linux/net/core/skbuff.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Routines having to do with the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   6 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   7 *
   8 *      Fixes:
   9 *              Alan Cox        :       Fixed the worst of the load
  10 *                                      balancer bugs.
  11 *              Dave Platt      :       Interrupt stacking fix.
  12 *      Richard Kooijman        :       Timestamp fixes.
  13 *              Alan Cox        :       Changed buffer format.
  14 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  15 *              Linus Torvalds  :       Better skb_clone.
  16 *              Alan Cox        :       Added skb_copy.
  17 *              Alan Cox        :       Added all the changed routines Linus
  18 *                                      only put in the headers
  19 *              Ray VanTassle   :       Fixed --skb->lock in free
  20 *              Alan Cox        :       skb_copy copy arp field
  21 *              Andi Kleen      :       slabified it.
  22 *              Robert Olsson   :       Removed skb_head_pool
  23 *
  24 *      NOTE:
  25 *              The __skb_ routines should be called with interrupts
  26 *      disabled, or you better be *real* sure that the operation is atomic
  27 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  28 *      or via disabling bottom half handlers, etc).
  29 */
  30
  31/*
  32 *      The functions in this file will not compile correctly with gcc 2.4.x
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/in.h>
  43#include <linux/inet.h>
  44#include <linux/slab.h>
  45#include <linux/tcp.h>
  46#include <linux/udp.h>
  47#include <linux/sctp.h>
  48#include <linux/netdevice.h>
  49#ifdef CONFIG_NET_CLS_ACT
  50#include <net/pkt_sched.h>
  51#endif
  52#include <linux/string.h>
  53#include <linux/skbuff.h>
  54#include <linux/splice.h>
  55#include <linux/cache.h>
  56#include <linux/rtnetlink.h>
  57#include <linux/init.h>
  58#include <linux/scatterlist.h>
  59#include <linux/errqueue.h>
  60#include <linux/prefetch.h>
  61#include <linux/if_vlan.h>
  62#include <linux/mpls.h>
  63
  64#include <net/protocol.h>
  65#include <net/dst.h>
  66#include <net/sock.h>
  67#include <net/checksum.h>
  68#include <net/ip6_checksum.h>
  69#include <net/xfrm.h>
  70#include <net/mpls.h>
  71#include <net/mptcp.h>
  72
  73#include <linux/uaccess.h>
  74#include <trace/events/skb.h>
  75#include <linux/highmem.h>
  76#include <linux/capability.h>
  77#include <linux/user_namespace.h>
  78#include <linux/indirect_call_wrapper.h>
  79
  80#include "datagram.h"
  81
  82struct kmem_cache *skbuff_head_cache __ro_after_init;
  83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
  84#ifdef CONFIG_SKB_EXTENSIONS
  85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
  86#endif
  87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  88EXPORT_SYMBOL(sysctl_max_skb_frags);
  89
  90/**
  91 *      skb_panic - private function for out-of-line support
  92 *      @skb:   buffer
  93 *      @sz:    size
  94 *      @addr:  address
  95 *      @msg:   skb_over_panic or skb_under_panic
  96 *
  97 *      Out-of-line support for skb_put() and skb_push().
  98 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  99 *      Keep out of line to prevent kernel bloat.
 100 *      __builtin_return_address is not used because it is not always reliable.
 101 */
 102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
 103                      const char msg[])
 104{
 105        pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
 106                 msg, addr, skb->len, sz, skb->head, skb->data,
 107                 (unsigned long)skb->tail, (unsigned long)skb->end,
 108                 skb->dev ? skb->dev->name : "<NULL>");
 109        BUG();
 110}
 111
 112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 113{
 114        skb_panic(skb, sz, addr, __func__);
 115}
 116
 117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 118{
 119        skb_panic(skb, sz, addr, __func__);
 120}
 121
 122/*
 123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 124 * the caller if emergency pfmemalloc reserves are being used. If it is and
 125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 126 * may be used. Otherwise, the packet data may be discarded until enough
 127 * memory is free
 128 */
 129#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 130         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 131
 132static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 133                               unsigned long ip, bool *pfmemalloc)
 134{
 135        void *obj;
 136        bool ret_pfmemalloc = false;
 137
 138        /*
 139         * Try a regular allocation, when that fails and we're not entitled
 140         * to the reserves, fail.
 141         */
 142        obj = kmalloc_node_track_caller(size,
 143                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 144                                        node);
 145        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 146                goto out;
 147
 148        /* Try again but now we are using pfmemalloc reserves */
 149        ret_pfmemalloc = true;
 150        obj = kmalloc_node_track_caller(size, flags, node);
 151
 152out:
 153        if (pfmemalloc)
 154                *pfmemalloc = ret_pfmemalloc;
 155
 156        return obj;
 157}
 158
 159/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 160 *      'private' fields and also do memory statistics to find all the
 161 *      [BEEP] leaks.
 162 *
 163 */
 164
 165/**
 166 *      __alloc_skb     -       allocate a network buffer
 167 *      @size: size to allocate
 168 *      @gfp_mask: allocation mask
 169 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 170 *              instead of head cache and allocate a cloned (child) skb.
 171 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 172 *              allocations in case the data is required for writeback
 173 *      @node: numa node to allocate memory on
 174 *
 175 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 176 *      tail room of at least size bytes. The object has a reference count
 177 *      of one. The return is the buffer. On a failure the return is %NULL.
 178 *
 179 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 180 *      %GFP_ATOMIC.
 181 */
 182struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 183                            int flags, int node)
 184{
 185        struct kmem_cache *cache;
 186        struct skb_shared_info *shinfo;
 187        struct sk_buff *skb;
 188        u8 *data;
 189        bool pfmemalloc;
 190
 191        cache = (flags & SKB_ALLOC_FCLONE)
 192                ? skbuff_fclone_cache : skbuff_head_cache;
 193
 194        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 195                gfp_mask |= __GFP_MEMALLOC;
 196
 197        /* Get the HEAD */
 198        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 199        if (!skb)
 200                goto out;
 201        prefetchw(skb);
 202
 203        /* We do our best to align skb_shared_info on a separate cache
 204         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 205         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 206         * Both skb->head and skb_shared_info are cache line aligned.
 207         */
 208        size = SKB_DATA_ALIGN(size);
 209        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 210        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 211        if (!data)
 212                goto nodata;
 213        /* kmalloc(size) might give us more room than requested.
 214         * Put skb_shared_info exactly at the end of allocated zone,
 215         * to allow max possible filling before reallocation.
 216         */
 217        size = SKB_WITH_OVERHEAD(ksize(data));
 218        prefetchw(data + size);
 219
 220        /*
 221         * Only clear those fields we need to clear, not those that we will
 222         * actually initialise below. Hence, don't put any more fields after
 223         * the tail pointer in struct sk_buff!
 224         */
 225        memset(skb, 0, offsetof(struct sk_buff, tail));
 226        /* Account for allocated memory : skb + skb->head */
 227        skb->truesize = SKB_TRUESIZE(size);
 228        skb->pfmemalloc = pfmemalloc;
 229        refcount_set(&skb->users, 1);
 230        skb->head = data;
 231        skb->data = data;
 232        skb_reset_tail_pointer(skb);
 233        skb->end = skb->tail + size;
 234        skb->mac_header = (typeof(skb->mac_header))~0U;
 235        skb->transport_header = (typeof(skb->transport_header))~0U;
 236
 237        /* make sure we initialize shinfo sequentially */
 238        shinfo = skb_shinfo(skb);
 239        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 240        atomic_set(&shinfo->dataref, 1);
 241
 242        if (flags & SKB_ALLOC_FCLONE) {
 243                struct sk_buff_fclones *fclones;
 244
 245                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 246
 247                skb->fclone = SKB_FCLONE_ORIG;
 248                refcount_set(&fclones->fclone_ref, 1);
 249
 250                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 251        }
 252out:
 253        return skb;
 254nodata:
 255        kmem_cache_free(cache, skb);
 256        skb = NULL;
 257        goto out;
 258}
 259EXPORT_SYMBOL(__alloc_skb);
 260
 261/* Caller must provide SKB that is memset cleared */
 262static struct sk_buff *__build_skb_around(struct sk_buff *skb,
 263                                          void *data, unsigned int frag_size)
 264{
 265        struct skb_shared_info *shinfo;
 266        unsigned int size = frag_size ? : ksize(data);
 267
 268        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 269
 270        /* Assumes caller memset cleared SKB */
 271        skb->truesize = SKB_TRUESIZE(size);
 272        refcount_set(&skb->users, 1);
 273        skb->head = data;
 274        skb->data = data;
 275        skb_reset_tail_pointer(skb);
 276        skb->end = skb->tail + size;
 277        skb->mac_header = (typeof(skb->mac_header))~0U;
 278        skb->transport_header = (typeof(skb->transport_header))~0U;
 279
 280        /* make sure we initialize shinfo sequentially */
 281        shinfo = skb_shinfo(skb);
 282        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 283        atomic_set(&shinfo->dataref, 1);
 284
 285        return skb;
 286}
 287
 288/**
 289 * __build_skb - build a network buffer
 290 * @data: data buffer provided by caller
 291 * @frag_size: size of data, or 0 if head was kmalloced
 292 *
 293 * Allocate a new &sk_buff. Caller provides space holding head and
 294 * skb_shared_info. @data must have been allocated by kmalloc() only if
 295 * @frag_size is 0, otherwise data should come from the page allocator
 296 *  or vmalloc()
 297 * The return is the new skb buffer.
 298 * On a failure the return is %NULL, and @data is not freed.
 299 * Notes :
 300 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 301 *  Driver should add room at head (NET_SKB_PAD) and
 302 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 303 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 304 *  before giving packet to stack.
 305 *  RX rings only contains data buffers, not full skbs.
 306 */
 307struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 308{
 309        struct sk_buff *skb;
 310
 311        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 312        if (unlikely(!skb))
 313                return NULL;
 314
 315        memset(skb, 0, offsetof(struct sk_buff, tail));
 316
 317        return __build_skb_around(skb, data, frag_size);
 318}
 319
 320/* build_skb() is wrapper over __build_skb(), that specifically
 321 * takes care of skb->head and skb->pfmemalloc
 322 * This means that if @frag_size is not zero, then @data must be backed
 323 * by a page fragment, not kmalloc() or vmalloc()
 324 */
 325struct sk_buff *build_skb(void *data, unsigned int frag_size)
 326{
 327        struct sk_buff *skb = __build_skb(data, frag_size);
 328
 329        if (skb && frag_size) {
 330                skb->head_frag = 1;
 331                if (page_is_pfmemalloc(virt_to_head_page(data)))
 332                        skb->pfmemalloc = 1;
 333        }
 334        return skb;
 335}
 336EXPORT_SYMBOL(build_skb);
 337
 338/**
 339 * build_skb_around - build a network buffer around provided skb
 340 * @skb: sk_buff provide by caller, must be memset cleared
 341 * @data: data buffer provided by caller
 342 * @frag_size: size of data, or 0 if head was kmalloced
 343 */
 344struct sk_buff *build_skb_around(struct sk_buff *skb,
 345                                 void *data, unsigned int frag_size)
 346{
 347        if (unlikely(!skb))
 348                return NULL;
 349
 350        skb = __build_skb_around(skb, data, frag_size);
 351
 352        if (skb && frag_size) {
 353                skb->head_frag = 1;
 354                if (page_is_pfmemalloc(virt_to_head_page(data)))
 355                        skb->pfmemalloc = 1;
 356        }
 357        return skb;
 358}
 359EXPORT_SYMBOL(build_skb_around);
 360
 361#define NAPI_SKB_CACHE_SIZE     64
 362
 363struct napi_alloc_cache {
 364        struct page_frag_cache page;
 365        unsigned int skb_count;
 366        void *skb_cache[NAPI_SKB_CACHE_SIZE];
 367};
 368
 369static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 370static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 371
 372static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 373{
 374        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 375
 376        return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 377}
 378
 379void *napi_alloc_frag(unsigned int fragsz)
 380{
 381        fragsz = SKB_DATA_ALIGN(fragsz);
 382
 383        return __napi_alloc_frag(fragsz, GFP_ATOMIC);
 384}
 385EXPORT_SYMBOL(napi_alloc_frag);
 386
 387/**
 388 * netdev_alloc_frag - allocate a page fragment
 389 * @fragsz: fragment size
 390 *
 391 * Allocates a frag from a page for receive buffer.
 392 * Uses GFP_ATOMIC allocations.
 393 */
 394void *netdev_alloc_frag(unsigned int fragsz)
 395{
 396        struct page_frag_cache *nc;
 397        void *data;
 398
 399        fragsz = SKB_DATA_ALIGN(fragsz);
 400        if (in_irq() || irqs_disabled()) {
 401                nc = this_cpu_ptr(&netdev_alloc_cache);
 402                data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
 403        } else {
 404                local_bh_disable();
 405                data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
 406                local_bh_enable();
 407        }
 408        return data;
 409}
 410EXPORT_SYMBOL(netdev_alloc_frag);
 411
 412/**
 413 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 414 *      @dev: network device to receive on
 415 *      @len: length to allocate
 416 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 417 *
 418 *      Allocate a new &sk_buff and assign it a usage count of one. The
 419 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 420 *      the headroom they think they need without accounting for the
 421 *      built in space. The built in space is used for optimisations.
 422 *
 423 *      %NULL is returned if there is no free memory.
 424 */
 425struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 426                                   gfp_t gfp_mask)
 427{
 428        struct page_frag_cache *nc;
 429        struct sk_buff *skb;
 430        bool pfmemalloc;
 431        void *data;
 432
 433        len += NET_SKB_PAD;
 434
 435        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 436            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 437                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 438                if (!skb)
 439                        goto skb_fail;
 440                goto skb_success;
 441        }
 442
 443        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 444        len = SKB_DATA_ALIGN(len);
 445
 446        if (sk_memalloc_socks())
 447                gfp_mask |= __GFP_MEMALLOC;
 448
 449        if (in_irq() || irqs_disabled()) {
 450                nc = this_cpu_ptr(&netdev_alloc_cache);
 451                data = page_frag_alloc(nc, len, gfp_mask);
 452                pfmemalloc = nc->pfmemalloc;
 453        } else {
 454                local_bh_disable();
 455                nc = this_cpu_ptr(&napi_alloc_cache.page);
 456                data = page_frag_alloc(nc, len, gfp_mask);
 457                pfmemalloc = nc->pfmemalloc;
 458                local_bh_enable();
 459        }
 460
 461        if (unlikely(!data))
 462                return NULL;
 463
 464        skb = __build_skb(data, len);
 465        if (unlikely(!skb)) {
 466                skb_free_frag(data);
 467                return NULL;
 468        }
 469
 470        if (pfmemalloc)
 471                skb->pfmemalloc = 1;
 472        skb->head_frag = 1;
 473
 474skb_success:
 475        skb_reserve(skb, NET_SKB_PAD);
 476        skb->dev = dev;
 477
 478skb_fail:
 479        return skb;
 480}
 481EXPORT_SYMBOL(__netdev_alloc_skb);
 482
 483/**
 484 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 485 *      @napi: napi instance this buffer was allocated for
 486 *      @len: length to allocate
 487 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 488 *
 489 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 490 *      attempt to allocate the head from a special reserved region used
 491 *      only for NAPI Rx allocation.  By doing this we can save several
 492 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 493 *
 494 *      %NULL is returned if there is no free memory.
 495 */
 496struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 497                                 gfp_t gfp_mask)
 498{
 499        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 500        struct sk_buff *skb;
 501        void *data;
 502
 503        len += NET_SKB_PAD + NET_IP_ALIGN;
 504
 505        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 506            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 507                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 508                if (!skb)
 509                        goto skb_fail;
 510                goto skb_success;
 511        }
 512
 513        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 514        len = SKB_DATA_ALIGN(len);
 515
 516        if (sk_memalloc_socks())
 517                gfp_mask |= __GFP_MEMALLOC;
 518
 519        data = page_frag_alloc(&nc->page, len, gfp_mask);
 520        if (unlikely(!data))
 521                return NULL;
 522
 523        skb = __build_skb(data, len);
 524        if (unlikely(!skb)) {
 525                skb_free_frag(data);
 526                return NULL;
 527        }
 528
 529        if (nc->page.pfmemalloc)
 530                skb->pfmemalloc = 1;
 531        skb->head_frag = 1;
 532
 533skb_success:
 534        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 535        skb->dev = napi->dev;
 536
 537skb_fail:
 538        return skb;
 539}
 540EXPORT_SYMBOL(__napi_alloc_skb);
 541
 542void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 543                     int size, unsigned int truesize)
 544{
 545        skb_fill_page_desc(skb, i, page, off, size);
 546        skb->len += size;
 547        skb->data_len += size;
 548        skb->truesize += truesize;
 549}
 550EXPORT_SYMBOL(skb_add_rx_frag);
 551
 552void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 553                          unsigned int truesize)
 554{
 555        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 556
 557        skb_frag_size_add(frag, size);
 558        skb->len += size;
 559        skb->data_len += size;
 560        skb->truesize += truesize;
 561}
 562EXPORT_SYMBOL(skb_coalesce_rx_frag);
 563
 564static void skb_drop_list(struct sk_buff **listp)
 565{
 566        kfree_skb_list(*listp);
 567        *listp = NULL;
 568}
 569
 570static inline void skb_drop_fraglist(struct sk_buff *skb)
 571{
 572        skb_drop_list(&skb_shinfo(skb)->frag_list);
 573}
 574
 575static void skb_clone_fraglist(struct sk_buff *skb)
 576{
 577        struct sk_buff *list;
 578
 579        skb_walk_frags(skb, list)
 580                skb_get(list);
 581}
 582
 583static void skb_free_head(struct sk_buff *skb)
 584{
 585        unsigned char *head = skb->head;
 586
 587        if (skb->head_frag)
 588                skb_free_frag(head);
 589        else
 590                kfree(head);
 591}
 592
 593static void skb_release_data(struct sk_buff *skb)
 594{
 595        struct skb_shared_info *shinfo = skb_shinfo(skb);
 596        int i;
 597
 598        if (skb->cloned &&
 599            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 600                              &shinfo->dataref))
 601                return;
 602
 603        for (i = 0; i < shinfo->nr_frags; i++)
 604                __skb_frag_unref(&shinfo->frags[i]);
 605
 606        if (shinfo->frag_list)
 607                kfree_skb_list(shinfo->frag_list);
 608
 609        skb_zcopy_clear(skb, true);
 610        skb_free_head(skb);
 611}
 612
 613/*
 614 *      Free an skbuff by memory without cleaning the state.
 615 */
 616static void kfree_skbmem(struct sk_buff *skb)
 617{
 618        struct sk_buff_fclones *fclones;
 619
 620        switch (skb->fclone) {
 621        case SKB_FCLONE_UNAVAILABLE:
 622                kmem_cache_free(skbuff_head_cache, skb);
 623                return;
 624
 625        case SKB_FCLONE_ORIG:
 626                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 627
 628                /* We usually free the clone (TX completion) before original skb
 629                 * This test would have no chance to be true for the clone,
 630                 * while here, branch prediction will be good.
 631                 */
 632                if (refcount_read(&fclones->fclone_ref) == 1)
 633                        goto fastpath;
 634                break;
 635
 636        default: /* SKB_FCLONE_CLONE */
 637                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 638                break;
 639        }
 640        if (!refcount_dec_and_test(&fclones->fclone_ref))
 641                return;
 642fastpath:
 643        kmem_cache_free(skbuff_fclone_cache, fclones);
 644}
 645
 646void skb_release_head_state(struct sk_buff *skb)
 647{
 648        skb_dst_drop(skb);
 649        if (skb->destructor) {
 650                WARN_ON(in_irq());
 651                skb->destructor(skb);
 652        }
 653#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 654        nf_conntrack_put(skb_nfct(skb));
 655#endif
 656        skb_ext_put(skb);
 657}
 658
 659/* Free everything but the sk_buff shell. */
 660static void skb_release_all(struct sk_buff *skb)
 661{
 662        skb_release_head_state(skb);
 663        if (likely(skb->head))
 664                skb_release_data(skb);
 665}
 666
 667/**
 668 *      __kfree_skb - private function
 669 *      @skb: buffer
 670 *
 671 *      Free an sk_buff. Release anything attached to the buffer.
 672 *      Clean the state. This is an internal helper function. Users should
 673 *      always call kfree_skb
 674 */
 675
 676void __kfree_skb(struct sk_buff *skb)
 677{
 678        skb_release_all(skb);
 679        kfree_skbmem(skb);
 680}
 681EXPORT_SYMBOL(__kfree_skb);
 682
 683/**
 684 *      kfree_skb - free an sk_buff
 685 *      @skb: buffer to free
 686 *
 687 *      Drop a reference to the buffer and free it if the usage count has
 688 *      hit zero.
 689 */
 690void kfree_skb(struct sk_buff *skb)
 691{
 692        if (!skb_unref(skb))
 693                return;
 694
 695        trace_kfree_skb(skb, __builtin_return_address(0));
 696        __kfree_skb(skb);
 697}
 698EXPORT_SYMBOL(kfree_skb);
 699
 700void kfree_skb_list(struct sk_buff *segs)
 701{
 702        while (segs) {
 703                struct sk_buff *next = segs->next;
 704
 705                kfree_skb(segs);
 706                segs = next;
 707        }
 708}
 709EXPORT_SYMBOL(kfree_skb_list);
 710
 711/* Dump skb information and contents.
 712 *
 713 * Must only be called from net_ratelimit()-ed paths.
 714 *
 715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
 716 */
 717void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
 718{
 719        static atomic_t can_dump_full = ATOMIC_INIT(5);
 720        struct skb_shared_info *sh = skb_shinfo(skb);
 721        struct net_device *dev = skb->dev;
 722        struct sock *sk = skb->sk;
 723        struct sk_buff *list_skb;
 724        bool has_mac, has_trans;
 725        int headroom, tailroom;
 726        int i, len, seg_len;
 727
 728        if (full_pkt)
 729                full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
 730
 731        if (full_pkt)
 732                len = skb->len;
 733        else
 734                len = min_t(int, skb->len, MAX_HEADER + 128);
 735
 736        headroom = skb_headroom(skb);
 737        tailroom = skb_tailroom(skb);
 738
 739        has_mac = skb_mac_header_was_set(skb);
 740        has_trans = skb_transport_header_was_set(skb);
 741
 742        printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
 743               "mac=(%d,%d) net=(%d,%d) trans=%d\n"
 744               "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
 745               "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
 746               "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
 747               level, skb->len, headroom, skb_headlen(skb), tailroom,
 748               has_mac ? skb->mac_header : -1,
 749               has_mac ? skb_mac_header_len(skb) : -1,
 750               skb->network_header,
 751               has_trans ? skb_network_header_len(skb) : -1,
 752               has_trans ? skb->transport_header : -1,
 753               sh->tx_flags, sh->nr_frags,
 754               sh->gso_size, sh->gso_type, sh->gso_segs,
 755               skb->csum, skb->ip_summed, skb->csum_complete_sw,
 756               skb->csum_valid, skb->csum_level,
 757               skb->hash, skb->sw_hash, skb->l4_hash,
 758               ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
 759
 760        if (dev)
 761                printk("%sdev name=%s feat=0x%pNF\n",
 762                       level, dev->name, &dev->features);
 763        if (sk)
 764                printk("%ssk family=%hu type=%u proto=%u\n",
 765                       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
 766
 767        if (full_pkt && headroom)
 768                print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
 769                               16, 1, skb->head, headroom, false);
 770
 771        seg_len = min_t(int, skb_headlen(skb), len);
 772        if (seg_len)
 773                print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
 774                               16, 1, skb->data, seg_len, false);
 775        len -= seg_len;
 776
 777        if (full_pkt && tailroom)
 778                print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
 779                               16, 1, skb_tail_pointer(skb), tailroom, false);
 780
 781        for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
 782                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 783                u32 p_off, p_len, copied;
 784                struct page *p;
 785                u8 *vaddr;
 786
 787                skb_frag_foreach_page(frag, skb_frag_off(frag),
 788                                      skb_frag_size(frag), p, p_off, p_len,
 789                                      copied) {
 790                        seg_len = min_t(int, p_len, len);
 791                        vaddr = kmap_atomic(p);
 792                        print_hex_dump(level, "skb frag:     ",
 793                                       DUMP_PREFIX_OFFSET,
 794                                       16, 1, vaddr + p_off, seg_len, false);
 795                        kunmap_atomic(vaddr);
 796                        len -= seg_len;
 797                        if (!len)
 798                                break;
 799                }
 800        }
 801
 802        if (full_pkt && skb_has_frag_list(skb)) {
 803                printk("skb fraglist:\n");
 804                skb_walk_frags(skb, list_skb)
 805                        skb_dump(level, list_skb, true);
 806        }
 807}
 808EXPORT_SYMBOL(skb_dump);
 809
 810/**
 811 *      skb_tx_error - report an sk_buff xmit error
 812 *      @skb: buffer that triggered an error
 813 *
 814 *      Report xmit error if a device callback is tracking this skb.
