linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:     Ross Biro
  10 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche, <flla@stud.uni-sb.de>
  14 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *              Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *              Pedro Roque     :       Fast Retransmit/Recovery.
  25 *                                      Two receive queues.
  26 *                                      Retransmit queue handled by TCP.
  27 *                                      Better retransmit timer handling.
  28 *                                      New congestion avoidance.
  29 *                                      Header prediction.
  30 *                                      Variable renaming.
  31 *
  32 *              Eric            :       Fast Retransmit.
  33 *              Randy Scott     :       MSS option defines.
  34 *              Eric Schenk     :       Fixes to slow start algorithm.
  35 *              Eric Schenk     :       Yet another double ACK bug.
  36 *              Eric Schenk     :       Delayed ACK bug fixes.
  37 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  38 *              David S. Miller :       Don't allow zero congestion window.
  39 *              Eric Schenk     :       Fix retransmitter so that it sends
  40 *                                      next packet on ack of previous packet.
  41 *              Andi Kleen      :       Moved open_request checking here
  42 *                                      and process RSTs for open_requests.
  43 *              Andi Kleen      :       Better prune_queue, and other fixes.
  44 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  45 *                                      timestamps.
  46 *              Andrey Savochkin:       Check sequence numbers correctly when
  47 *                                      removing SACKs due to in sequence incoming
  48 *                                      data segments.
  49 *              Andi Kleen:             Make sure we never ack data there is not
  50 *                                      enough room for. Also make this condition
  51 *                                      a fatal error if it might still happen.
  52 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  53 *                                      connections with MSS<min(MTU,ann. MSS)
  54 *                                      work without delayed acks.
  55 *              Andi Kleen:             Process packets with PSH set in the
  56 *                                      fast path.
  57 *              J Hadi Salim:           ECN support
  58 *              Andrei Gurtov,
  59 *              Pasi Sarolahti,
  60 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  61 *                                      engine. Lots of bugs are found.
  62 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82#include <net/mptcp.h>
  83
  84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  85
  86#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
  87#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
  88#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
  89#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
  90#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
  91#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
  92#define FLAG_ECE                0x40 /* ECE in this ACK                         */
  93#define FLAG_LOST_RETRANS       0x80 /* This ACK marks some retransmission lost */
  94#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
  95#define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
  96#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  97#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
  98#define FLAG_SET_XMIT_TIMER     0x1000 /* Set TLP or RTO timer */
  99#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
 100#define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
 101#define FLAG_NO_CHALLENGE_ACK   0x8000 /* do not call tcp_send_challenge_ack()  */
 102#define FLAG_ACK_MAYBE_DELAYED  0x10000 /* Likely a delayed ACK */
 103
 104#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 105#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 106#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 107#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 108
 109#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 110#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 111
 112#define REXMIT_NONE     0 /* no loss recovery to do */
 113#define REXMIT_LOST     1 /* retransmit packets marked lost */
 114#define REXMIT_NEW      2 /* FRTO-style transmit of unsent/new packets */
 115
 116#if IS_ENABLED(CONFIG_TLS_DEVICE)
 117static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 118
 119void clean_acked_data_enable(struct inet_connection_sock *icsk,
 120                             void (*cad)(struct sock *sk, u32 ack_seq))
 121{
 122        icsk->icsk_clean_acked = cad;
 123        static_branch_deferred_inc(&clean_acked_data_enabled);
 124}
 125EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 126
 127void clean_acked_data_disable(struct inet_connection_sock *icsk)
 128{
 129        static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 130        icsk->icsk_clean_acked = NULL;
 131}
 132EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 133
 134void clean_acked_data_flush(void)
 135{
 136        static_key_deferred_flush(&clean_acked_data_enabled);
 137}
 138EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 139#endif
 140
 141static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 142                             unsigned int len)
 143{
 144        static bool __once __read_mostly;
 145
 146        if (!__once) {
 147                struct net_device *dev;
 148
 149                __once = true;
 150
 151                rcu_read_lock();
 152                dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 153                if (!dev || len >= dev->mtu)
 154                        pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 155                                dev ? dev->name : "Unknown driver");
 156                rcu_read_unlock();
 157        }
 158}
 159
 160/* Adapt the MSS value used to make delayed ack decision to the
 161 * real world.
 162 */
 163static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 164{
 165        struct inet_connection_sock *icsk = inet_csk(sk);
 166        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 167        unsigned int len;
 168
 169        icsk->icsk_ack.last_seg_size = 0;
 170
 171        /* skb->len may jitter because of SACKs, even if peer
 172         * sends good full-sized frames.
 173         */
 174        len = skb_shinfo(skb)->gso_size ? : skb->len;
 175        if (len >= icsk->icsk_ack.rcv_mss) {
 176                icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 177                                               tcp_sk(sk)->advmss);
 178                /* Account for possibly-removed options */
 179                if (unlikely(len > icsk->icsk_ack.rcv_mss +
 180                                   MAX_TCP_OPTION_SPACE))
 181                        tcp_gro_dev_warn(sk, skb, len);
 182        } else {
 183                /* Otherwise, we make more careful check taking into account,
 184                 * that SACKs block is variable.
 185                 *
 186                 * "len" is invariant segment length, including TCP header.
 187                 */
 188                len += skb->data - skb_transport_header(skb);
 189                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 190                    /* If PSH is not set, packet should be
 191                     * full sized, provided peer TCP is not badly broken.
 192                     * This observation (if it is correct 8)) allows
 193                     * to handle super-low mtu links fairly.
 194                     */
 195                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 196                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 197                        /* Subtract also invariant (if peer is RFC compliant),
 198                         * tcp header plus fixed timestamp option length.
 199                         * Resulting "len" is MSS free of SACK jitter.
 200                         */
 201                        len -= tcp_sk(sk)->tcp_header_len;
 202                        icsk->icsk_ack.last_seg_size = len;
 203                        if (len == lss) {
 204                                icsk->icsk_ack.rcv_mss = len;
 205                                return;
 206                        }
 207                }
 208                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 209                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 210                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 211        }
 212}
 213
 214static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 215{
 216        struct inet_connection_sock *icsk = inet_csk(sk);
 217        unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 218
 219        if (quickacks == 0)
 220                quickacks = 2;
 221        quickacks = min(quickacks, max_quickacks);
 222        if (quickacks > icsk->icsk_ack.quick)
 223                icsk->icsk_ack.quick = quickacks;
 224}
 225
 226void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 227{
 228        struct inet_connection_sock *icsk = inet_csk(sk);
 229
 230        tcp_incr_quickack(sk, max_quickacks);
 231        inet_csk_exit_pingpong_mode(sk);
 232        icsk->icsk_ack.ato = TCP_ATO_MIN;
 233}
 234EXPORT_SYMBOL(tcp_enter_quickack_mode);
 235
 236/* Send ACKs quickly, if "quick" count is not exhausted
 237 * and the session is not interactive.
 238 */
 239
 240static bool tcp_in_quickack_mode(struct sock *sk)
 241{
 242        const struct inet_connection_sock *icsk = inet_csk(sk);
 243        const struct dst_entry *dst = __sk_dst_get(sk);
 244
 245        return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 246                (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 247}
 248
 249static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 250{
 251        if (tp->ecn_flags & TCP_ECN_OK)
 252                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 253}
 254
 255static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 256{
 257        if (tcp_hdr(skb)->cwr) {
 258                tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 259
 260                /* If the sender is telling us it has entered CWR, then its
 261                 * cwnd may be very low (even just 1 packet), so we should ACK
 262                 * immediately.
 263                 */
 264                if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
 265                        inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 266        }
 267}
 268
 269static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 270{
 271        tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 272}
 273
 274static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 275{
 276        struct tcp_sock *tp = tcp_sk(sk);
 277
 278        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 279        case INET_ECN_NOT_ECT:
 280                /* Funny extension: if ECT is not set on a segment,
 281                 * and we already seen ECT on a previous segment,
 282                 * it is probably a retransmit.
 283                 */
 284                if (tp->ecn_flags & TCP_ECN_SEEN)
 285                        tcp_enter_quickack_mode(sk, 2);
 286                break;
 287        case INET_ECN_CE:
 288                if (tcp_ca_needs_ecn(sk))
 289                        tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 290
 291                if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 292                        /* Better not delay acks, sender can have a very low cwnd */
 293                        tcp_enter_quickack_mode(sk, 2);
 294                        tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 295                }
 296                tp->ecn_flags |= TCP_ECN_SEEN;
 297                break;
 298        default:
 299                if (tcp_ca_needs_ecn(sk))
 300                        tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 301                tp->ecn_flags |= TCP_ECN_SEEN;
 302                break;
 303        }
 304}
 305
 306static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 307{
 308        if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 309                __tcp_ecn_check_ce(sk, skb);
 310}
 311
 312static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 313{
 314        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 315                tp->ecn_flags &= ~TCP_ECN_OK;
 316}
 317
 318static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 319{
 320        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 321                tp->ecn_flags &= ~TCP_ECN_OK;
 322}
 323
 324static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 325{
 326        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 327                return true;
 328        return false;
 329}
 330
 331/* Buffer size and advertised window tuning.
 332 *
 333 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 334 */
 335
 336static void tcp_sndbuf_expand(struct sock *sk)
 337{
 338        const struct tcp_sock *tp = tcp_sk(sk);
 339        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 340        int sndmem, per_mss;
 341        u32 nr_segs;
 342
 343        /* Worst case is non GSO/TSO : each frame consumes one skb
 344         * and skb->head is kmalloced using power of two area of memory
 345         */
 346        per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 347                  MAX_TCP_HEADER +
 348                  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 349
 350        per_mss = roundup_pow_of_two(per_mss) +
 351                  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 352
 353        nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 354        nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 355
 356        /* Fast Recovery (RFC 5681 3.2) :
 357         * Cubic needs 1.7 factor, rounded to 2 to include
 358         * extra cushion (application might react slowly to EPOLLOUT)
 359         */
 360        sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 361        sndmem *= nr_segs * per_mss;
 362
 363        if (sk->sk_sndbuf < sndmem)
 364                WRITE_ONCE(sk->sk_sndbuf,
 365                           min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
 366}
 367
 368/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 369 *
 370 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 371 * forward and advertised in receiver window (tp->rcv_wnd) and
 372 * "application buffer", required to isolate scheduling/application
 373 * latencies from network.
 374 * window_clamp is maximal advertised window. It can be less than
 375 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 376 * is reserved for "application" buffer. The less window_clamp is
 377 * the smoother our behaviour from viewpoint of network, but the lower
 378 * throughput and the higher sensitivity of the connection to losses. 8)
 379 *
 380 * rcv_ssthresh is more strict window_clamp used at "slow start"
 381 * phase to predict further behaviour of this connection.
 382 * It is used for two goals:
 383 * - to enforce header prediction at sender, even when application
 384 *   requires some significant "application buffer". It is check #1.
 385 * - to prevent pruning of receive queue because of misprediction
 386 *   of receiver window. Check #2.
 387 *
 388 * The scheme does not work when sender sends good segments opening
 389 * window and then starts to feed us spaghetti. But it should work
 390 * in common situations. Otherwise, we have to rely on queue collapsing.
 391 */
 392
 393/* Slow part of check#2. */
 394static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 395{
 396        struct tcp_sock *tp = tcp_sk(sk);
 397        /* Optimize this! */
 398        int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 399        int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 400
 401        while (tp->rcv_ssthresh <= window) {
 402                if (truesize <= skb->len)
 403                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 404
 405                truesize >>= 1;
 406                window >>= 1;
 407        }
 408        return 0;
 409}
 410
 411static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 412{
 413        struct tcp_sock *tp = tcp_sk(sk);
 414        int room;
 415
 416        room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 417
 418        /* Check #1 */
 419        if (room > 0 && !tcp_under_memory_pressure(sk)) {
 420                int incr;
 421
 422                /* Check #2. Increase window, if skb with such overhead
 423                 * will fit to rcvbuf in future.
 424                 */
 425                if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 426                        incr = 2 * tp->advmss;
 427                else
 428                        incr = __tcp_grow_window(sk, skb);
 429
 430                if (incr) {
 431                        incr = max_t(int, incr, 2 * skb->len);
 432                        tp->rcv_ssthresh += min(room, incr);
 433                        inet_csk(sk)->icsk_ack.quick |= 1;
 434                }
 435        }
 436}
 437
 438/* 3. Try to fixup all. It is made immediately after connection enters
 439 *    established state.
 440 */
 441static void tcp_init_buffer_space(struct sock *sk)
 442{
 443        int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 444        struct tcp_sock *tp = tcp_sk(sk);
 445        int maxwin;
 446
 447        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 448                tcp_sndbuf_expand(sk);
 449
 450        tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
 451        tcp_mstamp_refresh(tp);
 452        tp->rcvq_space.time = tp->tcp_mstamp;
 453        tp->rcvq_space.seq = tp->copied_seq;
 454
 455        maxwin = tcp_full_space(sk);
 456
 457        if (tp->window_clamp >= maxwin) {
 458                tp->window_clamp = maxwin;
 459
 460                if (tcp_app_win && maxwin > 4 * tp->advmss)
 461                        tp->window_clamp = max(maxwin -
 462                                               (maxwin >> tcp_app_win),
 463                                               4 * tp->advmss);
 464        }
 465
 466        /* Force reservation of one segment. */
 467        if (tcp_app_win &&
 468            tp->window_clamp > 2 * tp->advmss &&
 469            tp->window_clamp + tp->advmss > maxwin)
 470                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 471
 472        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 473        tp->snd_cwnd_stamp = tcp_jiffies32;
 474}
 475
 476/* 4. Recalculate window clamp after socket hit its memory bounds. */
 477static void tcp_clamp_window(struct sock *sk)
 478{
 479        struct tcp_sock *tp = tcp_sk(sk);
 480        struct inet_connection_sock *icsk = inet_csk(sk);
 481        struct net *net = sock_net(sk);
 482
 483        icsk->icsk_ack.quick = 0;
 484
 485        if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 486            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 487            !tcp_under_memory_pressure(sk) &&
 488            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 489                WRITE_ONCE(sk->sk_rcvbuf,
 490                           min(atomic_read(&sk->sk_rmem_alloc),
 491                               net->ipv4.sysctl_tcp_rmem[2]));
 492        }
 493        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 494                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 495}
 496
 497/* Initialize RCV_MSS value.
 498 * RCV_MSS is an our guess about MSS used by the peer.
 499 * We haven't any direct information about the MSS.
 500 * It's better to underestimate the RCV_MSS rather than overestimate.
 501 * Overestimations make us ACKing less frequently than needed.
 502 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 503 */
 504void tcp_initialize_rcv_mss(struct sock *sk)
 505{
 506        const struct tcp_sock *tp = tcp_sk(sk);
 507        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 508
 509        hint = min(hint, tp->rcv_wnd / 2);
 510        hint = min(hint, TCP_MSS_DEFAULT);
 511        hint = max(hint, TCP_MIN_MSS);
 512
 513        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 514}
 515EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 516
 517/* Receiver "autotuning" code.
 518 *
 519 * The algorithm for RTT estimation w/o timestamps is based on
 520 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 521 * <https://public.lanl.gov/radiant/pubs.html#DRS>
 522 *
 523 * More detail on this code can be found at
 524 * <http://staff.psc.edu/jheffner/>,
 525 * though this reference is out of date.  A new paper
 526 * is pending.
 527 */
 528static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 529{
 530        u32 new_sample = tp->rcv_rtt_est.rtt_us;
 531        long m = sample;
 532
 533        if (new_sample != 0) {
 534                /* If we sample in larger samples in the non-timestamp
 535                 * case, we could grossly overestimate the RTT especially
 536                 * with chatty applications or bulk transfer apps which
 537                 * are stalled on filesystem I/O.
 538                 *
 539                 * Also, since we are only going for a minimum in the
 540                 * non-timestamp case, we do not smooth things out
 541                 * else with timestamps disabled convergence takes too
 542                 * long.
 543                 */
 544                if (!win_dep) {
 545                        m -= (new_sample >> 3);
 546                        new_sample += m;
 547                } else {
 548                        m <<= 3;
 549                        if (m < new_sample)
 550                                new_sample = m;
 551                }
 552        } else {
 553                /* No previous measure. */
 554                new_sample = m << 3;
 555        }
 556
 557        tp->rcv_rtt_est.rtt_us = new_sample;
 558}
 559
 560static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 561{
 562        u32 delta_us;
 563
 564        if (tp->rcv_rtt_est.time == 0)
 565                goto new_measure;
 566        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 567                return;
 568        delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 569        if (!delta_us)
 570                delta_us = 1;
 571        tcp_rcv_rtt_update(tp, delta_us, 1);
 572
 573new_measure:
 574        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 575        tp->rcv_rtt_est.time = tp->tcp_mstamp;
 576}
 577
 578static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 579                                          const struct sk_buff *skb)
 580{
 581        struct tcp_sock *tp = tcp_sk(sk);
 582
 583        if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 584                return;
 585        tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 586
 587        if (TCP_SKB_CB(skb)->end_seq -
 588            TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 589                u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 590                u32 delta_us;
 591
 592                if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 593                        if (!delta)
 594                                delta = 1;
 595                        delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 596                        tcp_rcv_rtt_update(tp, delta_us, 0);
 597                }
 598        }
 599}
 600
 601/*
 602 * This function should be called every time data is copied to user space.
 603 * It calculates the appropriate TCP receive buffer space.
 604 */
 605void tcp_rcv_space_adjust(struct sock *sk)
 606{
 607        struct tcp_sock *tp = tcp_sk(sk);
 608        u32 copied;
 609        int time;
 610
 611        trace_tcp_rcv_space_adjust(sk);
 612
 613        tcp_mstamp_refresh(tp);
 614        time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 615        if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 616                return;
 617
 618        /* Number of bytes copied to user in last RTT */
 619        copied = tp->copied_seq - tp->rcvq_space.seq;
 620        if (copied <= tp->rcvq_space.space)
 621                goto new_measure;
 622
 623        /* A bit of theory :
 624         * copied = bytes received in previous RTT, our base window
 625         * To cope with packet losses, we need a 2x factor
 626         * To cope with slow start, and sender growing its cwin by 100 %
 627         * every RTT, we need a 4x factor, because the ACK we are sending
 628         * now is for the next RTT, not the current one :
 629         * <prev RTT . ><current RTT .. ><next RTT .... >
 630         */
 631
 632        if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 633            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 634                int rcvmem, rcvbuf;
 635                u64 rcvwin, grow;
 636
 637                /* minimal window to cope with packet losses, assuming
 638                 * steady state. Add some cushion because of small variations.
 639                 */
 640                rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 641
 642                /* Accommodate for sender rate increase (eg. slow start) */
 643                grow = rcvwin * (copied - tp->rcvq_space.space);
 644                do_div(grow, tp->rcvq_space.space);
 645                rcvwin += (grow << 1);
 646
 647                rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 648                while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 649                        rcvmem += 128;
 650
 651                do_div(rcvwin, tp->advmss);
 652                rcvbuf = min_t(u64, rcvwin * rcvmem,
 653                               sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 654                if (rcvbuf > sk->sk_rcvbuf) {
 655                        WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 656
 657                        /* Make the window clamp follow along.  */
 658                        tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 659                }
 660        }
 661        tp->rcvq_space.space = copied;
 662
 663new_measure:
 664        tp->rcvq_space.seq = tp->copied_seq;
 665        tp->rcvq_space.time = tp->tcp_mstamp;
 666}
 667
 668/* There is something which you must keep in mind when you analyze the
 669 * behavior of the tp->ato delayed ack timeout interval.  When a
 670 * connection starts up, we want to ack as quickly as possible.  The
 671 * problem is that "good" TCP's do slow start at the beginning of data
 672 * transmission.  The means that until we send the first few ACK's the
 673 * sender will sit on his end and only queue most of his data, because
 674 * he can only send snd_cwnd unacked packets at any given time.  For
 675 * each ACK we send, he increments snd_cwnd and transmits more of his
 676 * queue.  -DaveM
 677 */
 678static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 679{
 680        struct tcp_sock *tp = tcp_sk(sk);
 681        struct inet_connection_sock *icsk = inet_csk(sk);
 682        u32 now;
 683
 684        inet_csk_schedule_ack(sk);
 685
 686        tcp_measure_rcv_mss(sk, skb);
 687
 688        tcp_rcv_rtt_measure(tp);
 689
 690        now = tcp_jiffies32;
 691
 692        if (!icsk->icsk_ack.ato) {
 693                /* The _first_ data packet received, initialize
 694                 * delayed ACK engine.
 695                 */
 696                tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 697                icsk->icsk_ack.ato = TCP_ATO_MIN;
 698        } else {
 699                int m = now - icsk->icsk_ack.lrcvtime;
 700
 701                if (m <= TCP_ATO_MIN / 2) {
 702                        /* The fastest case is the first. */
 703                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 704                } else if (m < icsk->icsk_ack.ato) {
 705                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 706                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 707                                icsk->icsk_ack.ato = icsk->icsk_rto;
 708                } else if (m > icsk->icsk_rto) {
 709                        /* Too long gap. Apparently sender failed to
 710                         * restart window, so that we send ACKs quickly.
