2099        return ret;
2100}
2101
2102static void zs_page_putback(struct page *page)
2103{
2104        struct zs_pool *pool;
2105        struct size_class *class;
2106        int class_idx;
2107        enum fullness_group fg;
2108        struct address_space *mapping;
2109        struct zspage *zspage;
2110
2111        VM_BUG_ON_PAGE(!PageMovable(page), page);
2112        VM_BUG_ON_PAGE(!PageIsolated(page), page);
2113
2114        zspage = get_zspage(page);
2115        get_zspage_mapping(zspage, &class_idx, &fg);
2116        mapping = page_mapping(page);
2117        pool = mapping->private_data;
2118        class = pool->size_class[class_idx];
2119
2120        spin_lock(&class->lock);
2121        dec_zspage_isolation(zspage);
2122        if (!is_zspage_isolated(zspage)) {
2123                /*
2124                 * Due to page_lock, we cannot free zspage immediately
2125                 * so let's defer.
2126                 */
2127                putback_zspage_deferred(pool, class, zspage);
2128                zs_pool_dec_isolated(pool);
2129        }
2130        spin_unlock(&class->lock);
2131}
2132
2133static const struct address_space_operations zsmalloc_aops = {
2134        .isolate_page = zs_page_isolate,
2135        .migratepage = zs_page_migrate,
2136        .putback_page = zs_page_putback,
2137};
2138
2139static int zs_register_migration(struct zs_pool *pool)
2140{
2141        pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2142        if (IS_ERR(pool->inode)) {
2143                pool->inode = NULL;
2144                return 1;
2145        }
2146
2147        pool->inode->i_mapping->private_data = pool;
2148        pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2149        return 0;
2150}
2151
2152static bool pool_isolated_are_drained(struct zs_pool *pool)
2153{
2154        return atomic_long_read(&pool->isolated_pages) == 0;
2155}
2156
2157/* Function for resolving migration */
2158static void wait_for_isolated_drain(struct zs_pool *pool)
2159{
2160
2161        /*
2162         * We're in the process of destroying the pool, so there are no
2163         * active allocations. zs_page_isolate() fails for completely free
2164         * zspages, so we need only wait for the zs_pool's isolated
2165         * count to hit zero.
2166         */
2167        wait_event(pool->migration_wait,
2168                   pool_isolated_are_drained(pool));
2169}
2170
2171static void zs_unregister_migration(struct zs_pool *pool)
2172{
2173        pool->destroying = true;
2174        /*
2175         * We need a memory barrier here to ensure global visibility of
2176         * pool->destroying. Thus pool->isolated pages will either be 0 in which
2177         * case we don't care, or it will be > 0 and pool->destroying will
2178         * ensure that we wake up once isolation hits 0.
2179         */
2180        smp_mb();
2181        wait_for_isolated_drain(pool); /* This can block */
2182        flush_work(&pool->free_work);
2183        iput(pool->inode);
2184}
2185
2186/*
2187 * Caller should hold page_lock of all pages in the zspage
2188 * In here, we cannot use zspage meta data.
2189 */
2190static void async_free_zspage(struct work_struct *work)
2191{
2192        int i;
2193        struct size_class *class;
2194        unsigned int class_idx;
2195        enum fullness_group fullness;
2196        struct zspage *zspage, *tmp;
2197        LIST_HEAD(free_pages);
2198        struct zs_pool *pool = container_of(work, struct zs_pool,
2199                                        free_work);
2200
2201        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2202                class = pool->size_class[i];
2203                if (class->index != i)
2204                        continue;
2205
2206                spin_lock(&class->lock);
2207                list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2208                spin_unlock(&class->lock);
2209        }
2210
2211
2212        list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2213                list_del(&zspage->list);
2214                lock_zspage(zspage);
2215
2216                get_zspage_mapping(zspage, &class_idx, &fullness);
2217                VM_BUG_ON(fullness != ZS_EMPTY);
2218                class = pool->size_class[class_idx];
2219                spin_lock(&class->lock);
2220                __free_zspage(pool, pool->size_class[class_idx], zspage);
2221                spin_unlock(&class->lock);
2222        }
2223};
2224
2225static void kick_deferred_free(struct zs_pool *pool)
2226{
2227        schedule_work(&pool->free_work);
2228}
2229
2230static void init_deferred_free(struct zs_pool *pool)
2231{
2232        INIT_WORK(&pool->free_work, async_free_zspage);
2233}
2234
2235static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2236{
2237        struct page *page = get_first_page(zspage);
2238
2239        do {
2240                WARN_ON(!trylock_page(page));
2241                __SetPageMovable(page, pool->inode->i_mapping);
2242                unlock_page(page);
2243        } while ((page = get_next_page(page)) != NULL);
2244}
2245#endif
2246
2247/*
2248 *
2249 * Based on the number of unused allocated objects calculate
2250 * and return the number of pages that we can free.