 815 *      skb must be freed afterwards.
 816 */
 817void skb_tx_error(struct sk_buff *skb)
 818{
 819        skb_zcopy_clear(skb, true);
 820}
 821EXPORT_SYMBOL(skb_tx_error);
 822
 823#ifdef CONFIG_TRACEPOINTS
 824/**
 825 *      consume_skb - free an skbuff
 826 *      @skb: buffer to free
 827 *
 828 *      Drop a ref to the buffer and free it if the usage count has hit zero
 829 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 830 *      is being dropped after a failure and notes that
 831 */
 832void consume_skb(struct sk_buff *skb)
 833{
 834        if (!skb_unref(skb))
 835                return;
 836
 837        trace_consume_skb(skb);
 838        __kfree_skb(skb);
 839}
 840EXPORT_SYMBOL(consume_skb);
 841#endif
 842
 843/**
 844 *      consume_stateless_skb - free an skbuff, assuming it is stateless
 845 *      @skb: buffer to free
 846 *
 847 *      Alike consume_skb(), but this variant assumes that this is the last
 848 *      skb reference and all the head states have been already dropped
 849 */
 850void __consume_stateless_skb(struct sk_buff *skb)
 851{
 852        trace_consume_skb(skb);
 853        skb_release_data(skb);
 854        kfree_skbmem(skb);
 855}
 856
 857void __kfree_skb_flush(void)
 858{
 859        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 860
 861        /* flush skb_cache if containing objects */
 862        if (nc->skb_count) {
 863                kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 864                                     nc->skb_cache);
 865                nc->skb_count = 0;
 866        }
 867}
 868
 869static inline void _kfree_skb_defer(struct sk_buff *skb)
 870{
 871        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 872
 873        /* drop skb->head and call any destructors for packet */
 874        skb_release_all(skb);
 875
 876        /* record skb to CPU local list */
 877        nc->skb_cache[nc->skb_count++] = skb;
 878
 879#ifdef CONFIG_SLUB
 880        /* SLUB writes into objects when freeing */
 881        prefetchw(skb);
 882#endif
 883
 884        /* flush skb_cache if it is filled */
 885        if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 886                kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 887                                     nc->skb_cache);
 888                nc->skb_count = 0;
 889        }
 890}
 891void __kfree_skb_defer(struct sk_buff *skb)
 892{
 893        _kfree_skb_defer(skb);
 894}
 895
 896void napi_consume_skb(struct sk_buff *skb, int budget)
 897{
 898        if (unlikely(!skb))
 899                return;
 900
 901        /* Zero budget indicate non-NAPI context called us, like netpoll */
 902        if (unlikely(!budget)) {
 903                dev_consume_skb_any(skb);
 904                return;
 905        }
 906
 907        if (!skb_unref(skb))
 908                return;
 909
 910        /* if reaching here SKB is ready to free */
 911        trace_consume_skb(skb);
 912
 913        /* if SKB is a clone, don't handle this case */
 914        if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 915                __kfree_skb(skb);
 916                return;
 917        }
 918
 919        _kfree_skb_defer(skb);
 920}
 921EXPORT_SYMBOL(napi_consume_skb);
 922
 923/* Make sure a field is enclosed inside headers_start/headers_end section */
 924#define CHECK_SKB_FIELD(field) \
 925        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 926                     offsetof(struct sk_buff, headers_start));  \
 927        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
 928                     offsetof(struct sk_buff, headers_end));    \
 929
 930static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 931{
 932        new->tstamp             = old->tstamp;
 933        /* We do not copy old->sk */
 934        new->dev                = old->dev;
 935        memcpy(new->cb, old->cb, sizeof(old->cb));
 936        skb_dst_copy(new, old);
 937        __skb_ext_copy(new, old);
 938        __nf_copy(new, old, false);
 939
 940        /* Note : this field could be in headers_start/headers_end section
 941         * It is not yet because we do not want to have a 16 bit hole
 942         */
 943        new->queue_mapping = old->queue_mapping;
 944
 945        memcpy(&new->headers_start, &old->headers_start,
 946               offsetof(struct sk_buff, headers_end) -
 947               offsetof(struct sk_buff, headers_start));
 948        CHECK_SKB_FIELD(protocol);
 949        CHECK_SKB_FIELD(csum);
 950        CHECK_SKB_FIELD(hash);
 951        CHECK_SKB_FIELD(priority);
 952        CHECK_SKB_FIELD(skb_iif);
 953        CHECK_SKB_FIELD(vlan_proto);
 954        CHECK_SKB_FIELD(vlan_tci);
 955        CHECK_SKB_FIELD(transport_header);
 956        CHECK_SKB_FIELD(network_header);
 957        CHECK_SKB_FIELD(mac_header);
 958        CHECK_SKB_FIELD(inner_protocol);
 959        CHECK_SKB_FIELD(inner_transport_header);
 960        CHECK_SKB_FIELD(inner_network_header);
 961        CHECK_SKB_FIELD(inner_mac_header);
 962        CHECK_SKB_FIELD(mark);
 963#ifdef CONFIG_NETWORK_SECMARK
 964        CHECK_SKB_FIELD(secmark);
 965#endif
 966#ifdef CONFIG_NET_RX_BUSY_POLL
 967        CHECK_SKB_FIELD(napi_id);
 968#endif
 969#ifdef CONFIG_XPS
 970        CHECK_SKB_FIELD(sender_cpu);
 971#endif
 972#ifdef CONFIG_NET_SCHED
 973        CHECK_SKB_FIELD(tc_index);
 974#endif
 975
 976}
 977
 978/*
 979 * You should not add any new code to this function.  Add it to
 980 * __copy_skb_header above instead.
 981 */
 982static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 983{
 984#define C(x) n->x = skb->x
 985
 986        n->next = n->prev = NULL;
 987        n->sk = NULL;
 988        __copy_skb_header(n, skb);
 989
 990        C(len);
 991        C(data_len);
 992        C(mac_len);
 993        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 994        n->cloned = 1;
 995        n->nohdr = 0;
 996        n->peeked = 0;
 997        C(pfmemalloc);
 998        n->destructor = NULL;
 999        C(tail);
1000        C(end);
1001        C(head);
1002        C(head_frag);
1003        C(data);
1004        C(truesize);
1005        refcount_set(&n->users, 1);
1006
1007        atomic_inc(&(skb_shinfo(skb)->dataref));
1008        skb->cloned = 1;
1009
1010        return n;
1011#undef C
1012}
1013
1014/**
1015 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1016 * @first: first sk_buff of the msg
1017 */
1018struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1019{
1020        struct sk_buff *n;
1021
1022        n = alloc_skb(0, GFP_ATOMIC);
1023        if (!n)
1024                return NULL;
1025
1026        n->len = first->len;
1027        n->data_len = first->len;
1028        n->truesize = first->truesize;
1029
1030        skb_shinfo(n)->frag_list = first;
1031
1032        __copy_skb_header(n, first);
1033        n->destructor = NULL;
1034
1035        return n;
1036}
1037EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1038
1039/**
1040 *      skb_morph       -       morph one skb into another
1041 *      @dst: the skb to receive the contents
1042 *      @src: the skb to supply the contents
1043 *
1044 *      This is identical to skb_clone except that the target skb is
1045 *      supplied by the user.
1046 *
1047 *      The target skb is returned upon exit.
1048 */
1049struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1050{
1051        skb_release_all(dst);
1052        return __skb_clone(dst, src);
1053}
1054EXPORT_SYMBOL_GPL(skb_morph);
1055
1056int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1057{
1058        unsigned long max_pg, num_pg, new_pg, old_pg;
1059        struct user_struct *user;
1060
1061        if (capable(CAP_IPC_LOCK) || !size)
1062                return 0;
1063
1064        num_pg = (size >> PAGE_SHIFT) + 2;      /* worst case */
1065        max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1066        user = mmp->user ? : current_user();
1067
1068        do {
1069                old_pg = atomic_long_read(&user->locked_vm);
1070                new_pg = old_pg + num_pg;
1071                if (new_pg > max_pg)
1072                        return -ENOBUFS;
1073        } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1074                 old_pg);
1075
1076        if (!mmp->user) {
1077                mmp->user = get_uid(user);
1078                mmp->num_pg = num_pg;
1079        } else {
1080                mmp->num_pg += num_pg;
1081        }
1082
1083        return 0;
1084}
1085EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1086
1087void mm_unaccount_pinned_pages(struct mmpin *mmp)
1088{
1089        if (mmp->user) {
1090                atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1091                free_uid(mmp->user);
1092        }
1093}
1094EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1095
1096struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1097{
1098        struct ubuf_info *uarg;
1099        struct sk_buff *skb;
1100
1101        WARN_ON_ONCE(!in_task());
1102
1103        skb = sock_omalloc(sk, 0, GFP_KERNEL);
1104        if (!skb)
1105                return NULL;
1106
1107        BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1108        uarg = (void *)skb->cb;
1109        uarg->mmp.user = NULL;
1110
1111        if (mm_account_pinned_pages(&uarg->mmp, size)) {
1112                kfree_skb(skb);
1113                return NULL;
1114        }
1115
1116        uarg->callback = sock_zerocopy_callback;
1117        uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1118        uarg->len = 1;
1119        uarg->bytelen = size;
1120        uarg->zerocopy = 1;
1121        refcount_set(&uarg->refcnt, 1);
1122        sock_hold(sk);
1123
1124        return uarg;
1125}
1126EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1127
1128static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1129{
1130        return container_of((void *)uarg, struct sk_buff, cb);
1131}
1132
1133struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1134                                        struct ubuf_info *uarg)
1135{
1136        if (uarg) {
1137                const u32 byte_limit = 1 << 19;         /* limit to a few TSO */
1138                u32 bytelen, next;
1139
1140                /* realloc only when socket is locked (TCP, UDP cork),
1141                 * so uarg->len and sk_zckey access is serialized
1142                 */
1143                if (!sock_owned_by_user(sk)) {
1144                        WARN_ON_ONCE(1);
1145                        return NULL;
1146                }
1147
1148                bytelen = uarg->bytelen + size;
1149                if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1150                        /* TCP can create new skb to attach new uarg */
1151                        if (sk->sk_type == SOCK_STREAM)
1152                                goto new_alloc;
1153                        return NULL;
1154                }
1155
1156                next = (u32)atomic_read(&sk->sk_zckey);
1157                if ((u32)(uarg->id + uarg->len) == next) {
1158                        if (mm_account_pinned_pages(&uarg->mmp, size))
1159                                return NULL;
1160                        uarg->len++;
1161                        uarg->bytelen = bytelen;
1162                        atomic_set(&sk->sk_zckey, ++next);
1163
1164                        /* no extra ref when appending to datagram (MSG_MORE) */
1165                        if (sk->sk_type == SOCK_STREAM)
1166                                sock_zerocopy_get(uarg);
1167
1168                        return uarg;
1169                }
1170        }
1171
1172new_alloc:
1173        return sock_zerocopy_alloc(sk, size);
1174}
1175EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1176
1177static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1178{
1179        struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1180        u32 old_lo, old_hi;
1181        u64 sum_len;
1182
1183        old_lo = serr->ee.ee_info;
1184        old_hi = serr->ee.ee_data;
1185        sum_len = old_hi - old_lo + 1ULL + len;
1186
1187        if (sum_len >= (1ULL << 32))
1188                return false;
1189
1190        if (lo != old_hi + 1)
1191                return false;
1192
1193        serr->ee.ee_data += len;
1194        return true;
1195}
1196
1197void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1198{
1199        struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1200        struct sock_exterr_skb *serr;
1201        struct sock *sk = skb->sk;
1202        struct sk_buff_head *q;
1203        unsigned long flags;
1204        u32 lo, hi;
1205        u16 len;
1206
1207        mm_unaccount_pinned_pages(&uarg->mmp);
1208
1209        /* if !len, there was only 1 call, and it was aborted
1210         * so do not queue a completion notification
1211         */
1212        if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1213                goto release;
1214
1215        len = uarg->len;
1216        lo = uarg->id;
1217        hi = uarg->id + len - 1;
1218
1219        serr = SKB_EXT_ERR(skb);
1220        memset(serr, 0, sizeof(*serr));
1221        serr->ee.ee_errno = 0;
1222        serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1223        serr->ee.ee_data = hi;
1224        serr->ee.ee_info = lo;
1225        if (!success)
1226                serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1227
1228        q = &sk->sk_error_queue;
1229        spin_lock_irqsave(&q->lock, flags);
1230        tail = skb_peek_tail(q);
1231        if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1232            !skb_zerocopy_notify_extend(tail, lo, len)) {
1233                __skb_queue_tail(q, skb);
1234                skb = NULL;
1235        }
1236        spin_unlock_irqrestore(&q->lock, flags);
1237
1238        sk->sk_error_report(sk);
1239
1240release:
1241        consume_skb(skb);
1242        sock_put(sk);
1243}
1244EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1245
1246void sock_zerocopy_put(struct ubuf_info *uarg)
1247{
1248        if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1249                if (uarg->callback)
1250                        uarg->callback(uarg, uarg->zerocopy);
1251                else
1252                        consume_skb(skb_from_uarg(uarg));
1253        }
1254}
1255EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1256
1257void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1258{
1259        if (uarg) {
1260                struct sock *sk = skb_from_uarg(uarg)->sk;
1261
1262                atomic_dec(&sk->sk_zckey);
1263                uarg->len--;
1264
1265                if (have_uref)
1266                        sock_zerocopy_put(uarg);
1267        }
1268}
1269EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1270
1271int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1272{
1273        return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1274}
1275EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1276
1277int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1278                             struct msghdr *msg, int len,
1279                             struct ubuf_info *uarg)
1280{
1281        struct ubuf_info *orig_uarg = skb_zcopy(skb);
1282        struct iov_iter orig_iter = msg->msg_iter;
1283        int err, orig_len = skb->len;
1284
1285        /* An skb can only point to one uarg. This edge case happens when
1286         * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1287         */
1288        if (orig_uarg && uarg != orig_uarg)
1289                return -EEXIST;
1290
1291        err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1292        if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1293                struct sock *save_sk = skb->sk;
1294
1295                /* Streams do not free skb on error. Reset to prev state. */
1296                msg->msg_iter = orig_iter;
1297                skb->sk = sk;
1298                ___pskb_trim(skb, orig_len);
1299                skb->sk = save_sk;
1300                return err;
1301        }
1302
1303        skb_zcopy_set(skb, uarg, NULL);
1304        return skb->len - orig_len;
1305}
1306EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1307
1308static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1309                              gfp_t gfp_mask)
1310{
1311        if (skb_zcopy(orig)) {
1312                if (skb_zcopy(nskb)) {
1313                        /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1314                        if (!gfp_mask) {
1315                                WARN_ON_ONCE(1);
1316                                return -ENOMEM;
1317                        }
1318                        if (skb_uarg(nskb) == skb_uarg(orig))
1319                                return 0;
1320                        if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1321                                return -EIO;
1322                }
1323                skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1324        }
1325        return 0;
1326}
1327
1328/**
1329 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
1330 *      @skb: the skb to modify
1331 *      @gfp_mask: allocation priority
1332 *
1333 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
1334 *      It will copy all frags into kernel and drop the reference
1335 *      to userspace pages.
1336 *
1337 *      If this function is called from an interrupt gfp_mask() must be
1338 *      %GFP_ATOMIC.
1339 *
1340 *      Returns 0 on success or a negative error code on failure
1341 *      to allocate kernel memory to copy to.
1342 */
1343int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1344{
1345        int num_frags = skb_shinfo(skb)->nr_frags;
1346        struct page *page, *head = NULL;
1347        int i, new_frags;
1348        u32 d_off;
1349
1350        if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1351                return -EINVAL;
1352
1353        if (!num_frags)
1354                goto release;
1355
1356        new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1357        for (i = 0; i < new_frags; i++) {
1358                page = alloc_page(gfp_mask);
1359                if (!page) {
1360                        while (head) {
1361                                struct page *next = (struct page *)page_private(head);
1362                                put_page(head);
1363                                head = next;
1364                        }
1365                        return -ENOMEM;
1366                }
1367                set_page_private(page, (unsigned long)head);
1368                head = page;
1369        }
1370
1371        page = head;
1372        d_off = 0;
1373        for (i = 0; i < num_frags; i++) {
1374                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1375                u32 p_off, p_len, copied;
1376                struct page *p;
1377                u8 *vaddr;
1378
1379                skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1380                                      p, p_off, p_len, copied) {
1381                        u32 copy, done = 0;
1382                        vaddr = kmap_atomic(p);
1383
1384                        while (done < p_len) {
1385                                if (d_off == PAGE_SIZE) {
1386                                        d_off = 0;
1387                                        page = (struct page *)page_private(page);
1388                                }
1389                                copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1390                                memcpy(page_address(page) + d_off,
1391                                       vaddr + p_off + done, copy);
1392                                done += copy;
1393                                d_off += copy;
1394                        }
1395                        kunmap_atomic(vaddr);
1396                }
1397        }
1398
1399        /* skb frags release userspace buffers */
1400        for (i = 0; i < num_frags; i++)
1401                skb_frag_unref(skb, i);
1402
1403        /* skb frags point to kernel buffers */
1404        for (i = 0; i < new_frags - 1; i++) {
1405                __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1406                head = (struct page *)page_private(head);
1407        }
1408        __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1409        skb_shinfo(skb)->nr_frags = new_frags;
1410
1411release:
1412        skb_zcopy_clear(skb, false);
1413        return 0;
1414}
1415EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1416
1417/**
1418 *      skb_clone       -       duplicate an sk_buff
1419 *      @skb: buffer to clone
1420 *      @gfp_mask: allocation priority
1421 *
1422 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1423 *      copies share the same packet data but not structure. The new
1424 *      buffer has a reference count of 1. If the allocation fails the
1425 *      function returns %NULL otherwise the new buffer is returned.
1426 *
1427 *      If this function is called from an interrupt gfp_mask() must be
1428 *      %GFP_ATOMIC.
1429 */
1430
1431struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1432{
1433        struct sk_buff_fclones *fclones = container_of(skb,
1434                                                       struct sk_buff_fclones,
1435                                                       skb1);
1436        struct sk_buff *n;
1437
1438        if (skb_orphan_frags(skb, gfp_mask))
1439                return NULL;
1440
1441        if (skb->fclone == SKB_FCLONE_ORIG &&
1442            refcount_read(&fclones->fclone_ref) == 1) {
1443                n = &fclones->skb2;
1444                refcount_set(&fclones->fclone_ref, 2);
1445        } else {
1446                if (skb_pfmemalloc(skb))
1447                        gfp_mask |= __GFP_MEMALLOC;
1448
1449                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1450                if (!n)
1451                        return NULL;
1452
1453                n->fclone = SKB_FCLONE_UNAVAILABLE;
1454        }
1455
1456        return __skb_clone(n, skb);
1457}
1458EXPORT_SYMBOL(skb_clone);
1459
1460void skb_headers_offset_update(struct sk_buff *skb, int off)
1461{
1462        /* Only adjust this if it actually is csum_start rather than csum */
1463        if (skb->ip_summed == CHECKSUM_PARTIAL)
1464                skb->csum_start += off;
1465        /* {transport,network,mac}_header and tail are relative to skb->head */
1466        skb->transport_header += off;
1467        skb->network_header   += off;
1468        if (skb_mac_header_was_set(skb))
1469                skb->mac_header += off;
1470        skb->inner_transport_header += off;
1471        skb->inner_network_header += off;
1472        skb->inner_mac_header += off;
1473}
1474EXPORT_SYMBOL(skb_headers_offset_update);
1475
1476void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1477{
1478        __copy_skb_header(new, old);
1479
1480        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1481        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1482        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1483}
1484EXPORT_SYMBOL(skb_copy_header);
1485
1486static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1487{
1488        if (skb_pfmemalloc(skb))
1489                return SKB_ALLOC_RX;
1490        return 0;
1491}
1492
1493/**
1494 *      skb_copy        -       create private copy of an sk_buff
1495 *      @skb: buffer to copy
1496 *      @gfp_mask: allocation priority
1497 *
1498 *      Make a copy of both an &sk_buff and its data. This is used when the
1499 *      caller wishes to modify the data and needs a private copy of the
1500 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1501 *      on success. The returned buffer has a reference count of 1.
1502 *
1503 *      As by-product this function converts non-linear &sk_buff to linear
1504 *      one, so that &sk_buff becomes completely private and caller is allowed
1505 *      to modify all the data of returned buffer. This means that this
1506 *      function is not recommended for use in circumstances when only
1507 *      header is going to be modified. Use pskb_copy() instead.
1508 */
1509
1510struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1511{
1512        int headerlen = skb_headroom(skb);
1513        unsigned int size = skb_end_offset(skb) + skb->data_len;
1514        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1515                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1516
1517        if (!n)
1518                return NULL;
1519
1520        /* Set the data pointer */
1521        skb_reserve(n, headerlen);
1522        /* Set the tail pointer and length */
1523        skb_put(n, skb->len);
1524
1525        BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1526
1527        skb_copy_header(n, skb);
1528        return n;
1529}
1530EXPORT_SYMBOL(skb_copy);
1531
1532/**
1533 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1534 *      @skb: buffer to copy
1535 *      @headroom: headroom of new skb
1536 *      @gfp_mask: allocation priority
1537 *      @fclone: if true allocate the copy of the skb from the fclone
1538 *      cache instead of the head cache; it is recommended to set this
1539 *      to true for the cases where the copy will likely be cloned
1540 *
1541 *      Make a copy of both an &sk_buff and part of its data, located
1542 *      in header. Fragmented data remain shared. This is used when
1543 *      the caller wishes to modify only header of &sk_buff and needs
1544 *      private copy of the header to alter. Returns %NULL on failure
1545 *      or the pointer to the buffer on success.
1546 *      The returned buffer has a reference count of 1.