 711                         */
 712                        tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 713                        sk_mem_reclaim(sk);
 714                }
 715        }
 716        icsk->icsk_ack.lrcvtime = now;
 717
 718        tcp_ecn_check_ce(sk, skb);
 719
 720        if (skb->len >= 128)
 721                tcp_grow_window(sk, skb);
 722}
 723
 724/* Called to compute a smoothed rtt estimate. The data fed to this
 725 * routine either comes from timestamps, or from segments that were
 726 * known _not_ to have been retransmitted [see Karn/Partridge
 727 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 728 * piece by Van Jacobson.
 729 * NOTE: the next three routines used to be one big routine.
 730 * To save cycles in the RFC 1323 implementation it was better to break
 731 * it up into three procedures. -- erics
 732 */
 733static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 734{
 735        struct tcp_sock *tp = tcp_sk(sk);
 736        long m = mrtt_us; /* RTT */
 737        u32 srtt = tp->srtt_us;
 738
 739        /*      The following amusing code comes from Jacobson's
 740         *      article in SIGCOMM '88.  Note that rtt and mdev
 741         *      are scaled versions of rtt and mean deviation.
 742         *      This is designed to be as fast as possible
 743         *      m stands for "measurement".
 744         *
 745         *      On a 1990 paper the rto value is changed to:
 746         *      RTO = rtt + 4 * mdev
 747         *
 748         * Funny. This algorithm seems to be very broken.
 749         * These formulae increase RTO, when it should be decreased, increase
 750         * too slowly, when it should be increased quickly, decrease too quickly
 751         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 752         * does not matter how to _calculate_ it. Seems, it was trap
 753         * that VJ failed to avoid. 8)
 754         */
 755        if (srtt != 0) {
 756                m -= (srtt >> 3);       /* m is now error in rtt est */
 757                srtt += m;              /* rtt = 7/8 rtt + 1/8 new */
 758                if (m < 0) {
 759                        m = -m;         /* m is now abs(error) */
 760                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 761                        /* This is similar to one of Eifel findings.
 762                         * Eifel blocks mdev updates when rtt decreases.
 763                         * This solution is a bit different: we use finer gain
 764                         * for mdev in this case (alpha*beta).
 765                         * Like Eifel it also prevents growth of rto,
 766                         * but also it limits too fast rto decreases,
 767                         * happening in pure Eifel.
 768                         */
 769                        if (m > 0)
 770                                m >>= 3;
 771                } else {
 772                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 773                }
 774                tp->mdev_us += m;               /* mdev = 3/4 mdev + 1/4 new */
 775                if (tp->mdev_us > tp->mdev_max_us) {
 776                        tp->mdev_max_us = tp->mdev_us;
 777                        if (tp->mdev_max_us > tp->rttvar_us)
 778                                tp->rttvar_us = tp->mdev_max_us;
 779                }
 780                if (after(tp->snd_una, tp->rtt_seq)) {
 781                        if (tp->mdev_max_us < tp->rttvar_us)
 782                                tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 783                        tp->rtt_seq = tp->snd_nxt;
 784                        tp->mdev_max_us = tcp_rto_min_us(sk);
 785
 786                        tcp_bpf_rtt(sk);
 787                }
 788        } else {
 789                /* no previous measure. */
 790                srtt = m << 3;          /* take the measured time to be rtt */
 791                tp->mdev_us = m << 1;   /* make sure rto = 3*rtt */
 792                tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 793                tp->mdev_max_us = tp->rttvar_us;
 794                tp->rtt_seq = tp->snd_nxt;
 795
 796                tcp_bpf_rtt(sk);
 797        }
 798        tp->srtt_us = max(1U, srtt);
 799}
 800
 801static void tcp_update_pacing_rate(struct sock *sk)
 802{
 803        const struct tcp_sock *tp = tcp_sk(sk);
 804        u64 rate;
 805
 806        /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 807        rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 808
 809        /* current rate is (cwnd * mss) / srtt
 810         * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 811         * In Congestion Avoidance phase, set it to 120 % the current rate.
 812         *
 813         * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 814         *       If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 815         *       end of slow start and should slow down.
 816         */
 817        if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 818                rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 819        else
 820                rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 821
 822        rate *= max(tp->snd_cwnd, tp->packets_out);
 823
 824        if (likely(tp->srtt_us))
 825                do_div(rate, tp->srtt_us);
 826
 827        /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 828         * without any lock. We want to make sure compiler wont store
 829         * intermediate values in this location.
 830         */
 831        WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 832                                             sk->sk_max_pacing_rate));
 833}
 834
 835/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 836 * routine referred to above.
 837 */
 838static void tcp_set_rto(struct sock *sk)
 839{
 840        const struct tcp_sock *tp = tcp_sk(sk);
 841        /* Old crap is replaced with new one. 8)
 842         *
 843         * More seriously:
 844         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 845         *    It cannot be less due to utterly erratic ACK generation made
 846         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 847         *    to do with delayed acks, because at cwnd>2 true delack timeout
 848         *    is invisible. Actually, Linux-2.4 also generates erratic
 849         *    ACKs in some circumstances.
 850         */
 851        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 852
 853        /* 2. Fixups made earlier cannot be right.
 854         *    If we do not estimate RTO correctly without them,
 855         *    all the algo is pure shit and should be replaced
 856         *    with correct one. It is exactly, which we pretend to do.
 857         */
 858
 859        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 860         * guarantees that rto is higher.
 861         */
 862        tcp_bound_rto(sk);
 863}
 864
 865__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 866{
 867        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 868
 869        if (!cwnd)
 870                cwnd = TCP_INIT_CWND;
 871        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 872}
 873
 874struct tcp_sacktag_state {
 875        /* Timestamps for earliest and latest never-retransmitted segment
 876         * that was SACKed. RTO needs the earliest RTT to stay conservative,
 877         * but congestion control should still get an accurate delay signal.
 878         */
 879        u64     first_sackt;
 880        u64     last_sackt;
 881        u32     reord;
 882        u32     sack_delivered;
 883        int     flag;
 884        unsigned int mss_now;
 885        struct rate_sample *rate;
 886};
 887
 888/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
 889 * and spurious retransmission information if this DSACK is unlikely caused by
 890 * sender's action:
 891 * - DSACKed sequence range is larger than maximum receiver's window.
 892 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
 893 */
 894static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
 895                          u32 end_seq, struct tcp_sacktag_state *state)
 896{
 897        u32 seq_len, dup_segs = 1;
 898
 899        if (!before(start_seq, end_seq))
 900                return 0;
 901
 902        seq_len = end_seq - start_seq;
 903        /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
 904        if (seq_len > tp->max_window)
 905                return 0;
 906        if (seq_len > tp->mss_cache)
 907                dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
 908
 909        tp->dsack_dups += dup_segs;
 910        /* Skip the DSACK if dup segs weren't retransmitted by sender */
 911        if (tp->dsack_dups > tp->total_retrans)
 912                return 0;
 913
 914        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 915        tp->rack.dsack_seen = 1;
 916
 917        state->flag |= FLAG_DSACKING_ACK;
 918        /* A spurious retransmission is delivered */
 919        state->sack_delivered += dup_segs;
 920
 921        return dup_segs;
 922}
 923
 924/* It's reordering when higher sequence was delivered (i.e. sacked) before
 925 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 926 * distance is approximated in full-mss packet distance ("reordering").
 927 */
 928static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 929                                      const int ts)
 930{
 931        struct tcp_sock *tp = tcp_sk(sk);
 932        const u32 mss = tp->mss_cache;
 933        u32 fack, metric;
 934
 935        fack = tcp_highest_sack_seq(tp);
 936        if (!before(low_seq, fack))
 937                return;
 938
 939        metric = fack - low_seq;
 940        if ((metric > tp->reordering * mss) && mss) {
 941#if FASTRETRANS_DEBUG > 1
 942                pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 943                         tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 944                         tp->reordering,
 945                         0,
 946                         tp->sacked_out,
 947                         tp->undo_marker ? tp->undo_retrans : 0);
 948#endif
 949                tp->reordering = min_t(u32, (metric + mss - 1) / mss,
 950                                       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 951        }
 952
 953        /* This exciting event is worth to be remembered. 8) */
 954        tp->reord_seen++;
 955        NET_INC_STATS(sock_net(sk),
 956                      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
 957}
 958
 959/* This must be called before lost_out is incremented */
 960static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 961{
 962        if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
 963            (tp->retransmit_skb_hint &&
 964             before(TCP_SKB_CB(skb)->seq,
 965                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
 966                tp->retransmit_skb_hint = skb;
 967}
 968
 969/* Sum the number of packets on the wire we have marked as lost.
 970 * There are two cases we care about here:
 971 * a) Packet hasn't been marked lost (nor retransmitted),
 972 *    and this is the first loss.
 973 * b) Packet has been marked both lost and retransmitted,
 974 *    and this means we think it was lost again.
 975 */
 976static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
 977{
 978        __u8 sacked = TCP_SKB_CB(skb)->sacked;
 979
 980        if (!(sacked & TCPCB_LOST) ||
 981            ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
 982                tp->lost += tcp_skb_pcount(skb);
 983}
 984
 985static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 986{
 987        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 988                tcp_verify_retransmit_hint(tp, skb);
 989
 990                tp->lost_out += tcp_skb_pcount(skb);
 991                tcp_sum_lost(tp, skb);
 992                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 993        }
 994}
 995
 996void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 997{
 998        tcp_verify_retransmit_hint(tp, skb);
 999
1000        tcp_sum_lost(tp, skb);
1001        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1002                tp->lost_out += tcp_skb_pcount(skb);
1003                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1004        }
1005}
1006
1007/* Updates the delivered and delivered_ce counts */
1008static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1009                                bool ece_ack)
1010{
1011        tp->delivered += delivered;
1012        if (ece_ack)
1013                tp->delivered_ce += delivered;
1014}
1015
1016/* This procedure tags the retransmission queue when SACKs arrive.
1017 *
1018 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019 * Packets in queue with these bits set are counted in variables
1020 * sacked_out, retrans_out and lost_out, correspondingly.
1021 *
1022 * Valid combinations are:
1023 * Tag  InFlight        Description
1024 * 0    1               - orig segment is in flight.
1025 * S    0               - nothing flies, orig reached receiver.
1026 * L    0               - nothing flies, orig lost by net.
1027 * R    2               - both orig and retransmit are in flight.
1028 * L|R  1               - orig is lost, retransmit is in flight.
1029 * S|R  1               - orig reached receiver, retrans is still in flight.
1030 * (L|S|R is logically valid, it could occur when L|R is sacked,
1031 *  but it is equivalent to plain S and code short-curcuits it to S.
1032 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033 *
1034 * These 6 states form finite state machine, controlled by the following events:
1035 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037 * 3. Loss detection event of two flavors:
1038 *      A. Scoreboard estimator decided the packet is lost.
1039 *         A'. Reno "three dupacks" marks head of queue lost.
1040 *      B. SACK arrives sacking SND.NXT at the moment, when the
1041 *         segment was retransmitted.
1042 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1043 *
1044 * It is pleasant to note, that state diagram turns out to be commutative,
1045 * so that we are allowed not to be bothered by order of our actions,
1046 * when multiple events arrive simultaneously. (see the function below).
1047 *
1048 * Reordering detection.
1049 * --------------------
1050 * Reordering metric is maximal distance, which a packet can be displaced
1051 * in packet stream. With SACKs we can estimate it:
1052 *
1053 * 1. SACK fills old hole and the corresponding segment was not
1054 *    ever retransmitted -> reordering. Alas, we cannot use it
1055 *    when segment was retransmitted.
1056 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1057 *    for retransmitted and already SACKed segment -> reordering..
1058 * Both of these heuristics are not used in Loss state, when we cannot
1059 * account for retransmits accurately.
1060 *
1061 * SACK block validation.
1062 * ----------------------
1063 *
1064 * SACK block range validation checks that the received SACK block fits to
1065 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1066 * Note that SND.UNA is not included to the range though being valid because
1067 * it means that the receiver is rather inconsistent with itself reporting
1068 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1069 * perfectly valid, however, in light of RFC2018 which explicitly states
1070 * that "SACK block MUST reflect the newest segment.  Even if the newest
1071 * segment is going to be discarded ...", not that it looks very clever
1072 * in case of head skb. Due to potentional receiver driven attacks, we
1073 * choose to avoid immediate execution of a walk in write queue due to
1074 * reneging and defer head skb's loss recovery to standard loss recovery
1075 * procedure that will eventually trigger (nothing forbids us doing this).
1076 *
1077 * Implements also blockage to start_seq wrap-around. Problem lies in the
1078 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1079 * there's no guarantee that it will be before snd_nxt (n). The problem
1080 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1081 * wrap (s_w):
1082 *
1083 *         <- outs wnd ->                          <- wrapzone ->
1084 *         u     e      n                         u_w   e_w  s n_w
1085 *         |     |      |                          |     |   |  |
1086 * |<------------+------+----- TCP seqno space --------------+---------->|
1087 * ...-- <2^31 ->|                                           |<--------...
1088 * ...---- >2^31 ------>|                                    |<--------...
1089 *
1090 * Current code wouldn't be vulnerable but it's better still to discard such
1091 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1092 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1093 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1094 * equal to the ideal case (infinite seqno space without wrap caused issues).
1095 *
1096 * With D-SACK the lower bound is extended to cover sequence space below
1097 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1098 * again, D-SACK block must not to go across snd_una (for the same reason as
1099 * for the normal SACK blocks, explained above). But there all simplicity
1100 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1101 * fully below undo_marker they do not affect behavior in anyway and can
1102 * therefore be safely ignored. In rare cases (which are more or less
1103 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1104 * fragmentation and packet reordering past skb's retransmission. To consider
1105 * them correctly, the acceptable range must be extended even more though
1106 * the exact amount is rather hard to quantify. However, tp->max_window can
1107 * be used as an exaggerated estimate.
1108 */
1109static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1110                                   u32 start_seq, u32 end_seq)
1111{
1112        /* Too far in future, or reversed (interpretation is ambiguous) */
1113        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1114                return false;
1115
1116        /* Nasty start_seq wrap-around check (see comments above) */
1117        if (!before(start_seq, tp->snd_nxt))
1118                return false;
1119
1120        /* In outstanding window? ...This is valid exit for D-SACKs too.
1121         * start_seq == snd_una is non-sensical (see comments above)
1122         */
1123        if (after(start_seq, tp->snd_una))
1124                return true;
1125
1126        if (!is_dsack || !tp->undo_marker)
1127                return false;
1128
1129        /* ...Then it's D-SACK, and must reside below snd_una completely */
1130        if (after(end_seq, tp->snd_una))
1131                return false;
1132
1133        if (!before(start_seq, tp->undo_marker))
1134                return true;
1135
1136        /* Too old */
1137        if (!after(end_seq, tp->undo_marker))
1138                return false;
1139
1140        /* Undo_marker boundary crossing (overestimates a lot). Known already:
1141         *   start_seq < undo_marker and end_seq >= undo_marker.
1142         */
1143        return !before(start_seq, end_seq - tp->max_window);
1144}
1145
1146static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1147                            struct tcp_sack_block_wire *sp, int num_sacks,
1148                            u32 prior_snd_una, struct tcp_sacktag_state *state)
1149{
1150        struct tcp_sock *tp = tcp_sk(sk);
1151        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1152        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1153        u32 dup_segs;
1154
1155        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1156                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1157        } else if (num_sacks > 1) {
1158                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1159                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1160
1161                if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1162                        return false;
1163                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1164        } else {
1165                return false;
1166        }
1167
1168        dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1169        if (!dup_segs) {        /* Skip dubious DSACK */
1170                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1171                return false;
1172        }
1173
1174        NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1175
1176        /* D-SACK for already forgotten data... Do dumb counting. */
1177        if (tp->undo_marker && tp->undo_retrans > 0 &&
1178            !after(end_seq_0, prior_snd_una) &&
1179            after(end_seq_0, tp->undo_marker))
1180                tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1181
1182        return true;
1183}
1184
1185/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1186 * the incoming SACK may not exactly match but we can find smaller MSS
1187 * aligned portion of it that matches. Therefore we might need to fragment
1188 * which may fail and creates some hassle (caller must handle error case
1189 * returns).
1190 *
1191 * FIXME: this could be merged to shift decision code
1192 */
1193static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1194                                  u32 start_seq, u32 end_seq)
1195{
1196        int err;
1197        bool in_sack;
1198        unsigned int pkt_len;
1199        unsigned int mss;
1200
1201        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1202                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1203
1204        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1205            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1206                mss = tcp_skb_mss(skb);
1207                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1208
1209                if (!in_sack) {
1210                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1211                        if (pkt_len < mss)
1212                                pkt_len = mss;
1213                } else {
1214                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1215                        if (pkt_len < mss)
1216                                return -EINVAL;
1217                }
1218
1219                /* Round if necessary so that SACKs cover only full MSSes
1220                 * and/or the remaining small portion (if present)
1221                 */
1222                if (pkt_len > mss) {
1223                        unsigned int new_len = (pkt_len / mss) * mss;
1224                        if (!in_sack && new_len < pkt_len)
1225                                new_len += mss;
1226                        pkt_len = new_len;
1227                }
1228
1229                if (pkt_len >= skb->len && !in_sack)
1230                        return 0;
1231
1232                err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1233                                   pkt_len, mss, GFP_ATOMIC);
1234                if (err < 0)
1235                        return err;
1236        }
1237
1238        return in_sack;
1239}
1240
1241/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1242static u8 tcp_sacktag_one(struct sock *sk,
1243                          struct tcp_sacktag_state *state, u8 sacked,
1244                          u32 start_seq, u32 end_seq,
1245                          int dup_sack, int pcount,
1246                          u64 xmit_time)
1247{
1248        struct tcp_sock *tp = tcp_sk(sk);
1249
1250        /* Account D-SACK for retransmitted packet. */
1251        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1252                if (tp->undo_marker && tp->undo_retrans > 0 &&
1253                    after(end_seq, tp->undo_marker))
1254                        tp->undo_retrans--;
1255                if ((sacked & TCPCB_SACKED_ACKED) &&
1256                    before(start_seq, state->reord))
1257                                state->reord = start_seq;
1258        }
1259
1260        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1261        if (!after(end_seq, tp->snd_una))
1262                return sacked;
1263
1264        if (!(sacked & TCPCB_SACKED_ACKED)) {
1265                tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1266
1267                if (sacked & TCPCB_SACKED_RETRANS) {
1268                        /* If the segment is not tagged as lost,
1269                         * we do not clear RETRANS, believing
1270                         * that retransmission is still in flight.
1271                         */
1272                        if (sacked & TCPCB_LOST) {
1273                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1274                                tp->lost_out -= pcount;
1275                                tp->retrans_out -= pcount;
1276                        }
1277                } else {
1278                        if (!(sacked & TCPCB_RETRANS)) {
1279                                /* New sack for not retransmitted frame,
1280                                 * which was in hole. It is reordering.
1281                                 */
1282                                if (before(start_seq,
1283                                           tcp_highest_sack_seq(tp)) &&
1284                                    before(start_seq, state->reord))
1285                                        state->reord = start_seq;
1286
1287                                if (!after(end_seq, tp->high_seq))
1288                                        state->flag |= FLAG_ORIG_SACK_ACKED;
1289                                if (state->first_sackt == 0)
1290                                        state->first_sackt = xmit_time;
1291                                state->last_sackt = xmit_time;
1292                        }
1293
1294                        if (sacked & TCPCB_LOST) {
1295                                sacked &= ~TCPCB_LOST;
1296                                tp->lost_out -= pcount;
1297                        }
1298                }
1299
1300                sacked |= TCPCB_SACKED_ACKED;
1301                state->flag |= FLAG_DATA_SACKED;
1302                tp->sacked_out += pcount;
1303                /* Out-of-order packets delivered */
1304                state->sack_delivered += pcount;
1305
1306                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1307                if (tp->lost_skb_hint &&
1308                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1309                        tp->lost_cnt_hint += pcount;
1310        }
1311
1312        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1313         * frames and clear it. undo_retrans is decreased above, L|R frames
1314         * are accounted above as well.
1315         */
1316        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1317                sacked &= ~TCPCB_SACKED_RETRANS;
1318                tp->retrans_out -= pcount;
1319        }
1320
1321        return sacked;
1322}
1323
1324/* Shift newly-SACKed bytes from this skb to the immediately previous
1325 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1326 */
1327static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1328                            struct sk_buff *skb,
1329                            struct tcp_sacktag_state *state,
1330                            unsigned int pcount, int shifted, int mss,
1331                            bool dup_sack)
1332{
1333        struct tcp_sock *tp = tcp_sk(sk);
1334        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1335        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1336
1337        BUG_ON(!pcount);
1338
1339        /* Adjust counters and hints for the newly sacked sequence
1340         * range but discard the return value since prev is already
1341         * marked. We must tag the range first because the seq
1342         * advancement below implicitly advances
1343         * tcp_highest_sack_seq() when skb is highest_sack.
1344         */
1345        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1346                        start_seq, end_seq, dup_sack, pcount,
1347                        tcp_skb_timestamp_us(skb));
1348        tcp_rate_skb_delivered(sk, skb, state->rate);
1349
1350        if (skb == tp->lost_skb_hint)
1351                tp->lost_cnt_hint += pcount;
1352
1353        TCP_SKB_CB(prev)->end_seq += shifted;
1354        TCP_SKB_CB(skb)->seq += shifted;
1355
1356        tcp_skb_pcount_add(prev, pcount);
1357        WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1358        tcp_skb_pcount_add(skb, -pcount);
1359
1360        /* When we're adding to gso_segs == 1, gso_size will be zero,
1361         * in theory this shouldn't be necessary but as long as DSACK
1362         * code can come after this skb later on it's better to keep
1363         * setting gso_size to something.