2251 */
2252static unsigned long zs_can_compact(struct size_class *class)
2253{
2254        unsigned long obj_wasted;
2255        unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2256        unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2257
2258        if (obj_allocated <= obj_used)
2259                return 0;
2260
2261        obj_wasted = obj_allocated - obj_used;
2262        obj_wasted /= class->objs_per_zspage;
2263
2264        return obj_wasted * class->pages_per_zspage;
2265}
2266
2267static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2268{
2269        struct zs_compact_control cc;
2270        struct zspage *src_zspage;
2271        struct zspage *dst_zspage = NULL;
2272
2273        spin_lock(&class->lock);
2274        while ((src_zspage = isolate_zspage(class, true))) {
2275
2276                if (!zs_can_compact(class))
2277                        break;
2278
2279                cc.obj_idx = 0;
2280                cc.s_page = get_first_page(src_zspage);
2281
2282                while ((dst_zspage = isolate_zspage(class, false))) {
2283                        cc.d_page = get_first_page(dst_zspage);
2284                        /*
2285                         * If there is no more space in dst_page, resched
2286                         * and see if anyone had allocated another zspage.
2287                         */
2288                        if (!migrate_zspage(pool, class, &cc))
2289                                break;
2290
2291                        putback_zspage(class, dst_zspage);
2292                }
2293
2294                /* Stop if we couldn't find slot */
2295                if (dst_zspage == NULL)
2296                        break;
2297
2298                putback_zspage(class, dst_zspage);
2299                if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2300                        free_zspage(pool, class, src_zspage);
2301                        pool->stats.pages_compacted += class->pages_per_zspage;
2302                }
2303                spin_unlock(&class->lock);
2304                cond_resched();
2305                spin_lock(&class->lock);
2306        }
2307
2308        if (src_zspage)
2309                putback_zspage(class, src_zspage);
2310
2311        spin_unlock(&class->lock);
2312}
2313
2314unsigned long zs_compact(struct zs_pool *pool)
2315{
2316        int i;
2317        struct size_class *class;
2318
2319        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2320                class = pool->size_class[i];
2321                if (!class)
2322                        continue;
2323                if (class->index != i)
2324                        continue;
2325                __zs_compact(pool, class);
2326        }
2327
2328        return pool->stats.pages_compacted;
2329}
2330EXPORT_SYMBOL_GPL(zs_compact);
2331
2332void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2333{
2334        memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2335}
2336EXPORT_SYMBOL_GPL(zs_pool_stats);
2337
2338static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2339                struct shrink_control *sc)
2340{
2341        unsigned long pages_freed;
2342        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2343                        shrinker);
2344
2345        pages_freed = pool->stats.pages_compacted;
2346        /*
2347         * Compact classes and calculate compaction delta.
2348         * Can run concurrently with a manually triggered
2349         * (by user) compaction.
2350         */
2351        pages_freed = zs_compact(pool) - pages_freed;
2352
2353        return pages_freed ? pages_freed : SHRINK_STOP;
2354}
2355
2356static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2357                struct shrink_control *sc)
2358{
2359        int i;
2360        struct size_class *class;
2361        unsigned long pages_to_free = 0;
2362        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2363                        shrinker);
2364
2365        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2366                class = pool->size_class[i];
2367                if (!class)
2368                        continue;
2369                if (class->index != i)
2370                        continue;
2371
2372                pages_to_free += zs_can_compact(class);
2373        }
2374
2375        return pages_to_free;
2376}
2377
2378static void zs_unregister_shrinker(struct zs_pool *pool)
2379{
2380        unregister_shrinker(&pool->shrinker);
2381}
2382
2383static int zs_register_shrinker(struct zs_pool *pool)
2384{
2385        pool->shrinker.scan_objects = zs_shrinker_scan;
2386        pool->shrinker.count_objects = zs_shrinker_count;
2387        pool->shrinker.batch = 0;
2388        pool->shrinker.seeks = DEFAULT_SEEKS;
2389
2390        return register_shrinker(&pool->shrinker);
2391}
2392
2393/**
2394 * zs_create_pool - Creates an allocation pool to work from.
2395 * @name: pool name to be created
2396 *
2397 * This function must be called before anything when using
2398 * the zsmalloc allocator.
2399 *
2400 * On success, a pointer to the newly created pool is returned,
2401 * otherwise NULL.
2402 */
2403struct zs_pool *zs_create_pool(const char *name)
2404{
2405        int i;
2406        struct zs_pool *pool;
2407        struct size_class *prev_class = NULL;
2408
2409        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2410        if (!pool)
2411                return NULL;
2412
2413        init_deferred_free(pool);
2414
2415        pool->name = kstrdup(name, GFP_KERNEL);
2416        if (!pool->name)
2417                goto err;
2418
2419#ifdef CONFIG_COMPACTION
2420        init_waitqueue_head(&pool->migration_wait);
2421#endif
2422
2423        if (create_cache(pool))
2424                goto err;
2425
2426        /*
2427         * Iterate reversely, because, size of size_class that we want to use
2428         * for merging should be larger or equal to current size.