1547 */
1548
1549struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1550                                   gfp_t gfp_mask, bool fclone)
1551{
1552        unsigned int size = skb_headlen(skb) + headroom;
1553        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1554        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1555
1556        if (!n)
1557                goto out;
1558
1559        /* Set the data pointer */
1560        skb_reserve(n, headroom);
1561        /* Set the tail pointer and length */
1562        skb_put(n, skb_headlen(skb));
1563        /* Copy the bytes */
1564        skb_copy_from_linear_data(skb, n->data, n->len);
1565
1566        n->truesize += skb->data_len;
1567        n->data_len  = skb->data_len;
1568        n->len       = skb->len;
1569
1570        if (skb_shinfo(skb)->nr_frags) {
1571                int i;
1572
1573                if (skb_orphan_frags(skb, gfp_mask) ||
1574                    skb_zerocopy_clone(n, skb, gfp_mask)) {
1575                        kfree_skb(n);
1576                        n = NULL;
1577                        goto out;
1578                }
1579                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1580                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1581                        skb_frag_ref(skb, i);
1582                }
1583                skb_shinfo(n)->nr_frags = i;
1584        }
1585
1586        if (skb_has_frag_list(skb)) {
1587                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1588                skb_clone_fraglist(n);
1589        }
1590
1591        skb_copy_header(n, skb);
1592out:
1593        return n;
1594}
1595EXPORT_SYMBOL(__pskb_copy_fclone);
1596
1597/**
1598 *      pskb_expand_head - reallocate header of &sk_buff
1599 *      @skb: buffer to reallocate
1600 *      @nhead: room to add at head
1601 *      @ntail: room to add at tail
1602 *      @gfp_mask: allocation priority
1603 *
1604 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1605 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1606 *      reference count of 1. Returns zero in the case of success or error,
1607 *      if expansion failed. In the last case, &sk_buff is not changed.
1608 *
1609 *      All the pointers pointing into skb header may change and must be
1610 *      reloaded after call to this function.
1611 */
1612
1613int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1614                     gfp_t gfp_mask)
1615{
1616        int i, osize = skb_end_offset(skb);
1617        int size = osize + nhead + ntail;
1618        long off;
1619        u8 *data;
1620
1621        BUG_ON(nhead < 0);
1622
1623        BUG_ON(skb_shared(skb));
1624
1625        size = SKB_DATA_ALIGN(size);
1626
1627        if (skb_pfmemalloc(skb))
1628                gfp_mask |= __GFP_MEMALLOC;
1629        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1630                               gfp_mask, NUMA_NO_NODE, NULL);
1631        if (!data)
1632                goto nodata;
1633        size = SKB_WITH_OVERHEAD(ksize(data));
1634
1635        /* Copy only real data... and, alas, header. This should be
1636         * optimized for the cases when header is void.
1637         */
1638        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1639
1640        memcpy((struct skb_shared_info *)(data + size),
1641               skb_shinfo(skb),
1642               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1643
1644        /*
1645         * if shinfo is shared we must drop the old head gracefully, but if it
1646         * is not we can just drop the old head and let the existing refcount
1647         * be since all we did is relocate the values
1648         */
1649        if (skb_cloned(skb)) {
1650                if (skb_orphan_frags(skb, gfp_mask))
1651                        goto nofrags;
1652                if (skb_zcopy(skb))
1653                        refcount_inc(&skb_uarg(skb)->refcnt);
1654                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1655                        skb_frag_ref(skb, i);
1656
1657                if (skb_has_frag_list(skb))
1658                        skb_clone_fraglist(skb);
1659
1660                skb_release_data(skb);
1661        } else {
1662                skb_free_head(skb);
1663        }
1664        off = (data + nhead) - skb->head;
1665
1666        skb->head     = data;
1667        skb->head_frag = 0;
1668        skb->data    += off;
1669#ifdef NET_SKBUFF_DATA_USES_OFFSET
1670        skb->end      = size;
1671        off           = nhead;
1672#else
1673        skb->end      = skb->head + size;
1674#endif
1675        skb->tail             += off;
1676        skb_headers_offset_update(skb, nhead);
1677        skb->cloned   = 0;
1678        skb->hdr_len  = 0;
1679        skb->nohdr    = 0;
1680        atomic_set(&skb_shinfo(skb)->dataref, 1);
1681
1682        skb_metadata_clear(skb);
1683
1684        /* It is not generally safe to change skb->truesize.
1685         * For the moment, we really care of rx path, or
1686         * when skb is orphaned (not attached to a socket).
1687         */
1688        if (!skb->sk || skb->destructor == sock_edemux)
1689                skb->truesize += size - osize;
1690
1691        return 0;
1692
1693nofrags:
1694        kfree(data);
1695nodata:
1696        return -ENOMEM;
1697}
1698EXPORT_SYMBOL(pskb_expand_head);
1699
1700/* Make private copy of skb with writable head and some headroom */
1701
1702struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1703{
1704        struct sk_buff *skb2;
1705        int delta = headroom - skb_headroom(skb);
1706
1707        if (delta <= 0)
1708                skb2 = pskb_copy(skb, GFP_ATOMIC);
1709        else {
1710                skb2 = skb_clone(skb, GFP_ATOMIC);
1711                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1712                                             GFP_ATOMIC)) {
1713                        kfree_skb(skb2);
1714                        skb2 = NULL;
1715                }
1716        }
1717        return skb2;
1718}
1719EXPORT_SYMBOL(skb_realloc_headroom);
1720
1721/**
1722 *      skb_copy_expand -       copy and expand sk_buff
1723 *      @skb: buffer to copy
1724 *      @newheadroom: new free bytes at head
1725 *      @newtailroom: new free bytes at tail
1726 *      @gfp_mask: allocation priority
1727 *
1728 *      Make a copy of both an &sk_buff and its data and while doing so
1729 *      allocate additional space.
1730 *
1731 *      This is used when the caller wishes to modify the data and needs a
1732 *      private copy of the data to alter as well as more space for new fields.
1733 *      Returns %NULL on failure or the pointer to the buffer
1734 *      on success. The returned buffer has a reference count of 1.
1735 *
1736 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1737 *      is called from an interrupt.
1738 */
1739struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1740                                int newheadroom, int newtailroom,
1741                                gfp_t gfp_mask)
1742{
1743        /*
1744         *      Allocate the copy buffer
1745         */
1746        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1747                                        gfp_mask, skb_alloc_rx_flag(skb),
1748                                        NUMA_NO_NODE);
1749        int oldheadroom = skb_headroom(skb);
1750        int head_copy_len, head_copy_off;
1751
1752        if (!n)
1753                return NULL;
1754
1755        skb_reserve(n, newheadroom);
1756
1757        /* Set the tail pointer and length */
1758        skb_put(n, skb->len);
1759
1760        head_copy_len = oldheadroom;
1761        head_copy_off = 0;
1762        if (newheadroom <= head_copy_len)
1763                head_copy_len = newheadroom;
1764        else
1765                head_copy_off = newheadroom - head_copy_len;
1766
1767        /* Copy the linear header and data. */
1768        BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1769                             skb->len + head_copy_len));
1770
1771        skb_copy_header(n, skb);
1772
1773        skb_headers_offset_update(n, newheadroom - oldheadroom);
1774
1775        return n;
1776}
1777EXPORT_SYMBOL(skb_copy_expand);
1778
1779/**
1780 *      __skb_pad               -       zero pad the tail of an skb
1781 *      @skb: buffer to pad
1782 *      @pad: space to pad
1783 *      @free_on_error: free buffer on error
1784 *
1785 *      Ensure that a buffer is followed by a padding area that is zero
1786 *      filled. Used by network drivers which may DMA or transfer data
1787 *      beyond the buffer end onto the wire.
1788 *
1789 *      May return error in out of memory cases. The skb is freed on error
1790 *      if @free_on_error is true.
1791 */
1792
1793int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1794{
1795        int err;
1796        int ntail;
1797
1798        /* If the skbuff is non linear tailroom is always zero.. */
1799        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1800                memset(skb->data+skb->len, 0, pad);
1801                return 0;
1802        }
1803
1804        ntail = skb->data_len + pad - (skb->end - skb->tail);
1805        if (likely(skb_cloned(skb) || ntail > 0)) {
1806                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1807                if (unlikely(err))
1808                        goto free_skb;
1809        }
1810
1811        /* FIXME: The use of this function with non-linear skb's really needs
1812         * to be audited.
1813         */
1814        err = skb_linearize(skb);
1815        if (unlikely(err))
1816                goto free_skb;
1817
1818        memset(skb->data + skb->len, 0, pad);
1819        return 0;
1820
1821free_skb:
1822        if (free_on_error)
1823                kfree_skb(skb);
1824        return err;
1825}
1826EXPORT_SYMBOL(__skb_pad);
1827
1828/**
1829 *      pskb_put - add data to the tail of a potentially fragmented buffer
1830 *      @skb: start of the buffer to use
1831 *      @tail: tail fragment of the buffer to use
1832 *      @len: amount of data to add
1833 *
1834 *      This function extends the used data area of the potentially
1835 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1836 *      @skb itself. If this would exceed the total buffer size the kernel
1837 *      will panic. A pointer to the first byte of the extra data is
1838 *      returned.
1839 */
1840
1841void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1842{
1843        if (tail != skb) {
1844                skb->data_len += len;
1845                skb->len += len;
1846        }
1847        return skb_put(tail, len);
1848}
1849EXPORT_SYMBOL_GPL(pskb_put);
1850
1851/**
1852 *      skb_put - add data to a buffer
1853 *      @skb: buffer to use
1854 *      @len: amount of data to add
1855 *
1856 *      This function extends the used data area of the buffer. If this would
1857 *      exceed the total buffer size the kernel will panic. A pointer to the
1858 *      first byte of the extra data is returned.
1859 */
1860void *skb_put(struct sk_buff *skb, unsigned int len)
1861{
1862        void *tmp = skb_tail_pointer(skb);
1863        SKB_LINEAR_ASSERT(skb);
1864        skb->tail += len;
1865        skb->len  += len;
1866        if (unlikely(skb->tail > skb->end))
1867                skb_over_panic(skb, len, __builtin_return_address(0));
1868        return tmp;
1869}
1870EXPORT_SYMBOL(skb_put);
1871
1872/**
1873 *      skb_push - add data to the start of a buffer
1874 *      @skb: buffer to use
1875 *      @len: amount of data to add
1876 *
1877 *      This function extends the used data area of the buffer at the buffer
1878 *      start. If this would exceed the total buffer headroom the kernel will
1879 *      panic. A pointer to the first byte of the extra data is returned.
1880 */
1881void *skb_push(struct sk_buff *skb, unsigned int len)
1882{
1883        skb->data -= len;
1884        skb->len  += len;
1885        if (unlikely(skb->data < skb->head))
1886                skb_under_panic(skb, len, __builtin_return_address(0));
1887        return skb->data;
1888}
1889EXPORT_SYMBOL(skb_push);
1890
1891/**
1892 *      skb_pull - remove data from the start of a buffer
1893 *      @skb: buffer to use
1894 *      @len: amount of data to remove
1895 *
1896 *      This function removes data from the start of a buffer, returning
1897 *      the memory to the headroom. A pointer to the next data in the buffer
1898 *      is returned. Once the data has been pulled future pushes will overwrite
1899 *      the old data.
1900 */
1901void *skb_pull(struct sk_buff *skb, unsigned int len)
1902{
1903        return skb_pull_inline(skb, len);
1904}
1905EXPORT_SYMBOL(skb_pull);
1906
1907/**
1908 *      skb_trim - remove end from a buffer
1909 *      @skb: buffer to alter
1910 *      @len: new length
1911 *
1912 *      Cut the length of a buffer down by removing data from the tail. If
1913 *      the buffer is already under the length specified it is not modified.
1914 *      The skb must be linear.
1915 */
1916void skb_trim(struct sk_buff *skb, unsigned int len)
1917{
1918        if (skb->len > len)
1919                __skb_trim(skb, len);
1920}
1921EXPORT_SYMBOL(skb_trim);
1922
1923/* Trims skb to length len. It can change skb pointers.
1924 */
1925
1926int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1927{
1928        struct sk_buff **fragp;
1929        struct sk_buff *frag;
1930        int offset = skb_headlen(skb);
1931        int nfrags = skb_shinfo(skb)->nr_frags;
1932        int i;
1933        int err;
1934
1935        if (skb_cloned(skb) &&
1936            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1937                return err;
1938
1939        i = 0;
1940        if (offset >= len)
1941                goto drop_pages;
1942
1943        for (; i < nfrags; i++) {
1944                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1945
1946                if (end < len) {
1947                        offset = end;
1948                        continue;
1949                }
1950
1951                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1952
1953drop_pages:
1954                skb_shinfo(skb)->nr_frags = i;
1955
1956                for (; i < nfrags; i++)
1957                        skb_frag_unref(skb, i);
1958
1959                if (skb_has_frag_list(skb))
1960                        skb_drop_fraglist(skb);
1961                goto done;
1962        }
1963
1964        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1965             fragp = &frag->next) {
1966                int end = offset + frag->len;
1967
1968                if (skb_shared(frag)) {
1969                        struct sk_buff *nfrag;
1970
1971                        nfrag = skb_clone(frag, GFP_ATOMIC);
1972                        if (unlikely(!nfrag))
1973                                return -ENOMEM;
1974
1975                        nfrag->next = frag->next;
1976                        consume_skb(frag);
1977                        frag = nfrag;
1978                        *fragp = frag;
1979                }
1980
1981                if (end < len) {
1982                        offset = end;
1983                        continue;
1984                }
1985
1986                if (end > len &&
1987                    unlikely((err = pskb_trim(frag, len - offset))))
1988                        return err;
1989
1990                if (frag->next)
1991                        skb_drop_list(&frag->next);
1992                break;
1993        }
1994
1995done:
1996        if (len > skb_headlen(skb)) {
1997                skb->data_len -= skb->len - len;
1998                skb->len       = len;
1999        } else {
2000                skb->len       = len;
2001                skb->data_len  = 0;
2002                skb_set_tail_pointer(skb, len);
2003        }
2004
2005        if (!skb->sk || skb->destructor == sock_edemux)
2006                skb_condense(skb);
2007        return 0;
2008}
2009EXPORT_SYMBOL(___pskb_trim);
2010
2011/* Note : use pskb_trim_rcsum() instead of calling this directly
2012 */
2013int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2014{
2015        if (skb->ip_summed == CHECKSUM_COMPLETE) {
2016                int delta = skb->len - len;
2017
2018                skb->csum = csum_block_sub(skb->csum,
2019                                           skb_checksum(skb, len, delta, 0),
2020                                           len);
2021        }
2022        return __pskb_trim(skb, len);
2023}
2024EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2025
2026/**
2027 *      __pskb_pull_tail - advance tail of skb header
2028 *      @skb: buffer to reallocate
2029 *      @delta: number of bytes to advance tail
2030 *
2031 *      The function makes a sense only on a fragmented &sk_buff,
2032 *      it expands header moving its tail forward and copying necessary
2033 *      data from fragmented part.
2034 *
2035 *      &sk_buff MUST have reference count of 1.
2036 *
2037 *      Returns %NULL (and &sk_buff does not change) if pull failed
2038 *      or value of new tail of skb in the case of success.
2039 *
2040 *      All the pointers pointing into skb header may change and must be
2041 *      reloaded after call to this function.
2042 */
2043
2044/* Moves tail of skb head forward, copying data from fragmented part,
2045 * when it is necessary.
2046 * 1. It may fail due to malloc failure.
2047 * 2. It may change skb pointers.
2048 *
2049 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2050 */
2051void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2052{
2053        /* If skb has not enough free space at tail, get new one
2054         * plus 128 bytes for future expansions. If we have enough
2055         * room at tail, reallocate without expansion only if skb is cloned.
2056         */
2057        int i, k, eat = (skb->tail + delta) - skb->end;
2058
2059        if (eat > 0 || skb_cloned(skb)) {
2060                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2061                                     GFP_ATOMIC))
2062                        return NULL;
2063        }
2064
2065        BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2066                             skb_tail_pointer(skb), delta));
2067
2068        /* Optimization: no fragments, no reasons to preestimate
2069         * size of pulled pages. Superb.
2070         */
2071        if (!skb_has_frag_list(skb))
2072                goto pull_pages;
2073
2074        /* Estimate size of pulled pages. */
2075        eat = delta;
2076        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2077                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2078
2079                if (size >= eat)
2080                        goto pull_pages;
2081                eat -= size;
2082        }
2083
2084        /* If we need update frag list, we are in troubles.
2085         * Certainly, it is possible to add an offset to skb data,
2086         * but taking into account that pulling is expected to
2087         * be very rare operation, it is worth to fight against
2088         * further bloating skb head and crucify ourselves here instead.
2089         * Pure masohism, indeed. 8)8)
2090         */
2091        if (eat) {
2092                struct sk_buff *list = skb_shinfo(skb)->frag_list;
2093                struct sk_buff *clone = NULL;
2094                struct sk_buff *insp = NULL;
2095
2096                do {
2097                        if (list->len <= eat) {
2098                                /* Eaten as whole. */
2099                                eat -= list->len;
2100                                list = list->next;
2101                                insp = list;
2102                        } else {
2103                                /* Eaten partially. */
2104
2105                                if (skb_shared(list)) {
2106                                        /* Sucks! We need to fork list. :-( */
2107                                        clone = skb_clone(list, GFP_ATOMIC);
2108                                        if (!clone)
2109                                                return NULL;
2110                                        insp = list->next;
2111                                        list = clone;
2112                                } else {
2113                                        /* This may be pulled without
2114                                         * problems. */
2115                                        insp = list;
2116                                }
2117                                if (!pskb_pull(list, eat)) {
2118                                        kfree_skb(clone);
2119                                        return NULL;
2120                                }
2121                                break;
2122                        }
2123                } while (eat);
2124
2125                /* Free pulled out fragments. */
2126                while ((list = skb_shinfo(skb)->frag_list) != insp) {
2127                        skb_shinfo(skb)->frag_list = list->next;
2128                        kfree_skb(list);
2129                }
2130                /* And insert new clone at head. */
2131                if (clone) {
2132                        clone->next = list;
2133                        skb_shinfo(skb)->frag_list = clone;
2134                }
2135        }
2136        /* Success! Now we may commit changes to skb data. */
2137
2138pull_pages:
2139        eat = delta;
2140        k = 0;
2141        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2142                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2143
2144                if (size <= eat) {
2145                        skb_frag_unref(skb, i);
2146                        eat -= size;
2147                } else {
2148                        skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2149
2150                        *frag = skb_shinfo(skb)->frags[i];
2151                        if (eat) {
2152                                skb_frag_off_add(frag, eat);
2153                                skb_frag_size_sub(frag, eat);
2154                                if (!i)
2155                                        goto end;
2156                                eat = 0;
2157                        }
2158                        k++;
2159                }
2160        }
2161        skb_shinfo(skb)->nr_frags = k;
2162
2163end:
2164        skb->tail     += delta;
2165        skb->data_len -= delta;
2166
2167        if (!skb->data_len)
2168                skb_zcopy_clear(skb, false);
2169
2170        return skb_tail_pointer(skb);
2171}
2172EXPORT_SYMBOL(__pskb_pull_tail);
2173
2174/**
2175 *      skb_copy_bits - copy bits from skb to kernel buffer
2176 *      @skb: source skb
2177 *      @offset: offset in source
2178 *      @to: destination buffer
2179 *      @len: number of bytes to copy
2180 *
2181 *      Copy the specified number of bytes from the source skb to the
2182 *      destination buffer.
2183 *
2184 *      CAUTION ! :
2185 *              If its prototype is ever changed,
2186 *              check arch/{*}/net/{*}.S files,
2187 *              since it is called from BPF assembly code.
2188 */
2189int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2190{
2191        int start = skb_headlen(skb);
2192        struct sk_buff *frag_iter;
2193        int i, copy;
2194
2195        if (offset > (int)skb->len - len)
2196                goto fault;
2197
2198        /* Copy header. */
2199        if ((copy = start - offset) > 0) {
2200                if (copy > len)
2201                        copy = len;
2202                skb_copy_from_linear_data_offset(skb, offset, to, copy);
2203                if ((len -= copy) == 0)
2204                        return 0;
2205                offset += copy;
2206                to     += copy;
2207        }
2208
2209        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2210                int end;
2211                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2212
2213                WARN_ON(start > offset + len);
2214
2215                end = start + skb_frag_size(f);
2216                if ((copy = end - offset) > 0) {
2217                        u32 p_off, p_len, copied;
2218                        struct page *p;
2219                        u8 *vaddr;
2220
2221                        if (copy > len)
2222                                copy = len;
2223
2224                        skb_frag_foreach_page(f,
2225                                              skb_frag_off(f) + offset - start,
2226                                              copy, p, p_off, p_len, copied) {
2227                                vaddr = kmap_atomic(p);
2228                                memcpy(to + copied, vaddr + p_off, p_len);
2229                                kunmap_atomic(vaddr);
2230                        }
2231
2232                        if ((len -= copy) == 0)
2233                                return 0;
2234                        offset += copy;
2235                        to     += copy;
2236                }
2237                start = end;
2238        }
2239
2240        skb_walk_frags(skb, frag_iter) {
2241                int end;
2242
2243                WARN_ON(start > offset + len);
2244
2245                end = start + frag_iter->len;
2246                if ((copy = end - offset) > 0) {
2247                        if (copy > len)
2248                                copy = len;
2249                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
2250                                goto fault;
2251                        if ((len -= copy) == 0)
2252                                return 0;
2253                        offset += copy;
2254                        to     += copy;
2255                }
2256                start = end;
2257        }
2258
2259        if (!len)
2260                return 0;
2261
2262fault:
2263        return -EFAULT;
2264}
2265EXPORT_SYMBOL(skb_copy_bits);
2266
2267/*
2268 * Callback from splice_to_pipe(), if we need to release some pages
2269 * at the end of the spd in case we error'ed out in filling the pipe.
2270 */
2271static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2272{
2273        put_page(spd->pages[i]);
2274}
2275
2276static struct page *linear_to_page(struct page *page, unsigned int *len,
2277                                   unsigned int *offset,
2278                                   struct sock *sk)
2279{
2280        struct page_frag *pfrag = sk_page_frag(sk);
2281
2282        if (!sk_page_frag_refill(sk, pfrag))
2283                return NULL;
2284
2285        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2286
2287        memcpy(page_address(pfrag->page) + pfrag->offset,
2288               page_address(page) + *offset, *len);
2289        *offset = pfrag->offset;
2290        pfrag->offset += *len;
2291
2292        return pfrag->page;
2293}
2294
2295static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2296                             struct page *page,
2297                             unsigned int offset)
2298{
2299        return  spd->nr_pages &&
2300                spd->pages[spd->nr_pages - 1] == page &&
2301                (spd->partial[spd->nr_pages - 1].offset +
2302                 spd->partial[spd->nr_pages - 1].len == offset);
2303}
2304
2305/*
2306 * Fill page/offset/length into spd, if it can hold more pages.