1364         */
1365        if (!TCP_SKB_CB(prev)->tcp_gso_size)
1366                TCP_SKB_CB(prev)->tcp_gso_size = mss;
1367
1368        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1369        if (tcp_skb_pcount(skb) <= 1)
1370                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1371
1372        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1373        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1374
1375        if (skb->len > 0) {
1376                BUG_ON(!tcp_skb_pcount(skb));
1377                NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1378                return false;
1379        }
1380
1381        /* Whole SKB was eaten :-) */
1382
1383        if (skb == tp->retransmit_skb_hint)
1384                tp->retransmit_skb_hint = prev;
1385        if (skb == tp->lost_skb_hint) {
1386                tp->lost_skb_hint = prev;
1387                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1388        }
1389
1390        TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1391        TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1392        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1393                TCP_SKB_CB(prev)->end_seq++;
1394
1395        if (skb == tcp_highest_sack(sk))
1396                tcp_advance_highest_sack(sk, skb);
1397
1398        tcp_skb_collapse_tstamp(prev, skb);
1399        if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1400                TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1401
1402        tcp_rtx_queue_unlink_and_free(skb, sk);
1403
1404        NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1405
1406        return true;
1407}
1408
1409/* I wish gso_size would have a bit more sane initialization than
1410 * something-or-zero which complicates things
1411 */
1412static int tcp_skb_seglen(const struct sk_buff *skb)
1413{
1414        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1415}
1416
1417/* Shifting pages past head area doesn't work */
1418static int skb_can_shift(const struct sk_buff *skb)
1419{
1420        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1421}
1422
1423int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1424                  int pcount, int shiftlen)
1425{
1426        /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1427         * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1428         * to make sure not storing more than 65535 * 8 bytes per skb,
1429         * even if current MSS is bigger.
1430         */
1431        if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1432                return 0;
1433        if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1434                return 0;
1435        return skb_shift(to, from, shiftlen);
1436}
1437
1438/* Try collapsing SACK blocks spanning across multiple skbs to a single
1439 * skb.
1440 */
1441static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1442                                          struct tcp_sacktag_state *state,
1443                                          u32 start_seq, u32 end_seq,
1444                                          bool dup_sack)
1445{
1446        struct tcp_sock *tp = tcp_sk(sk);
1447        struct sk_buff *prev;
1448        int mss;
1449        int pcount = 0;
1450        int len;
1451        int in_sack;
1452
1453        /* Normally R but no L won't result in plain S */
1454        if (!dup_sack &&
1455            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1456                goto fallback;
1457        if (!skb_can_shift(skb))
1458                goto fallback;
1459        /* This frame is about to be dropped (was ACKed). */
1460        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1461                goto fallback;
1462
1463        /* Can only happen with delayed DSACK + discard craziness */
1464        prev = skb_rb_prev(skb);
1465        if (!prev)
1466                goto fallback;
1467
1468        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1469                goto fallback;
1470
1471        if (!tcp_skb_can_collapse(prev, skb))
1472                goto fallback;
1473
1474        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1475                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1476
1477        if (in_sack) {
1478                len = skb->len;
1479                pcount = tcp_skb_pcount(skb);
1480                mss = tcp_skb_seglen(skb);
1481
1482                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1483                 * drop this restriction as unnecessary
1484                 */
1485                if (mss != tcp_skb_seglen(prev))
1486                        goto fallback;
1487        } else {
1488                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1489                        goto noop;
1490                /* CHECKME: This is non-MSS split case only?, this will
1491                 * cause skipped skbs due to advancing loop btw, original
1492                 * has that feature too
1493                 */
1494                if (tcp_skb_pcount(skb) <= 1)
1495                        goto noop;
1496
1497                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1498                if (!in_sack) {
1499                        /* TODO: head merge to next could be attempted here
1500                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1501                         * though it might not be worth of the additional hassle
1502                         *
1503                         * ...we can probably just fallback to what was done
1504                         * previously. We could try merging non-SACKed ones
1505                         * as well but it probably isn't going to buy off
1506                         * because later SACKs might again split them, and
1507                         * it would make skb timestamp tracking considerably
1508                         * harder problem.
1509                         */
1510                        goto fallback;
1511                }
1512
1513                len = end_seq - TCP_SKB_CB(skb)->seq;
1514                BUG_ON(len < 0);
1515                BUG_ON(len > skb->len);
1516
1517                /* MSS boundaries should be honoured or else pcount will
1518                 * severely break even though it makes things bit trickier.
1519                 * Optimize common case to avoid most of the divides
1520                 */
1521                mss = tcp_skb_mss(skb);
1522
1523                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1524                 * drop this restriction as unnecessary
1525                 */
1526                if (mss != tcp_skb_seglen(prev))
1527                        goto fallback;
1528
1529                if (len == mss) {
1530                        pcount = 1;
1531                } else if (len < mss) {
1532                        goto noop;
1533                } else {
1534                        pcount = len / mss;
1535                        len = pcount * mss;
1536                }
1537        }
1538
1539        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1540        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1541                goto fallback;
1542
1543        if (!tcp_skb_shift(prev, skb, pcount, len))
1544                goto fallback;
1545        if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1546                goto out;
1547
1548        /* Hole filled allows collapsing with the next as well, this is very
1549         * useful when hole on every nth skb pattern happens
1550         */
1551        skb = skb_rb_next(prev);
1552        if (!skb)
1553                goto out;
1554
1555        if (!skb_can_shift(skb) ||
1556            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1557            (mss != tcp_skb_seglen(skb)))
1558                goto out;
1559
1560        len = skb->len;
1561        pcount = tcp_skb_pcount(skb);
1562        if (tcp_skb_shift(prev, skb, pcount, len))
1563                tcp_shifted_skb(sk, prev, skb, state, pcount,
1564                                len, mss, 0);
1565
1566out:
1567        return prev;
1568
1569noop:
1570        return skb;
1571
1572fallback:
1573        NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1574        return NULL;
1575}
1576
1577static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1578                                        struct tcp_sack_block *next_dup,
1579                                        struct tcp_sacktag_state *state,
1580                                        u32 start_seq, u32 end_seq,
1581                                        bool dup_sack_in)
1582{
1583        struct tcp_sock *tp = tcp_sk(sk);
1584        struct sk_buff *tmp;
1585
1586        skb_rbtree_walk_from(skb) {
1587                int in_sack = 0;
1588                bool dup_sack = dup_sack_in;
1589
1590                /* queue is in-order => we can short-circuit the walk early */
1591                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1592                        break;
1593
1594                if (next_dup  &&
1595                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1596                        in_sack = tcp_match_skb_to_sack(sk, skb,
1597                                                        next_dup->start_seq,
1598                                                        next_dup->end_seq);
1599                        if (in_sack > 0)
1600                                dup_sack = true;
1601                }
1602
1603                /* skb reference here is a bit tricky to get right, since
1604                 * shifting can eat and free both this skb and the next,
1605                 * so not even _safe variant of the loop is enough.
1606                 */
1607                if (in_sack <= 0) {
1608                        tmp = tcp_shift_skb_data(sk, skb, state,
1609                                                 start_seq, end_seq, dup_sack);
1610                        if (tmp) {
1611                                if (tmp != skb) {
1612                                        skb = tmp;
1613                                        continue;
1614                                }
1615
1616                                in_sack = 0;
1617                        } else {
1618                                in_sack = tcp_match_skb_to_sack(sk, skb,
1619                                                                start_seq,
1620                                                                end_seq);
1621                        }
1622                }
1623
1624                if (unlikely(in_sack < 0))
1625                        break;
1626
1627                if (in_sack) {
1628                        TCP_SKB_CB(skb)->sacked =
1629                                tcp_sacktag_one(sk,
1630                                                state,
1631                                                TCP_SKB_CB(skb)->sacked,
1632                                                TCP_SKB_CB(skb)->seq,
1633                                                TCP_SKB_CB(skb)->end_seq,
1634                                                dup_sack,
1635                                                tcp_skb_pcount(skb),
1636                                                tcp_skb_timestamp_us(skb));
1637                        tcp_rate_skb_delivered(sk, skb, state->rate);
1638                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1639                                list_del_init(&skb->tcp_tsorted_anchor);
1640
1641                        if (!before(TCP_SKB_CB(skb)->seq,
1642                                    tcp_highest_sack_seq(tp)))
1643                                tcp_advance_highest_sack(sk, skb);
1644                }
1645        }
1646        return skb;
1647}
1648
1649static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1650{
1651        struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1652        struct sk_buff *skb;
1653
1654        while (*p) {
1655                parent = *p;
1656                skb = rb_to_skb(parent);
1657                if (before(seq, TCP_SKB_CB(skb)->seq)) {
1658                        p = &parent->rb_left;
1659                        continue;
1660                }
1661                if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1662                        p = &parent->rb_right;
1663                        continue;
1664                }
1665                return skb;
1666        }
1667        return NULL;
1668}
1669
1670static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1671                                        u32 skip_to_seq)
1672{
1673        if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1674                return skb;
1675
1676        return tcp_sacktag_bsearch(sk, skip_to_seq);
1677}
1678
1679static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1680                                                struct sock *sk,
1681                                                struct tcp_sack_block *next_dup,
1682                                                struct tcp_sacktag_state *state,
1683                                                u32 skip_to_seq)
1684{
1685        if (!next_dup)
1686                return skb;
1687
1688        if (before(next_dup->start_seq, skip_to_seq)) {
1689                skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1690                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1691                                       next_dup->start_seq, next_dup->end_seq,
1692                                       1);
1693        }
1694
1695        return skb;
1696}
1697
1698static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1699{
1700        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1701}
1702
1703static int
1704tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1705                        u32 prior_snd_una, struct tcp_sacktag_state *state)
1706{
1707        struct tcp_sock *tp = tcp_sk(sk);
1708        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1709                                    TCP_SKB_CB(ack_skb)->sacked);
1710        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1711        struct tcp_sack_block sp[TCP_NUM_SACKS];
1712        struct tcp_sack_block *cache;
1713        struct sk_buff *skb;
1714        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1715        int used_sacks;
1716        bool found_dup_sack = false;
1717        int i, j;
1718        int first_sack_index;
1719
1720        state->flag = 0;
1721        state->reord = tp->snd_nxt;
1722
1723        if (!tp->sacked_out)
1724                tcp_highest_sack_reset(sk);
1725
1726        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1727                                         num_sacks, prior_snd_una, state);
1728
1729        /* Eliminate too old ACKs, but take into
1730         * account more or less fresh ones, they can
1731         * contain valid SACK info.
1732         */
1733        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1734                return 0;
1735
1736        if (!tp->packets_out)
1737                goto out;
1738
1739        used_sacks = 0;
1740        first_sack_index = 0;
1741        for (i = 0; i < num_sacks; i++) {
1742                bool dup_sack = !i && found_dup_sack;
1743
1744                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1745                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1746
1747                if (!tcp_is_sackblock_valid(tp, dup_sack,
1748                                            sp[used_sacks].start_seq,
1749                                            sp[used_sacks].end_seq)) {
1750                        int mib_idx;
1751
1752                        if (dup_sack) {
1753                                if (!tp->undo_marker)
1754                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1755                                else
1756                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1757                        } else {
1758                                /* Don't count olds caused by ACK reordering */
1759                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1760                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1761                                        continue;
1762                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1763                        }
1764
1765                        NET_INC_STATS(sock_net(sk), mib_idx);
1766                        if (i == 0)
1767                                first_sack_index = -1;
1768                        continue;
1769                }
1770
1771                /* Ignore very old stuff early */
1772                if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1773                        if (i == 0)
1774                                first_sack_index = -1;
1775                        continue;
1776                }
1777
1778                used_sacks++;
1779        }
1780
1781        /* order SACK blocks to allow in order walk of the retrans queue */
1782        for (i = used_sacks - 1; i > 0; i--) {
1783                for (j = 0; j < i; j++) {
1784                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1785                                swap(sp[j], sp[j + 1]);
1786
1787                                /* Track where the first SACK block goes to */
1788                                if (j == first_sack_index)
1789                                        first_sack_index = j + 1;
1790                        }
1791                }
1792        }
1793
1794        state->mss_now = tcp_current_mss(sk);
1795        skb = NULL;
1796        i = 0;
1797
1798        if (!tp->sacked_out) {
1799                /* It's already past, so skip checking against it */
1800                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1801        } else {
1802                cache = tp->recv_sack_cache;
1803                /* Skip empty blocks in at head of the cache */
1804                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1805                       !cache->end_seq)
1806                        cache++;
1807        }
1808
1809        while (i < used_sacks) {
1810                u32 start_seq = sp[i].start_seq;
1811                u32 end_seq = sp[i].end_seq;
1812                bool dup_sack = (found_dup_sack && (i == first_sack_index));
1813                struct tcp_sack_block *next_dup = NULL;
1814
1815                if (found_dup_sack && ((i + 1) == first_sack_index))
1816                        next_dup = &sp[i + 1];
1817
1818                /* Skip too early cached blocks */
1819                while (tcp_sack_cache_ok(tp, cache) &&
1820                       !before(start_seq, cache->end_seq))
1821                        cache++;
1822
1823                /* Can skip some work by looking recv_sack_cache? */
1824                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1825                    after(end_seq, cache->start_seq)) {
1826
1827                        /* Head todo? */
1828                        if (before(start_seq, cache->start_seq)) {
1829                                skb = tcp_sacktag_skip(skb, sk, start_seq);
1830                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1831                                                       state,
1832                                                       start_seq,
1833                                                       cache->start_seq,
1834                                                       dup_sack);
1835                        }
1836
1837                        /* Rest of the block already fully processed? */
1838                        if (!after(end_seq, cache->end_seq))
1839                                goto advance_sp;
1840
1841                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1842                                                       state,
1843                                                       cache->end_seq);
1844
1845                        /* ...tail remains todo... */
1846                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1847                                /* ...but better entrypoint exists! */
1848                                skb = tcp_highest_sack(sk);
1849                                if (!skb)
1850                                        break;
1851                                cache++;
1852                                goto walk;
1853                        }
1854
1855                        skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1856                        /* Check overlap against next cached too (past this one already) */
1857                        cache++;
1858                        continue;
1859                }
1860
1861                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1862                        skb = tcp_highest_sack(sk);
1863                        if (!skb)
1864                                break;
1865                }
1866                skb = tcp_sacktag_skip(skb, sk, start_seq);
1867
1868walk:
1869                skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1870                                       start_seq, end_seq, dup_sack);
1871
1872advance_sp:
1873                i++;
1874        }
1875
1876        /* Clear the head of the cache sack blocks so we can skip it next time */
1877        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1878                tp->recv_sack_cache[i].start_seq = 0;
1879                tp->recv_sack_cache[i].end_seq = 0;
1880        }
1881        for (j = 0; j < used_sacks; j++)
1882                tp->recv_sack_cache[i++] = sp[j];
1883
1884        if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1885                tcp_check_sack_reordering(sk, state->reord, 0);
1886
1887        tcp_verify_left_out(tp);
1888out:
1889
1890#if FASTRETRANS_DEBUG > 0
1891        WARN_ON((int)tp->sacked_out < 0);
1892        WARN_ON((int)tp->lost_out < 0);
1893        WARN_ON((int)tp->retrans_out < 0);
1894        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1895#endif
1896        return state->flag;
1897}
1898
1899/* Limits sacked_out so that sum with lost_out isn't ever larger than
1900 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1901 */
1902static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1903{
1904        u32 holes;
1905
1906        holes = max(tp->lost_out, 1U);
1907        holes = min(holes, tp->packets_out);
1908
1909        if ((tp->sacked_out + holes) > tp->packets_out) {
1910                tp->sacked_out = tp->packets_out - holes;
1911                return true;
1912        }
1913        return false;
1914}
1915
1916/* If we receive more dupacks than we expected counting segments
1917 * in assumption of absent reordering, interpret this as reordering.
1918 * The only another reason could be bug in receiver TCP.
1919 */
1920static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1921{
1922        struct tcp_sock *tp = tcp_sk(sk);
1923
1924        if (!tcp_limit_reno_sacked(tp))
1925                return;
1926
1927        tp->reordering = min_t(u32, tp->packets_out + addend,
1928                               sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1929        tp->reord_seen++;
1930        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1931}
1932
1933/* Emulate SACKs for SACKless connection: account for a new dupack. */
1934
1935static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1936{
1937        if (num_dupack) {
1938                struct tcp_sock *tp = tcp_sk(sk);
1939                u32 prior_sacked = tp->sacked_out;
1940                s32 delivered;
1941
1942                tp->sacked_out += num_dupack;
1943                tcp_check_reno_reordering(sk, 0);
1944                delivered = tp->sacked_out - prior_sacked;
1945                if (delivered > 0)
1946                        tcp_count_delivered(tp, delivered, ece_ack);
1947                tcp_verify_left_out(tp);
1948        }
1949}
1950
1951/* Account for ACK, ACKing some data in Reno Recovery phase. */
1952
1953static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
1954{
1955        struct tcp_sock *tp = tcp_sk(sk);
1956
1957        if (acked > 0) {
1958                /* One ACK acked hole. The rest eat duplicate ACKs. */
1959                tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
1960                                    ece_ack);
1961                if (acked - 1 >= tp->sacked_out)
1962                        tp->sacked_out = 0;
1963                else
1964                        tp->sacked_out -= acked - 1;
1965        }
1966        tcp_check_reno_reordering(sk, acked);
1967        tcp_verify_left_out(tp);
1968}
1969
1970static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1971{
1972        tp->sacked_out = 0;
1973}
1974
1975void tcp_clear_retrans(struct tcp_sock *tp)
1976{
1977        tp->retrans_out = 0;
1978        tp->lost_out = 0;
1979        tp->undo_marker = 0;
1980        tp->undo_retrans = -1;
1981        tp->sacked_out = 0;
1982}
1983
1984static inline void tcp_init_undo(struct tcp_sock *tp)
1985{
1986        tp->undo_marker = tp->snd_una;
1987        /* Retransmission still in flight may cause DSACKs later. */
1988        tp->undo_retrans = tp->retrans_out ? : -1;
1989}
1990
1991static bool tcp_is_rack(const struct sock *sk)
1992{
1993        return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1994}
1995
1996/* If we detect SACK reneging, forget all SACK information
1997 * and reset tags completely, otherwise preserve SACKs. If receiver
1998 * dropped its ofo queue, we will know this due to reneging detection.
1999 */
2000static void tcp_timeout_mark_lost(struct sock *sk)
2001{
2002        struct tcp_sock *tp = tcp_sk(sk);
2003        struct sk_buff *skb, *head;
2004        bool is_reneg;                  /* is receiver reneging on SACKs? */
2005
2006        head = tcp_rtx_queue_head(sk);
2007        is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2008        if (is_reneg) {
2009                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2010                tp->sacked_out = 0;
2011                /* Mark SACK reneging until we recover from this loss event. */
2012                tp->is_sack_reneg = 1;
2013        } else if (tcp_is_reno(tp)) {
2014                tcp_reset_reno_sack(tp);
2015        }
2016
2017        skb = head;
2018        skb_rbtree_walk_from(skb) {
2019                if (is_reneg)
2020                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2021                else if (tcp_is_rack(sk) && skb != head &&
2022                         tcp_rack_skb_timeout(tp, skb, 0) > 0)
2023                        continue; /* Don't mark recently sent ones lost yet */
2024                tcp_mark_skb_lost(sk, skb);
2025        }
2026        tcp_verify_left_out(tp);
2027        tcp_clear_all_retrans_hints(tp);
2028}
2029
2030/* Enter Loss state. */
2031void tcp_enter_loss(struct sock *sk)
2032{
2033        const struct inet_connection_sock *icsk = inet_csk(sk);
2034        struct tcp_sock *tp = tcp_sk(sk);
2035        struct net *net = sock_net(sk);
2036        bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2037
2038        tcp_timeout_mark_lost(sk);
2039
2040        /* Reduce ssthresh if it has not yet been made inside this window. */
2041        if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2042            !after(tp->high_seq, tp->snd_una) ||
2043            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2044                tp->prior_ssthresh = tcp_current_ssthresh(sk);
2045                tp->prior_cwnd = tp->snd_cwnd;
2046                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2047                tcp_ca_event(sk, CA_EVENT_LOSS);
2048                tcp_init_undo(tp);
2049        }
2050        tp->snd_cwnd       = tcp_packets_in_flight(tp) + 1;
2051        tp->snd_cwnd_cnt   = 0;
2052        tp->snd_cwnd_stamp = tcp_jiffies32;
2053
2054        /* Timeout in disordered state after receiving substantial DUPACKs
2055         * suggests that the degree of reordering is over-estimated.