2429         */
2430        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2431                int size;
2432                int pages_per_zspage;
2433                int objs_per_zspage;
2434                struct size_class *class;
2435                int fullness = 0;
2436
2437                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2438                if (size > ZS_MAX_ALLOC_SIZE)
2439                        size = ZS_MAX_ALLOC_SIZE;
2440                pages_per_zspage = get_pages_per_zspage(size);
2441                objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2442
2443                /*
2444                 * We iterate from biggest down to smallest classes,
2445                 * so huge_class_size holds the size of the first huge
2446                 * class. Any object bigger than or equal to that will
2447                 * endup in the huge class.
2448                 */
2449                if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2450                                !huge_class_size) {
2451                        huge_class_size = size;
2452                        /*
2453                         * The object uses ZS_HANDLE_SIZE bytes to store the
2454                         * handle. We need to subtract it, because zs_malloc()
2455                         * unconditionally adds handle size before it performs
2456                         * size class search - so object may be smaller than
2457                         * huge class size, yet it still can end up in the huge
2458                         * class because it grows by ZS_HANDLE_SIZE extra bytes
2459                         * right before class lookup.
2460                         */
2461                        huge_class_size -= (ZS_HANDLE_SIZE - 1);
2462                }
2463
2464                /*
2465                 * size_class is used for normal zsmalloc operation such
2466                 * as alloc/free for that size. Although it is natural that we
2467                 * have one size_class for each size, there is a chance that we
2468                 * can get more memory utilization if we use one size_class for
2469                 * many different sizes whose size_class have same
2470                 * characteristics. So, we makes size_class point to
2471                 * previous size_class if possible.
2472                 */
2473                if (prev_class) {
2474                        if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2475                                pool->size_class[i] = prev_class;
2476                                continue;
2477                        }
2478                }
2479
2480                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2481                if (!class)
2482                        goto err;
2483
2484                class->size = size;
2485                class->index = i;
2486                class->pages_per_zspage = pages_per_zspage;
2487                class->objs_per_zspage = objs_per_zspage;
2488                spin_lock_init(&class->lock);
2489                pool->size_class[i] = class;
2490                for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2491                                                        fullness++)
2492                        INIT_LIST_HEAD(&class->fullness_list[fullness]);
2493
2494                prev_class = class;
2495        }
2496
2497        /* debug only, don't abort if it fails */
2498        zs_pool_stat_create(pool, name);
2499
2500        if (zs_register_migration(pool))
2501                goto err;
2502
2503        /*
2504         * Not critical since shrinker is only used to trigger internal
2505         * defragmentation of the pool which is pretty optional thing.  If
2506         * registration fails we still can use the pool normally and user can
2507         * trigger compaction manually. Thus, ignore return code.
2508         */
2509        zs_register_shrinker(pool);
2510
2511        return pool;
2512
2513err:
2514        zs_destroy_pool(pool);
2515        return NULL;
2516}
2517EXPORT_SYMBOL_GPL(zs_create_pool);
2518
2519void zs_destroy_pool(struct zs_pool *pool)
2520{
2521        int i;
2522
2523        zs_unregister_shrinker(pool);
2524        zs_unregister_migration(pool);
2525        zs_pool_stat_destroy(pool);
2526
2527        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2528                int fg;
2529                struct size_class *class = pool->size_class[i];
2530
2531                if (!class)
2532                        continue;
2533
2534                if (class->index != i)
2535                        continue;
2536
2537                for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2538                        if (!list_empty(&class->fullness_list[fg])) {
2539                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2540                                        class->size, fg);
2541                        }
2542                }
2543                kfree(class);
2544        }
2545
2546        destroy_cache(pool);
2547        kfree(pool->name);
2548        kfree(pool);
2549}
2550EXPORT_SYMBOL_GPL(zs_destroy_pool);
2551
2552static int __init zs_init(void)
2553{
2554        int ret;
2555
2556        ret = zsmalloc_mount();
2557        if (ret)
2558                goto out;
2559
2560        ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2561                                zs_cpu_prepare, zs_cpu_dead);
2562        if (ret)
2563                goto hp_setup_fail;
2564
2565#ifdef CONFIG_ZPOOL
2566        zpool_register_driver(&zs_zpool_driver);
2567#endif
2568
2569        zs_stat_init();
2570
2571        return 0;
2572
2573hp_setup_fail:
2574        zsmalloc_unmount();
2575out:
2576        return ret;
2577}
2578
2579static void __exit zs_exit(void)
2580{
2581#ifdef CONFIG_ZPOOL
2582        zpool_unregister_driver(&zs_zpool_driver);
2583#endif
2584        zsmalloc_unmount();
2585        cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2586
2587        zs_stat_exit();
2588}
2589
2590module_init(zs_init);
2591module_exit(zs_exit);
2592
2593MODULE_LICENSE("Dual BSD/GPL");
2594MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2595