2307 */
2308static bool spd_fill_page(struct splice_pipe_desc *spd,
2309                          struct pipe_inode_info *pipe, struct page *page,
2310                          unsigned int *len, unsigned int offset,
2311                          bool linear,
2312                          struct sock *sk)
2313{
2314        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2315                return true;
2316
2317        if (linear) {
2318                page = linear_to_page(page, len, &offset, sk);
2319                if (!page)
2320                        return true;
2321        }
2322        if (spd_can_coalesce(spd, page, offset)) {
2323                spd->partial[spd->nr_pages - 1].len += *len;
2324                return false;
2325        }
2326        get_page(page);
2327        spd->pages[spd->nr_pages] = page;
2328        spd->partial[spd->nr_pages].len = *len;
2329        spd->partial[spd->nr_pages].offset = offset;
2330        spd->nr_pages++;
2331
2332        return false;
2333}
2334
2335static bool __splice_segment(struct page *page, unsigned int poff,
2336                             unsigned int plen, unsigned int *off,
2337                             unsigned int *len,
2338                             struct splice_pipe_desc *spd, bool linear,
2339                             struct sock *sk,
2340                             struct pipe_inode_info *pipe)
2341{
2342        if (!*len)
2343                return true;
2344
2345        /* skip this segment if already processed */
2346        if (*off >= plen) {
2347                *off -= plen;
2348                return false;
2349        }
2350
2351        /* ignore any bits we already processed */
2352        poff += *off;
2353        plen -= *off;
2354        *off = 0;
2355
2356        do {
2357                unsigned int flen = min(*len, plen);
2358
2359                if (spd_fill_page(spd, pipe, page, &flen, poff,
2360                                  linear, sk))
2361                        return true;
2362                poff += flen;
2363                plen -= flen;
2364                *len -= flen;
2365        } while (*len && plen);
2366
2367        return false;
2368}
2369
2370/*
2371 * Map linear and fragment data from the skb to spd. It reports true if the
2372 * pipe is full or if we already spliced the requested length.
2373 */
2374static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2375                              unsigned int *offset, unsigned int *len,
2376                              struct splice_pipe_desc *spd, struct sock *sk)
2377{
2378        int seg;
2379        struct sk_buff *iter;
2380
2381        /* map the linear part :
2382         * If skb->head_frag is set, this 'linear' part is backed by a
2383         * fragment, and if the head is not shared with any clones then
2384         * we can avoid a copy since we own the head portion of this page.
2385         */
2386        if (__splice_segment(virt_to_page(skb->data),
2387                             (unsigned long) skb->data & (PAGE_SIZE - 1),
2388                             skb_headlen(skb),
2389                             offset, len, spd,
2390                             skb_head_is_locked(skb),
2391                             sk, pipe))
2392                return true;
2393
2394        /*
2395         * then map the fragments
2396         */
2397        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2398                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2399
2400                if (__splice_segment(skb_frag_page(f),
2401                                     skb_frag_off(f), skb_frag_size(f),
2402                                     offset, len, spd, false, sk, pipe))
2403                        return true;
2404        }
2405
2406        skb_walk_frags(skb, iter) {
2407                if (*offset >= iter->len) {
2408                        *offset -= iter->len;
2409                        continue;
2410                }
2411                /* __skb_splice_bits() only fails if the output has no room
2412                 * left, so no point in going over the frag_list for the error
2413                 * case.
2414                 */
2415                if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2416                        return true;
2417        }
2418
2419        return false;
2420}
2421
2422/*
2423 * Map data from the skb to a pipe. Should handle both the linear part,
2424 * the fragments, and the frag list.
2425 */
2426int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2427                    struct pipe_inode_info *pipe, unsigned int tlen,
2428                    unsigned int flags)
2429{
2430        struct partial_page partial[MAX_SKB_FRAGS];
2431        struct page *pages[MAX_SKB_FRAGS];
2432        struct splice_pipe_desc spd = {
2433                .pages = pages,
2434                .partial = partial,
2435                .nr_pages_max = MAX_SKB_FRAGS,
2436                .ops = &nosteal_pipe_buf_ops,
2437                .spd_release = sock_spd_release,
2438        };
2439        int ret = 0;
2440
2441        __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2442
2443        if (spd.nr_pages)
2444                ret = splice_to_pipe(pipe, &spd);
2445
2446        return ret;
2447}
2448EXPORT_SYMBOL_GPL(skb_splice_bits);
2449
2450/* Send skb data on a socket. Socket must be locked. */
2451int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2452                         int len)
2453{
2454        unsigned int orig_len = len;
2455        struct sk_buff *head = skb;
2456        unsigned short fragidx;
2457        int slen, ret;
2458
2459do_frag_list:
2460
2461        /* Deal with head data */
2462        while (offset < skb_headlen(skb) && len) {
2463                struct kvec kv;
2464                struct msghdr msg;
2465
2466                slen = min_t(int, len, skb_headlen(skb) - offset);
2467                kv.iov_base = skb->data + offset;
2468                kv.iov_len = slen;
2469                memset(&msg, 0, sizeof(msg));
2470                msg.msg_flags = MSG_DONTWAIT;
2471
2472                ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2473                if (ret <= 0)
2474                        goto error;
2475
2476                offset += ret;
2477                len -= ret;
2478        }
2479
2480        /* All the data was skb head? */
2481        if (!len)
2482                goto out;
2483
2484        /* Make offset relative to start of frags */
2485        offset -= skb_headlen(skb);
2486
2487        /* Find where we are in frag list */
2488        for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2489                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2490
2491                if (offset < skb_frag_size(frag))
2492                        break;
2493
2494                offset -= skb_frag_size(frag);
2495        }
2496
2497        for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2498                skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2499
2500                slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2501
2502                while (slen) {
2503                        ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2504                                                     skb_frag_off(frag) + offset,
2505                                                     slen, MSG_DONTWAIT);
2506                        if (ret <= 0)
2507                                goto error;
2508
2509                        len -= ret;
2510                        offset += ret;
2511                        slen -= ret;
2512                }
2513
2514                offset = 0;
2515        }
2516
2517        if (len) {
2518                /* Process any frag lists */
2519
2520                if (skb == head) {
2521                        if (skb_has_frag_list(skb)) {
2522                                skb = skb_shinfo(skb)->frag_list;
2523                                goto do_frag_list;
2524                        }
2525                } else if (skb->next) {
2526                        skb = skb->next;
2527                        goto do_frag_list;
2528                }
2529        }
2530
2531out:
2532        return orig_len - len;
2533
2534error:
2535        return orig_len == len ? ret : orig_len - len;
2536}
2537EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2538
2539/**
2540 *      skb_store_bits - store bits from kernel buffer to skb
2541 *      @skb: destination buffer
2542 *      @offset: offset in destination
2543 *      @from: source buffer
2544 *      @len: number of bytes to copy
2545 *
2546 *      Copy the specified number of bytes from the source buffer to the
2547 *      destination skb.  This function handles all the messy bits of
2548 *      traversing fragment lists and such.
2549 */
2550
2551int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2552{
2553        int start = skb_headlen(skb);
2554        struct sk_buff *frag_iter;
2555        int i, copy;
2556
2557        if (offset > (int)skb->len - len)
2558                goto fault;
2559
2560        if ((copy = start - offset) > 0) {
2561                if (copy > len)
2562                        copy = len;
2563                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2564                if ((len -= copy) == 0)
2565                        return 0;
2566                offset += copy;
2567                from += copy;
2568        }
2569
2570        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2571                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2572                int end;
2573
2574                WARN_ON(start > offset + len);
2575
2576                end = start + skb_frag_size(frag);
2577                if ((copy = end - offset) > 0) {
2578                        u32 p_off, p_len, copied;
2579                        struct page *p;
2580                        u8 *vaddr;
2581
2582                        if (copy > len)
2583                                copy = len;
2584
2585                        skb_frag_foreach_page(frag,
2586                                              skb_frag_off(frag) + offset - start,
2587                                              copy, p, p_off, p_len, copied) {
2588                                vaddr = kmap_atomic(p);
2589                                memcpy(vaddr + p_off, from + copied, p_len);
2590                                kunmap_atomic(vaddr);
2591                        }
2592
2593                        if ((len -= copy) == 0)
2594                                return 0;
2595                        offset += copy;
2596                        from += copy;
2597                }
2598                start = end;
2599        }
2600
2601        skb_walk_frags(skb, frag_iter) {
2602                int end;
2603
2604                WARN_ON(start > offset + len);
2605
2606                end = start + frag_iter->len;
2607                if ((copy = end - offset) > 0) {
2608                        if (copy > len)
2609                                copy = len;
2610                        if (skb_store_bits(frag_iter, offset - start,
2611                                           from, copy))
2612                                goto fault;
2613                        if ((len -= copy) == 0)
2614                                return 0;
2615                        offset += copy;
2616                        from += copy;
2617                }
2618                start = end;
2619        }
2620        if (!len)
2621                return 0;
2622
2623fault:
2624        return -EFAULT;
2625}
2626EXPORT_SYMBOL(skb_store_bits);
2627
2628/* Checksum skb data. */
2629__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2630                      __wsum csum, const struct skb_checksum_ops *ops)
2631{
2632        int start = skb_headlen(skb);
2633        int i, copy = start - offset;
2634        struct sk_buff *frag_iter;
2635        int pos = 0;
2636
2637        /* Checksum header. */
2638        if (copy > 0) {
2639                if (copy > len)
2640                        copy = len;
2641                csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2642                                       skb->data + offset, copy, csum);
2643                if ((len -= copy) == 0)
2644                        return csum;
2645                offset += copy;
2646                pos     = copy;
2647        }
2648
2649        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2650                int end;
2651                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2652
2653                WARN_ON(start > offset + len);
2654
2655                end = start + skb_frag_size(frag);
2656                if ((copy = end - offset) > 0) {
2657                        u32 p_off, p_len, copied;
2658                        struct page *p;
2659                        __wsum csum2;
2660                        u8 *vaddr;
2661
2662                        if (copy > len)
2663                                copy = len;
2664
2665                        skb_frag_foreach_page(frag,
2666                                              skb_frag_off(frag) + offset - start,
2667                                              copy, p, p_off, p_len, copied) {
2668                                vaddr = kmap_atomic(p);
2669                                csum2 = INDIRECT_CALL_1(ops->update,
2670                                                        csum_partial_ext,
2671                                                        vaddr + p_off, p_len, 0);
2672                                kunmap_atomic(vaddr);
2673                                csum = INDIRECT_CALL_1(ops->combine,
2674                                                       csum_block_add_ext, csum,
2675                                                       csum2, pos, p_len);
2676                                pos += p_len;
2677                        }
2678
2679                        if (!(len -= copy))
2680                                return csum;
2681                        offset += copy;
2682                }
2683                start = end;
2684        }
2685
2686        skb_walk_frags(skb, frag_iter) {
2687                int end;
2688
2689                WARN_ON(start > offset + len);
2690
2691                end = start + frag_iter->len;
2692                if ((copy = end - offset) > 0) {
2693                        __wsum csum2;
2694                        if (copy > len)
2695                                copy = len;
2696                        csum2 = __skb_checksum(frag_iter, offset - start,
2697                                               copy, 0, ops);
2698                        csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2699                                               csum, csum2, pos, copy);
2700                        if ((len -= copy) == 0)
2701                                return csum;
2702                        offset += copy;
2703                        pos    += copy;
2704                }
2705                start = end;
2706        }
2707        BUG_ON(len);
2708
2709        return csum;
2710}
2711EXPORT_SYMBOL(__skb_checksum);
2712
2713__wsum skb_checksum(const struct sk_buff *skb, int offset,
2714                    int len, __wsum csum)
2715{
2716        const struct skb_checksum_ops ops = {
2717                .update  = csum_partial_ext,
2718                .combine = csum_block_add_ext,
2719        };
2720
2721        return __skb_checksum(skb, offset, len, csum, &ops);
2722}
2723EXPORT_SYMBOL(skb_checksum);
2724
2725/* Both of above in one bottle. */
2726
2727__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2728                                    u8 *to, int len, __wsum csum)
2729{
2730        int start = skb_headlen(skb);
2731        int i, copy = start - offset;
2732        struct sk_buff *frag_iter;
2733        int pos = 0;
2734
2735        /* Copy header. */
2736        if (copy > 0) {
2737                if (copy > len)
2738                        copy = len;
2739                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2740                                                 copy, csum);
2741                if ((len -= copy) == 0)
2742                        return csum;
2743                offset += copy;
2744                to     += copy;
2745                pos     = copy;
2746        }
2747
2748        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2749                int end;
2750
2751                WARN_ON(start > offset + len);
2752
2753                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2754                if ((copy = end - offset) > 0) {
2755                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2756                        u32 p_off, p_len, copied;
2757                        struct page *p;
2758                        __wsum csum2;
2759                        u8 *vaddr;
2760
2761                        if (copy > len)
2762                                copy = len;
2763
2764                        skb_frag_foreach_page(frag,
2765                                              skb_frag_off(frag) + offset - start,
2766                                              copy, p, p_off, p_len, copied) {
2767                                vaddr = kmap_atomic(p);
2768                                csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2769                                                                  to + copied,
2770                                                                  p_len, 0);
2771                                kunmap_atomic(vaddr);
2772                                csum = csum_block_add(csum, csum2, pos);
2773                                pos += p_len;
2774                        }
2775
2776                        if (!(len -= copy))
2777                                return csum;
2778                        offset += copy;
2779                        to     += copy;
2780                }
2781                start = end;
2782        }
2783
2784        skb_walk_frags(skb, frag_iter) {
2785                __wsum csum2;
2786                int end;
2787
2788                WARN_ON(start > offset + len);
2789
2790                end = start + frag_iter->len;
2791                if ((copy = end - offset) > 0) {
2792                        if (copy > len)
2793                                copy = len;
2794                        csum2 = skb_copy_and_csum_bits(frag_iter,
2795                                                       offset - start,
2796                                                       to, copy, 0);
2797                        csum = csum_block_add(csum, csum2, pos);
2798                        if ((len -= copy) == 0)
2799                                return csum;
2800                        offset += copy;
2801                        to     += copy;
2802                        pos    += copy;
2803                }
2804                start = end;
2805        }
2806        BUG_ON(len);
2807        return csum;
2808}
2809EXPORT_SYMBOL(skb_copy_and_csum_bits);
2810
2811__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2812{
2813        __sum16 sum;
2814
2815        sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2816        /* See comments in __skb_checksum_complete(). */
2817        if (likely(!sum)) {
2818                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2819                    !skb->csum_complete_sw)
2820                        netdev_rx_csum_fault(skb->dev, skb);
2821        }
2822        if (!skb_shared(skb))
2823                skb->csum_valid = !sum;
2824        return sum;
2825}
2826EXPORT_SYMBOL(__skb_checksum_complete_head);
2827
2828/* This function assumes skb->csum already holds pseudo header's checksum,
2829 * which has been changed from the hardware checksum, for example, by
2830 * __skb_checksum_validate_complete(). And, the original skb->csum must
2831 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2832 *
2833 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2834 * zero. The new checksum is stored back into skb->csum unless the skb is
2835 * shared.
2836 */
2837__sum16 __skb_checksum_complete(struct sk_buff *skb)
2838{
2839        __wsum csum;
2840        __sum16 sum;
2841
2842        csum = skb_checksum(skb, 0, skb->len, 0);
2843
2844        sum = csum_fold(csum_add(skb->csum, csum));
2845        /* This check is inverted, because we already knew the hardware
2846         * checksum is invalid before calling this function. So, if the
2847         * re-computed checksum is valid instead, then we have a mismatch
2848         * between the original skb->csum and skb_checksum(). This means either
2849         * the original hardware checksum is incorrect or we screw up skb->csum
2850         * when moving skb->data around.
2851         */
2852        if (likely(!sum)) {
2853                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2854                    !skb->csum_complete_sw)
2855                        netdev_rx_csum_fault(skb->dev, skb);
2856        }
2857
2858        if (!skb_shared(skb)) {
2859                /* Save full packet checksum */
2860                skb->csum = csum;
2861                skb->ip_summed = CHECKSUM_COMPLETE;
2862                skb->csum_complete_sw = 1;
2863                skb->csum_valid = !sum;
2864        }
2865
2866        return sum;
2867}
2868EXPORT_SYMBOL(__skb_checksum_complete);
2869
2870static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2871{
2872        net_warn_ratelimited(
2873                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2874                __func__);
2875        return 0;
2876}
2877
2878static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2879                                       int offset, int len)
2880{
2881        net_warn_ratelimited(
2882                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2883                __func__);
2884        return 0;
2885}
2886
2887static const struct skb_checksum_ops default_crc32c_ops = {
2888        .update  = warn_crc32c_csum_update,
2889        .combine = warn_crc32c_csum_combine,
2890};
2891
2892const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2893        &default_crc32c_ops;
2894EXPORT_SYMBOL(crc32c_csum_stub);
2895
2896 /**
2897 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2898 *      @from: source buffer
2899 *
2900 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2901 *      into skb_zerocopy().
2902 */
2903unsigned int
2904skb_zerocopy_headlen(const struct sk_buff *from)
2905{
2906        unsigned int hlen = 0;
2907
2908        if (!from->head_frag ||
2909            skb_headlen(from) < L1_CACHE_BYTES ||
2910            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2911                hlen = skb_headlen(from);
2912
2913        if (skb_has_frag_list(from))
2914                hlen = from->len;
2915
2916        return hlen;
2917}
2918EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2919
2920/**
2921 *      skb_zerocopy - Zero copy skb to skb
2922 *      @to: destination buffer
2923 *      @from: source buffer
2924 *      @len: number of bytes to copy from source buffer
2925 *      @hlen: size of linear headroom in destination buffer
2926 *
2927 *      Copies up to `len` bytes from `from` to `to` by creating references
2928 *      to the frags in the source buffer.
2929 *
2930 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2931 *      headroom in the `to` buffer.
2932 *
2933 *      Return value:
2934 *      0: everything is OK
2935 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2936 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2937 */
2938int
2939skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2940{
2941        int i, j = 0;
2942        int plen = 0; /* length of skb->head fragment */
2943        int ret;
2944        struct page *page;
2945        unsigned int offset;
2946
2947        BUG_ON(!from->head_frag && !hlen);
2948
2949        /* dont bother with small payloads */
2950        if (len <= skb_tailroom(to))
2951                return skb_copy_bits(from, 0, skb_put(to, len), len);
2952
2953        if (hlen) {
2954                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2955                if (unlikely(ret))
2956                        return ret;
2957                len -= hlen;
2958        } else {
2959                plen = min_t(int, skb_headlen(from), len);
2960                if (plen) {
2961                        page = virt_to_head_page(from->head);
2962                        offset = from->data - (unsigned char *)page_address(page);
2963                        __skb_fill_page_desc(to, 0, page, offset, plen);
2964                        get_page(page);
2965                        j = 1;
2966                        len -= plen;
2967                }
2968        }
2969
2970        to->truesize += len + plen;
2971        to->len += len + plen;
2972        to->data_len += len + plen;
2973
2974        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2975                skb_tx_error(from);
2976                return -ENOMEM;
2977        }
2978        skb_zerocopy_clone(to, from, GFP_ATOMIC);
2979
2980        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2981                int size;
2982
2983                if (!len)
2984                        break;
2985                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2986                size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2987                                        len);
2988                skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2989                len -= size;
2990                skb_frag_ref(to, j);
2991                j++;
2992        }
2993        skb_shinfo(to)->nr_frags = j;
2994
2995        return 0;
2996}
2997EXPORT_SYMBOL_GPL(skb_zerocopy);
2998
2999void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3000{
3001        __wsum csum;
3002        long csstart;
3003
3004        if (skb->ip_summed == CHECKSUM_PARTIAL)
3005                csstart = skb_checksum_start_offset(skb);
3006        else
3007                csstart = skb_headlen(skb);
3008
3009        BUG_ON(csstart > skb_headlen(skb));
3010
3011        skb_copy_from_linear_data(skb, to, csstart);
3012
3013        csum = 0;
3014        if (csstart != skb->len)
3015                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3016                                              skb->len - csstart, 0);
3017
3018        if (skb->ip_summed == CHECKSUM_PARTIAL) {
3019                long csstuff = csstart + skb->csum_offset;
3020
3021                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3022        }
3023}
3024EXPORT_SYMBOL(skb_copy_and_csum_dev);
3025
3026/**
3027 *      skb_dequeue - remove from the head of the queue
3028 *      @list: list to dequeue from
3029 *
3030 *      Remove the head of the list. The list lock is taken so the function
3031 *      may be used safely with other locking list functions. The head item is
3032 *      returned or %NULL if the list is empty.
3033 */
3034
3035struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3036{
3037        unsigned long flags;
3038        struct sk_buff *result;
3039
3040        spin_lock_irqsave(&list->lock, flags);
3041        result = __skb_dequeue(list);
3042        spin_unlock_irqrestore(&list->lock, flags);
3043        return result;
3044}
3045EXPORT_SYMBOL(skb_dequeue);
3046
3047/**
3048 *      skb_dequeue_tail - remove from the tail of the queue
3049 *      @list: list to dequeue from
3050 *
3051 *      Remove the tail of the list. The list lock is taken so the function
3052 *      may be used safely with other locking list functions. The tail item is
3053 *      returned or %NULL if the list is empty.
3054 */
3055struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3056{
3057        unsigned long flags;
3058        struct sk_buff *result;
3059
3060        spin_lock_irqsave(&list->lock, flags);
3061        result = __skb_dequeue_tail(list);
3062        spin_unlock_irqrestore(&list->lock, flags);
3063        return result;
3064}
3065EXPORT_SYMBOL(skb_dequeue_tail);
3066
3067/**
3068 *      skb_queue_purge - empty a list
3069 *      @list: list to empty
3070 *
3071 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3072 *      the list and one reference dropped. This function takes the list
3073 *      lock and is atomic with respect to other list locking functions.
3074 */
3075void skb_queue_purge(struct sk_buff_head *list)
3076{
3077        struct sk_buff *skb;
3078        while ((skb = skb_dequeue(list)) != NULL)
3079                kfree_skb(skb);
3080}
3081EXPORT_SYMBOL(skb_queue_purge);
3082
3083/**
3084 *      skb_rbtree_purge - empty a skb rbtree
3085 *      @root: root of the rbtree to empty
3086 *      Return value: the sum of truesizes of all purged skbs.
3087 *
3088 *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3089 *      the list and one reference dropped. This function does not take
3090 *      any lock. Synchronization should be handled by the caller (e.g., TCP
3091 *      out-of-order queue is protected by the socket lock).
3092 */
3093unsigned int skb_rbtree_purge(struct rb_root *root)
3094{
3095        struct rb_node *p = rb_first(root);
3096        unsigned int sum = 0;
3097
3098        while (p) {
3099                struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3100
3101                p = rb_next(p);
3102                rb_erase(&skb->rbnode, root);
3103                sum += skb->truesize;
3104                kfree_skb(skb);
3105        }
3106        return sum;
3107}
3108
3109/**
3110 *      skb_queue_head - queue a buffer at the list head
3111 *      @list: list to use
3112 *      @newsk: buffer to queue
3113 *
3114 *      Queue a buffer at the start of the list. This function takes the
3115 *      list lock and can be used safely with other locking &sk_buff functions
3116 *      safely.
3117 *
3118 *      A buffer cannot be placed on two lists at the same time.
3119 */
3120void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3121{
3122        unsigned long flags;
3123
3124        spin_lock_irqsave(&list->lock, flags);
3125        __skb_queue_head(list, newsk);
3126        spin_unlock_irqrestore(&list->lock, flags);
3127}
3128EXPORT_SYMBOL(skb_queue_head);
3129
3130/**
3131 *      skb_queue_tail - queue a buffer at the list tail
3132 *      @list: list to use
3133 *      @newsk: buffer to queue
3134 *
3135 *      Queue a buffer at the tail of the list. This function takes the
3136 *      list lock and can be used safely with other locking &sk_buff functions
3137 *      safely.