2056         */
2057        if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2058            tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2059                tp->reordering = min_t(unsigned int, tp->reordering,
2060                                       net->ipv4.sysctl_tcp_reordering);
2061        tcp_set_ca_state(sk, TCP_CA_Loss);
2062        tp->high_seq = tp->snd_nxt;
2063        tcp_ecn_queue_cwr(tp);
2064
2065        /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2066         * loss recovery is underway except recurring timeout(s) on
2067         * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2068         */
2069        tp->frto = net->ipv4.sysctl_tcp_frto &&
2070                   (new_recovery || icsk->icsk_retransmits) &&
2071                   !inet_csk(sk)->icsk_mtup.probe_size;
2072}
2073
2074/* If ACK arrived pointing to a remembered SACK, it means that our
2075 * remembered SACKs do not reflect real state of receiver i.e.
2076 * receiver _host_ is heavily congested (or buggy).
2077 *
2078 * To avoid big spurious retransmission bursts due to transient SACK
2079 * scoreboard oddities that look like reneging, we give the receiver a
2080 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2081 * restore sanity to the SACK scoreboard. If the apparent reneging
2082 * persists until this RTO then we'll clear the SACK scoreboard.
2083 */
2084static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2085{
2086        if (flag & FLAG_SACK_RENEGING) {
2087                struct tcp_sock *tp = tcp_sk(sk);
2088                unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2089                                          msecs_to_jiffies(10));
2090
2091                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2092                                          delay, TCP_RTO_MAX);
2093                return true;
2094        }
2095        return false;
2096}
2097
2098/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2099 * counter when SACK is enabled (without SACK, sacked_out is used for
2100 * that purpose).
2101 *
2102 * With reordering, holes may still be in flight, so RFC3517 recovery
2103 * uses pure sacked_out (total number of SACKed segments) even though
2104 * it violates the RFC that uses duplicate ACKs, often these are equal
2105 * but when e.g. out-of-window ACKs or packet duplication occurs,
2106 * they differ. Since neither occurs due to loss, TCP should really
2107 * ignore them.
2108 */
2109static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2110{
2111        return tp->sacked_out + 1;
2112}
2113
2114/* Linux NewReno/SACK/ECN state machine.
2115 * --------------------------------------
2116 *
2117 * "Open"       Normal state, no dubious events, fast path.
2118 * "Disorder"   In all the respects it is "Open",
2119 *              but requires a bit more attention. It is entered when
2120 *              we see some SACKs or dupacks. It is split of "Open"
2121 *              mainly to move some processing from fast path to slow one.
2122 * "CWR"        CWND was reduced due to some Congestion Notification event.
2123 *              It can be ECN, ICMP source quench, local device congestion.
2124 * "Recovery"   CWND was reduced, we are fast-retransmitting.
2125 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2126 *
2127 * tcp_fastretrans_alert() is entered:
2128 * - each incoming ACK, if state is not "Open"
2129 * - when arrived ACK is unusual, namely:
2130 *      * SACK
2131 *      * Duplicate ACK.
2132 *      * ECN ECE.
2133 *
2134 * Counting packets in flight is pretty simple.
2135 *
2136 *      in_flight = packets_out - left_out + retrans_out
2137 *
2138 *      packets_out is SND.NXT-SND.UNA counted in packets.
2139 *
2140 *      retrans_out is number of retransmitted segments.
2141 *
2142 *      left_out is number of segments left network, but not ACKed yet.
2143 *
2144 *              left_out = sacked_out + lost_out
2145 *
2146 *     sacked_out: Packets, which arrived to receiver out of order
2147 *                 and hence not ACKed. With SACKs this number is simply
2148 *                 amount of SACKed data. Even without SACKs
2149 *                 it is easy to give pretty reliable estimate of this number,
2150 *                 counting duplicate ACKs.
2151 *
2152 *       lost_out: Packets lost by network. TCP has no explicit
2153 *                 "loss notification" feedback from network (for now).
2154 *                 It means that this number can be only _guessed_.
2155 *                 Actually, it is the heuristics to predict lossage that
2156 *                 distinguishes different algorithms.
2157 *
2158 *      F.e. after RTO, when all the queue is considered as lost,
2159 *      lost_out = packets_out and in_flight = retrans_out.
2160 *
2161 *              Essentially, we have now a few algorithms detecting
2162 *              lost packets.
2163 *
2164 *              If the receiver supports SACK:
2165 *
2166 *              RFC6675/3517: It is the conventional algorithm. A packet is
2167 *              considered lost if the number of higher sequence packets
2168 *              SACKed is greater than or equal the DUPACK thoreshold
2169 *              (reordering). This is implemented in tcp_mark_head_lost and
2170 *              tcp_update_scoreboard.
2171 *
2172 *              RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2173 *              (2017-) that checks timing instead of counting DUPACKs.
2174 *              Essentially a packet is considered lost if it's not S/ACKed
2175 *              after RTT + reordering_window, where both metrics are
2176 *              dynamically measured and adjusted. This is implemented in
2177 *              tcp_rack_mark_lost.
2178 *
2179 *              If the receiver does not support SACK:
2180 *
2181 *              NewReno (RFC6582): in Recovery we assume that one segment
2182 *              is lost (classic Reno). While we are in Recovery and
2183 *              a partial ACK arrives, we assume that one more packet
2184 *              is lost (NewReno). This heuristics are the same in NewReno
2185 *              and SACK.
2186 *
2187 * Really tricky (and requiring careful tuning) part of algorithm
2188 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2189 * The first determines the moment _when_ we should reduce CWND and,
2190 * hence, slow down forward transmission. In fact, it determines the moment
2191 * when we decide that hole is caused by loss, rather than by a reorder.
2192 *
2193 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2194 * holes, caused by lost packets.
2195 *
2196 * And the most logically complicated part of algorithm is undo
2197 * heuristics. We detect false retransmits due to both too early
2198 * fast retransmit (reordering) and underestimated RTO, analyzing
2199 * timestamps and D-SACKs. When we detect that some segments were
2200 * retransmitted by mistake and CWND reduction was wrong, we undo
2201 * window reduction and abort recovery phase. This logic is hidden
2202 * inside several functions named tcp_try_undo_<something>.
2203 */
2204
2205/* This function decides, when we should leave Disordered state
2206 * and enter Recovery phase, reducing congestion window.
2207 *
2208 * Main question: may we further continue forward transmission
2209 * with the same cwnd?
2210 */
2211static bool tcp_time_to_recover(struct sock *sk, int flag)
2212{
2213        struct tcp_sock *tp = tcp_sk(sk);
2214
2215        /* Trick#1: The loss is proven. */
2216        if (tp->lost_out)
2217                return true;
2218
2219        /* Not-A-Trick#2 : Classic rule... */
2220        if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2221                return true;
2222
2223        return false;
2224}
2225
2226/* Detect loss in event "A" above by marking head of queue up as lost.
2227 * For RFC3517 SACK, a segment is considered lost if it
2228 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2229 * the maximum SACKed segments to pass before reaching this limit.
2230 */
2231static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2232{
2233        struct tcp_sock *tp = tcp_sk(sk);
2234        struct sk_buff *skb;
2235        int cnt;
2236        /* Use SACK to deduce losses of new sequences sent during recovery */
2237        const u32 loss_high = tp->snd_nxt;
2238
2239        WARN_ON(packets > tp->packets_out);
2240        skb = tp->lost_skb_hint;
2241        if (skb) {
2242                /* Head already handled? */
2243                if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2244                        return;
2245                cnt = tp->lost_cnt_hint;
2246        } else {
2247                skb = tcp_rtx_queue_head(sk);
2248                cnt = 0;
2249        }
2250
2251        skb_rbtree_walk_from(skb) {
2252                /* TODO: do this better */
2253                /* this is not the most efficient way to do this... */
2254                tp->lost_skb_hint = skb;
2255                tp->lost_cnt_hint = cnt;
2256
2257                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2258                        break;
2259
2260                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2261                        cnt += tcp_skb_pcount(skb);
2262
2263                if (cnt > packets)
2264                        break;
2265
2266                tcp_skb_mark_lost(tp, skb);
2267
2268                if (mark_head)
2269                        break;
2270        }
2271        tcp_verify_left_out(tp);
2272}
2273
2274/* Account newly detected lost packet(s) */
2275
2276static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2277{
2278        struct tcp_sock *tp = tcp_sk(sk);
2279
2280        if (tcp_is_sack(tp)) {
2281                int sacked_upto = tp->sacked_out - tp->reordering;
2282                if (sacked_upto >= 0)
2283                        tcp_mark_head_lost(sk, sacked_upto, 0);
2284                else if (fast_rexmit)
2285                        tcp_mark_head_lost(sk, 1, 1);
2286        }
2287}
2288
2289static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2290{
2291        return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2292               before(tp->rx_opt.rcv_tsecr, when);
2293}
2294
2295/* skb is spurious retransmitted if the returned timestamp echo
2296 * reply is prior to the skb transmission time
2297 */
2298static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2299                                     const struct sk_buff *skb)
2300{
2301        return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2302               tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2303}
2304
2305/* Nothing was retransmitted or returned timestamp is less
2306 * than timestamp of the first retransmission.
2307 */
2308static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2309{
2310        return tp->retrans_stamp &&
2311               tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2312}
2313
2314/* Undo procedures. */
2315
2316/* We can clear retrans_stamp when there are no retransmissions in the
2317 * window. It would seem that it is trivially available for us in
2318 * tp->retrans_out, however, that kind of assumptions doesn't consider
2319 * what will happen if errors occur when sending retransmission for the
2320 * second time. ...It could the that such segment has only
2321 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2322 * the head skb is enough except for some reneging corner cases that
2323 * are not worth the effort.
2324 *
2325 * Main reason for all this complexity is the fact that connection dying
2326 * time now depends on the validity of the retrans_stamp, in particular,
2327 * that successive retransmissions of a segment must not advance
2328 * retrans_stamp under any conditions.
2329 */
2330static bool tcp_any_retrans_done(const struct sock *sk)
2331{
2332        const struct tcp_sock *tp = tcp_sk(sk);
2333        struct sk_buff *skb;
2334
2335        if (tp->retrans_out)
2336                return true;
2337
2338        skb = tcp_rtx_queue_head(sk);
2339        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2340                return true;
2341
2342        return false;
2343}
2344
2345static void DBGUNDO(struct sock *sk, const char *msg)
2346{
2347#if FASTRETRANS_DEBUG > 1
2348        struct tcp_sock *tp = tcp_sk(sk);
2349        struct inet_sock *inet = inet_sk(sk);
2350
2351        if (sk->sk_family == AF_INET) {
2352                pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2353                         msg,
2354                         &inet->inet_daddr, ntohs(inet->inet_dport),
2355                         tp->snd_cwnd, tcp_left_out(tp),
2356                         tp->snd_ssthresh, tp->prior_ssthresh,
2357                         tp->packets_out);
2358        }
2359#if IS_ENABLED(CONFIG_IPV6)
2360        else if (sk->sk_family == AF_INET6) {
2361                pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2362                         msg,
2363                         &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2364                         tp->snd_cwnd, tcp_left_out(tp),
2365                         tp->snd_ssthresh, tp->prior_ssthresh,
2366                         tp->packets_out);
2367        }
2368#endif
2369#endif
2370}
2371
2372static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2373{
2374        struct tcp_sock *tp = tcp_sk(sk);
2375
2376        if (unmark_loss) {
2377                struct sk_buff *skb;
2378
2379                skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2380                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2381                }
2382                tp->lost_out = 0;
2383                tcp_clear_all_retrans_hints(tp);
2384        }
2385
2386        if (tp->prior_ssthresh) {
2387                const struct inet_connection_sock *icsk = inet_csk(sk);
2388
2389                tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2390
2391                if (tp->prior_ssthresh > tp->snd_ssthresh) {
2392                        tp->snd_ssthresh = tp->prior_ssthresh;
2393                        tcp_ecn_withdraw_cwr(tp);
2394                }
2395        }
2396        tp->snd_cwnd_stamp = tcp_jiffies32;
2397        tp->undo_marker = 0;
2398        tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2399}
2400
2401static inline bool tcp_may_undo(const struct tcp_sock *tp)
2402{
2403        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2404}
2405
2406/* People celebrate: "We love our President!" */
2407static bool tcp_try_undo_recovery(struct sock *sk)
2408{
2409        struct tcp_sock *tp = tcp_sk(sk);
2410
2411        if (tcp_may_undo(tp)) {
2412                int mib_idx;
2413
2414                /* Happy end! We did not retransmit anything
2415                 * or our original transmission succeeded.
2416                 */
2417                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2418                tcp_undo_cwnd_reduction(sk, false);
2419                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2420                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2421                else
2422                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2423
2424                NET_INC_STATS(sock_net(sk), mib_idx);
2425        } else if (tp->rack.reo_wnd_persist) {
2426                tp->rack.reo_wnd_persist--;
2427        }
2428        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2429                /* Hold old state until something *above* high_seq
2430                 * is ACKed. For Reno it is MUST to prevent false
2431                 * fast retransmits (RFC2582). SACK TCP is safe. */
2432                if (!tcp_any_retrans_done(sk))
2433                        tp->retrans_stamp = 0;
2434                return true;
2435        }
2436        tcp_set_ca_state(sk, TCP_CA_Open);
2437        tp->is_sack_reneg = 0;
2438        return false;
2439}
2440
2441/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2442static bool tcp_try_undo_dsack(struct sock *sk)
2443{
2444        struct tcp_sock *tp = tcp_sk(sk);
2445
2446        if (tp->undo_marker && !tp->undo_retrans) {
2447                tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2448                                               tp->rack.reo_wnd_persist + 1);
2449                DBGUNDO(sk, "D-SACK");
2450                tcp_undo_cwnd_reduction(sk, false);
2451                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2452                return true;
2453        }
2454        return false;
2455}
2456
2457/* Undo during loss recovery after partial ACK or using F-RTO. */
2458static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2459{
2460        struct tcp_sock *tp = tcp_sk(sk);
2461
2462        if (frto_undo || tcp_may_undo(tp)) {
2463                tcp_undo_cwnd_reduction(sk, true);
2464
2465                DBGUNDO(sk, "partial loss");
2466                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2467                if (frto_undo)
2468                        NET_INC_STATS(sock_net(sk),
2469                                        LINUX_MIB_TCPSPURIOUSRTOS);
2470                inet_csk(sk)->icsk_retransmits = 0;
2471                if (frto_undo || tcp_is_sack(tp)) {
2472                        tcp_set_ca_state(sk, TCP_CA_Open);
2473                        tp->is_sack_reneg = 0;
2474                }
2475                return true;
2476        }
2477        return false;
2478}
2479
2480/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2481 * It computes the number of packets to send (sndcnt) based on packets newly
2482 * delivered:
2483 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2484 *      cwnd reductions across a full RTT.
2485 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2486 *      But when the retransmits are acked without further losses, PRR
2487 *      slow starts cwnd up to ssthresh to speed up the recovery.
2488 */
2489static void tcp_init_cwnd_reduction(struct sock *sk)
2490{
2491        struct tcp_sock *tp = tcp_sk(sk);
2492
2493        tp->high_seq = tp->snd_nxt;
2494        tp->tlp_high_seq = 0;
2495        tp->snd_cwnd_cnt = 0;
2496        tp->prior_cwnd = tp->snd_cwnd;
2497        tp->prr_delivered = 0;
2498        tp->prr_out = 0;
2499        tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2500        tcp_ecn_queue_cwr(tp);
2501}
2502
2503void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2504{
2505        struct tcp_sock *tp = tcp_sk(sk);
2506        int sndcnt = 0;
2507        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2508
2509        if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2510                return;
2511
2512        tp->prr_delivered += newly_acked_sacked;
2513        if (delta < 0) {
2514                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2515                               tp->prior_cwnd - 1;
2516                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2517        } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2518                   FLAG_RETRANS_DATA_ACKED) {
2519                sndcnt = min_t(int, delta,
2520                               max_t(int, tp->prr_delivered - tp->prr_out,
2521                                     newly_acked_sacked) + 1);
2522        } else {
2523                sndcnt = min(delta, newly_acked_sacked);
2524        }
2525        /* Force a fast retransmit upon entering fast recovery */
2526        sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2527        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2528}
2529
2530static inline void tcp_end_cwnd_reduction(struct sock *sk)
2531{
2532        struct tcp_sock *tp = tcp_sk(sk);
2533
2534        if (inet_csk(sk)->icsk_ca_ops->cong_control)
2535                return;
2536
2537        /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2538        if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2539            (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2540                tp->snd_cwnd = tp->snd_ssthresh;
2541                tp->snd_cwnd_stamp = tcp_jiffies32;
2542        }
2543        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2544}
2545
2546/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2547void tcp_enter_cwr(struct sock *sk)
2548{
2549        struct tcp_sock *tp = tcp_sk(sk);
2550
2551        tp->prior_ssthresh = 0;
2552        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2553                tp->undo_marker = 0;
2554                tcp_init_cwnd_reduction(sk);
2555                tcp_set_ca_state(sk, TCP_CA_CWR);
2556        }
2557}
2558EXPORT_SYMBOL(tcp_enter_cwr);
2559
2560static void tcp_try_keep_open(struct sock *sk)
2561{
2562        struct tcp_sock *tp = tcp_sk(sk);
2563        int state = TCP_CA_Open;
2564
2565        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2566                state = TCP_CA_Disorder;
2567
2568        if (inet_csk(sk)->icsk_ca_state != state) {
2569                tcp_set_ca_state(sk, state);
2570                tp->high_seq = tp->snd_nxt;
2571        }
2572}
2573
2574static void tcp_try_to_open(struct sock *sk, int flag)
2575{
2576        struct tcp_sock *tp = tcp_sk(sk);
2577
2578        tcp_verify_left_out(tp);
2579
2580        if (!tcp_any_retrans_done(sk))
2581                tp->retrans_stamp = 0;
2582
2583        if (flag & FLAG_ECE)
2584                tcp_enter_cwr(sk);
2585
2586        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2587                tcp_try_keep_open(sk);
2588        }
2589}
2590
2591static void tcp_mtup_probe_failed(struct sock *sk)
2592{
2593        struct inet_connection_sock *icsk = inet_csk(sk);
2594
2595        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2596        icsk->icsk_mtup.probe_size = 0;
2597        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2598}
2599
2600static void tcp_mtup_probe_success(struct sock *sk)
2601{
2602        struct tcp_sock *tp = tcp_sk(sk);
2603        struct inet_connection_sock *icsk = inet_csk(sk);
2604
2605        /* FIXME: breaks with very large cwnd */
2606        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2607        tp->snd_cwnd = tp->snd_cwnd *
2608                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2609                       icsk->icsk_mtup.probe_size;
2610        tp->snd_cwnd_cnt = 0;
2611        tp->snd_cwnd_stamp = tcp_jiffies32;
2612        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2613
2614        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2615        icsk->icsk_mtup.probe_size = 0;
2616        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2617        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2618}
2619
2620/* Do a simple retransmit without using the backoff mechanisms in
2621 * tcp_timer. This is used for path mtu discovery.
2622 * The socket is already locked here.
2623 */
2624void tcp_simple_retransmit(struct sock *sk)
2625{
2626        const struct inet_connection_sock *icsk = inet_csk(sk);
2627        struct tcp_sock *tp = tcp_sk(sk);
2628        struct sk_buff *skb;
2629        unsigned int mss = tcp_current_mss(sk);
2630
2631        skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2632                if (tcp_skb_seglen(skb) > mss &&
2633                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2634                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2635                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2636                                tp->retrans_out -= tcp_skb_pcount(skb);
2637                        }
2638                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2639                }
2640        }
2641
2642        tcp_clear_retrans_hints_partial(tp);
2643
2644        if (!tp->lost_out)
2645                return;
2646
2647        if (tcp_is_reno(tp))
2648                tcp_limit_reno_sacked(tp);
2649
2650        tcp_verify_left_out(tp);
2651
2652        /* Don't muck with the congestion window here.
2653         * Reason is that we do not increase amount of _data_
2654         * in network, but units changed and effective
2655         * cwnd/ssthresh really reduced now.
2656         */
2657        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2658                tp->high_seq = tp->snd_nxt;
2659                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2660                tp->prior_ssthresh = 0;
2661                tp->undo_marker = 0;
2662                tcp_set_ca_state(sk, TCP_CA_Loss);
2663        }
2664        tcp_xmit_retransmit_queue(sk);
2665}
2666EXPORT_SYMBOL(tcp_simple_retransmit);
2667
2668void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2669{
2670        struct tcp_sock *tp = tcp_sk(sk);
2671        int mib_idx;
2672
2673        if (tcp_is_reno(tp))
2674                mib_idx = LINUX_MIB_TCPRENORECOVERY;
2675        else
2676                mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2677
2678        NET_INC_STATS(sock_net(sk), mib_idx);
2679
2680        tp->prior_ssthresh = 0;
2681        tcp_init_undo(tp);
2682
2683        if (!tcp_in_cwnd_reduction(sk)) {
2684                if (!ece_ack)
2685                        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2686                tcp_init_cwnd_reduction(sk);
2687        }
2688        tcp_set_ca_state(sk, TCP_CA_Recovery);
2689}
2690
2691/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2692 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2693 */
2694static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2695                             int *rexmit)
2696{
2697        struct tcp_sock *tp = tcp_sk(sk);
2698        bool recovered = !before(tp->snd_una, tp->high_seq);
2699
2700        if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2701            tcp_try_undo_loss(sk, false))
2702                return;
2703
2704        if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2705                /* Step 3.b. A timeout is spurious if not all data are
2706                 * lost, i.e., never-retransmitted data are (s)acked.