3138 *
3139 *      A buffer cannot be placed on two lists at the same time.
3140 */
3141void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3142{
3143        unsigned long flags;
3144
3145        spin_lock_irqsave(&list->lock, flags);
3146        __skb_queue_tail(list, newsk);
3147        spin_unlock_irqrestore(&list->lock, flags);
3148}
3149EXPORT_SYMBOL(skb_queue_tail);
3150
3151/**
3152 *      skb_unlink      -       remove a buffer from a list
3153 *      @skb: buffer to remove
3154 *      @list: list to use
3155 *
3156 *      Remove a packet from a list. The list locks are taken and this
3157 *      function is atomic with respect to other list locked calls
3158 *
3159 *      You must know what list the SKB is on.
3160 */
3161void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3162{
3163        unsigned long flags;
3164
3165        spin_lock_irqsave(&list->lock, flags);
3166        __skb_unlink(skb, list);
3167        spin_unlock_irqrestore(&list->lock, flags);
3168}
3169EXPORT_SYMBOL(skb_unlink);
3170
3171/**
3172 *      skb_append      -       append a buffer
3173 *      @old: buffer to insert after
3174 *      @newsk: buffer to insert
3175 *      @list: list to use
3176 *
3177 *      Place a packet after a given packet in a list. The list locks are taken
3178 *      and this function is atomic with respect to other list locked calls.
3179 *      A buffer cannot be placed on two lists at the same time.
3180 */
3181void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3182{
3183        unsigned long flags;
3184
3185        spin_lock_irqsave(&list->lock, flags);
3186        __skb_queue_after(list, old, newsk);
3187        spin_unlock_irqrestore(&list->lock, flags);
3188}
3189EXPORT_SYMBOL(skb_append);
3190
3191static inline void skb_split_inside_header(struct sk_buff *skb,
3192                                           struct sk_buff* skb1,
3193                                           const u32 len, const int pos)
3194{
3195        int i;
3196
3197        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3198                                         pos - len);
3199        /* And move data appendix as is. */
3200        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3201                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3202
3203        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3204        skb_shinfo(skb)->nr_frags  = 0;
3205        skb1->data_len             = skb->data_len;
3206        skb1->len                  += skb1->data_len;
3207        skb->data_len              = 0;
3208        skb->len                   = len;
3209        skb_set_tail_pointer(skb, len);
3210}
3211
3212static inline void skb_split_no_header(struct sk_buff *skb,
3213                                       struct sk_buff* skb1,
3214                                       const u32 len, int pos)
3215{
3216        int i, k = 0;
3217        const int nfrags = skb_shinfo(skb)->nr_frags;
3218
3219        skb_shinfo(skb)->nr_frags = 0;
3220        skb1->len                 = skb1->data_len = skb->len - len;
3221        skb->len                  = len;
3222        skb->data_len             = len - pos;
3223
3224        for (i = 0; i < nfrags; i++) {
3225                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3226
3227                if (pos + size > len) {
3228                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3229
3230                        if (pos < len) {
3231                                /* Split frag.
3232                                 * We have two variants in this case:
3233                                 * 1. Move all the frag to the second
3234                                 *    part, if it is possible. F.e.
3235                                 *    this approach is mandatory for TUX,
3236                                 *    where splitting is expensive.
3237                                 * 2. Split is accurately. We make this.
3238                                 */
3239                                skb_frag_ref(skb, i);
3240                                skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3241                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3242                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3243                                skb_shinfo(skb)->nr_frags++;
3244                        }
3245                        k++;
3246                } else
3247                        skb_shinfo(skb)->nr_frags++;
3248                pos += size;
3249        }
3250        skb_shinfo(skb1)->nr_frags = k;
3251}
3252
3253/**
3254 * skb_split - Split fragmented skb to two parts at length len.
3255 * @skb: the buffer to split
3256 * @skb1: the buffer to receive the second part
3257 * @len: new length for skb
3258 */
3259void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3260{
3261        int pos = skb_headlen(skb);
3262
3263        skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3264                                      SKBTX_SHARED_FRAG;
3265        skb_zerocopy_clone(skb1, skb, 0);
3266        if (len < pos)  /* Split line is inside header. */
3267                skb_split_inside_header(skb, skb1, len, pos);
3268        else            /* Second chunk has no header, nothing to copy. */
3269                skb_split_no_header(skb, skb1, len, pos);
3270}
3271EXPORT_SYMBOL(skb_split);
3272
3273/* Shifting from/to a cloned skb is a no-go.
3274 *
3275 * Caller cannot keep skb_shinfo related pointers past calling here!
3276 */
3277static int skb_prepare_for_shift(struct sk_buff *skb)
3278{
3279        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3280}
3281
3282/**
3283 * skb_shift - Shifts paged data partially from skb to another
3284 * @tgt: buffer into which tail data gets added
3285 * @skb: buffer from which the paged data comes from
3286 * @shiftlen: shift up to this many bytes
3287 *
3288 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3289 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3290 * It's up to caller to free skb if everything was shifted.
3291 *
3292 * If @tgt runs out of frags, the whole operation is aborted.
3293 *
3294 * Skb cannot include anything else but paged data while tgt is allowed
3295 * to have non-paged data as well.
3296 *
3297 * TODO: full sized shift could be optimized but that would need
3298 * specialized skb free'er to handle frags without up-to-date nr_frags.
3299 */
3300int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3301{
3302        int from, to, merge, todo;
3303        skb_frag_t *fragfrom, *fragto;
3304
3305        BUG_ON(shiftlen > skb->len);
3306
3307        if (skb_headlen(skb))
3308                return 0;
3309        if (skb_zcopy(tgt) || skb_zcopy(skb))
3310                return 0;
3311
3312        todo = shiftlen;
3313        from = 0;
3314        to = skb_shinfo(tgt)->nr_frags;
3315        fragfrom = &skb_shinfo(skb)->frags[from];
3316
3317        /* Actual merge is delayed until the point when we know we can
3318         * commit all, so that we don't have to undo partial changes
3319         */
3320        if (!to ||
3321            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3322                              skb_frag_off(fragfrom))) {
3323                merge = -1;
3324        } else {
3325                merge = to - 1;
3326
3327                todo -= skb_frag_size(fragfrom);
3328                if (todo < 0) {
3329                        if (skb_prepare_for_shift(skb) ||
3330                            skb_prepare_for_shift(tgt))
3331                                return 0;
3332
3333                        /* All previous frag pointers might be stale! */
3334                        fragfrom = &skb_shinfo(skb)->frags[from];
3335                        fragto = &skb_shinfo(tgt)->frags[merge];
3336
3337                        skb_frag_size_add(fragto, shiftlen);
3338                        skb_frag_size_sub(fragfrom, shiftlen);
3339                        skb_frag_off_add(fragfrom, shiftlen);
3340
3341                        goto onlymerged;
3342                }
3343
3344                from++;
3345        }
3346
3347        /* Skip full, not-fitting skb to avoid expensive operations */
3348        if ((shiftlen == skb->len) &&
3349            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3350                return 0;
3351
3352        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3353                return 0;
3354
3355        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3356                if (to == MAX_SKB_FRAGS)
3357                        return 0;
3358
3359                fragfrom = &skb_shinfo(skb)->frags[from];
3360                fragto = &skb_shinfo(tgt)->frags[to];
3361
3362                if (todo >= skb_frag_size(fragfrom)) {
3363                        *fragto = *fragfrom;
3364                        todo -= skb_frag_size(fragfrom);
3365                        from++;
3366                        to++;
3367
3368                } else {
3369                        __skb_frag_ref(fragfrom);
3370                        skb_frag_page_copy(fragto, fragfrom);
3371                        skb_frag_off_copy(fragto, fragfrom);
3372                        skb_frag_size_set(fragto, todo);
3373
3374                        skb_frag_off_add(fragfrom, todo);
3375                        skb_frag_size_sub(fragfrom, todo);
3376                        todo = 0;
3377
3378                        to++;
3379                        break;
3380                }
3381        }
3382
3383        /* Ready to "commit" this state change to tgt */
3384        skb_shinfo(tgt)->nr_frags = to;
3385
3386        if (merge >= 0) {
3387                fragfrom = &skb_shinfo(skb)->frags[0];
3388                fragto = &skb_shinfo(tgt)->frags[merge];
3389
3390                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3391                __skb_frag_unref(fragfrom);
3392        }
3393
3394        /* Reposition in the original skb */
3395        to = 0;
3396        while (from < skb_shinfo(skb)->nr_frags)
3397                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3398        skb_shinfo(skb)->nr_frags = to;
3399
3400        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3401
3402onlymerged:
3403        /* Most likely the tgt won't ever need its checksum anymore, skb on
3404         * the other hand might need it if it needs to be resent
3405         */
3406        tgt->ip_summed = CHECKSUM_PARTIAL;
3407        skb->ip_summed = CHECKSUM_PARTIAL;
3408
3409        /* Yak, is it really working this way? Some helper please? */
3410        skb->len -= shiftlen;
3411        skb->data_len -= shiftlen;
3412        skb->truesize -= shiftlen;
3413        tgt->len += shiftlen;
3414        tgt->data_len += shiftlen;
3415        tgt->truesize += shiftlen;
3416
3417        return shiftlen;
3418}
3419
3420/**
3421 * skb_prepare_seq_read - Prepare a sequential read of skb data
3422 * @skb: the buffer to read
3423 * @from: lower offset of data to be read
3424 * @to: upper offset of data to be read
3425 * @st: state variable
3426 *
3427 * Initializes the specified state variable. Must be called before
3428 * invoking skb_seq_read() for the first time.
3429 */
3430void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3431                          unsigned int to, struct skb_seq_state *st)
3432{
3433        st->lower_offset = from;
3434        st->upper_offset = to;
3435        st->root_skb = st->cur_skb = skb;
3436        st->frag_idx = st->stepped_offset = 0;
3437        st->frag_data = NULL;
3438}
3439EXPORT_SYMBOL(skb_prepare_seq_read);
3440
3441/**
3442 * skb_seq_read - Sequentially read skb data
3443 * @consumed: number of bytes consumed by the caller so far
3444 * @data: destination pointer for data to be returned
3445 * @st: state variable
3446 *
3447 * Reads a block of skb data at @consumed relative to the
3448 * lower offset specified to skb_prepare_seq_read(). Assigns
3449 * the head of the data block to @data and returns the length
3450 * of the block or 0 if the end of the skb data or the upper
3451 * offset has been reached.
3452 *
3453 * The caller is not required to consume all of the data
3454 * returned, i.e. @consumed is typically set to the number
3455 * of bytes already consumed and the next call to
3456 * skb_seq_read() will return the remaining part of the block.
3457 *
3458 * Note 1: The size of each block of data returned can be arbitrary,
3459 *       this limitation is the cost for zerocopy sequential
3460 *       reads of potentially non linear data.
3461 *
3462 * Note 2: Fragment lists within fragments are not implemented
3463 *       at the moment, state->root_skb could be replaced with
3464 *       a stack for this purpose.
3465 */
3466unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3467                          struct skb_seq_state *st)
3468{
3469        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3470        skb_frag_t *frag;
3471
3472        if (unlikely(abs_offset >= st->upper_offset)) {
3473                if (st->frag_data) {
3474                        kunmap_atomic(st->frag_data);
3475                        st->frag_data = NULL;
3476                }
3477                return 0;
3478        }
3479
3480next_skb:
3481        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3482
3483        if (abs_offset < block_limit && !st->frag_data) {
3484                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3485                return block_limit - abs_offset;
3486        }
3487
3488        if (st->frag_idx == 0 && !st->frag_data)
3489                st->stepped_offset += skb_headlen(st->cur_skb);
3490
3491        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3492                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3493                block_limit = skb_frag_size(frag) + st->stepped_offset;
3494
3495                if (abs_offset < block_limit) {
3496                        if (!st->frag_data)
3497                                st->frag_data = kmap_atomic(skb_frag_page(frag));
3498
3499                        *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3500                                (abs_offset - st->stepped_offset);
3501
3502                        return block_limit - abs_offset;
3503                }
3504
3505                if (st->frag_data) {
3506                        kunmap_atomic(st->frag_data);
3507                        st->frag_data = NULL;
3508                }
3509
3510                st->frag_idx++;
3511                st->stepped_offset += skb_frag_size(frag);
3512        }
3513
3514        if (st->frag_data) {
3515                kunmap_atomic(st->frag_data);
3516                st->frag_data = NULL;
3517        }
3518
3519        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3520                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3521                st->frag_idx = 0;
3522                goto next_skb;
3523        } else if (st->cur_skb->next) {
3524                st->cur_skb = st->cur_skb->next;
3525                st->frag_idx = 0;
3526                goto next_skb;
3527        }
3528
3529        return 0;
3530}
3531EXPORT_SYMBOL(skb_seq_read);
3532
3533/**
3534 * skb_abort_seq_read - Abort a sequential read of skb data
3535 * @st: state variable
3536 *
3537 * Must be called if skb_seq_read() was not called until it
3538 * returned 0.
3539 */
3540void skb_abort_seq_read(struct skb_seq_state *st)
3541{
3542        if (st->frag_data)
3543                kunmap_atomic(st->frag_data);
3544}
3545EXPORT_SYMBOL(skb_abort_seq_read);
3546
3547#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
3548
3549static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3550                                          struct ts_config *conf,
3551                                          struct ts_state *state)
3552{
3553        return skb_seq_read(offset, text, TS_SKB_CB(state));
3554}
3555
3556static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3557{
3558        skb_abort_seq_read(TS_SKB_CB(state));
3559}
3560
3561/**
3562 * skb_find_text - Find a text pattern in skb data
3563 * @skb: the buffer to look in
3564 * @from: search offset
3565 * @to: search limit
3566 * @config: textsearch configuration
3567 *
3568 * Finds a pattern in the skb data according to the specified
3569 * textsearch configuration. Use textsearch_next() to retrieve
3570 * subsequent occurrences of the pattern. Returns the offset
3571 * to the first occurrence or UINT_MAX if no match was found.
3572 */
3573unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3574                           unsigned int to, struct ts_config *config)
3575{
3576        struct ts_state state;
3577        unsigned int ret;
3578
3579        config->get_next_block = skb_ts_get_next_block;
3580        config->finish = skb_ts_finish;
3581
3582        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3583
3584        ret = textsearch_find(config, &state);
3585        return (ret <= to - from ? ret : UINT_MAX);
3586}
3587EXPORT_SYMBOL(skb_find_text);
3588
3589int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3590                         int offset, size_t size)
3591{
3592        int i = skb_shinfo(skb)->nr_frags;
3593
3594        if (skb_can_coalesce(skb, i, page, offset)) {
3595                skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3596        } else if (i < MAX_SKB_FRAGS) {
3597                get_page(page);
3598                skb_fill_page_desc(skb, i, page, offset, size);
3599        } else {
3600                return -EMSGSIZE;
3601        }
3602
3603        return 0;
3604}
3605EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3606
3607/**
3608 *      skb_pull_rcsum - pull skb and update receive checksum
3609 *      @skb: buffer to update
3610 *      @len: length of data pulled
3611 *
3612 *      This function performs an skb_pull on the packet and updates
3613 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3614 *      receive path processing instead of skb_pull unless you know
3615 *      that the checksum difference is zero (e.g., a valid IP header)
3616 *      or you are setting ip_summed to CHECKSUM_NONE.
3617 */
3618void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3619{
3620        unsigned char *data = skb->data;
3621
3622        BUG_ON(len > skb->len);
3623        __skb_pull(skb, len);
3624        skb_postpull_rcsum(skb, data, len);
3625        return skb->data;
3626}
3627EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3628
3629static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3630{
3631        skb_frag_t head_frag;
3632        struct page *page;
3633
3634        page = virt_to_head_page(frag_skb->head);
3635        __skb_frag_set_page(&head_frag, page);
3636        skb_frag_off_set(&head_frag, frag_skb->data -
3637                         (unsigned char *)page_address(page));
3638        skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3639        return head_frag;
3640}
3641
3642struct sk_buff *skb_segment_list(struct sk_buff *skb,
3643                                 netdev_features_t features,
3644                                 unsigned int offset)
3645{
3646        struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3647        unsigned int tnl_hlen = skb_tnl_header_len(skb);
3648        unsigned int delta_truesize = 0;
3649        unsigned int delta_len = 0;
3650        struct sk_buff *tail = NULL;
3651        struct sk_buff *nskb;
3652
3653        skb_push(skb, -skb_network_offset(skb) + offset);
3654
3655        skb_shinfo(skb)->frag_list = NULL;
3656
3657        do {
3658                nskb = list_skb;
3659                list_skb = list_skb->next;
3660
3661                if (!tail)
3662                        skb->next = nskb;
3663                else
3664                        tail->next = nskb;
3665
3666                tail = nskb;
3667
3668                delta_len += nskb->len;
3669                delta_truesize += nskb->truesize;
3670
3671                skb_push(nskb, -skb_network_offset(nskb) + offset);
3672
3673                skb_release_head_state(nskb);
3674                 __copy_skb_header(nskb, skb);
3675
3676                skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3677                skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3678                                                 nskb->data - tnl_hlen,
3679                                                 offset + tnl_hlen);
3680
3681                if (skb_needs_linearize(nskb, features) &&
3682                    __skb_linearize(nskb))
3683                        goto err_linearize;
3684
3685        } while (list_skb);
3686
3687        skb->truesize = skb->truesize - delta_truesize;
3688        skb->data_len = skb->data_len - delta_len;
3689        skb->len = skb->len - delta_len;
3690
3691        skb_gso_reset(skb);
3692
3693        skb->prev = tail;
3694
3695        if (skb_needs_linearize(skb, features) &&
3696            __skb_linearize(skb))
3697                goto err_linearize;
3698
3699        skb_get(skb);
3700
3701        return skb;
3702
3703err_linearize:
3704        kfree_skb_list(skb->next);
3705        skb->next = NULL;
3706        return ERR_PTR(-ENOMEM);
3707}
3708EXPORT_SYMBOL_GPL(skb_segment_list);
3709
3710int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3711{
3712        if (unlikely(p->len + skb->len >= 65536))
3713                return -E2BIG;
3714
3715        if (NAPI_GRO_CB(p)->last == p)
3716                skb_shinfo(p)->frag_list = skb;
3717        else
3718                NAPI_GRO_CB(p)->last->next = skb;
3719
3720        skb_pull(skb, skb_gro_offset(skb));
3721
3722        NAPI_GRO_CB(p)->last = skb;
3723        NAPI_GRO_CB(p)->count++;
3724        p->data_len += skb->len;
3725        p->truesize += skb->truesize;
3726        p->len += skb->len;
3727
3728        NAPI_GRO_CB(skb)->same_flow = 1;
3729
3730        return 0;
3731}
3732
3733/**
3734 *      skb_segment - Perform protocol segmentation on skb.
3735 *      @head_skb: buffer to segment
3736 *      @features: features for the output path (see dev->features)
3737 *
3738 *      This function performs segmentation on the given skb.  It returns
3739 *      a pointer to the first in a list of new skbs for the segments.
3740 *      In case of error it returns ERR_PTR(err).
3741 */
3742struct sk_buff *skb_segment(struct sk_buff *head_skb,
3743                            netdev_features_t features)
3744{
3745        struct sk_buff *segs = NULL;
3746        struct sk_buff *tail = NULL;
3747        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3748        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3749        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3750        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3751        struct sk_buff *frag_skb = head_skb;
3752        unsigned int offset = doffset;
3753        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3754        unsigned int partial_segs = 0;
3755        unsigned int headroom;
3756        unsigned int len = head_skb->len;
3757        __be16 proto;
3758        bool csum, sg;
3759        int nfrags = skb_shinfo(head_skb)->nr_frags;
3760        int err = -ENOMEM;
3761        int i = 0;
3762        int pos;
3763
3764        if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3765            (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3766                /* gso_size is untrusted, and we have a frag_list with a linear
3767                 * non head_frag head.
3768                 *
3769                 * (we assume checking the first list_skb member suffices;
3770                 * i.e if either of the list_skb members have non head_frag
3771                 * head, then the first one has too).
3772                 *
3773                 * If head_skb's headlen does not fit requested gso_size, it
3774                 * means that the frag_list members do NOT terminate on exact
3775                 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3776                 * sharing. Therefore we must fallback to copying the frag_list
3777                 * skbs; we do so by disabling SG.
3778                 */
3779                if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3780                        features &= ~NETIF_F_SG;
3781        }
3782
3783        __skb_push(head_skb, doffset);
3784        proto = skb_network_protocol(head_skb, NULL);
3785        if (unlikely(!proto))
3786                return ERR_PTR(-EINVAL);
3787
3788        sg = !!(features & NETIF_F_SG);
3789        csum = !!can_checksum_protocol(features, proto);
3790
3791        if (sg && csum && (mss != GSO_BY_FRAGS))  {
3792                if (!(features & NETIF_F_GSO_PARTIAL)) {
3793                        struct sk_buff *iter;
3794                        unsigned int frag_len;
3795
3796                        if (!list_skb ||
3797                            !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3798                                goto normal;
3799
3800                        /* If we get here then all the required
3801                         * GSO features except frag_list are supported.
3802                         * Try to split the SKB to multiple GSO SKBs
3803                         * with no frag_list.
3804                         * Currently we can do that only when the buffers don't
3805                         * have a linear part and all the buffers except
3806                         * the last are of the same length.
3807                         */
3808                        frag_len = list_skb->len;
3809                        skb_walk_frags(head_skb, iter) {
3810                                if (frag_len != iter->len && iter->next)
3811                                        goto normal;
3812                                if (skb_headlen(iter) && !iter->head_frag)
3813                                        goto normal;
3814
3815                                len -= iter->len;
3816                        }
3817
3818                        if (len != frag_len)
3819                                goto normal;
3820                }
3821
3822                /* GSO partial only requires that we trim off any excess that
3823                 * doesn't fit into an MSS sized block, so take care of that
3824                 * now.
3825                 */
3826                partial_segs = len / mss;
3827                if (partial_segs > 1)
3828                        mss *= partial_segs;
3829                else
3830                        partial_segs = 0;
3831        }
3832
3833normal:
3834        headroom = skb_headroom(head_skb);
3835        pos = skb_headlen(head_skb);
3836
3837        do {
3838                struct sk_buff *nskb;
3839                skb_frag_t *nskb_frag;
3840                int hsize;
3841                int size;
3842
3843                if (unlikely(mss == GSO_BY_FRAGS)) {
3844                        len = list_skb->len;
3845                } else {
3846                        len = head_skb->len - offset;
3847                        if (len > mss)
3848                                len = mss;
3849                }
3850
3851                hsize = skb_headlen(head_skb) - offset;
3852                if (hsize < 0)
3853                        hsize = 0;
3854                if (hsize > len || !sg)
3855                        hsize = len;
3856
3857                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3858                    (skb_headlen(list_skb) == len || sg)) {
3859                        BUG_ON(skb_headlen(list_skb) > len);
3860
3861                        i = 0;
3862                        nfrags = skb_shinfo(list_skb)->nr_frags;
3863                        frag = skb_shinfo(list_skb)->frags;
3864                        frag_skb = list_skb;
3865                        pos += skb_headlen(list_skb);
3866
3867                        while (pos < offset + len) {
3868                                BUG_ON(i >= nfrags);
3869
3870                                size = skb_frag_size(frag);
3871                                if (pos + size > offset + len)
3872                                        break;
3873
3874                                i++;
3875                                pos += size;
3876                                frag++;
3877                        }
3878
3879                        nskb = skb_clone(list_skb, GFP_ATOMIC);
3880                        list_skb = list_skb->next;
3881
3882                        if (unlikely(!nskb))
3883                                goto err;
3884
3885                        if (unlikely(pskb_trim(nskb, len))) {
3886                                kfree_skb(nskb);
3887                                goto err;
3888                        }
3889
3890                        hsize = skb_end_offset(nskb);
3891                        if (skb_cow_head(nskb, doffset + headroom)) {
3892                                kfree_skb(nskb);
3893                                goto err;
3894                        }
3895
3896                        nskb->truesize += skb_end_offset(nskb) - hsize;
3897                        skb_release_head_state(nskb);
3898                        __skb_push(nskb, doffset);
3899                } else {
3900                        nskb = __alloc_skb(hsize + doffset + headroom,
3901                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3902                                           NUMA_NO_NODE);
3903
3904                        if (unlikely(!nskb))
3905                                goto err;
3906
3907                        skb_reserve(nskb, headroom);
3908                        __skb_put(nskb, doffset);
3909                }
3910
3911                if (segs)
3912                        tail->next = nskb;
3913                else
3914                        segs = nskb;
3915                tail = nskb;
3916
3917                __copy_skb_header(nskb, head_skb);
3918
3919                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3920                skb_reset_mac_len(nskb);
3921
3922                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3923                                                 nskb->data - tnl_hlen,
3924                                                 doffset + tnl_hlen);
3925
3926                if (nskb->len == len + doffset)
3927                        goto perform_csum_check;
3928
3929                if (!sg) {
3930                        if (!csum) {
3931                                if (!nskb->remcsum_offload)
3932                                        nskb->ip_summed = CHECKSUM_NONE;
3933                                SKB_GSO_CB(nskb)->csum =
3934                                        skb_copy_and_csum_bits(head_skb, offset,
3935                                                               skb_put(nskb,
3936                                                                       len),
3937                                                               len, 0);
3938                                SKB_GSO_CB(nskb)->csum_start =
3939                                        skb_headroom(nskb) + doffset;
3940                        } else {
3941                                skb_copy_bits(head_skb, offset,
3942                                              skb_put(nskb, len),
3943                                              len);
3944                        }
3945                        continue;
3946                }
3947
3948                nskb_frag = skb_shinfo(nskb)->frags;
3949
3950                skb_copy_from_linear_data_offset(head_skb, offset,
3951                                                 skb_put(nskb, hsize), hsize);
3952
3953                skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3954                                              SKBTX_SHARED_FRAG;
3955
3956                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3957                    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3958                        goto err;
3959
3960                while (pos < offset + len) {
3961                        if (i >= nfrags) {
3962                                i = 0;
3963                                nfrags = skb_shinfo(list_skb)->nr_frags;
3964                                frag = skb_shinfo(list_skb)->frags;
3965                                frag_skb = list_skb;
3966                                if (!skb_headlen(list_skb)) {
3967                                        BUG_ON(!nfrags);
3968                                } else {
3969                                        BUG_ON(!list_skb->head_frag);
3970
3971                                        /* to make room for head_frag. */
3972                                        i--;
3973                                        frag--;
3974                                }
3975                                if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3976                                    skb_zerocopy_clone(nskb, frag_skb,
3977                                                       GFP_ATOMIC))
3978                                        goto err;
3979
3980                                list_skb = list_skb->next;
3981                        }
3982
3983                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
3984                                     MAX_SKB_FRAGS)) {
3985                                net_warn_ratelimited(
3986                                        "skb_segment: too many frags: %u %u\n",
3987                                        pos, mss);
3988                                err = -EINVAL;
3989                                goto err;
3990                        }
3991
3992                        *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3993                        __skb_frag_ref(nskb_frag);
3994                        size = skb_frag_size(nskb_frag);
3995
3996                        if (pos < offset) {
3997                                skb_frag_off_add(nskb_frag, offset - pos);
3998                                skb_frag_size_sub(nskb_frag, offset - pos);
3999                        }
4000
4001                        skb_shinfo(nskb)->nr_frags++;
4002
4003                        if (pos + size <= offset + len) {
4004                                i++;
4005                                frag++;
4006                                pos += size;
4007                        } else {
4008                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4009                                goto skip_fraglist;
4010                        }
4011
4012                        nskb_frag++;
4013                }
4014
4015skip_fraglist:
4016                nskb->data_len = len - hsize;
4017                nskb->len += nskb->data_len;
4018                nskb->truesize += nskb->data_len;
4019
4020perform_csum_check:
4021                if (!csum) {
4022                        if (skb_has_shared_frag(nskb) &&
4023                            __skb_linearize(nskb))
4024                                goto err;
4025
4026                        if (!nskb->remcsum_offload)
4027                                nskb->ip_summed = CHECKSUM_NONE;
4028                        SKB_GSO_CB(nskb)->csum =
4029                                skb_checksum(nskb, doffset,
4030                                             nskb->len - doffset, 0);
4031                        SKB_GSO_CB(nskb)->csum_start =
4032                                skb_headroom(nskb) + doffset;
4033                }
4034        } while ((offset += len) < head_skb->len);
4035
4036        /* Some callers want to get the end of the list.
4037         * Put it in segs->prev to avoid walking the list.
4038         * (see validate_xmit_skb_list() for example)
4039         */
4040        segs->prev = tail;
4041
4042        if (partial_segs) {
4043                struct sk_buff *iter;
4044                int type = skb_shinfo(head_skb)->gso_type;
4045                unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4046
4047                /* Update type to add partial and then remove dodgy if set */
4048                type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4049                type &= ~SKB_GSO_DODGY;
4050
4051                /* Update GSO info and prepare to start updating headers on
4052                 * our way back down the stack of protocols.
4053                 */
4054                for (iter = segs; iter; iter = iter->next) {
4055                        skb_shinfo(iter)->gso_size = gso_size;
4056                        skb_shinfo(iter)->gso_segs = partial_segs;
4057                        skb_shinfo(iter)->gso_type = type;
4058                        SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4059                }
4060
4061                if (tail->len - doffset <= gso_size)
4062                        skb_shinfo(tail)->gso_size = 0;
4063                else if (tail != segs)
4064                        skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4065        }
4066
4067        /* Following permits correct backpressure, for protocols
4068         * using skb_set_owner_w().
4069         * Idea is to tranfert ownership from head_skb to last segment.
4070         */
4071        if (head_skb->destructor == sock_wfree) {
4072                swap(tail->truesize, head_skb->truesize);
4073                swap(tail->destructor, head_skb->destructor);
4074                swap(tail->sk, head_skb->sk);
4075        }
4076        return segs;
4077
4078err:
4079        kfree_skb_list(segs);
4080        return ERR_PTR(err);
4081}
4082EXPORT_SYMBOL_GPL(skb_segment);
4083
4084int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4085{
4086        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4087        unsigned int offset = skb_gro_offset(skb);
4088        unsigned int headlen = skb_headlen(skb);
4089        unsigned int len = skb_gro_len(skb);
4090        unsigned int delta_truesize;
4091        struct sk_buff *lp;
4092
4093        if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4094                return -E2BIG;
4095
4096        lp = NAPI_GRO_CB(p)->last;
4097        pinfo = skb_shinfo(lp);
4098
4099        if (headlen <= offset) {
4100                skb_frag_t *frag;
4101                skb_frag_t *frag2;
4102                int i = skbinfo->nr_frags;
4103                int nr_frags = pinfo->nr_frags + i;
4104
4105                if (nr_frags > MAX_SKB_FRAGS)
4106                        goto merge;
4107
4108                offset -= headlen;
4109                pinfo->nr_frags = nr_frags;
4110                skbinfo->nr_frags = 0;
4111
4112                frag = pinfo->frags + nr_frags;
4113                frag2 = skbinfo->frags + i;
4114                do {
4115                        *--frag = *--frag2;
4116                } while (--i);
4117
4118                skb_frag_off_add(frag, offset);
4119                skb_frag_size_sub(frag, offset);
4120
4121                /* all fragments truesize : remove (head size + sk_buff) */
4122                delta_truesize = skb->truesize -
4123                                 SKB_TRUESIZE(skb_end_offset(skb));
4124
4125                skb->truesize -= skb->data_len;
4126                skb->len -= skb->data_len;
4127                skb->data_len = 0;
4128
4129                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4130                goto done;
4131        } else if (skb->head_frag) {
4132                int nr_frags = pinfo->nr_frags;
4133                skb_frag_t *frag = pinfo->frags + nr_frags;
4134                struct page *page = virt_to_head_page(skb->head);
4135                unsigned int first_size = headlen - offset;
4136                unsigned int first_offset;
4137
4138                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4139                        goto merge;
4140
4141                first_offset = skb->data -
4142                               (unsigned char *)page_address(page) +
4143                               offset;
4144
4145                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4146
4147                __skb_frag_set_page(frag, page);
4148                skb_frag_off_set(frag, first_offset);
4149                skb_frag_size_set(frag, first_size);
4150
4151                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4152                /* We dont need to clear skbinfo->nr_frags here */
4153
4154                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4155                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4156                goto done;
4157        }
4158
4159merge:
4160        delta_truesize = skb->truesize;
4161        if (offset > headlen) {
4162                unsigned int eat = offset - headlen;
4163
4164                skb_frag_off_add(&skbinfo->frags[0], eat);
4165                skb_frag_size_sub(&skbinfo->frags[0], eat);
4166                skb->data_len -= eat;
4167                skb->len -= eat;
4168                offset = headlen;
4169        }
4170
4171        __skb_pull(skb, offset);
4172
4173        if (NAPI_GRO_CB(p)->last == p)
4174                skb_shinfo(p)->frag_list = skb;
4175        else
4176                NAPI_GRO_CB(p)->last->next = skb;
4177        NAPI_GRO_CB(p)->last = skb;
4178        __skb_header_release(skb);
4179        lp = p;
4180
4181done:
4182        NAPI_GRO_CB(p)->count++;
4183        p->data_len += len;
4184        p->truesize += delta_truesize;
4185        p->len += len;
4186        if (lp != p) {
4187                lp->data_len += len;
4188                lp->truesize += delta_truesize;
4189                lp->len += len;
4190        }
4191        NAPI_GRO_CB(skb)->same_flow = 1;
4192        return 0;
4193}
4194
4195#ifdef CONFIG_SKB_EXTENSIONS
4196#define SKB_EXT_ALIGN_VALUE     8
4197#define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4198
4199static const u8 skb_ext_type_len[] = {
4200#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4201        [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4202#endif
4203#ifdef CONFIG_XFRM
4204        [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4205#endif
4206#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4207        [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4208#endif
4209#if IS_ENABLED(CONFIG_MPTCP)
4210        [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4211#endif
4212};
4213
4214static __always_inline unsigned int skb_ext_total_length(void)
4215{
4216        return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4217#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4218                skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4219#endif
4220#ifdef CONFIG_XFRM
4221                skb_ext_type_len[SKB_EXT_SEC_PATH] +
4222#endif
4223#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4224                skb_ext_type_len[TC_SKB_EXT] +
4225#endif
4226#if IS_ENABLED(CONFIG_MPTCP)
4227                skb_ext_type_len[SKB_EXT_MPTCP] +
4228#endif
4229                0;
4230}
4231
4232static void skb_extensions_init(void)
4233{
4234        BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4235        BUILD_BUG_ON(skb_ext_total_length() > 255);
4236
4237        skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4238                                             SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4239                                             0,
4240                                             SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4241                                             NULL);
4242}
4243#else
4244static void skb_extensions_init(void) {}
4245#endif
4246
4247void __init skb_init(void)
4248{
4249        skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4250                                              sizeof(struct sk_buff),
4251                                              0,
4252                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4253                                              offsetof(struct sk_buff, cb),
4254                                              sizeof_field(struct sk_buff, cb),
4255                                              NULL);
4256        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4257                                                sizeof(struct sk_buff_fclones),
4258                                                0,
4259                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4260                                                NULL);
4261        skb_extensions_init();
4262}
4263
4264static int
4265__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4266               unsigned int recursion_level)
4267{
4268        int start = skb_headlen(skb);
4269        int i, copy = start - offset;
4270        struct sk_buff *frag_iter;
4271        int elt = 0;
4272
4273        if (unlikely(recursion_level >= 24))
4274                return -EMSGSIZE;
4275
4276        if (copy > 0) {
4277                if (copy > len)
4278                        copy = len;
4279                sg_set_buf(sg, skb->data + offset, copy);
4280                elt++;
4281                if ((len -= copy) == 0)
4282                        return elt;
4283                offset += copy;
4284        }
4285
4286        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4287                int end;
4288
4289                WARN_ON(start > offset + len);
4290
4291                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4292                if ((copy = end - offset) > 0) {
4293                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4294                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4295                                return -EMSGSIZE;
4296
4297                        if (copy > len)
4298                                copy = len;
4299                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4300                                    skb_frag_off(frag) + offset - start);
4301                        elt++;
4302                        if (!(len -= copy))
4303                                return elt;
4304                        offset += copy;
4305                }
4306                start = end;
4307        }
4308
4309        skb_walk_frags(skb, frag_iter) {
4310                int end, ret;
4311
4312                WARN_ON(start > offset + len);
4313
4314                end = start + frag_iter->len;
4315                if ((copy = end - offset) > 0) {
4316                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4317                                return -EMSGSIZE;
4318
4319                        if (copy > len)
4320                                copy = len;
4321                        ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4322                                              copy, recursion_level + 1);
4323                        if (unlikely(ret < 0))
4324                                return ret;
4325                        elt += ret;
4326                        if ((len -= copy) == 0)
4327                                return elt;
4328                        offset += copy;
4329                }
4330                start = end;
4331        }
4332        BUG_ON(len);
4333        return elt;
4334}
4335
4336/**
4337 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4338 *      @skb: Socket buffer containing the buffers to be mapped
4339 *      @sg: The scatter-gather list to map into
4340 *      @offset: The offset into the buffer's contents to start mapping
4341 *      @len: Length of buffer space to be mapped
4342 *
4343 *      Fill the specified scatter-gather list with mappings/pointers into a
4344 *      region of the buffer space attached to a socket buffer. Returns either
4345 *      the number of scatterlist items used, or -EMSGSIZE if the contents
4346 *      could not fit.
4347 */
4348int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4349{
4350        int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4351
4352        if (nsg <= 0)
4353                return nsg;
4354
4355        sg_mark_end(&sg[nsg - 1]);
4356
4357        return nsg;
4358}
4359EXPORT_SYMBOL_GPL(skb_to_sgvec);
4360
4361/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4362 * sglist without mark the sg which contain last skb data as the end.
4363 * So the caller can mannipulate sg list as will when padding new data after
4364 * the first call without calling sg_unmark_end to expend sg list.
4365 *
4366 * Scenario to use skb_to_sgvec_nomark:
4367 * 1. sg_init_table
4368 * 2. skb_to_sgvec_nomark(payload1)
4369 * 3. skb_to_sgvec_nomark(payload2)
4370 *
4371 * This is equivalent to:
4372 * 1. sg_init_table
4373 * 2. skb_to_sgvec(payload1)
4374 * 3. sg_unmark_end
4375 * 4. skb_to_sgvec(payload2)
4376 *
4377 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4378 * is more preferable.
4379 */
4380int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4381                        int offset, int len)
4382{
4383        return __skb_to_sgvec(skb, sg, offset, len, 0);
4384}
4385EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4386
4387
4388
4389/**
4390 *      skb_cow_data - Check that a socket buffer's data buffers are writable
4391 *      @skb: The socket buffer to check.
4392 *      @tailbits: Amount of trailing space to be added
4393 *      @trailer: Returned pointer to the skb where the @tailbits space begins
4394 *
4395 *      Make sure that the data buffers attached to a socket buffer are
4396 *      writable. If they are not, private copies are made of the data buffers
4397 *      and the socket buffer is set to use these instead.
4398 *
4399 *      If @tailbits is given, make sure that there is space to write @tailbits
4400 *      bytes of data beyond current end of socket buffer.  @trailer will be
4401 *      set to point to the skb in which this space begins.
4402 *
4403 *      The number of scatterlist elements required to completely map the
4404 *      COW'd and extended socket buffer will be returned.
4405 */
4406int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4407{
4408        int copyflag;
4409        int elt;
4410        struct sk_buff *skb1, **skb_p;
4411
4412        /* If skb is cloned or its head is paged, reallocate
4413         * head pulling out all the pages (pages are considered not writable
4414         * at the moment even if they are anonymous).
4415         */
4416        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4417            !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4418                return -ENOMEM;
4419
4420        /* Easy case. Most of packets will go this way. */
4421        if (!skb_has_frag_list(skb)) {
4422                /* A little of trouble, not enough of space for trailer.
4423                 * This should not happen, when stack is tuned to generate
4424                 * good frames. OK, on miss we reallocate and reserve even more
4425                 * space, 128 bytes is fair. */
4426
4427                if (skb_tailroom(skb) < tailbits &&
4428                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4429                        return -ENOMEM;
4430
4431                /* Voila! */
4432                *trailer = skb;
4433                return 1;
4434        }
4435
4436        /* Misery. We are in troubles, going to mincer fragments... */
4437
4438        elt = 1;
4439        skb_p = &skb_shinfo(skb)->frag_list;
4440        copyflag = 0;
4441
4442        while ((skb1 = *skb_p) != NULL) {
4443                int ntail = 0;
4444
4445                /* The fragment is partially pulled by someone,
4446                 * this can happen on input. Copy it and everything
4447                 * after it. */
4448
4449                if (skb_shared(skb1))
4450                        copyflag = 1;
4451
4452                /* If the skb is the last, worry about trailer. */
4453
4454                if (skb1->next == NULL && tailbits) {
4455                        if (skb_shinfo(skb1)->nr_frags ||
4456                            skb_has_frag_list(skb1) ||
4457                            skb_tailroom(skb1) < tailbits)
4458                                ntail = tailbits + 128;
4459                }
4460
4461                if (copyflag ||
4462                    skb_cloned(skb1) ||
4463                    ntail ||
4464                    skb_shinfo(skb1)->nr_frags ||
4465                    skb_has_frag_list(skb1)) {
4466                        struct sk_buff *skb2;
4467
4468                        /* Fuck, we are miserable poor guys... */
4469                        if (ntail == 0)
4470                                skb2 = skb_copy(skb1, GFP_ATOMIC);
4471                        else
4472                                skb2 = skb_copy_expand(skb1,
4473                                                       skb_headroom(skb1),
4474                                                       ntail,
4475                                                       GFP_ATOMIC);
4476                        if (unlikely(skb2 == NULL))
4477                                return -ENOMEM;
4478
4479                        if (skb1->sk)
4480                                skb_set_owner_w(skb2, skb1->sk);
4481
4482                        /* Looking around. Are we still alive?
4483                         * OK, link new skb, drop old one */
4484
4485                        skb2->next = skb1->next;
4486                        *skb_p = skb2;
4487                        kfree_skb(skb1);
4488                        skb1 = skb2;
4489                }
4490                elt++;
4491                *trailer = skb1;
4492                skb_p = &skb1->next;
4493        }
4494
4495        return elt;
4496}
4497EXPORT_SYMBOL_GPL(skb_cow_data);
4498
4499static void sock_rmem_free(struct sk_buff *skb)
4500{
4501        struct sock *sk = skb->sk;
4502
4503        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4504}
4505
4506static void skb_set_err_queue(struct sk_buff *skb)
4507{
4508        /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4509         * So, it is safe to (mis)use it to mark skbs on the error queue.
4510         */
4511        skb->pkt_type = PACKET_OUTGOING;
4512        BUILD_BUG_ON(PACKET_OUTGOING == 0);
4513}
4514
4515/*
4516 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4517 */
4518int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4519{
4520        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4521            (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4522                return -ENOMEM;
4523
4524        skb_orphan(skb);
4525        skb->sk = sk;
4526        skb->destructor = sock_rmem_free;
4527        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4528        skb_set_err_queue(skb);
4529
4530        /* before exiting rcu section, make sure dst is refcounted */
4531        skb_dst_force(skb);
4532
4533        skb_queue_tail(&sk->sk_error_queue, skb);
4534        if (!sock_flag(sk, SOCK_DEAD))
4535                sk->sk_error_report(sk);
4536        return 0;
4537}
4538EXPORT_SYMBOL(sock_queue_err_skb);
4539
4540static bool is_icmp_err_skb(const struct sk_buff *skb)
4541{
4542        return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4543                       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4544}
4545
4546struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4547{
4548        struct sk_buff_head *q = &sk->sk_error_queue;
4549        struct sk_buff *skb, *skb_next = NULL;
4550        bool icmp_next = false;
4551        unsigned long flags;
4552
4553        spin_lock_irqsave(&q->lock, flags);
4554        skb = __skb_dequeue(q);
4555        if (skb && (skb_next = skb_peek(q))) {
4556                icmp_next = is_icmp_err_skb(skb_next);
4557                if (icmp_next)
4558                        sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4559        }
4560        spin_unlock_irqrestore(&q->lock, flags);
4561
4562        if (is_icmp_err_skb(skb) && !icmp_next)
4563                sk->sk_err = 0;
4564
4565        if (skb_next)
4566                sk->sk_error_report(sk);
4567
4568        return skb;
4569}
4570EXPORT_SYMBOL(sock_dequeue_err_skb);
4571
4572/**
4573 * skb_clone_sk - create clone of skb, and take reference to socket
4574 * @skb: the skb to clone
4575 *
4576 * This function creates a clone of a buffer that holds a reference on
4577 * sk_refcnt.  Buffers created via this function are meant to be
4578 * returned using sock_queue_err_skb, or free via kfree_skb.
4579 *
4580 * When passing buffers allocated with this function to sock_queue_err_skb
4581 * it is necessary to wrap the call with sock_hold/sock_put in order to
4582 * prevent the socket from being released prior to being enqueued on
4583 * the sk_error_queue.
4584 */
4585struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4586{
4587        struct sock *sk = skb->sk;
4588        struct sk_buff *clone;
4589
4590        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4591                return NULL;
4592
4593        clone = skb_clone(skb, GFP_ATOMIC);
4594        if (!clone) {
4595                sock_put(sk);
4596                return NULL;
4597        }
4598
4599        clone->sk = sk;
4600        clone->destructor = sock_efree;
4601
4602        return clone;
4603}
4604EXPORT_SYMBOL(skb_clone_sk);
4605
4606static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4607                                        struct sock *sk,
4608                                        int tstype,
4609                                        bool opt_stats)
4610{
4611        struct sock_exterr_skb *serr;
4612        int err;
4613
4614        BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4615
4616        serr = SKB_EXT_ERR(skb);
4617        memset(serr, 0, sizeof(*serr));
4618        serr->ee.ee_errno = ENOMSG;
4619        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4620        serr->ee.ee_info = tstype;
4621        serr->opt_stats = opt_stats;
4622        serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4623        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4624                serr->ee.ee_data = skb_shinfo(skb)->tskey;
4625                if (sk->sk_protocol == IPPROTO_TCP &&
4626                    sk->sk_type == SOCK_STREAM)
4627                        serr->ee.ee_data -= sk->sk_tskey;
4628        }
4629
4630        err = sock_queue_err_skb(sk, skb);
4631
4632        if (err)
4633                kfree_skb(skb);
4634}
4635
4636static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4637{
4638        bool ret;
4639
4640        if (likely(sysctl_tstamp_allow_data || tsonly))
4641                return true;
4642
4643        read_lock_bh(&sk->sk_callback_lock);
4644        ret = sk->sk_socket && sk->sk_socket->file &&
4645              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4646        read_unlock_bh(&sk->sk_callback_lock);
4647        return ret;
4648}
4649
4650void skb_complete_tx_timestamp(struct sk_buff *skb,
4651                               struct skb_shared_hwtstamps *hwtstamps)
4652{
4653        struct sock *sk = skb->sk;
4654
4655        if (!skb_may_tx_timestamp(sk, false))
4656                goto err;
4657
4658        /* Take a reference to prevent skb_orphan() from freeing the socket,
4659         * but only if the socket refcount is not zero.