2707                 */
2708                if ((flag & FLAG_ORIG_SACK_ACKED) &&
2709                    tcp_try_undo_loss(sk, true))
2710                        return;
2711
2712                if (after(tp->snd_nxt, tp->high_seq)) {
2713                        if (flag & FLAG_DATA_SACKED || num_dupack)
2714                                tp->frto = 0; /* Step 3.a. loss was real */
2715                } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2716                        tp->high_seq = tp->snd_nxt;
2717                        /* Step 2.b. Try send new data (but deferred until cwnd
2718                         * is updated in tcp_ack()). Otherwise fall back to
2719                         * the conventional recovery.
2720                         */
2721                        if (!tcp_write_queue_empty(sk) &&
2722                            after(tcp_wnd_end(tp), tp->snd_nxt)) {
2723                                *rexmit = REXMIT_NEW;
2724                                return;
2725                        }
2726                        tp->frto = 0;
2727                }
2728        }
2729
2730        if (recovered) {
2731                /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2732                tcp_try_undo_recovery(sk);
2733                return;
2734        }
2735        if (tcp_is_reno(tp)) {
2736                /* A Reno DUPACK means new data in F-RTO step 2.b above are
2737                 * delivered. Lower inflight to clock out (re)tranmissions.
2738                 */
2739                if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2740                        tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2741                else if (flag & FLAG_SND_UNA_ADVANCED)
2742                        tcp_reset_reno_sack(tp);
2743        }
2744        *rexmit = REXMIT_LOST;
2745}
2746
2747/* Undo during fast recovery after partial ACK. */
2748static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2749{
2750        struct tcp_sock *tp = tcp_sk(sk);
2751
2752        if (tp->undo_marker && tcp_packet_delayed(tp)) {
2753                /* Plain luck! Hole if filled with delayed
2754                 * packet, rather than with a retransmit. Check reordering.
2755                 */
2756                tcp_check_sack_reordering(sk, prior_snd_una, 1);
2757
2758                /* We are getting evidence that the reordering degree is higher
2759                 * than we realized. If there are no retransmits out then we
2760                 * can undo. Otherwise we clock out new packets but do not
2761                 * mark more packets lost or retransmit more.
2762                 */
2763                if (tp->retrans_out)
2764                        return true;
2765
2766                if (!tcp_any_retrans_done(sk))
2767                        tp->retrans_stamp = 0;
2768
2769                DBGUNDO(sk, "partial recovery");
2770                tcp_undo_cwnd_reduction(sk, true);
2771                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2772                tcp_try_keep_open(sk);
2773                return true;
2774        }
2775        return false;
2776}
2777
2778static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2779{
2780        struct tcp_sock *tp = tcp_sk(sk);
2781
2782        if (tcp_rtx_queue_empty(sk))
2783                return;
2784
2785        if (unlikely(tcp_is_reno(tp))) {
2786                tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2787        } else if (tcp_is_rack(sk)) {
2788                u32 prior_retrans = tp->retrans_out;
2789
2790                tcp_rack_mark_lost(sk);
2791                if (prior_retrans > tp->retrans_out)
2792                        *ack_flag |= FLAG_LOST_RETRANS;
2793        }
2794}
2795
2796static bool tcp_force_fast_retransmit(struct sock *sk)
2797{
2798        struct tcp_sock *tp = tcp_sk(sk);
2799
2800        return after(tcp_highest_sack_seq(tp),
2801                     tp->snd_una + tp->reordering * tp->mss_cache);
2802}
2803
2804/* Process an event, which can update packets-in-flight not trivially.
2805 * Main goal of this function is to calculate new estimate for left_out,
2806 * taking into account both packets sitting in receiver's buffer and
2807 * packets lost by network.
2808 *
2809 * Besides that it updates the congestion state when packet loss or ECN
2810 * is detected. But it does not reduce the cwnd, it is done by the
2811 * congestion control later.
2812 *
2813 * It does _not_ decide what to send, it is made in function
2814 * tcp_xmit_retransmit_queue().
2815 */
2816static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2817                                  int num_dupack, int *ack_flag, int *rexmit)
2818{
2819        struct inet_connection_sock *icsk = inet_csk(sk);
2820        struct tcp_sock *tp = tcp_sk(sk);
2821        int fast_rexmit = 0, flag = *ack_flag;
2822        bool ece_ack = flag & FLAG_ECE;
2823        bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2824                                      tcp_force_fast_retransmit(sk));
2825
2826        if (!tp->packets_out && tp->sacked_out)
2827                tp->sacked_out = 0;
2828
2829        /* Now state machine starts.
2830         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2831        if (ece_ack)
2832                tp->prior_ssthresh = 0;
2833
2834        /* B. In all the states check for reneging SACKs. */
2835        if (tcp_check_sack_reneging(sk, flag))
2836                return;
2837
2838        /* C. Check consistency of the current state. */
2839        tcp_verify_left_out(tp);
2840
2841        /* D. Check state exit conditions. State can be terminated
2842         *    when high_seq is ACKed. */
2843        if (icsk->icsk_ca_state == TCP_CA_Open) {
2844                WARN_ON(tp->retrans_out != 0);
2845                tp->retrans_stamp = 0;
2846        } else if (!before(tp->snd_una, tp->high_seq)) {
2847                switch (icsk->icsk_ca_state) {
2848                case TCP_CA_CWR:
2849                        /* CWR is to be held something *above* high_seq
2850                         * is ACKed for CWR bit to reach receiver. */
2851                        if (tp->snd_una != tp->high_seq) {
2852                                tcp_end_cwnd_reduction(sk);
2853                                tcp_set_ca_state(sk, TCP_CA_Open);
2854                        }
2855                        break;
2856
2857                case TCP_CA_Recovery:
2858                        if (tcp_is_reno(tp))
2859                                tcp_reset_reno_sack(tp);
2860                        if (tcp_try_undo_recovery(sk))
2861                                return;
2862                        tcp_end_cwnd_reduction(sk);
2863                        break;
2864                }
2865        }
2866
2867        /* E. Process state. */
2868        switch (icsk->icsk_ca_state) {
2869        case TCP_CA_Recovery:
2870                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2871                        if (tcp_is_reno(tp))
2872                                tcp_add_reno_sack(sk, num_dupack, ece_ack);
2873                } else {
2874                        if (tcp_try_undo_partial(sk, prior_snd_una))
2875                                return;
2876                        /* Partial ACK arrived. Force fast retransmit. */
2877                        do_lost = tcp_force_fast_retransmit(sk);
2878                }
2879                if (tcp_try_undo_dsack(sk)) {
2880                        tcp_try_keep_open(sk);
2881                        return;
2882                }
2883                tcp_identify_packet_loss(sk, ack_flag);
2884                break;
2885        case TCP_CA_Loss:
2886                tcp_process_loss(sk, flag, num_dupack, rexmit);
2887                tcp_identify_packet_loss(sk, ack_flag);
2888                if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2889                      (*ack_flag & FLAG_LOST_RETRANS)))
2890                        return;
2891                /* Change state if cwnd is undone or retransmits are lost */
2892                fallthrough;
2893        default:
2894                if (tcp_is_reno(tp)) {
2895                        if (flag & FLAG_SND_UNA_ADVANCED)
2896                                tcp_reset_reno_sack(tp);
2897                        tcp_add_reno_sack(sk, num_dupack, ece_ack);
2898                }
2899
2900                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2901                        tcp_try_undo_dsack(sk);
2902
2903                tcp_identify_packet_loss(sk, ack_flag);
2904                if (!tcp_time_to_recover(sk, flag)) {
2905                        tcp_try_to_open(sk, flag);
2906                        return;
2907                }
2908
2909                /* MTU probe failure: don't reduce cwnd */
2910                if (icsk->icsk_ca_state < TCP_CA_CWR &&
2911                    icsk->icsk_mtup.probe_size &&
2912                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2913                        tcp_mtup_probe_failed(sk);
2914                        /* Restores the reduction we did in tcp_mtup_probe() */
2915                        tp->snd_cwnd++;
2916                        tcp_simple_retransmit(sk);
2917                        return;
2918                }
2919
2920                /* Otherwise enter Recovery state */
2921                tcp_enter_recovery(sk, ece_ack);
2922                fast_rexmit = 1;
2923        }
2924
2925        if (!tcp_is_rack(sk) && do_lost)
2926                tcp_update_scoreboard(sk, fast_rexmit);
2927        *rexmit = REXMIT_LOST;
2928}
2929
2930static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2931{
2932        u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2933        struct tcp_sock *tp = tcp_sk(sk);
2934
2935        if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2936                /* If the remote keeps returning delayed ACKs, eventually
2937                 * the min filter would pick it up and overestimate the
2938                 * prop. delay when it expires. Skip suspected delayed ACKs.
2939                 */
2940                return;
2941        }
2942        minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2943                           rtt_us ? : jiffies_to_usecs(1));
2944}
2945
2946static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2947                               long seq_rtt_us, long sack_rtt_us,
2948                               long ca_rtt_us, struct rate_sample *rs)
2949{
2950        const struct tcp_sock *tp = tcp_sk(sk);
2951
2952        /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2953         * broken middle-boxes or peers may corrupt TS-ECR fields. But
2954         * Karn's algorithm forbids taking RTT if some retransmitted data
2955         * is acked (RFC6298).
2956         */
2957        if (seq_rtt_us < 0)
2958                seq_rtt_us = sack_rtt_us;
2959
2960        /* RTTM Rule: A TSecr value received in a segment is used to
2961         * update the averaged RTT measurement only if the segment
2962         * acknowledges some new data, i.e., only if it advances the
2963         * left edge of the send window.
2964         * See draft-ietf-tcplw-high-performance-00, section 3.3.
2965         */
2966        if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2967            flag & FLAG_ACKED) {
2968                u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2969
2970                if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2971                        if (!delta)
2972                                delta = 1;
2973                        seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2974                        ca_rtt_us = seq_rtt_us;
2975                }
2976        }
2977        rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2978        if (seq_rtt_us < 0)
2979                return false;
2980
2981        /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2982         * always taken together with ACK, SACK, or TS-opts. Any negative
2983         * values will be skipped with the seq_rtt_us < 0 check above.
2984         */
2985        tcp_update_rtt_min(sk, ca_rtt_us, flag);
2986        tcp_rtt_estimator(sk, seq_rtt_us);
2987        tcp_set_rto(sk);
2988
2989        /* RFC6298: only reset backoff on valid RTT measurement. */
2990        inet_csk(sk)->icsk_backoff = 0;
2991        return true;
2992}
2993
2994/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2995void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2996{
2997        struct rate_sample rs;
2998        long rtt_us = -1L;
2999
3000        if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3001                rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3002
3003        tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3004}
3005
3006
3007static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3008{
3009        const struct inet_connection_sock *icsk = inet_csk(sk);
3010
3011        icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3012        tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3013}
3014
3015/* Restart timer after forward progress on connection.
3016 * RFC2988 recommends to restart timer to now+rto.
3017 */
3018void tcp_rearm_rto(struct sock *sk)
3019{
3020        const struct inet_connection_sock *icsk = inet_csk(sk);
3021        struct tcp_sock *tp = tcp_sk(sk);
3022
3023        /* If the retrans timer is currently being used by Fast Open
3024         * for SYN-ACK retrans purpose, stay put.
3025         */
3026        if (rcu_access_pointer(tp->fastopen_rsk))
3027                return;
3028
3029        if (!tp->packets_out) {
3030                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3031        } else {
3032                u32 rto = inet_csk(sk)->icsk_rto;
3033                /* Offset the time elapsed after installing regular RTO */
3034                if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3035                    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3036                        s64 delta_us = tcp_rto_delta_us(sk);
3037                        /* delta_us may not be positive if the socket is locked
3038                         * when the retrans timer fires and is rescheduled.
3039                         */
3040                        rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3041                }
3042                tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3043                                     TCP_RTO_MAX);
3044        }
3045}
3046
3047/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3048static void tcp_set_xmit_timer(struct sock *sk)
3049{
3050        if (!tcp_schedule_loss_probe(sk, true))
3051                tcp_rearm_rto(sk);
3052}
3053
3054/* If we get here, the whole TSO packet has not been acked. */
3055static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3056{
3057        struct tcp_sock *tp = tcp_sk(sk);
3058        u32 packets_acked;
3059
3060        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3061
3062        packets_acked = tcp_skb_pcount(skb);
3063        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3064                return 0;
3065        packets_acked -= tcp_skb_pcount(skb);
3066
3067        if (packets_acked) {
3068                BUG_ON(tcp_skb_pcount(skb) == 0);
3069                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3070        }
3071
3072        return packets_acked;
3073}
3074
3075static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3076                           u32 prior_snd_una)
3077{
3078        const struct skb_shared_info *shinfo;
3079
3080        /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3081        if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3082                return;
3083
3084        shinfo = skb_shinfo(skb);
3085        if (!before(shinfo->tskey, prior_snd_una) &&
3086            before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3087                tcp_skb_tsorted_save(skb) {
3088                        __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3089                } tcp_skb_tsorted_restore(skb);
3090        }
3091}
3092
3093/* Remove acknowledged frames from the retransmission queue. If our packet
3094 * is before the ack sequence we can discard it as it's confirmed to have
3095 * arrived at the other end.
3096 */
3097static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3098                               u32 prior_snd_una,
3099                               struct tcp_sacktag_state *sack, bool ece_ack)
3100{
3101        const struct inet_connection_sock *icsk = inet_csk(sk);
3102        u64 first_ackt, last_ackt;
3103        struct tcp_sock *tp = tcp_sk(sk);
3104        u32 prior_sacked = tp->sacked_out;
3105        u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3106        struct sk_buff *skb, *next;
3107        bool fully_acked = true;
3108        long sack_rtt_us = -1L;
3109        long seq_rtt_us = -1L;
3110        long ca_rtt_us = -1L;
3111        u32 pkts_acked = 0;
3112        u32 last_in_flight = 0;
3113        bool rtt_update;
3114        int flag = 0;
3115
3116        first_ackt = 0;
3117
3118        for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3119                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3120                const u32 start_seq = scb->seq;
3121                u8 sacked = scb->sacked;
3122                u32 acked_pcount;
3123
3124                /* Determine how many packets and what bytes were acked, tso and else */
3125                if (after(scb->end_seq, tp->snd_una)) {
3126                        if (tcp_skb_pcount(skb) == 1 ||
3127                            !after(tp->snd_una, scb->seq))
3128                                break;
3129
3130                        acked_pcount = tcp_tso_acked(sk, skb);
3131                        if (!acked_pcount)
3132                                break;
3133                        fully_acked = false;
3134                } else {
3135                        acked_pcount = tcp_skb_pcount(skb);
3136                }
3137
3138                if (unlikely(sacked & TCPCB_RETRANS)) {
3139                        if (sacked & TCPCB_SACKED_RETRANS)
3140                                tp->retrans_out -= acked_pcount;
3141                        flag |= FLAG_RETRANS_DATA_ACKED;
3142                } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3143                        last_ackt = tcp_skb_timestamp_us(skb);
3144                        WARN_ON_ONCE(last_ackt == 0);
3145                        if (!first_ackt)
3146                                first_ackt = last_ackt;
3147
3148                        last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3149                        if (before(start_seq, reord))
3150                                reord = start_seq;
3151                        if (!after(scb->end_seq, tp->high_seq))
3152                                flag |= FLAG_ORIG_SACK_ACKED;
3153                }
3154
3155                if (sacked & TCPCB_SACKED_ACKED) {
3156                        tp->sacked_out -= acked_pcount;
3157                } else if (tcp_is_sack(tp)) {
3158                        tcp_count_delivered(tp, acked_pcount, ece_ack);
3159                        if (!tcp_skb_spurious_retrans(tp, skb))
3160                                tcp_rack_advance(tp, sacked, scb->end_seq,
3161                                                 tcp_skb_timestamp_us(skb));
3162                }
3163                if (sacked & TCPCB_LOST)
3164                        tp->lost_out -= acked_pcount;
3165
3166                tp->packets_out -= acked_pcount;
3167                pkts_acked += acked_pcount;
3168                tcp_rate_skb_delivered(sk, skb, sack->rate);
3169
3170                /* Initial outgoing SYN's get put onto the write_queue
3171                 * just like anything else we transmit.  It is not
3172                 * true data, and if we misinform our callers that
3173                 * this ACK acks real data, we will erroneously exit
3174                 * connection startup slow start one packet too
3175                 * quickly.  This is severely frowned upon behavior.
3176                 */
3177                if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3178                        flag |= FLAG_DATA_ACKED;
3179                } else {
3180                        flag |= FLAG_SYN_ACKED;
3181                        tp->retrans_stamp = 0;
3182                }
3183
3184                if (!fully_acked)
3185                        break;
3186
3187                tcp_ack_tstamp(sk, skb, prior_snd_una);
3188
3189                next = skb_rb_next(skb);
3190                if (unlikely(skb == tp->retransmit_skb_hint))
3191                        tp->retransmit_skb_hint = NULL;
3192                if (unlikely(skb == tp->lost_skb_hint))
3193                        tp->lost_skb_hint = NULL;
3194                tcp_highest_sack_replace(sk, skb, next);
3195                tcp_rtx_queue_unlink_and_free(skb, sk);
3196        }
3197
3198        if (!skb)
3199                tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3200
3201        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3202                tp->snd_up = tp->snd_una;
3203
3204        if (skb) {
3205                tcp_ack_tstamp(sk, skb, prior_snd_una);
3206                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3207                        flag |= FLAG_SACK_RENEGING;
3208        }
3209
3210        if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3211                seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3212                ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3213
3214                if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3215                    last_in_flight && !prior_sacked && fully_acked &&
3216                    sack->rate->prior_delivered + 1 == tp->delivered &&
3217                    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3218                        /* Conservatively mark a delayed ACK. It's typically
3219                         * from a lone runt packet over the round trip to
3220                         * a receiver w/o out-of-order or CE events.
3221                         */
3222                        flag |= FLAG_ACK_MAYBE_DELAYED;
3223                }
3224        }
3225        if (sack->first_sackt) {
3226                sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3227                ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3228        }
3229        rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3230                                        ca_rtt_us, sack->rate);
3231
3232        if (flag & FLAG_ACKED) {
3233                flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3234                if (unlikely(icsk->icsk_mtup.probe_size &&
3235                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3236                        tcp_mtup_probe_success(sk);
3237                }
3238
3239                if (tcp_is_reno(tp)) {
3240                        tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3241
3242                        /* If any of the cumulatively ACKed segments was
3243                         * retransmitted, non-SACK case cannot confirm that
3244                         * progress was due to original transmission due to
3245                         * lack of TCPCB_SACKED_ACKED bits even if some of
3246                         * the packets may have been never retransmitted.
3247                         */
3248                        if (flag & FLAG_RETRANS_DATA_ACKED)
3249                                flag &= ~FLAG_ORIG_SACK_ACKED;
3250                } else {
3251                        int delta;
3252
3253                        /* Non-retransmitted hole got filled? That's reordering */
3254                        if (before(reord, prior_fack))
3255                                tcp_check_sack_reordering(sk, reord, 0);
3256
3257                        delta = prior_sacked - tp->sacked_out;
3258                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3259                }
3260        } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3261                   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3262                                                    tcp_skb_timestamp_us(skb))) {
3263                /* Do not re-arm RTO if the sack RTT is measured from data sent
3264                 * after when the head was last (re)transmitted. Otherwise the
3265                 * timeout may continue to extend in loss recovery.
3266                 */
3267                flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3268        }
3269
3270        if (icsk->icsk_ca_ops->pkts_acked) {
3271                struct ack_sample sample = { .pkts_acked = pkts_acked,
3272                                             .rtt_us = sack->rate->rtt_us,
3273                                             .in_flight = last_in_flight };
3274
3275                icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3276        }
3277
3278#if FASTRETRANS_DEBUG > 0
3279        WARN_ON((int)tp->sacked_out < 0);
3280        WARN_ON((int)tp->lost_out < 0);
3281        WARN_ON((int)tp->retrans_out < 0);
3282        if (!tp->packets_out && tcp_is_sack(tp)) {
3283                icsk = inet_csk(sk);
3284                if (tp->lost_out) {
3285                        pr_debug("Leak l=%u %d\n",
3286                                 tp->lost_out, icsk->icsk_ca_state);
3287                        tp->lost_out = 0;
3288                }
3289                if (tp->sacked_out) {
3290                        pr_debug("Leak s=%u %d\n",
3291                                 tp->sacked_out, icsk->icsk_ca_state);
3292                        tp->sacked_out = 0;
3293                }
3294                if (tp->retrans_out) {
3295                        pr_debug("Leak r=%u %d\n",
3296                                 tp->retrans_out, icsk->icsk_ca_state);
3297                        tp->retrans_out = 0;
3298                }
3299        }
3300#endif
3301        return flag;
3302}
3303
3304static void tcp_ack_probe(struct sock *sk)
3305{
3306        struct inet_connection_sock *icsk = inet_csk(sk);
3307        struct sk_buff *head = tcp_send_head(sk);
3308        const struct tcp_sock *tp = tcp_sk(sk);
3309
3310        /* Was it a usable window open? */
3311        if (!head)
3312                return;
3313        if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3314                icsk->icsk_backoff = 0;
3315                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3316                /* Socket must be waked up by subsequent tcp_data_snd_check().
3317                 * This function is not for random using!