4660         */
4661        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4662                *skb_hwtstamps(skb) = *hwtstamps;
4663                __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4664                sock_put(sk);
4665                return;
4666        }
4667
4668err:
4669        kfree_skb(skb);
4670}
4671EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4672
4673void __skb_tstamp_tx(struct sk_buff *orig_skb,
4674                     struct skb_shared_hwtstamps *hwtstamps,
4675                     struct sock *sk, int tstype)
4676{
4677        struct sk_buff *skb;
4678        bool tsonly, opt_stats = false;
4679
4680        if (!sk)
4681                return;
4682
4683        if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4684            skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4685                return;
4686
4687        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4688        if (!skb_may_tx_timestamp(sk, tsonly))
4689                return;
4690
4691        if (tsonly) {
4692#ifdef CONFIG_INET
4693                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4694                    sk->sk_protocol == IPPROTO_TCP &&
4695                    sk->sk_type == SOCK_STREAM) {
4696                        skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4697                        opt_stats = true;
4698                } else
4699#endif
4700                        skb = alloc_skb(0, GFP_ATOMIC);
4701        } else {
4702                skb = skb_clone(orig_skb, GFP_ATOMIC);
4703        }
4704        if (!skb)
4705                return;
4706
4707        if (tsonly) {
4708                skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4709                                             SKBTX_ANY_TSTAMP;
4710                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4711        }
4712
4713        if (hwtstamps)
4714                *skb_hwtstamps(skb) = *hwtstamps;
4715        else
4716                skb->tstamp = ktime_get_real();
4717
4718        __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4719}
4720EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4721
4722void skb_tstamp_tx(struct sk_buff *orig_skb,
4723                   struct skb_shared_hwtstamps *hwtstamps)
4724{
4725        return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4726                               SCM_TSTAMP_SND);
4727}
4728EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4729
4730void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4731{
4732        struct sock *sk = skb->sk;
4733        struct sock_exterr_skb *serr;
4734        int err = 1;
4735
4736        skb->wifi_acked_valid = 1;
4737        skb->wifi_acked = acked;
4738
4739        serr = SKB_EXT_ERR(skb);
4740        memset(serr, 0, sizeof(*serr));
4741        serr->ee.ee_errno = ENOMSG;
4742        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4743
4744        /* Take a reference to prevent skb_orphan() from freeing the socket,
4745         * but only if the socket refcount is not zero.
4746         */
4747        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4748                err = sock_queue_err_skb(sk, skb);
4749                sock_put(sk);
4750        }
4751        if (err)
4752                kfree_skb(skb);
4753}
4754EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4755
4756/**
4757 * skb_partial_csum_set - set up and verify partial csum values for packet
4758 * @skb: the skb to set
4759 * @start: the number of bytes after skb->data to start checksumming.
4760 * @off: the offset from start to place the checksum.
4761 *
4762 * For untrusted partially-checksummed packets, we need to make sure the values
4763 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4764 *
4765 * This function checks and sets those values and skb->ip_summed: if this
4766 * returns false you should drop the packet.
4767 */
4768bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4769{
4770        u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4771        u32 csum_start = skb_headroom(skb) + (u32)start;
4772
4773        if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4774                net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4775                                     start, off, skb_headroom(skb), skb_headlen(skb));
4776                return false;
4777        }
4778        skb->ip_summed = CHECKSUM_PARTIAL;
4779        skb->csum_start = csum_start;
4780        skb->csum_offset = off;
4781        skb_set_transport_header(skb, start);
4782        return true;
4783}
4784EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4785
4786static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4787                               unsigned int max)
4788{
4789        if (skb_headlen(skb) >= len)
4790                return 0;
4791
4792        /* If we need to pullup then pullup to the max, so we
4793         * won't need to do it again.
4794         */
4795        if (max > skb->len)
4796                max = skb->len;
4797
4798        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4799                return -ENOMEM;
4800
4801        if (skb_headlen(skb) < len)
4802                return -EPROTO;
4803
4804        return 0;
4805}
4806
4807#define MAX_TCP_HDR_LEN (15 * 4)
4808
4809static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4810                                      typeof(IPPROTO_IP) proto,
4811                                      unsigned int off)
4812{
4813        int err;
4814
4815        switch (proto) {
4816        case IPPROTO_TCP:
4817                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4818                                          off + MAX_TCP_HDR_LEN);
4819                if (!err && !skb_partial_csum_set(skb, off,
4820                                                  offsetof(struct tcphdr,
4821                                                           check)))
4822                        err = -EPROTO;
4823                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4824
4825        case IPPROTO_UDP:
4826                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4827                                          off + sizeof(struct udphdr));
4828                if (!err && !skb_partial_csum_set(skb, off,
4829                                                  offsetof(struct udphdr,
4830                                                           check)))
4831                        err = -EPROTO;
4832                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4833        }
4834
4835        return ERR_PTR(-EPROTO);
4836}
4837
4838/* This value should be large enough to cover a tagged ethernet header plus
4839 * maximally sized IP and TCP or UDP headers.
4840 */
4841#define MAX_IP_HDR_LEN 128
4842
4843static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4844{
4845        unsigned int off;
4846        bool fragment;
4847        __sum16 *csum;
4848        int err;
4849
4850        fragment = false;
4851
4852        err = skb_maybe_pull_tail(skb,
4853                                  sizeof(struct iphdr),
4854                                  MAX_IP_HDR_LEN);
4855        if (err < 0)
4856                goto out;
4857
4858        if (ip_is_fragment(ip_hdr(skb)))
4859                fragment = true;
4860
4861        off = ip_hdrlen(skb);
4862
4863        err = -EPROTO;
4864
4865        if (fragment)
4866                goto out;
4867
4868        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4869        if (IS_ERR(csum))
4870                return PTR_ERR(csum);
4871
4872        if (recalculate)
4873                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4874                                           ip_hdr(skb)->daddr,
4875                                           skb->len - off,
4876                                           ip_hdr(skb)->protocol, 0);
4877        err = 0;
4878
4879out:
4880        return err;
4881}
4882
4883/* This value should be large enough to cover a tagged ethernet header plus
4884 * an IPv6 header, all options, and a maximal TCP or UDP header.
4885 */
4886#define MAX_IPV6_HDR_LEN 256
4887
4888#define OPT_HDR(type, skb, off) \
4889        (type *)(skb_network_header(skb) + (off))
4890
4891static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4892{
4893        int err;
4894        u8 nexthdr;
4895        unsigned int off;
4896        unsigned int len;
4897        bool fragment;
4898        bool done;
4899        __sum16 *csum;
4900
4901        fragment = false;
4902        done = false;
4903
4904        off = sizeof(struct ipv6hdr);
4905
4906        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4907        if (err < 0)
4908                goto out;
4909
4910        nexthdr = ipv6_hdr(skb)->nexthdr;
4911
4912        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4913        while (off <= len && !done) {
4914                switch (nexthdr) {
4915                case IPPROTO_DSTOPTS:
4916                case IPPROTO_HOPOPTS:
4917                case IPPROTO_ROUTING: {
4918                        struct ipv6_opt_hdr *hp;
4919
4920                        err = skb_maybe_pull_tail(skb,
4921                                                  off +
4922                                                  sizeof(struct ipv6_opt_hdr),
4923                                                  MAX_IPV6_HDR_LEN);
4924                        if (err < 0)
4925                                goto out;
4926
4927                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4928                        nexthdr = hp->nexthdr;
4929                        off += ipv6_optlen(hp);
4930                        break;
4931                }
4932                case IPPROTO_AH: {
4933                        struct ip_auth_hdr *hp;
4934
4935                        err = skb_maybe_pull_tail(skb,
4936                                                  off +
4937                                                  sizeof(struct ip_auth_hdr),
4938                                                  MAX_IPV6_HDR_LEN);
4939                        if (err < 0)
4940                                goto out;
4941
4942                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4943                        nexthdr = hp->nexthdr;
4944                        off += ipv6_authlen(hp);
4945                        break;
4946                }
4947                case IPPROTO_FRAGMENT: {
4948                        struct frag_hdr *hp;
4949
4950                        err = skb_maybe_pull_tail(skb,
4951                                                  off +
4952                                                  sizeof(struct frag_hdr),
4953                                                  MAX_IPV6_HDR_LEN);
4954                        if (err < 0)
4955                                goto out;
4956
4957                        hp = OPT_HDR(struct frag_hdr, skb, off);
4958
4959                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4960                                fragment = true;
4961
4962                        nexthdr = hp->nexthdr;
4963                        off += sizeof(struct frag_hdr);
4964                        break;
4965                }
4966                default:
4967                        done = true;
4968                        break;
4969                }
4970        }
4971
4972        err = -EPROTO;
4973
4974        if (!done || fragment)
4975                goto out;
4976
4977        csum = skb_checksum_setup_ip(skb, nexthdr, off);
4978        if (IS_ERR(csum))
4979                return PTR_ERR(csum);
4980
4981        if (recalculate)
4982                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4983                                         &ipv6_hdr(skb)->daddr,
4984                                         skb->len - off, nexthdr, 0);
4985        err = 0;
4986
4987out:
4988        return err;
4989}
4990
4991/**
4992 * skb_checksum_setup - set up partial checksum offset
4993 * @skb: the skb to set up
4994 * @recalculate: if true the pseudo-header checksum will be recalculated
4995 */
4996int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4997{
4998        int err;
4999
5000        switch (skb->protocol) {
5001        case htons(ETH_P_IP):
5002                err = skb_checksum_setup_ipv4(skb, recalculate);
5003                break;
5004
5005        case htons(ETH_P_IPV6):
5006                err = skb_checksum_setup_ipv6(skb, recalculate);
5007                break;
5008
5009        default:
5010                err = -EPROTO;
5011                break;
5012        }
5013
5014        return err;
5015}
5016EXPORT_SYMBOL(skb_checksum_setup);
5017
5018/**
5019 * skb_checksum_maybe_trim - maybe trims the given skb
5020 * @skb: the skb to check
5021 * @transport_len: the data length beyond the network header
5022 *
5023 * Checks whether the given skb has data beyond the given transport length.
5024 * If so, returns a cloned skb trimmed to this transport length.
5025 * Otherwise returns the provided skb. Returns NULL in error cases
5026 * (e.g. transport_len exceeds skb length or out-of-memory).
5027 *
5028 * Caller needs to set the skb transport header and free any returned skb if it
5029 * differs from the provided skb.
5030 */
5031static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5032                                               unsigned int transport_len)
5033{
5034        struct sk_buff *skb_chk;
5035        unsigned int len = skb_transport_offset(skb) + transport_len;
5036        int ret;
5037
5038        if (skb->len < len)
5039                return NULL;
5040        else if (skb->len == len)
5041                return skb;
5042
5043        skb_chk = skb_clone(skb, GFP_ATOMIC);
5044        if (!skb_chk)
5045                return NULL;
5046
5047        ret = pskb_trim_rcsum(skb_chk, len);
5048        if (ret) {
5049                kfree_skb(skb_chk);
5050                return NULL;
5051        }
5052
5053        return skb_chk;
5054}
5055
5056/**
5057 * skb_checksum_trimmed - validate checksum of an skb
5058 * @skb: the skb to check
5059 * @transport_len: the data length beyond the network header
5060 * @skb_chkf: checksum function to use
5061 *
5062 * Applies the given checksum function skb_chkf to the provided skb.
5063 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5064 *
5065 * If the skb has data beyond the given transport length, then a
5066 * trimmed & cloned skb is checked and returned.
5067 *
5068 * Caller needs to set the skb transport header and free any returned skb if it
5069 * differs from the provided skb.
5070 */
5071struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5072                                     unsigned int transport_len,
5073                                     __sum16(*skb_chkf)(struct sk_buff *skb))
5074{
5075        struct sk_buff *skb_chk;
5076        unsigned int offset = skb_transport_offset(skb);
5077        __sum16 ret;
5078
5079        skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5080        if (!skb_chk)
5081                goto err;
5082
5083        if (!pskb_may_pull(skb_chk, offset))
5084                goto err;
5085
5086        skb_pull_rcsum(skb_chk, offset);
5087        ret = skb_chkf(skb_chk);
5088        skb_push_rcsum(skb_chk, offset);
5089
5090        if (ret)
5091                goto err;
5092
5093        return skb_chk;
5094
5095err:
5096        if (skb_chk && skb_chk != skb)
5097                kfree_skb(skb_chk);
5098
5099        return NULL;
5100
5101}
5102EXPORT_SYMBOL(skb_checksum_trimmed);
5103
5104void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5105{
5106        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5107                             skb->dev->name);
5108}
5109EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5110
5111void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5112{
5113        if (head_stolen) {
5114                skb_release_head_state(skb);
5115                kmem_cache_free(skbuff_head_cache, skb);
5116        } else {
5117                __kfree_skb(skb);
5118        }
5119}
5120EXPORT_SYMBOL(kfree_skb_partial);
5121
5122/**
5123 * skb_try_coalesce - try to merge skb to prior one
5124 * @to: prior buffer
5125 * @from: buffer to add
5126 * @fragstolen: pointer to boolean
5127 * @delta_truesize: how much more was allocated than was requested
5128 */
5129bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5130                      bool *fragstolen, int *delta_truesize)
5131{
5132        struct skb_shared_info *to_shinfo, *from_shinfo;
5133        int i, delta, len = from->len;
5134
5135        *fragstolen = false;
5136
5137        if (skb_cloned(to))
5138                return false;
5139
5140        if (len <= skb_tailroom(to)) {
5141                if (len)
5142                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5143                *delta_truesize = 0;
5144                return true;
5145        }
5146
5147        to_shinfo = skb_shinfo(to);
5148        from_shinfo = skb_shinfo(from);
5149        if (to_shinfo->frag_list || from_shinfo->frag_list)
5150                return false;
5151        if (skb_zcopy(to) || skb_zcopy(from))
5152                return false;
5153
5154        if (skb_headlen(from) != 0) {
5155                struct page *page;
5156                unsigned int offset;
5157
5158                if (to_shinfo->nr_frags +
5159                    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5160                        return false;
5161
5162                if (skb_head_is_locked(from))
5163                        return false;
5164
5165                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5166
5167                page = virt_to_head_page(from->head);
5168                offset = from->data - (unsigned char *)page_address(page);
5169
5170                skb_fill_page_desc(to, to_shinfo->nr_frags,
5171                                   page, offset, skb_headlen(from));
5172                *fragstolen = true;
5173        } else {
5174                if (to_shinfo->nr_frags +
5175                    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5176                        return false;
5177
5178                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5179        }
5180
5181        WARN_ON_ONCE(delta < len);
5182
5183        memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5184               from_shinfo->frags,
5185               from_shinfo->nr_frags * sizeof(skb_frag_t));
5186        to_shinfo->nr_frags += from_shinfo->nr_frags;
5187
5188        if (!skb_cloned(from))
5189                from_shinfo->nr_frags = 0;
5190
5191        /* if the skb is not cloned this does nothing
5192         * since we set nr_frags to 0.
5193         */
5194        for (i = 0; i < from_shinfo->nr_frags; i++)
5195                __skb_frag_ref(&from_shinfo->frags[i]);
5196
5197        to->truesize += delta;
5198        to->len += len;
5199        to->data_len += len;
5200
5201        *delta_truesize = delta;
5202        return true;
5203}
5204EXPORT_SYMBOL(skb_try_coalesce);
5205
5206/**
5207 * skb_scrub_packet - scrub an skb
5208 *
5209 * @skb: buffer to clean
5210 * @xnet: packet is crossing netns
5211 *
5212 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5213 * into/from a tunnel. Some information have to be cleared during these
5214 * operations.
5215 * skb_scrub_packet can also be used to clean a skb before injecting it in
5216 * another namespace (@xnet == true). We have to clear all information in the
5217 * skb that could impact namespace isolation.
5218 */
5219void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5220{
5221        skb->pkt_type = PACKET_HOST;
5222        skb->skb_iif = 0;
5223        skb->ignore_df = 0;
5224        skb_dst_drop(skb);
5225        skb_ext_reset(skb);
5226        nf_reset_ct(skb);
5227        nf_reset_trace(skb);
5228
5229#ifdef CONFIG_NET_SWITCHDEV
5230        skb->offload_fwd_mark = 0;
5231        skb->offload_l3_fwd_mark = 0;
5232#endif
5233
5234        if (!xnet)
5235                return;
5236
5237        ipvs_reset(skb);
5238        skb->mark = 0;
5239        skb->tstamp = 0;
5240}
5241EXPORT_SYMBOL_GPL(skb_scrub_packet);
5242
5243/**
5244 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5245 *
5246 * @skb: GSO skb
5247 *
5248 * skb_gso_transport_seglen is used to determine the real size of the
5249 * individual segments, including Layer4 headers (TCP/UDP).
5250 *
5251 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5252 */
5253static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5254{
5255        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5256        unsigned int thlen = 0;
5257
5258        if (skb->encapsulation) {
5259                thlen = skb_inner_transport_header(skb) -
5260                        skb_transport_header(skb);
5261
5262                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5263                        thlen += inner_tcp_hdrlen(skb);
5264        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5265                thlen = tcp_hdrlen(skb);
5266        } else if (unlikely(skb_is_gso_sctp(skb))) {
5267                thlen = sizeof(struct sctphdr);
5268        } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5269                thlen = sizeof(struct udphdr);
5270        }
5271        /* UFO sets gso_size to the size of the fragmentation
5272         * payload, i.e. the size of the L4 (UDP) header is already
5273         * accounted for.
5274         */
5275        return thlen + shinfo->gso_size;
5276}
5277
5278/**
5279 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5280 *
5281 * @skb: GSO skb
5282 *
5283 * skb_gso_network_seglen is used to determine the real size of the
5284 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5285 *
5286 * The MAC/L2 header is not accounted for.
5287 */
5288static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5289{
5290        unsigned int hdr_len = skb_transport_header(skb) -
5291                               skb_network_header(skb);
5292
5293        return hdr_len + skb_gso_transport_seglen(skb);
5294}
5295
5296/**
5297 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5298 *
5299 * @skb: GSO skb
5300 *
5301 * skb_gso_mac_seglen is used to determine the real size of the
5302 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5303 * headers (TCP/UDP).
5304 */
5305static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5306{
5307        unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5308
5309        return hdr_len + skb_gso_transport_seglen(skb);
5310}
5311
5312/**
5313 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5314 *
5315 * There are a couple of instances where we have a GSO skb, and we
5316 * want to determine what size it would be after it is segmented.
5317 *
5318 * We might want to check:
5319 * -    L3+L4+payload size (e.g. IP forwarding)
5320 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5321 *
5322 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5323 *
5324 * @skb: GSO skb
5325 *
5326 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5327 *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5328 *
5329 * @max_len: The maximum permissible length.
5330 *
5331 * Returns true if the segmented length <= max length.
5332 */
5333static inline bool skb_gso_size_check(const struct sk_buff *skb,
5334                                      unsigned int seg_len,
5335                                      unsigned int max_len) {
5336        const struct skb_shared_info *shinfo = skb_shinfo(skb);
5337        const struct sk_buff *iter;
5338
5339        if (shinfo->gso_size != GSO_BY_FRAGS)
5340                return seg_len <= max_len;
5341
5342        /* Undo this so we can re-use header sizes */
5343        seg_len -= GSO_BY_FRAGS;
5344
5345        skb_walk_frags(skb, iter) {
5346                if (seg_len + skb_headlen(iter) > max_len)
5347                        return false;
5348        }
5349
5350        return true;
5351}
5352
5353/**
5354 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5355 *
5356 * @skb: GSO skb
5357 * @mtu: MTU to validate against
5358 *
5359 * skb_gso_validate_network_len validates if a given skb will fit a
5360 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5361 * payload.
5362 */
5363bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5364{
5365        return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5366}
5367EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5368
5369/**
5370 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5371 *
5372 * @skb: GSO skb
5373 * @len: length to validate against
5374 *
5375 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5376 * length once split, including L2, L3 and L4 headers and the payload.
5377 */
5378bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5379{
5380        return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5381}
5382EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5383
5384static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5385{
5386        int mac_len, meta_len;
5387        void *meta;
5388
5389        if (skb_cow(skb, skb_headroom(skb)) < 0) {
5390                kfree_skb(skb);
5391                return NULL;
5392        }
5393
5394        mac_len = skb->data - skb_mac_header(skb);
5395        if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5396                memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5397                        mac_len - VLAN_HLEN - ETH_TLEN);
5398        }
5399
5400        meta_len = skb_metadata_len(skb);
5401        if (meta_len) {
5402                meta = skb_metadata_end(skb) - meta_len;
5403                memmove(meta + VLAN_HLEN, meta, meta_len);
5404        }
5405
5406        skb->mac_header += VLAN_HLEN;
5407        return skb;
5408}
5409
5410struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5411{
5412        struct vlan_hdr *vhdr;
5413        u16 vlan_tci;
5414
5415        if (unlikely(skb_vlan_tag_present(skb))) {
5416                /* vlan_tci is already set-up so leave this for another time */
5417                return skb;
5418        }
5419
5420        skb = skb_share_check(skb, GFP_ATOMIC);
5421        if (unlikely(!skb))
5422                goto err_free;
5423        /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5424        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5425                goto err_free;
5426
5427        vhdr = (struct vlan_hdr *)skb->data;
5428        vlan_tci = ntohs(vhdr->h_vlan_TCI);
5429        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5430
5431        skb_pull_rcsum(skb, VLAN_HLEN);
5432        vlan_set_encap_proto(skb, vhdr);
5433
5434        skb = skb_reorder_vlan_header(skb);
5435        if (unlikely(!skb))
5436                goto err_free;
5437
5438        skb_reset_network_header(skb);
5439        skb_reset_transport_header(skb);
5440        skb_reset_mac_len(skb);
5441
5442        return skb;
5443
5444err_free:
5445        kfree_skb(skb);
5446        return NULL;
5447}
5448EXPORT_SYMBOL(skb_vlan_untag);
5449
5450int skb_ensure_writable(struct sk_buff *skb, int write_len)
5451{
5452        if (!pskb_may_pull(skb, write_len))
5453                return -ENOMEM;
5454
5455        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5456                return 0;
5457
5458        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5459}
5460EXPORT_SYMBOL(skb_ensure_writable);
5461
5462/* remove VLAN header from packet and update csum accordingly.