3318                 */
3319        } else {
3320                unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3321
3322                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3323                                     when, TCP_RTO_MAX);
3324        }
3325}
3326
3327static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3328{
3329        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3330                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3331}
3332
3333/* Decide wheather to run the increase function of congestion control. */
3334static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3335{
3336        /* If reordering is high then always grow cwnd whenever data is
3337         * delivered regardless of its ordering. Otherwise stay conservative
3338         * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3339         * new SACK or ECE mark may first advance cwnd here and later reduce
3340         * cwnd in tcp_fastretrans_alert() based on more states.
3341         */
3342        if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3343                return flag & FLAG_FORWARD_PROGRESS;
3344
3345        return flag & FLAG_DATA_ACKED;
3346}
3347
3348/* The "ultimate" congestion control function that aims to replace the rigid
3349 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3350 * It's called toward the end of processing an ACK with precise rate
3351 * information. All transmission or retransmission are delayed afterwards.
3352 */
3353static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3354                             int flag, const struct rate_sample *rs)
3355{
3356        const struct inet_connection_sock *icsk = inet_csk(sk);
3357
3358        if (icsk->icsk_ca_ops->cong_control) {
3359                icsk->icsk_ca_ops->cong_control(sk, rs);
3360                return;
3361        }
3362
3363        if (tcp_in_cwnd_reduction(sk)) {
3364                /* Reduce cwnd if state mandates */
3365                tcp_cwnd_reduction(sk, acked_sacked, flag);
3366        } else if (tcp_may_raise_cwnd(sk, flag)) {
3367                /* Advance cwnd if state allows */
3368                tcp_cong_avoid(sk, ack, acked_sacked);
3369        }
3370        tcp_update_pacing_rate(sk);
3371}
3372
3373/* Check that window update is acceptable.
3374 * The function assumes that snd_una<=ack<=snd_next.
3375 */
3376static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3377                                        const u32 ack, const u32 ack_seq,
3378                                        const u32 nwin)
3379{
3380        return  after(ack, tp->snd_una) ||
3381                after(ack_seq, tp->snd_wl1) ||
3382                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3383}
3384
3385/* If we update tp->snd_una, also update tp->bytes_acked */
3386static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3387{
3388        u32 delta = ack - tp->snd_una;
3389
3390        sock_owned_by_me((struct sock *)tp);
3391        tp->bytes_acked += delta;
3392        tp->snd_una = ack;
3393}
3394
3395/* If we update tp->rcv_nxt, also update tp->bytes_received */
3396static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3397{
3398        u32 delta = seq - tp->rcv_nxt;
3399
3400        sock_owned_by_me((struct sock *)tp);
3401        tp->bytes_received += delta;
3402        WRITE_ONCE(tp->rcv_nxt, seq);
3403}
3404
3405/* Update our send window.
3406 *
3407 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3408 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3409 */
3410static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3411                                 u32 ack_seq)
3412{
3413        struct tcp_sock *tp = tcp_sk(sk);
3414        int flag = 0;
3415        u32 nwin = ntohs(tcp_hdr(skb)->window);
3416
3417        if (likely(!tcp_hdr(skb)->syn))
3418                nwin <<= tp->rx_opt.snd_wscale;
3419
3420        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3421                flag |= FLAG_WIN_UPDATE;
3422                tcp_update_wl(tp, ack_seq);
3423
3424                if (tp->snd_wnd != nwin) {
3425                        tp->snd_wnd = nwin;
3426
3427                        /* Note, it is the only place, where
3428                         * fast path is recovered for sending TCP.
3429                         */
3430                        tp->pred_flags = 0;
3431                        tcp_fast_path_check(sk);
3432
3433                        if (!tcp_write_queue_empty(sk))
3434                                tcp_slow_start_after_idle_check(sk);
3435
3436                        if (nwin > tp->max_window) {
3437                                tp->max_window = nwin;
3438                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3439                        }
3440                }
3441        }
3442
3443        tcp_snd_una_update(tp, ack);
3444
3445        return flag;
3446}
3447
3448static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3449                                   u32 *last_oow_ack_time)
3450{
3451        if (*last_oow_ack_time) {
3452                s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3453
3454                if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3455                        NET_INC_STATS(net, mib_idx);
3456                        return true;    /* rate-limited: don't send yet! */
3457                }
3458        }
3459
3460        *last_oow_ack_time = tcp_jiffies32;
3461
3462        return false;   /* not rate-limited: go ahead, send dupack now! */
3463}
3464
3465/* Return true if we're currently rate-limiting out-of-window ACKs and
3466 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3467 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3468 * attacks that send repeated SYNs or ACKs for the same connection. To
3469 * do this, we do not send a duplicate SYNACK or ACK if the remote
3470 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3471 */
3472bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3473                          int mib_idx, u32 *last_oow_ack_time)
3474{
3475        /* Data packets without SYNs are not likely part of an ACK loop. */
3476        if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3477            !tcp_hdr(skb)->syn)
3478                return false;
3479
3480        return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3481}
3482
3483/* RFC 5961 7 [ACK Throttling] */
3484static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3485{
3486        /* unprotected vars, we dont care of overwrites */
3487        static u32 challenge_timestamp;
3488        static unsigned int challenge_count;
3489        struct tcp_sock *tp = tcp_sk(sk);
3490        struct net *net = sock_net(sk);
3491        u32 count, now;
3492
3493        /* First check our per-socket dupack rate limit. */
3494        if (__tcp_oow_rate_limited(net,
3495                                   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3496                                   &tp->last_oow_ack_time))
3497                return;
3498
3499        /* Then check host-wide RFC 5961 rate limit. */
3500        now = jiffies / HZ;
3501        if (now != challenge_timestamp) {
3502                u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3503                u32 half = (ack_limit + 1) >> 1;
3504
3505                challenge_timestamp = now;
3506                WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3507        }
3508        count = READ_ONCE(challenge_count);
3509        if (count > 0) {
3510                WRITE_ONCE(challenge_count, count - 1);
3511                NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3512                tcp_send_ack(sk);
3513        }
3514}
3515
3516static void tcp_store_ts_recent(struct tcp_sock *tp)
3517{
3518        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3519        tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3520}
3521
3522static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3523{
3524        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3525                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3526                 * extra check below makes sure this can only happen
3527                 * for pure ACK frames.  -DaveM
3528                 *
3529                 * Not only, also it occurs for expired timestamps.
3530                 */
3531
3532                if (tcp_paws_check(&tp->rx_opt, 0))
3533                        tcp_store_ts_recent(tp);
3534        }
3535}
3536
3537/* This routine deals with acks during a TLP episode and ends an episode by
3538 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3539 */
3540static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3541{
3542        struct tcp_sock *tp = tcp_sk(sk);
3543
3544        if (before(ack, tp->tlp_high_seq))
3545                return;
3546
3547        if (!tp->tlp_retrans) {
3548                /* TLP of new data has been acknowledged */
3549                tp->tlp_high_seq = 0;
3550        } else if (flag & FLAG_DSACKING_ACK) {
3551                /* This DSACK means original and TLP probe arrived; no loss */
3552                tp->tlp_high_seq = 0;
3553        } else if (after(ack, tp->tlp_high_seq)) {
3554                /* ACK advances: there was a loss, so reduce cwnd. Reset
3555                 * tlp_high_seq in tcp_init_cwnd_reduction()
3556                 */
3557                tcp_init_cwnd_reduction(sk);
3558                tcp_set_ca_state(sk, TCP_CA_CWR);
3559                tcp_end_cwnd_reduction(sk);
3560                tcp_try_keep_open(sk);
3561                NET_INC_STATS(sock_net(sk),
3562                                LINUX_MIB_TCPLOSSPROBERECOVERY);
3563        } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3564                             FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3565                /* Pure dupack: original and TLP probe arrived; no loss */
3566                tp->tlp_high_seq = 0;
3567        }
3568}
3569
3570static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3571{
3572        const struct inet_connection_sock *icsk = inet_csk(sk);
3573
3574        if (icsk->icsk_ca_ops->in_ack_event)
3575                icsk->icsk_ca_ops->in_ack_event(sk, flags);
3576}
3577
3578/* Congestion control has updated the cwnd already. So if we're in
3579 * loss recovery then now we do any new sends (for FRTO) or
3580 * retransmits (for CA_Loss or CA_recovery) that make sense.
3581 */
3582static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3583{
3584        struct tcp_sock *tp = tcp_sk(sk);
3585
3586        if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3587                return;
3588
3589        if (unlikely(rexmit == REXMIT_NEW)) {
3590                __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3591                                          TCP_NAGLE_OFF);
3592                if (after(tp->snd_nxt, tp->high_seq))
3593                        return;
3594                tp->frto = 0;
3595        }
3596        tcp_xmit_retransmit_queue(sk);
3597}
3598
3599/* Returns the number of packets newly acked or sacked by the current ACK */
3600static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3601{
3602        const struct net *net = sock_net(sk);
3603        struct tcp_sock *tp = tcp_sk(sk);
3604        u32 delivered;
3605
3606        delivered = tp->delivered - prior_delivered;
3607        NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3608        if (flag & FLAG_ECE)
3609                NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3610
3611        return delivered;
3612}
3613
3614/* This routine deals with incoming acks, but not outgoing ones. */
3615static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3616{
3617        struct inet_connection_sock *icsk = inet_csk(sk);
3618        struct tcp_sock *tp = tcp_sk(sk);
3619        struct tcp_sacktag_state sack_state;
3620        struct rate_sample rs = { .prior_delivered = 0 };
3621        u32 prior_snd_una = tp->snd_una;
3622        bool is_sack_reneg = tp->is_sack_reneg;
3623        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3624        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3625        int num_dupack = 0;
3626        int prior_packets = tp->packets_out;
3627        u32 delivered = tp->delivered;
3628        u32 lost = tp->lost;
3629        int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3630        u32 prior_fack;
3631
3632        sack_state.first_sackt = 0;
3633        sack_state.rate = &rs;
3634        sack_state.sack_delivered = 0;
3635
3636        /* We very likely will need to access rtx queue. */
3637        prefetch(sk->tcp_rtx_queue.rb_node);
3638
3639        /* If the ack is older than previous acks
3640         * then we can probably ignore it.
3641         */
3642        if (before(ack, prior_snd_una)) {
3643                /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3644                if (before(ack, prior_snd_una - tp->max_window)) {
3645                        if (!(flag & FLAG_NO_CHALLENGE_ACK))
3646                                tcp_send_challenge_ack(sk, skb);
3647                        return -1;
3648                }
3649                goto old_ack;
3650        }
3651
3652        /* If the ack includes data we haven't sent yet, discard
3653         * this segment (RFC793 Section 3.9).
3654         */
3655        if (after(ack, tp->snd_nxt))
3656                return -1;
3657
3658        if (after(ack, prior_snd_una)) {
3659                flag |= FLAG_SND_UNA_ADVANCED;
3660                icsk->icsk_retransmits = 0;
3661
3662#if IS_ENABLED(CONFIG_TLS_DEVICE)
3663                if (static_branch_unlikely(&clean_acked_data_enabled.key))
3664                        if (icsk->icsk_clean_acked)
3665                                icsk->icsk_clean_acked(sk, ack);
3666#endif
3667        }
3668
3669        prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3670        rs.prior_in_flight = tcp_packets_in_flight(tp);
3671
3672        /* ts_recent update must be made after we are sure that the packet
3673         * is in window.
3674         */
3675        if (flag & FLAG_UPDATE_TS_RECENT)
3676                tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3677
3678        if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3679            FLAG_SND_UNA_ADVANCED) {
3680                /* Window is constant, pure forward advance.
3681                 * No more checks are required.
3682                 * Note, we use the fact that SND.UNA>=SND.WL2.
3683                 */
3684                tcp_update_wl(tp, ack_seq);
3685                tcp_snd_una_update(tp, ack);
3686                flag |= FLAG_WIN_UPDATE;
3687
3688                tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3689
3690                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3691        } else {
3692                u32 ack_ev_flags = CA_ACK_SLOWPATH;
3693
3694                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3695                        flag |= FLAG_DATA;
3696                else
3697                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3698
3699                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3700
3701                if (TCP_SKB_CB(skb)->sacked)
3702                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3703                                                        &sack_state);
3704
3705                if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3706                        flag |= FLAG_ECE;
3707                        ack_ev_flags |= CA_ACK_ECE;
3708                }
3709
3710                if (sack_state.sack_delivered)
3711                        tcp_count_delivered(tp, sack_state.sack_delivered,
3712                                            flag & FLAG_ECE);
3713
3714                if (flag & FLAG_WIN_UPDATE)
3715                        ack_ev_flags |= CA_ACK_WIN_UPDATE;
3716
3717                tcp_in_ack_event(sk, ack_ev_flags);
3718        }
3719
3720        /* This is a deviation from RFC3168 since it states that:
3721         * "When the TCP data sender is ready to set the CWR bit after reducing
3722         * the congestion window, it SHOULD set the CWR bit only on the first
3723         * new data packet that it transmits."
3724         * We accept CWR on pure ACKs to be more robust
3725         * with widely-deployed TCP implementations that do this.
3726         */
3727        tcp_ecn_accept_cwr(sk, skb);
3728
3729        /* We passed data and got it acked, remove any soft error
3730         * log. Something worked...
3731         */
3732        sk->sk_err_soft = 0;
3733        icsk->icsk_probes_out = 0;
3734        tp->rcv_tstamp = tcp_jiffies32;
3735        if (!prior_packets)
3736                goto no_queue;
3737
3738        /* See if we can take anything off of the retransmit queue. */
3739        flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3740                                    flag & FLAG_ECE);
3741
3742        tcp_rack_update_reo_wnd(sk, &rs);
3743
3744        if (tp->tlp_high_seq)
3745                tcp_process_tlp_ack(sk, ack, flag);
3746        /* If needed, reset TLP/RTO timer; RACK may later override this. */
3747        if (flag & FLAG_SET_XMIT_TIMER)
3748                tcp_set_xmit_timer(sk);
3749
3750        if (tcp_ack_is_dubious(sk, flag)) {
3751                if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3752                        num_dupack = 1;
3753                        /* Consider if pure acks were aggregated in tcp_add_backlog() */
3754                        if (!(flag & FLAG_DATA))
3755                                num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3756                }
3757                tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3758                                      &rexmit);
3759        }
3760
3761        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3762                sk_dst_confirm(sk);
3763
3764        delivered = tcp_newly_delivered(sk, delivered, flag);
3765        lost = tp->lost - lost;                 /* freshly marked lost */
3766        rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3767        tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3768        tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3769        tcp_xmit_recovery(sk, rexmit);
3770        return 1;
3771
3772no_queue:
3773        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3774        if (flag & FLAG_DSACKING_ACK) {
3775                tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3776                                      &rexmit);
3777                tcp_newly_delivered(sk, delivered, flag);
3778        }
3779        /* If this ack opens up a zero window, clear backoff.  It was
3780         * being used to time the probes, and is probably far higher than
3781         * it needs to be for normal retransmission.
3782         */
3783        tcp_ack_probe(sk);
3784
3785        if (tp->tlp_high_seq)
3786                tcp_process_tlp_ack(sk, ack, flag);
3787        return 1;
3788
3789old_ack:
3790        /* If data was SACKed, tag it and see if we should send more data.
3791         * If data was DSACKed, see if we can undo a cwnd reduction.
3792         */
3793        if (TCP_SKB_CB(skb)->sacked) {
3794                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3795                                                &sack_state);
3796                tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3797                                      &rexmit);
3798                tcp_newly_delivered(sk, delivered, flag);
3799                tcp_xmit_recovery(sk, rexmit);
3800        }
3801
3802        return 0;
3803}
3804
3805static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3806                                      bool syn, struct tcp_fastopen_cookie *foc,
3807                                      bool exp_opt)
3808{
3809        /* Valid only in SYN or SYN-ACK with an even length.  */
3810        if (!foc || !syn || len < 0 || (len & 1))
3811                return;
3812
3813        if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3814            len <= TCP_FASTOPEN_COOKIE_MAX)
3815                memcpy(foc->val, cookie, len);
3816        else if (len != 0)
3817                len = -1;
3818        foc->len = len;
3819        foc->exp = exp_opt;
3820}
3821
3822static void smc_parse_options(const struct tcphdr *th,
3823                              struct tcp_options_received *opt_rx,
3824                              const unsigned char *ptr,
3825                              int opsize)
3826{
3827#if IS_ENABLED(CONFIG_SMC)
3828        if (static_branch_unlikely(&tcp_have_smc)) {
3829                if (th->syn && !(opsize & 1) &&
3830                    opsize >= TCPOLEN_EXP_SMC_BASE &&
3831                    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3832                        opt_rx->smc_ok = 1;
3833        }
3834#endif
3835}
3836
3837/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3838 * value on success.
3839 */
3840static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3841{
3842        const unsigned char *ptr = (const unsigned char *)(th + 1);
3843        int length = (th->doff * 4) - sizeof(struct tcphdr);
3844        u16 mss = 0;
3845
3846        while (length > 0) {
3847                int opcode = *ptr++;
3848                int opsize;
3849
3850                switch (opcode) {
3851                case TCPOPT_EOL:
3852                        return mss;
3853                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3854                        length--;
3855                        continue;
3856                default:
3857                        if (length < 2)
3858                                return mss;
3859                        opsize = *ptr++;
3860                        if (opsize < 2) /* "silly options" */
3861                                return mss;
3862                        if (opsize > length)
3863                                return mss;     /* fail on partial options */
3864                        if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3865                                u16 in_mss = get_unaligned_be16(ptr);
3866
3867                                if (in_mss) {
3868                                        if (user_mss && user_mss < in_mss)
3869                                                in_mss = user_mss;
3870                                        mss = in_mss;
3871                                }
3872                        }
3873                        ptr += opsize - 2;
3874                        length -= opsize;
3875                }
3876        }
3877        return mss;
3878}
3879
3880/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3881 * But, this can also be called on packets in the established flow when
3882 * the fast version below fails.
3883 */
3884void tcp_parse_options(const struct net *net,
3885                       const struct sk_buff *skb,
3886                       struct tcp_options_received *opt_rx, int estab,
3887                       struct tcp_fastopen_cookie *foc)
3888{
3889        const unsigned char *ptr;
3890        const struct tcphdr *th = tcp_hdr(skb);
3891        int length = (th->doff * 4) - sizeof(struct tcphdr);
3892
3893        ptr = (const unsigned char *)(th + 1);
3894        opt_rx->saw_tstamp = 0;
3895
3896        while (length > 0) {
3897                int opcode = *ptr++;
3898                int opsize;
3899
3900                switch (opcode) {
3901                case TCPOPT_EOL:
3902                        return;
3903                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3904                        length--;
3905                        continue;
3906                default:
3907                        if (length < 2)
3908                                return;
3909                        opsize = *ptr++;
3910                        if (opsize < 2) /* "silly options" */
3911                                return;
3912                        if (opsize > length)
3913                                return; /* don't parse partial options */
3914                        switch (opcode) {
3915                        case TCPOPT_MSS:
3916                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3917                                        u16 in_mss = get_unaligned_be16(ptr);
3918                                        if (in_mss) {
3919                                                if (opt_rx->user_mss &&
3920                                                    opt_rx->user_mss < in_mss)
3921                                                        in_mss = opt_rx->user_mss;
3922                                                opt_rx->mss_clamp = in_mss;
3923                                        }
3924                                }
3925                                break;
3926                        case TCPOPT_WINDOW:
3927                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3928                                    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3929                                        __u8 snd_wscale = *(__u8 *)ptr;
3930                                        opt_rx->wscale_ok = 1;
3931                                        if (snd_wscale > TCP_MAX_WSCALE) {
3932                                                net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3933                                                                     __func__,
3934                                                                     snd_wscale,
3935                                                                     TCP_MAX_WSCALE);
3936                                                snd_wscale = TCP_MAX_WSCALE;
3937                                        }
3938                                        opt_rx->snd_wscale = snd_wscale;
3939                                }
3940                                break;
3941                        case TCPOPT_TIMESTAMP:
3942                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3943                                    ((estab && opt_rx->tstamp_ok) ||
3944                                     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3945                                        opt_rx->saw_tstamp = 1;
3946                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3947                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3948                                }
3949                                break;
3950                        case TCPOPT_SACK_PERM:
3951                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3952                                    !estab && net->ipv4.sysctl_tcp_sack) {
3953                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3954                                        tcp_sack_reset(opt_rx);
3955                                }
3956                                break;
3957
3958                        case TCPOPT_SACK:
3959                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3960                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3961                                   opt_rx->sack_ok) {
3962                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3963                                }
3964                                break;
3965#ifdef CONFIG_TCP_MD5SIG
3966                        case TCPOPT_MD5SIG:
3967                                /*
3968                                 * The MD5 Hash has already been
3969                                 * checked (see tcp_v{4,6}_do_rcv()).
3970                                 */
3971                                break;
3972#endif
3973                        case TCPOPT_FASTOPEN:
3974                                tcp_parse_fastopen_option(
3975                                        opsize - TCPOLEN_FASTOPEN_BASE,
3976                                        ptr, th->syn, foc, false);
3977                                break;
3978
3979                        case TCPOPT_EXP:
3980                                /* Fast Open option shares code 254 using a
3981                                 * 16 bits magic number.
3982                                 */
3983                                if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3984                                    get_unaligned_be16(ptr) ==
3985                                    TCPOPT_FASTOPEN_MAGIC)
3986                                        tcp_parse_fastopen_option(opsize -
3987                                                TCPOLEN_EXP_FASTOPEN_BASE,
3988                                                ptr + 2, th->syn, foc, true);
3989                                else
3990                                        smc_parse_options(th, opt_rx, ptr,
3991                                                          opsize);
3992                                break;
3993
3994                        }
3995                        ptr += opsize-2;
3996                        length -= opsize;
3997                }
3998        }
3999}
4000EXPORT_SYMBOL(tcp_parse_options);
4001
4002static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4003{
4004        const __be32 *ptr = (const __be32 *)(th + 1);
4005
4006        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4007                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4008                tp->rx_opt.saw_tstamp = 1;
4009                ++ptr;
4010                tp->rx_opt.rcv_tsval = ntohl(*ptr);
4011                ++ptr;
4012                if (*ptr)
4013                        tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4014                else
4015                        tp->rx_opt.rcv_tsecr = 0;
4016                return true;
4017        }
4018        return false;
4019}
4020
4021/* Fast parse options. This hopes to only see timestamps.
4022 * If it is wrong it falls back on tcp_parse_options().
4023 */
4024static bool tcp_fast_parse_options(const struct net *net,
4025                                   const struct sk_buff *skb,
4026                                   const struct tcphdr *th, struct tcp_sock *tp)
4027{
4028        /* In the spirit of fast parsing, compare doff directly to constant
4029         * values.  Because equality is used, short doff can be ignored here.
4030         */
4031        if (th->doff == (sizeof(*th) / 4)) {
4032                tp->rx_opt.saw_tstamp = 0;
4033                return false;
4034        } else if (tp->rx_opt.tstamp_ok &&
4035                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4036                if (tcp_parse_aligned_timestamp(tp, th))
4037                        return true;
4038        }
4039
4040        tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4041        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4042                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4043
4044        return true;
4045}
4046
4047#ifdef CONFIG_TCP_MD5SIG
4048/*
4049 * Parse MD5 Signature option
4050 */
4051const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4052{
4053        int length = (th->doff << 2) - sizeof(*th);
4054        const u8 *ptr = (const u8 *)(th + 1);
4055
4056        /* If not enough data remaining, we can short cut */
4057        while (length >= TCPOLEN_MD5SIG) {
4058                int opcode = *ptr++;
4059                int opsize;
4060
4061                switch (opcode) {
4062                case TCPOPT_EOL:
4063                        return NULL;
4064                case TCPOPT_NOP:
4065                        length--;
4066                        continue;
4067                default:
4068                        opsize = *ptr++;
4069                        if (opsize < 2 || opsize > length)
4070                                return NULL;
4071                        if (opcode == TCPOPT_MD5SIG)
4072                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4073                }
4074                ptr += opsize - 2;
4075                length -= opsize;
4076        }
4077        return NULL;
4078}
4079EXPORT_SYMBOL(tcp_parse_md5sig_option);
4080#endif
4081
4082/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4083 *
4084 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4085 * it can pass through stack. So, the following predicate verifies that
4086 * this segment is not used for anything but congestion avoidance or
4087 * fast retransmit. Moreover, we even are able to eliminate most of such
4088 * second order effects, if we apply some small "replay" window (~RTO)
4089 * to timestamp space.
4090 *
4091 * All these measures still do not guarantee that we reject wrapped ACKs
4092 * on networks with high bandwidth, when sequence space is recycled fastly,
4093 * but it guarantees that such events will be very rare and do not affect
4094 * connection seriously. This doesn't look nice, but alas, PAWS is really
4095 * buggy extension.
4096 *
4097 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4098 * states that events when retransmit arrives after original data are rare.
4099 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4100 * the biggest problem on large power networks even with minor reordering.
4101 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4102 * up to bandwidth of 18Gigabit/sec. 8) ]
4103 */
4104
4105static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4106{
4107        const struct tcp_sock *tp = tcp_sk(sk);
4108        const struct tcphdr *th = tcp_hdr(skb);
4109        u32 seq = TCP_SKB_CB(skb)->seq;
4110        u32 ack = TCP_SKB_CB(skb)->ack_seq;
4111
4112        return (/* 1. Pure ACK with correct sequence number. */
4113                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4114
4115                /* 2. ... and duplicate ACK. */
4116                ack == tp->snd_una &&
4117
4118                /* 3. ... and does not update window. */
4119                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4120
4121                /* 4. ... and sits in replay window. */
4122                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4123}
4124
4125static inline bool tcp_paws_discard(const struct sock *sk,
4126                                   const struct sk_buff *skb)
4127{
4128        const struct tcp_sock *tp = tcp_sk(sk);
4129
4130        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4131               !tcp_disordered_ack(sk, skb);
4132}
4133
4134/* Check segment sequence number for validity.
4135 *
4136 * Segment controls are considered valid, if the segment
4137 * fits to the window after truncation to the window. Acceptability
4138 * of data (and SYN, FIN, of course) is checked separately.
4139 * See tcp_data_queue(), for example.
4140 *
4141 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4142 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4143 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4144 * (borrowed from freebsd)
4145 */
4146
4147static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4148{
4149        return  !before(end_seq, tp->rcv_wup) &&
4150                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4151}
4152
4153/* When we get a reset we do this. */
4154void tcp_reset(struct sock *sk)
4155{
4156        trace_tcp_receive_reset(sk);
4157
4158        /* We want the right error as BSD sees it (and indeed as we do). */
4159        switch (sk->sk_state) {
4160        case TCP_SYN_SENT:
4161                sk->sk_err = ECONNREFUSED;
4162                break;
4163        case TCP_CLOSE_WAIT:
4164                sk->sk_err = EPIPE;
4165                break;
4166        case TCP_CLOSE:
4167                return;
4168        default:
4169                sk->sk_err = ECONNRESET;
4170        }
4171        /* This barrier is coupled with smp_rmb() in tcp_poll() */
4172        smp_wmb();
4173
4174        tcp_write_queue_purge(sk);
4175        tcp_done(sk);
4176
4177        if (!sock_flag(sk, SOCK_DEAD))
4178                sk->sk_error_report(sk);
4179}
4180
4181/*
4182 *      Process the FIN bit. This now behaves as it is supposed to work
4183 *      and the FIN takes effect when it is validly part of sequence
4184 *      space. Not before when we get holes.
4185 *
4186 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4187 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4188 *      TIME-WAIT)
4189 *
4190 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4191 *      close and we go into CLOSING (and later onto TIME-WAIT)
4192 *
4193 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4194 */
4195void tcp_fin(struct sock *sk)
4196{
4197        struct tcp_sock *tp = tcp_sk(sk);
4198
4199        inet_csk_schedule_ack(sk);
4200
4201        sk->sk_shutdown |= RCV_SHUTDOWN;
4202        sock_set_flag(sk, SOCK_DONE);
4203
4204        switch (sk->sk_state) {
4205        case TCP_SYN_RECV:
4206        case TCP_ESTABLISHED:
4207                /* Move to CLOSE_WAIT */
4208                tcp_set_state(sk, TCP_CLOSE_WAIT);
4209                inet_csk_enter_pingpong_mode(sk);
4210                break;
4211
4212        case TCP_CLOSE_WAIT:
4213        case TCP_CLOSING:
4214                /* Received a retransmission of the FIN, do
4215                 * nothing.
4216                 */
4217                break;
4218        case TCP_LAST_ACK:
4219                /* RFC793: Remain in the LAST-ACK state. */
4220                break;
4221
4222        case TCP_FIN_WAIT1:
4223                /* This case occurs when a simultaneous close
4224                 * happens, we must ack the received FIN and
4225                 * enter the CLOSING state.
4226                 */
4227                tcp_send_ack(sk);
4228                tcp_set_state(sk, TCP_CLOSING);
4229                break;
4230        case TCP_FIN_WAIT2:
4231                /* Received a FIN -- send ACK and enter TIME_WAIT. */
4232                tcp_send_ack(sk);
4233                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4234                break;
4235        default:
4236                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4237                 * cases we should never reach this piece of code.
4238                 */
4239                pr_err("%s: Impossible, sk->sk_state=%d\n",
4240                       __func__, sk->sk_state);
4241                break;
4242        }
4243
4244        /* It _is_ possible, that we have something out-of-order _after_ FIN.
4245         * Probably, we should reset in this case. For now drop them.
4246         */
4247        skb_rbtree_purge(&tp->out_of_order_queue);
4248        if (tcp_is_sack(tp))
4249                tcp_sack_reset(&tp->rx_opt);
4250        sk_mem_reclaim(sk);
4251
4252        if (!sock_flag(sk, SOCK_DEAD)) {
4253                sk->sk_state_change(sk);
4254
4255                /* Do not send POLL_HUP for half duplex close. */
4256                if (sk->sk_shutdown == SHUTDOWN_MASK ||
4257                    sk->sk_state == TCP_CLOSE)
4258                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4259                else
4260                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4261        }
4262}
4263
4264static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4265                                  u32 end_seq)
4266{
4267        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4268                if (before(seq, sp->start_seq))
4269                        sp->start_seq = seq;
4270                if (after(end_seq, sp->end_seq))
4271                        sp->end_seq = end_seq;
4272                return true;
4273        }
4274        return false;
4275}
4276
4277static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4278{
4279        struct tcp_sock *tp = tcp_sk(sk);
4280
4281        if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4282                int mib_idx;
4283
4284                if (before(seq, tp->rcv_nxt))
4285                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4286                else
4287                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4288
4289                NET_INC_STATS(sock_net(sk), mib_idx);
4290
4291                tp->rx_opt.dsack = 1;
4292                tp->duplicate_sack[0].start_seq = seq;
4293                tp->duplicate_sack[0].end_seq = end_seq;
4294        }
4295}
4296
4297static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4298{
4299        struct tcp_sock *tp = tcp_sk(sk);
4300
4301        if (!tp->rx_opt.dsack)
4302                tcp_dsack_set(sk, seq, end_seq);
4303        else
4304                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4305}
4306
4307static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4308{
4309        /* When the ACK path fails or drops most ACKs, the sender would
4310         * timeout and spuriously retransmit the same segment repeatedly.
4311         * The receiver remembers and reflects via DSACKs. Leverage the
4312         * DSACK state and change the txhash to re-route speculatively.
4313         */
4314        if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4315                sk_rethink_txhash(sk);
4316                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4317        }
4318}
4319
4320static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4321{
4322        struct tcp_sock *tp = tcp_sk(sk);
4323
4324        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4325            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4326                NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4327                tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4328
4329                if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4330                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4331
4332                        tcp_rcv_spurious_retrans(sk, skb);
4333                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4334                                end_seq = tp->rcv_nxt;
4335                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4336                }
4337        }
4338
4339        tcp_send_ack(sk);
4340}
4341
4342/* These routines update the SACK block as out-of-order packets arrive or
4343 * in-order packets close up the sequence space.
4344 */
4345static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4346{
4347        int this_sack;
4348        struct tcp_sack_block *sp = &tp->selective_acks[0];
4349        struct tcp_sack_block *swalk = sp + 1;
4350
4351        /* See if the recent change to the first SACK eats into
4352         * or hits the sequence space of other SACK blocks, if so coalesce.
4353         */
4354        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4355                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4356                        int i;
4357
4358                        /* Zap SWALK, by moving every further SACK up by one slot.
4359                         * Decrease num_sacks.
4360                         */
4361                        tp->rx_opt.num_sacks--;
4362                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4363                                sp[i] = sp[i + 1];
4364                        continue;
4365                }
4366                this_sack++, swalk++;
4367        }
4368}
4369
4370static void tcp_sack_compress_send_ack(struct sock *sk)
4371{
4372        struct tcp_sock *tp = tcp_sk(sk);
4373
4374        if (!tp->compressed_ack)
4375                return;
4376
4377        if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4378                __sock_put(sk);
4379
4380        /* Since we have to send one ack finally,
4381         * substract one from tp->compressed_ack to keep
4382         * LINUX_MIB_TCPACKCOMPRESSED accurate.
4383         */
4384        NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4385                      tp->compressed_ack - 1);
4386
4387        tp->compressed_ack = 0;
4388        tcp_send_ack(sk);
4389}
4390
4391/* Reasonable amount of sack blocks included in TCP SACK option
4392 * The max is 4, but this becomes 3 if TCP timestamps are there.
4393 * Given that SACK packets might be lost, be conservative and use 2.
4394 */
4395#define TCP_SACK_BLOCKS_EXPECTED 2
4396
4397static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4398{
4399        struct tcp_sock *tp = tcp_sk(sk);
4400        struct tcp_sack_block *sp = &tp->selective_acks[0];
4401        int cur_sacks = tp->rx_opt.num_sacks;
4402        int this_sack;
4403
4404        if (!cur_sacks)
4405                goto new_sack;
4406
4407        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4408                if (tcp_sack_extend(sp, seq, end_seq)) {
4409                        if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4410                                tcp_sack_compress_send_ack(sk);
4411                        /* Rotate this_sack to the first one. */
4412                        for (; this_sack > 0; this_sack--, sp--)
4413                                swap(*sp, *(sp - 1));
4414                        if (cur_sacks > 1)
4415                                tcp_sack_maybe_coalesce(tp);
4416                        return;
4417                }
4418        }
4419
4420        if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4421                tcp_sack_compress_send_ack(sk);
4422
4423        /* Could not find an adjacent existing SACK, build a new one,
4424         * put it at the front, and shift everyone else down.  We
4425         * always know there is at least one SACK present already here.
4426         *
4427         * If the sack array is full, forget about the last one.
4428         */
4429        if (this_sack >= TCP_NUM_SACKS) {
4430                this_sack--;
4431                tp->rx_opt.num_sacks--;
4432                sp--;
4433        }
4434        for (; this_sack > 0; this_sack--, sp--)
4435                *sp = *(sp - 1);
4436
4437new_sack:
4438        /* Build the new head SACK, and we're done. */
4439        sp->start_seq = seq;
4440        sp->end_seq = end_seq;
4441        tp->rx_opt.num_sacks++;
4442}
4443
4444/* RCV.NXT advances, some SACKs should be eaten. */
4445
4446static void tcp_sack_remove(struct tcp_sock *tp)
4447{
4448        struct tcp_sack_block *sp = &tp->selective_acks[0];
4449        int num_sacks = tp->rx_opt.num_sacks;
4450        int this_sack;
4451
4452        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4453        if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4454                tp->rx_opt.num_sacks = 0;
4455                return;
4456        }
4457
4458        for (this_sack = 0; this_sack < num_sacks;) {
4459                /* Check if the start of the sack is covered by RCV.NXT. */
4460                if (!before(tp->rcv_nxt, sp->start_seq)) {
4461                        int i;
4462
4463                        /* RCV.NXT must cover all the block! */
4464                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4465
4466                        /* Zap this SACK, by moving forward any other SACKS. */
4467                        for (i = this_sack+1; i < num_sacks; i++)
4468                                tp->selective_acks[i-1] = tp->selective_acks[i];
4469                        num_sacks--;
4470                        continue;
4471                }
4472                this_sack++;
4473                sp++;
4474        }
4475        tp->rx_opt.num_sacks = num_sacks;
4476}
4477
4478/**
4479 * tcp_try_coalesce - try to merge skb to prior one
4480 * @sk: socket
4481 * @to: prior buffer
4482 * @from: buffer to add in queue
4483 * @fragstolen: pointer to boolean
4484 *
4485 * Before queueing skb @from after @to, try to merge them
4486 * to reduce overall memory use and queue lengths, if cost is small.
4487 * Packets in ofo or receive queues can stay a long time.
4488 * Better try to coalesce them right now to avoid future collapses.
4489 * Returns true if caller should free @from instead of queueing it
4490 */
4491static bool tcp_try_coalesce(struct sock *sk,
4492                             struct sk_buff *to,
4493                             struct sk_buff *from,
4494                             bool *fragstolen)
4495{
4496        int delta;
4497
4498        *fragstolen = false;
4499
4500        /* Its possible this segment overlaps with prior segment in queue */
4501        if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4502                return false;
4503
4504        if (!mptcp_skb_can_collapse(to, from))
4505                return false;
4506
4507#ifdef CONFIG_TLS_DEVICE
4508        if (from->decrypted != to->decrypted)
4509                return false;
4510#endif
4511
4512        if (!skb_try_coalesce(to, from, fragstolen, &delta))
4513                return false;
4514
4515        atomic_add(delta, &sk->sk_rmem_alloc);
4516        sk_mem_charge(sk, delta);
4517        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4518        TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4519        TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4520        TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4521
4522        if (TCP_SKB_CB(from)->has_rxtstamp) {
4523                TCP_SKB_CB(to)->has_rxtstamp = true;
4524                to->tstamp = from->tstamp;
4525                skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4526        }
4527
4528        return true;
4529}
4530
4531static bool tcp_ooo_try_coalesce(struct sock *sk,
4532                             struct sk_buff *to,
4533                             struct sk_buff *from,
4534                             bool *fragstolen)
4535{
4536        bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4537
4538        /* In case tcp_drop() is called later, update to->gso_segs */
4539        if (res) {
4540                u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4541                               max_t(u16, 1, skb_shinfo(from)->gso_segs);
4542
4543                skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4544        }
4545        return res;
4546}
4547
4548static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4549{
4550        sk_drops_add(sk, skb);
4551        __kfree_skb(skb);
4552}
4553
4554/* This one checks to see if we can put data from the
4555 * out_of_order queue into the receive_queue.
4556 */
4557static void tcp_ofo_queue(struct sock *sk)
4558{
4559        struct tcp_sock *tp = tcp_sk(sk);
4560        __u32 dsack_high = tp->rcv_nxt;
4561        bool fin, fragstolen, eaten;
4562        struct sk_buff *skb, *tail;
4563        struct rb_node *p;
4564
4565        p = rb_first(&tp->out_of_order_queue);
4566        while (p) {
4567                skb = rb_to_skb(p);
4568                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4569                        break;
4570
4571                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4572                        __u32 dsack = dsack_high;
4573                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4574                                dsack_high = TCP_SKB_CB(skb)->end_seq;
4575                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4576                }
4577                p = rb_next(p);
4578                rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4579
4580                if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4581                        tcp_drop(sk, skb);
4582                        continue;
4583                }
4584
4585                tail = skb_peek_tail(&sk->sk_receive_queue);
4586                eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4587                tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4588                fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4589                if (!eaten)
4590                        __skb_queue_tail(&sk->sk_receive_queue, skb);
4591                else
4592                        kfree_skb_partial(skb, fragstolen);
4593
4594                if (unlikely(fin)) {
4595                        tcp_fin(sk);
4596                        /* tcp_fin() purges tp->out_of_order_queue,
4597                         * so we must end this loop right now.
4598                         */
4599                        break;
4600                }
4601        }
4602}
4603
4604static bool tcp_prune_ofo_queue(struct sock *sk);
4605static int tcp_prune_queue(struct sock *sk);
4606
4607static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4608                                 unsigned int size)
4609{
4610        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4611            !sk_rmem_schedule(sk, skb, size)) {
4612
4613                if (tcp_prune_queue(sk) < 0)
4614                        return -1;
4615
4616                while (!sk_rmem_schedule(sk, skb, size)) {
4617                        if (!tcp_prune_ofo_queue(sk))
4618                                return -1;
4619                }
4620        }
4621        return 0;
4622}
4623
4624static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4625{
4626        struct tcp_sock *tp = tcp_sk(sk);
4627        struct rb_node **p, *parent;
4628        struct sk_buff *skb1;
4629        u32 seq, end_seq;
4630        bool fragstolen;
4631
4632        tcp_ecn_check_ce(sk, skb);
4633
4634        if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4635                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4636                sk->sk_data_ready(sk);
4637                tcp_drop(sk, skb);
4638                return;
4639        }
4640
4641        /* Disable header prediction. */
4642        tp->pred_flags = 0;
4643        inet_csk_schedule_ack(sk);
4644
4645        tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4646        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4647        seq = TCP_SKB_CB(skb)->seq;
4648        end_seq = TCP_SKB_CB(skb)->end_seq;
4649
4650        p = &tp->out_of_order_queue.rb_node;
4651        if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4652                /* Initial out of order segment, build 1 SACK. */
4653                if (tcp_is_sack(tp)) {
4654                        tp->rx_opt.num_sacks = 1;
4655                        tp->selective_acks[0].start_seq = seq;
4656                        tp->selective_acks[0].end_seq = end_seq;
4657                }
4658                rb_link_node(&skb->rbnode, NULL, p);
4659                rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4660                tp->ooo_last_skb = skb;
4661                goto end;
4662        }
4663
4664        /* In the typical case, we are adding an skb to the end of the list.
4665         * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4666         */
4667        if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4668                                 skb, &fragstolen)) {
4669coalesce_done:
4670                /* For non sack flows, do not grow window to force DUPACK
4671                 * and trigger fast retransmit.