5463 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5464 */
5465int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5466{
5467        struct vlan_hdr *vhdr;
5468        int offset = skb->data - skb_mac_header(skb);
5469        int err;
5470
5471        if (WARN_ONCE(offset,
5472                      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5473                      offset)) {
5474                return -EINVAL;
5475        }
5476
5477        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5478        if (unlikely(err))
5479                return err;
5480
5481        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5482
5483        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5484        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5485
5486        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5487        __skb_pull(skb, VLAN_HLEN);
5488
5489        vlan_set_encap_proto(skb, vhdr);
5490        skb->mac_header += VLAN_HLEN;
5491
5492        if (skb_network_offset(skb) < ETH_HLEN)
5493                skb_set_network_header(skb, ETH_HLEN);
5494
5495        skb_reset_mac_len(skb);
5496
5497        return err;
5498}
5499EXPORT_SYMBOL(__skb_vlan_pop);
5500
5501/* Pop a vlan tag either from hwaccel or from payload.
5502 * Expects skb->data at mac header.
5503 */
5504int skb_vlan_pop(struct sk_buff *skb)
5505{
5506        u16 vlan_tci;
5507        __be16 vlan_proto;
5508        int err;
5509
5510        if (likely(skb_vlan_tag_present(skb))) {
5511                __vlan_hwaccel_clear_tag(skb);
5512        } else {
5513                if (unlikely(!eth_type_vlan(skb->protocol)))
5514                        return 0;
5515
5516                err = __skb_vlan_pop(skb, &vlan_tci);
5517                if (err)
5518                        return err;
5519        }
5520        /* move next vlan tag to hw accel tag */
5521        if (likely(!eth_type_vlan(skb->protocol)))
5522                return 0;
5523
5524        vlan_proto = skb->protocol;
5525        err = __skb_vlan_pop(skb, &vlan_tci);
5526        if (unlikely(err))
5527                return err;
5528
5529        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5530        return 0;
5531}
5532EXPORT_SYMBOL(skb_vlan_pop);
5533
5534/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5535 * Expects skb->data at mac header.
5536 */
5537int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5538{
5539        if (skb_vlan_tag_present(skb)) {
5540                int offset = skb->data - skb_mac_header(skb);
5541                int err;
5542
5543                if (WARN_ONCE(offset,
5544                              "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5545                              offset)) {
5546                        return -EINVAL;
5547                }
5548
5549                err = __vlan_insert_tag(skb, skb->vlan_proto,
5550                                        skb_vlan_tag_get(skb));
5551                if (err)
5552                        return err;
5553
5554                skb->protocol = skb->vlan_proto;
5555                skb->mac_len += VLAN_HLEN;
5556
5557                skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5558        }
5559        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5560        return 0;
5561}
5562EXPORT_SYMBOL(skb_vlan_push);
5563
5564/* Update the ethertype of hdr and the skb csum value if required. */
5565static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5566                             __be16 ethertype)
5567{
5568        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5569                __be16 diff[] = { ~hdr->h_proto, ethertype };
5570
5571                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5572        }
5573
5574        hdr->h_proto = ethertype;
5575}
5576
5577/**
5578 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5579 *                   the packet
5580 *
5581 * @skb: buffer
5582 * @mpls_lse: MPLS label stack entry to push
5583 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5584 * @mac_len: length of the MAC header
5585 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5586 *            ethernet
5587 *
5588 * Expects skb->data at mac header.
5589 *
5590 * Returns 0 on success, -errno otherwise.
5591 */
5592int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5593                  int mac_len, bool ethernet)
5594{
5595        struct mpls_shim_hdr *lse;
5596        int err;
5597
5598        if (unlikely(!eth_p_mpls(mpls_proto)))
5599                return -EINVAL;
5600
5601        /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5602        if (skb->encapsulation)
5603                return -EINVAL;
5604
5605        err = skb_cow_head(skb, MPLS_HLEN);
5606        if (unlikely(err))
5607                return err;
5608
5609        if (!skb->inner_protocol) {
5610                skb_set_inner_network_header(skb, skb_network_offset(skb));
5611                skb_set_inner_protocol(skb, skb->protocol);
5612        }
5613
5614        skb_push(skb, MPLS_HLEN);
5615        memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5616                mac_len);
5617        skb_reset_mac_header(skb);
5618        skb_set_network_header(skb, mac_len);
5619        skb_reset_mac_len(skb);
5620
5621        lse = mpls_hdr(skb);
5622        lse->label_stack_entry = mpls_lse;
5623        skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5624
5625        if (ethernet && mac_len >= ETH_HLEN)
5626                skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5627        skb->protocol = mpls_proto;
5628
5629        return 0;
5630}
5631EXPORT_SYMBOL_GPL(skb_mpls_push);
5632
5633/**
5634 * skb_mpls_pop() - pop the outermost MPLS header
5635 *
5636 * @skb: buffer
5637 * @next_proto: ethertype of header after popped MPLS header
5638 * @mac_len: length of the MAC header
5639 * @ethernet: flag to indicate if the packet is ethernet
5640 *
5641 * Expects skb->data at mac header.
5642 *
5643 * Returns 0 on success, -errno otherwise.
5644 */
5645int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5646                 bool ethernet)
5647{
5648        int err;
5649
5650        if (unlikely(!eth_p_mpls(skb->protocol)))
5651                return 0;
5652
5653        err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5654        if (unlikely(err))
5655                return err;
5656
5657        skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5658        memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5659                mac_len);
5660
5661        __skb_pull(skb, MPLS_HLEN);
5662        skb_reset_mac_header(skb);
5663        skb_set_network_header(skb, mac_len);
5664
5665        if (ethernet && mac_len >= ETH_HLEN) {
5666                struct ethhdr *hdr;
5667
5668                /* use mpls_hdr() to get ethertype to account for VLANs. */
5669                hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5670                skb_mod_eth_type(skb, hdr, next_proto);
5671        }
5672        skb->protocol = next_proto;
5673
5674        return 0;
5675}
5676EXPORT_SYMBOL_GPL(skb_mpls_pop);
5677
5678/**
5679 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5680 *
5681 * @skb: buffer
5682 * @mpls_lse: new MPLS label stack entry to update to
5683 *
5684 * Expects skb->data at mac header.
5685 *
5686 * Returns 0 on success, -errno otherwise.
5687 */
5688int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5689{
5690        int err;
5691
5692        if (unlikely(!eth_p_mpls(skb->protocol)))
5693                return -EINVAL;
5694
5695        err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5696        if (unlikely(err))
5697                return err;
5698
5699        if (skb->ip_summed == CHECKSUM_COMPLETE) {
5700                __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5701
5702                skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5703        }
5704
5705        mpls_hdr(skb)->label_stack_entry = mpls_lse;
5706
5707        return 0;
5708}
5709EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5710
5711/**
5712 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5713 *
5714 * @skb: buffer
5715 *
5716 * Expects skb->data at mac header.
5717 *
5718 * Returns 0 on success, -errno otherwise.
5719 */
5720int skb_mpls_dec_ttl(struct sk_buff *skb)
5721{
5722        u32 lse;
5723        u8 ttl;
5724
5725        if (unlikely(!eth_p_mpls(skb->protocol)))
5726                return -EINVAL;
5727
5728        lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5729        ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5730        if (!--ttl)
5731                return -EINVAL;
5732
5733        lse &= ~MPLS_LS_TTL_MASK;
5734        lse |= ttl << MPLS_LS_TTL_SHIFT;
5735
5736        return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5737}
5738EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5739
5740/**
5741 * alloc_skb_with_frags - allocate skb with page frags
5742 *
5743 * @header_len: size of linear part
5744 * @data_len: needed length in frags
5745 * @max_page_order: max page order desired.
5746 * @errcode: pointer to error code if any
5747 * @gfp_mask: allocation mask
5748 *
5749 * This can be used to allocate a paged skb, given a maximal order for frags.
5750 */
5751struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5752                                     unsigned long data_len,
5753                                     int max_page_order,
5754                                     int *errcode,
5755                                     gfp_t gfp_mask)
5756{
5757        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5758        unsigned long chunk;
5759        struct sk_buff *skb;
5760        struct page *page;
5761        int i;
5762
5763        *errcode = -EMSGSIZE;
5764        /* Note this test could be relaxed, if we succeed to allocate
5765         * high order pages...
5766         */
5767        if (npages > MAX_SKB_FRAGS)
5768                return NULL;
5769
5770        *errcode = -ENOBUFS;
5771        skb = alloc_skb(header_len, gfp_mask);
5772        if (!skb)
5773                return NULL;
5774
5775        skb->truesize += npages << PAGE_SHIFT;
5776
5777        for (i = 0; npages > 0; i++) {
5778                int order = max_page_order;
5779
5780                while (order) {
5781                        if (npages >= 1 << order) {
5782                                page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5783                                                   __GFP_COMP |
5784                                                   __GFP_NOWARN,
5785                                                   order);
5786                                if (page)
5787                                        goto fill_page;
5788                                /* Do not retry other high order allocations */
5789                                order = 1;
5790                                max_page_order = 0;
5791                        }
5792                        order--;
5793                }
5794                page = alloc_page(gfp_mask);
5795                if (!page)
5796                        goto failure;
5797fill_page:
5798                chunk = min_t(unsigned long, data_len,
5799                              PAGE_SIZE << order);
5800                skb_fill_page_desc(skb, i, page, 0, chunk);
5801                data_len -= chunk;
5802                npages -= 1 << order;
5803        }
5804        return skb;
5805
5806failure:
5807        kfree_skb(skb);
5808        return NULL;
5809}
5810EXPORT_SYMBOL(alloc_skb_with_frags);
5811
5812/* carve out the first off bytes from skb when off < headlen */
5813static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5814                                    const int headlen, gfp_t gfp_mask)
5815{
5816        int i;
5817        int size = skb_end_offset(skb);
5818        int new_hlen = headlen - off;
5819        u8 *data;
5820
5821        size = SKB_DATA_ALIGN(size);
5822
5823        if (skb_pfmemalloc(skb))
5824                gfp_mask |= __GFP_MEMALLOC;
5825        data = kmalloc_reserve(size +
5826                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5827                               gfp_mask, NUMA_NO_NODE, NULL);
5828        if (!data)
5829                return -ENOMEM;
5830
5831        size = SKB_WITH_OVERHEAD(ksize(data));
5832
5833        /* Copy real data, and all frags */
5834        skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5835        skb->len -= off;
5836
5837        memcpy((struct skb_shared_info *)(data + size),
5838               skb_shinfo(skb),
5839               offsetof(struct skb_shared_info,
5840                        frags[skb_shinfo(skb)->nr_frags]));
5841        if (skb_cloned(skb)) {
5842                /* drop the old head gracefully */
5843                if (skb_orphan_frags(skb, gfp_mask)) {
5844                        kfree(data);
5845                        return -ENOMEM;
5846                }
5847                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5848                        skb_frag_ref(skb, i);
5849                if (skb_has_frag_list(skb))
5850                        skb_clone_fraglist(skb);
5851                skb_release_data(skb);
5852        } else {
5853                /* we can reuse existing recount- all we did was
5854                 * relocate values
5855                 */
5856                skb_free_head(skb);
5857        }
5858
5859        skb->head = data;
5860        skb->data = data;
5861        skb->head_frag = 0;
5862#ifdef NET_SKBUFF_DATA_USES_OFFSET
5863        skb->end = size;
5864#else
5865        skb->end = skb->head + size;
5866#endif
5867        skb_set_tail_pointer(skb, skb_headlen(skb));
5868        skb_headers_offset_update(skb, 0);
5869        skb->cloned = 0;
5870        skb->hdr_len = 0;
5871        skb->nohdr = 0;
5872        atomic_set(&skb_shinfo(skb)->dataref, 1);
5873
5874        return 0;
5875}
5876
5877static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5878
5879/* carve out the first eat bytes from skb's frag_list. May recurse into
5880 * pskb_carve()
5881 */
5882static int pskb_carve_frag_list(struct sk_buff *skb,
5883                                struct skb_shared_info *shinfo, int eat,
5884                                gfp_t gfp_mask)
5885{
5886        struct sk_buff *list = shinfo->frag_list;
5887        struct sk_buff *clone = NULL;
5888        struct sk_buff *insp = NULL;
5889
5890        do {
5891                if (!list) {
5892                        pr_err("Not enough bytes to eat. Want %d\n", eat);
5893                        return -EFAULT;
5894                }
5895                if (list->len <= eat) {
5896                        /* Eaten as whole. */
5897                        eat -= list->len;
5898                        list = list->next;
5899                        insp = list;
5900                } else {
5901                        /* Eaten partially. */
5902                        if (skb_shared(list)) {
5903                                clone = skb_clone(list, gfp_mask);
5904                                if (!clone)
5905                                        return -ENOMEM;
5906                                insp = list->next;
5907                                list = clone;
5908                        } else {
5909                                /* This may be pulled without problems. */
5910                                insp = list;
5911                        }
5912                        if (pskb_carve(list, eat, gfp_mask) < 0) {
5913                                kfree_skb(clone);
5914                                return -ENOMEM;
5915                        }
5916                        break;
5917                }
5918        } while (eat);
5919
5920        /* Free pulled out fragments. */
5921        while ((list = shinfo->frag_list) != insp) {
5922                shinfo->frag_list = list->next;
5923                kfree_skb(list);
5924        }
5925        /* And insert new clone at head. */
5926        if (clone) {
5927                clone->next = list;
5928                shinfo->frag_list = clone;
5929        }
5930        return 0;
5931}
5932
5933/* carve off first len bytes from skb. Split line (off) is in the
5934 * non-linear part of skb
5935 */
5936static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5937                                       int pos, gfp_t gfp_mask)
5938{
5939        int i, k = 0;
5940        int size = skb_end_offset(skb);
5941        u8 *data;
5942        const int nfrags = skb_shinfo(skb)->nr_frags;
5943        struct skb_shared_info *shinfo;
5944
5945        size = SKB_DATA_ALIGN(size);
5946
5947        if (skb_pfmemalloc(skb))
5948                gfp_mask |= __GFP_MEMALLOC;
5949        data = kmalloc_reserve(size +
5950                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5951                               gfp_mask, NUMA_NO_NODE, NULL);
5952        if (!data)
5953                return -ENOMEM;
5954
5955        size = SKB_WITH_OVERHEAD(ksize(data));
5956
5957        memcpy((struct skb_shared_info *)(data + size),
5958               skb_shinfo(skb), offsetof(struct skb_shared_info,
5959                                         frags[skb_shinfo(skb)->nr_frags]));
5960        if (skb_orphan_frags(skb, gfp_mask)) {
5961                kfree(data);
5962                return -ENOMEM;
5963        }
5964        shinfo = (struct skb_shared_info *)(data + size);
5965        for (i = 0; i < nfrags; i++) {
5966                int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5967
5968                if (pos + fsize > off) {
5969                        shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5970
5971                        if (pos < off) {
5972                                /* Split frag.
5973                                 * We have two variants in this case:
5974                                 * 1. Move all the frag to the second
5975                                 *    part, if it is possible. F.e.
5976                                 *    this approach is mandatory for TUX,
5977                                 *    where splitting is expensive.
5978                                 * 2. Split is accurately. We make this.
5979                                 */
5980                                skb_frag_off_add(&shinfo->frags[0], off - pos);
5981                                skb_frag_size_sub(&shinfo->frags[0], off - pos);
5982                        }
5983                        skb_frag_ref(skb, i);
5984                        k++;
5985                }
5986                pos += fsize;
5987        }
5988        shinfo->nr_frags = k;
5989        if (skb_has_frag_list(skb))
5990                skb_clone_fraglist(skb);
5991
5992        /* split line is in frag list */
5993        if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
5994                /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
5995                if (skb_has_frag_list(skb))
5996                        kfree_skb_list(skb_shinfo(skb)->frag_list);
5997                kfree(data);
5998                return -ENOMEM;
5999        }
6000        skb_release_data(skb);
6001
6002        skb->head = data;
6003        skb->head_frag = 0;
6004        skb->data = data;
6005#ifdef NET_SKBUFF_DATA_USES_OFFSET
6006        skb->end = size;
6007#else
6008        skb->end = skb->head + size;
6009#endif
6010        skb_reset_tail_pointer(skb);
6011        skb_headers_offset_update(skb, 0);
6012        skb->cloned   = 0;
6013        skb->hdr_len  = 0;
6014        skb->nohdr    = 0;
6015        skb->len -= off;
6016        skb->data_len = skb->len;
6017        atomic_set(&skb_shinfo(skb)->dataref, 1);
6018        return 0;
6019}
6020
6021/* remove len bytes from the beginning of the skb */
6022static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6023{
6024        int headlen = skb_headlen(skb);
6025
6026        if (len < headlen)
6027                return pskb_carve_inside_header(skb, len, headlen, gfp);
6028        else
6029                return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6030}
6031
6032/* Extract to_copy bytes starting at off from skb, and return this in
6033 * a new skb
6034 */
6035struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6036                             int to_copy, gfp_t gfp)
6037{
6038        struct sk_buff  *clone = skb_clone(skb, gfp);
6039
6040        if (!clone)
6041                return NULL;
6042
6043        if (pskb_carve(clone, off, gfp) < 0 ||
6044            pskb_trim(clone, to_copy)) {
6045                kfree_skb(clone);
6046                return NULL;
6047        }
6048        return clone;
6049}
6050EXPORT_SYMBOL(pskb_extract);
6051
6052/**
6053 * skb_condense - try to get rid of fragments/frag_list if possible
6054 * @skb: buffer
6055 *
6056 * Can be used to save memory before skb is added to a busy queue.
6057 * If packet has bytes in frags and enough tail room in skb->head,
6058 * pull all of them, so that we can free the frags right now and adjust
6059 * truesize.
6060 * Notes:
6061 *      We do not reallocate skb->head thus can not fail.
6062 *      Caller must re-evaluate skb->truesize if needed.
6063 */
6064void skb_condense(struct sk_buff *skb)
6065{
6066        if (skb->data_len) {
6067                if (skb->data_len > skb->end - skb->tail ||
6068                    skb_cloned(skb))
6069                        return;
6070
6071                /* Nice, we can free page frag(s) right now */
6072                __pskb_pull_tail(skb, skb->data_len);
6073        }
6074        /* At this point, skb->truesize might be over estimated,
6075         * because skb had a fragment, and fragments do not tell
6076         * their truesize.
6077         * When we pulled its content into skb->head, fragment
6078         * was freed, but __pskb_pull_tail() could not possibly
6079         * adjust skb->truesize, not knowing the frag truesize.
6080         */
6081        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6082}
6083
6084#ifdef CONFIG_SKB_EXTENSIONS
6085static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6086{
6087        return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6088}
6089
6090/**
6091 * __skb_ext_alloc - allocate a new skb extensions storage
6092 *
6093 * @flags: See kmalloc().
6094 *
6095 * Returns the newly allocated pointer. The pointer can later attached to a
6096 * skb via __skb_ext_set().
6097 * Note: caller must handle the skb_ext as an opaque data.
6098 */
6099struct skb_ext *__skb_ext_alloc(gfp_t flags)
6100{
6101        struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6102
6103        if (new) {
6104                memset(new->offset, 0, sizeof(new->offset));
6105                refcount_set(&new->refcnt, 1);
6106        }
6107
6108        return new;
6109}
6110
6111static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6112                                         unsigned int old_active)
6113{
6114        struct skb_ext *new;
6115
6116        if (refcount_read(&old->refcnt) == 1)
6117                return old;
6118
6119        new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6120        if (!new)
6121                return NULL;
6122
6123        memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6124        refcount_set(&new->refcnt, 1);
6125
6126#ifdef CONFIG_XFRM
6127        if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6128                struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6129                unsigned int i;
6130
6131                for (i = 0; i < sp->len; i++)
6132                        xfrm_state_hold(sp->xvec[i]);
6133        }
6134#endif
6135        __skb_ext_put(old);
6136        return new;
6137}
6138
6139/**
6140 * __skb_ext_set - attach the specified extension storage to this skb
6141 * @skb: buffer
6142 * @id: extension id
6143 * @ext: extension storage previously allocated via __skb_ext_alloc()
6144 *
6145 * Existing extensions, if any, are cleared.
6146 *
6147 * Returns the pointer to the extension.
6148 */
6149void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6150                    struct skb_ext *ext)
6151{
6152        unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6153
6154        skb_ext_put(skb);
6155        newlen = newoff + skb_ext_type_len[id];
6156        ext->chunks = newlen;
6157        ext->offset[id] = newoff;
6158        skb->extensions = ext;
6159        skb->active_extensions = 1 << id;
6160        return skb_ext_get_ptr(ext, id);
6161}
6162
6163/**
6164 * skb_ext_add - allocate space for given extension, COW if needed
6165 * @skb: buffer
6166 * @id: extension to allocate space for
6167 *
6168 * Allocates enough space for the given extension.
6169 * If the extension is already present, a pointer to that extension
6170 * is returned.
6171 *
6172 * If the skb was cloned, COW applies and the returned memory can be
6173 * modified without changing the extension space of clones buffers.
6174 *
6175 * Returns pointer to the extension or NULL on allocation failure.
6176 */
6177void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6178{
6179        struct skb_ext *new, *old = NULL;
6180        unsigned int newlen, newoff;
6181
6182        if (skb->active_extensions) {
6183                old = skb->extensions;
6184
6185                new = skb_ext_maybe_cow(old, skb->active_extensions);
6186                if (!new)
6187                        return NULL;
6188
6189                if (__skb_ext_exist(new, id))
6190                        goto set_active;
6191
6192                newoff = new->chunks;
6193        } else {
6194                newoff = SKB_EXT_CHUNKSIZEOF(*new);
6195
6196                new = __skb_ext_alloc(GFP_ATOMIC);
6197                if (!new)
6198                        return NULL;
6199        }
6200
6201        newlen = newoff + skb_ext_type_len[id];
6202        new->chunks = newlen;
6203        new->offset[id] = newoff;
6204set_active:
6205        skb->extensions = new;
6206        skb->active_extensions |= 1 << id;
6207        return skb_ext_get_ptr(new, id);
6208}
6209EXPORT_SYMBOL(skb_ext_add);
6210
6211#ifdef CONFIG_XFRM
6212static void skb_ext_put_sp(struct sec_path *sp)
6213{
6214        unsigned int i;
6215
6216        for (i = 0; i < sp->len; i++)
6217                xfrm_state_put(sp->xvec[i]);
6218}
6219#endif
6220
6221void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6222{
6223        struct skb_ext *ext = skb->extensions;
6224
6225        skb->active_extensions &= ~(1 << id);
6226        if (skb->active_extensions == 0) {
6227                skb->extensions = NULL;
6228                __skb_ext_put(ext);
6229#ifdef CONFIG_XFRM
6230        } else if (id == SKB_EXT_SEC_PATH &&
6231                   refcount_read(&ext->refcnt) == 1) {
6232                struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6233
6234                skb_ext_put_sp(sp);
6235                sp->len = 0;
6236#endif
6237        }
6238}
6239EXPORT_SYMBOL(__skb_ext_del);
6240
6241void __skb_ext_put(struct skb_ext *ext)
6242{
6243        /* If this is last clone, nothing can increment
6244         * it after check passes.  Avoids one atomic op.
6245         */
6246        if (refcount_read(&ext->refcnt) == 1)
6247                goto free_now;
6248
6249        if (!refcount_dec_and_test(&ext->refcnt))
6250                return;
6251free_now:
6252#ifdef CONFIG_XFRM
6253        if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6254                skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6255#endif
6256
6257        kmem_cache_free(skbuff_ext_cache, ext);
6258}
6259EXPORT_SYMBOL(__skb_ext_put);
6260#endif /* CONFIG_SKB_EXTENSIONS */
6261