4672                 */
4673                if (tcp_is_sack(tp))
4674                        tcp_grow_window(sk, skb);
4675                kfree_skb_partial(skb, fragstolen);
4676                skb = NULL;
4677                goto add_sack;
4678        }
4679        /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4680        if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4681                parent = &tp->ooo_last_skb->rbnode;
4682                p = &parent->rb_right;
4683                goto insert;
4684        }
4685
4686        /* Find place to insert this segment. Handle overlaps on the way. */
4687        parent = NULL;
4688        while (*p) {
4689                parent = *p;
4690                skb1 = rb_to_skb(parent);
4691                if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4692                        p = &parent->rb_left;
4693                        continue;
4694                }
4695                if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4696                        if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4697                                /* All the bits are present. Drop. */
4698                                NET_INC_STATS(sock_net(sk),
4699                                              LINUX_MIB_TCPOFOMERGE);
4700                                tcp_drop(sk, skb);
4701                                skb = NULL;
4702                                tcp_dsack_set(sk, seq, end_seq);
4703                                goto add_sack;
4704                        }
4705                        if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4706                                /* Partial overlap. */
4707                                tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4708                        } else {
4709                                /* skb's seq == skb1's seq and skb covers skb1.
4710                                 * Replace skb1 with skb.
4711                                 */
4712                                rb_replace_node(&skb1->rbnode, &skb->rbnode,
4713                                                &tp->out_of_order_queue);
4714                                tcp_dsack_extend(sk,
4715                                                 TCP_SKB_CB(skb1)->seq,
4716                                                 TCP_SKB_CB(skb1)->end_seq);
4717                                NET_INC_STATS(sock_net(sk),
4718                                              LINUX_MIB_TCPOFOMERGE);
4719                                tcp_drop(sk, skb1);
4720                                goto merge_right;
4721                        }
4722                } else if (tcp_ooo_try_coalesce(sk, skb1,
4723                                                skb, &fragstolen)) {
4724                        goto coalesce_done;
4725                }
4726                p = &parent->rb_right;
4727        }
4728insert:
4729        /* Insert segment into RB tree. */
4730        rb_link_node(&skb->rbnode, parent, p);
4731        rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4732
4733merge_right:
4734        /* Remove other segments covered by skb. */
4735        while ((skb1 = skb_rb_next(skb)) != NULL) {
4736                if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4737                        break;
4738                if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4739                        tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4740                                         end_seq);
4741                        break;
4742                }
4743                rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4744                tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4745                                 TCP_SKB_CB(skb1)->end_seq);
4746                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4747                tcp_drop(sk, skb1);
4748        }
4749        /* If there is no skb after us, we are the last_skb ! */
4750        if (!skb1)
4751                tp->ooo_last_skb = skb;
4752
4753add_sack:
4754        if (tcp_is_sack(tp))
4755                tcp_sack_new_ofo_skb(sk, seq, end_seq);
4756end:
4757        if (skb) {
4758                /* For non sack flows, do not grow window to force DUPACK
4759                 * and trigger fast retransmit.
4760                 */
4761                if (tcp_is_sack(tp))
4762                        tcp_grow_window(sk, skb);
4763                skb_condense(skb);
4764                skb_set_owner_r(skb, sk);
4765        }
4766}
4767
4768static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4769                                      bool *fragstolen)
4770{
4771        int eaten;
4772        struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4773
4774        eaten = (tail &&
4775                 tcp_try_coalesce(sk, tail,
4776                                  skb, fragstolen)) ? 1 : 0;
4777        tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4778        if (!eaten) {
4779                __skb_queue_tail(&sk->sk_receive_queue, skb);
4780                skb_set_owner_r(skb, sk);
4781        }
4782        return eaten;
4783}
4784
4785int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4786{
4787        struct sk_buff *skb;
4788        int err = -ENOMEM;
4789        int data_len = 0;
4790        bool fragstolen;
4791
4792        if (size == 0)
4793                return 0;
4794
4795        if (size > PAGE_SIZE) {
4796                int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4797
4798                data_len = npages << PAGE_SHIFT;
4799                size = data_len + (size & ~PAGE_MASK);
4800        }
4801        skb = alloc_skb_with_frags(size - data_len, data_len,
4802                                   PAGE_ALLOC_COSTLY_ORDER,
4803                                   &err, sk->sk_allocation);
4804        if (!skb)
4805                goto err;
4806
4807        skb_put(skb, size - data_len);
4808        skb->data_len = data_len;
4809        skb->len = size;
4810
4811        if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4812                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4813                goto err_free;
4814        }
4815
4816        err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4817        if (err)
4818                goto err_free;
4819
4820        TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4821        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4822        TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4823
4824        if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4825                WARN_ON_ONCE(fragstolen); /* should not happen */
4826                __kfree_skb(skb);
4827        }
4828        return size;
4829
4830err_free:
4831        kfree_skb(skb);
4832err:
4833        return err;
4834
4835}
4836
4837void tcp_data_ready(struct sock *sk)
4838{
4839        const struct tcp_sock *tp = tcp_sk(sk);
4840        int avail = tp->rcv_nxt - tp->copied_seq;
4841
4842        if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4843            !sock_flag(sk, SOCK_DONE))
4844                return;
4845
4846        sk->sk_data_ready(sk);
4847}
4848
4849static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4850{
4851        struct tcp_sock *tp = tcp_sk(sk);
4852        bool fragstolen;
4853        int eaten;
4854
4855        if (sk_is_mptcp(sk))
4856                mptcp_incoming_options(sk, skb, &tp->rx_opt);
4857
4858        if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4859                __kfree_skb(skb);
4860                return;
4861        }
4862        skb_dst_drop(skb);
4863        __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4864
4865        tp->rx_opt.dsack = 0;
4866
4867        /*  Queue data for delivery to the user.
4868         *  Packets in sequence go to the receive queue.
4869         *  Out of sequence packets to the out_of_order_queue.
4870         */
4871        if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4872                if (tcp_receive_window(tp) == 0) {
4873                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4874                        goto out_of_window;
4875                }
4876
4877                /* Ok. In sequence. In window. */
4878queue_and_out:
4879                if (skb_queue_len(&sk->sk_receive_queue) == 0)
4880                        sk_forced_mem_schedule(sk, skb->truesize);
4881                else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4882                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4883                        sk->sk_data_ready(sk);
4884                        goto drop;
4885                }
4886
4887                eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4888                if (skb->len)
4889                        tcp_event_data_recv(sk, skb);
4890                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4891                        tcp_fin(sk);
4892
4893                if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4894                        tcp_ofo_queue(sk);
4895
4896                        /* RFC5681. 4.2. SHOULD send immediate ACK, when
4897                         * gap in queue is filled.
4898                         */
4899                        if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4900                                inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4901                }
4902
4903                if (tp->rx_opt.num_sacks)
4904                        tcp_sack_remove(tp);
4905
4906                tcp_fast_path_check(sk);
4907
4908                if (eaten > 0)
4909                        kfree_skb_partial(skb, fragstolen);
4910                if (!sock_flag(sk, SOCK_DEAD))
4911                        tcp_data_ready(sk);
4912                return;
4913        }
4914
4915        if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4916                tcp_rcv_spurious_retrans(sk, skb);
4917                /* A retransmit, 2nd most common case.  Force an immediate ack. */
4918                NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4919                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4920
4921out_of_window:
4922                tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4923                inet_csk_schedule_ack(sk);
4924drop:
4925                tcp_drop(sk, skb);
4926                return;
4927        }
4928
4929        /* Out of window. F.e. zero window probe. */
4930        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4931                goto out_of_window;
4932
4933        if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4934                /* Partial packet, seq < rcv_next < end_seq */
4935                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4936
4937                /* If window is closed, drop tail of packet. But after
4938                 * remembering D-SACK for its head made in previous line.
4939                 */
4940                if (!tcp_receive_window(tp)) {
4941                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4942                        goto out_of_window;
4943                }
4944                goto queue_and_out;
4945        }
4946
4947        tcp_data_queue_ofo(sk, skb);
4948}
4949
4950static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4951{
4952        if (list)
4953                return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4954
4955        return skb_rb_next(skb);
4956}
4957
4958static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4959                                        struct sk_buff_head *list,
4960                                        struct rb_root *root)
4961{
4962        struct sk_buff *next = tcp_skb_next(skb, list);
4963
4964        if (list)
4965                __skb_unlink(skb, list);
4966        else
4967                rb_erase(&skb->rbnode, root);
4968
4969        __kfree_skb(skb);
4970        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4971
4972        return next;
4973}
4974
4975/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4976void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4977{
4978        struct rb_node **p = &root->rb_node;
4979        struct rb_node *parent = NULL;
4980        struct sk_buff *skb1;
4981
4982        while (*p) {
4983                parent = *p;
4984                skb1 = rb_to_skb(parent);
4985                if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4986                        p = &parent->rb_left;
4987                else
4988                        p = &parent->rb_right;
4989        }
4990        rb_link_node(&skb->rbnode, parent, p);
4991        rb_insert_color(&skb->rbnode, root);
4992}
4993
4994/* Collapse contiguous sequence of skbs head..tail with
4995 * sequence numbers start..end.
4996 *
4997 * If tail is NULL, this means until the end of the queue.
4998 *
4999 * Segments with FIN/SYN are not collapsed (only because this
5000 * simplifies code)
5001 */
5002static void
5003tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5004             struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5005{
5006        struct sk_buff *skb = head, *n;
5007        struct sk_buff_head tmp;
5008        bool end_of_skbs;
5009
5010        /* First, check that queue is collapsible and find
5011         * the point where collapsing can be useful.
5012         */
5013restart:
5014        for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5015                n = tcp_skb_next(skb, list);
5016
5017                /* No new bits? It is possible on ofo queue. */
5018                if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5019                        skb = tcp_collapse_one(sk, skb, list, root);
5020                        if (!skb)
5021                                break;
5022                        goto restart;
5023                }
5024
5025                /* The first skb to collapse is:
5026                 * - not SYN/FIN and
5027                 * - bloated or contains data before "start" or
5028                 *   overlaps to the next one and mptcp allow collapsing.
5029                 */
5030                if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5031                    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5032                     before(TCP_SKB_CB(skb)->seq, start))) {
5033                        end_of_skbs = false;
5034                        break;
5035                }
5036
5037                if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5038                    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5039                        end_of_skbs = false;
5040                        break;
5041                }
5042
5043                /* Decided to skip this, advance start seq. */
5044                start = TCP_SKB_CB(skb)->end_seq;
5045        }
5046        if (end_of_skbs ||
5047            (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5048                return;
5049
5050        __skb_queue_head_init(&tmp);
5051
5052        while (before(start, end)) {
5053                int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5054                struct sk_buff *nskb;
5055
5056                nskb = alloc_skb(copy, GFP_ATOMIC);
5057                if (!nskb)
5058                        break;
5059
5060                memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5061#ifdef CONFIG_TLS_DEVICE
5062                nskb->decrypted = skb->decrypted;
5063#endif
5064                TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5065                if (list)
5066                        __skb_queue_before(list, skb, nskb);
5067                else
5068                        __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5069                skb_set_owner_r(nskb, sk);
5070                mptcp_skb_ext_move(nskb, skb);
5071
5072                /* Copy data, releasing collapsed skbs. */
5073                while (copy > 0) {
5074                        int offset = start - TCP_SKB_CB(skb)->seq;
5075                        int size = TCP_SKB_CB(skb)->end_seq - start;
5076
5077                        BUG_ON(offset < 0);
5078                        if (size > 0) {
5079                                size = min(copy, size);
5080                                if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5081                                        BUG();
5082                                TCP_SKB_CB(nskb)->end_seq += size;
5083                                copy -= size;
5084                                start += size;
5085                        }
5086                        if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5087                                skb = tcp_collapse_one(sk, skb, list, root);
5088                                if (!skb ||
5089                                    skb == tail ||
5090                                    !mptcp_skb_can_collapse(nskb, skb) ||
5091                                    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5092                                        goto end;
5093#ifdef CONFIG_TLS_DEVICE
5094                                if (skb->decrypted != nskb->decrypted)
5095                                        goto end;
5096#endif
5097                        }
5098                }
5099        }
5100end:
5101        skb_queue_walk_safe(&tmp, skb, n)
5102                tcp_rbtree_insert(root, skb);
5103}
5104
5105/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5106 * and tcp_collapse() them until all the queue is collapsed.
5107 */
5108static void tcp_collapse_ofo_queue(struct sock *sk)
5109{
5110        struct tcp_sock *tp = tcp_sk(sk);
5111        u32 range_truesize, sum_tiny = 0;
5112        struct sk_buff *skb, *head;
5113        u32 start, end;
5114
5115        skb = skb_rb_first(&tp->out_of_order_queue);
5116new_range:
5117        if (!skb) {
5118                tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5119                return;
5120        }
5121        start = TCP_SKB_CB(skb)->seq;
5122        end = TCP_SKB_CB(skb)->end_seq;
5123        range_truesize = skb->truesize;
5124
5125        for (head = skb;;) {
5126                skb = skb_rb_next(skb);
5127
5128                /* Range is terminated when we see a gap or when
5129                 * we are at the queue end.
5130                 */
5131                if (!skb ||
5132                    after(TCP_SKB_CB(skb)->seq, end) ||
5133                    before(TCP_SKB_CB(skb)->end_seq, start)) {
5134                        /* Do not attempt collapsing tiny skbs */
5135                        if (range_truesize != head->truesize ||
5136                            end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5137                                tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5138                                             head, skb, start, end);
5139                        } else {
5140                                sum_tiny += range_truesize;
5141                                if (sum_tiny > sk->sk_rcvbuf >> 3)
5142                                        return;
5143                        }
5144                        goto new_range;
5145                }
5146
5147                range_truesize += skb->truesize;
5148                if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5149                        start = TCP_SKB_CB(skb)->seq;
5150                if (after(TCP_SKB_CB(skb)->end_seq, end))
5151                        end = TCP_SKB_CB(skb)->end_seq;
5152        }
5153}
5154
5155/*
5156 * Clean the out-of-order queue to make room.
5157 * We drop high sequences packets to :
5158 * 1) Let a chance for holes to be filled.
5159 * 2) not add too big latencies if thousands of packets sit there.
5160 *    (But if application shrinks SO_RCVBUF, we could still end up
5161 *     freeing whole queue here)
5162 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5163 *
5164 * Return true if queue has shrunk.
5165 */
5166static bool tcp_prune_ofo_queue(struct sock *sk)
5167{
5168        struct tcp_sock *tp = tcp_sk(sk);
5169        struct rb_node *node, *prev;
5170        int goal;
5171
5172        if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5173                return false;
5174
5175        NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5176        goal = sk->sk_rcvbuf >> 3;
5177        node = &tp->ooo_last_skb->rbnode;
5178        do {
5179                prev = rb_prev(node);
5180                rb_erase(node, &tp->out_of_order_queue);
5181                goal -= rb_to_skb(node)->truesize;
5182                tcp_drop(sk, rb_to_skb(node));
5183                if (!prev || goal <= 0) {
5184                        sk_mem_reclaim(sk);
5185                        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5186                            !tcp_under_memory_pressure(sk))
5187                                break;
5188                        goal = sk->sk_rcvbuf >> 3;
5189                }
5190                node = prev;
5191        } while (node);
5192        tp->ooo_last_skb = rb_to_skb(prev);
5193
5194        /* Reset SACK state.  A conforming SACK implementation will
5195         * do the same at a timeout based retransmit.  When a connection
5196         * is in a sad state like this, we care only about integrity
5197         * of the connection not performance.
5198         */
5199        if (tp->rx_opt.sack_ok)
5200                tcp_sack_reset(&tp->rx_opt);
5201        return true;
5202}
5203
5204/* Reduce allocated memory if we can, trying to get
5205 * the socket within its memory limits again.
5206 *
5207 * Return less than zero if we should start dropping frames
5208 * until the socket owning process reads some of the data
5209 * to stabilize the situation.
5210 */
5211static int tcp_prune_queue(struct sock *sk)
5212{
5213        struct tcp_sock *tp = tcp_sk(sk);
5214
5215        NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5216
5217        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5218                tcp_clamp_window(sk);
5219        else if (tcp_under_memory_pressure(sk))
5220                tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5221
5222        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5223                return 0;
5224
5225        tcp_collapse_ofo_queue(sk);
5226        if (!skb_queue_empty(&sk->sk_receive_queue))
5227                tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5228                             skb_peek(&sk->sk_receive_queue),
5229                             NULL,
5230                             tp->copied_seq, tp->rcv_nxt);
5231        sk_mem_reclaim(sk);
5232
5233        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5234                return 0;
5235
5236        /* Collapsing did not help, destructive actions follow.
5237         * This must not ever occur. */
5238
5239        tcp_prune_ofo_queue(sk);
5240
5241        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5242                return 0;
5243
5244        /* If we are really being abused, tell the caller to silently
5245         * drop receive data on the floor.  It will get retransmitted
5246         * and hopefully then we'll have sufficient space.
5247         */
5248        NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5249
5250        /* Massive buffer overcommit. */
5251        tp->pred_flags = 0;
5252        return -1;
5253}
5254
5255static bool tcp_should_expand_sndbuf(const struct sock *sk)
5256{
5257        const struct tcp_sock *tp = tcp_sk(sk);
5258
5259        /* If the user specified a specific send buffer setting, do
5260         * not modify it.
5261         */
5262        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5263                return false;
5264
5265        /* If we are under global TCP memory pressure, do not expand.  */
5266        if (tcp_under_memory_pressure(sk))
5267                return false;
5268
5269        /* If we are under soft global TCP memory pressure, do not expand.  */
5270        if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5271                return false;
5272
5273        /* If we filled the congestion window, do not expand.  */
5274        if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5275                return false;
5276
5277        return true;
5278}
5279
5280/* When incoming ACK allowed to free some skb from write_queue,
5281 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5282 * on the exit from tcp input handler.
5283 *
5284 * PROBLEM: sndbuf expansion does not work well with largesend.
5285 */
5286static void tcp_new_space(struct sock *sk)
5287{
5288        struct tcp_sock *tp = tcp_sk(sk);
5289
5290        if (tcp_should_expand_sndbuf(sk)) {
5291                tcp_sndbuf_expand(sk);
5292                tp->snd_cwnd_stamp = tcp_jiffies32;
5293        }
5294
5295        sk->sk_write_space(sk);
5296}
5297
5298static void tcp_check_space(struct sock *sk)
5299{
5300        if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5301                sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5302                /* pairs with tcp_poll() */
5303                smp_mb();
5304                if (sk->sk_socket &&
5305                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5306                        tcp_new_space(sk);
5307                        if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5308                                tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5309                }
5310        }
5311}
5312
5313static inline void tcp_data_snd_check(struct sock *sk)
5314{
5315        tcp_push_pending_frames(sk);
5316        tcp_check_space(sk);
5317}
5318
5319/*
5320 * Check if sending an ack is needed.
5321 */
5322static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5323{
5324        struct tcp_sock *tp = tcp_sk(sk);
5325        unsigned long rtt, delay;
5326
5327            /* More than one full frame received... */
5328        if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5329             /* ... and right edge of window advances far enough.
5330              * (tcp_recvmsg() will send ACK otherwise).
5331              * If application uses SO_RCVLOWAT, we want send ack now if
5332              * we have not received enough bytes to satisfy the condition.
5333              */
5334            (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5335             __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5336            /* We ACK each frame or... */
5337            tcp_in_quickack_mode(sk) ||
5338            /* Protocol state mandates a one-time immediate ACK */
5339            inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5340send_now:
5341                tcp_send_ack(sk);
5342                return;
5343        }
5344
5345        if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5346                tcp_send_delayed_ack(sk);
5347                return;
5348        }
5349
5350        if (!tcp_is_sack(tp) ||
5351            tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5352                goto send_now;
5353
5354        if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5355                tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5356                tp->dup_ack_counter = 0;
5357        }
5358        if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5359                tp->dup_ack_counter++;
5360                goto send_now;
5361        }
5362        tp->compressed_ack++;
5363        if (hrtimer_is_queued(&tp->compressed_ack_timer))
5364                return;
5365
5366        /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5367
5368        rtt = tp->rcv_rtt_est.rtt_us;
5369        if (tp->srtt_us && tp->srtt_us < rtt)
5370                rtt = tp->srtt_us;
5371
5372        delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5373                      rtt * (NSEC_PER_USEC >> 3)/20);
5374        sock_hold(sk);
5375        hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5376                               sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5377                               HRTIMER_MODE_REL_PINNED_SOFT);
5378}
5379
5380static inline void tcp_ack_snd_check(struct sock *sk)
5381{
5382        if (!inet_csk_ack_scheduled(sk)) {
5383                /* We sent a data segment already. */
5384                return;
5385        }
5386        __tcp_ack_snd_check(sk, 1);
5387}
5388
5389/*
5390 *      This routine is only called when we have urgent data
5391 *      signaled. Its the 'slow' part of tcp_urg. It could be
5392 *      moved inline now as tcp_urg is only called from one
5393 *      place. We handle URGent data wrong. We have to - as
5394 *      BSD still doesn't use the correction from RFC961.
5395 *      For 1003.1g we should support a new option TCP_STDURG to permit
5396 *      either form (or just set the sysctl tcp_stdurg).
5397 */
5398
5399static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5400{
5401        struct tcp_sock *tp = tcp_sk(sk);
5402        u32 ptr = ntohs(th->urg_ptr);
5403
5404        if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5405                ptr--;
5406        ptr += ntohl(th->seq);
5407
5408        /* Ignore urgent data that we've already seen and read. */
5409        if (after(tp->copied_seq, ptr))
5410                return;
5411
5412        /* Do not replay urg ptr.
5413         *
5414         * NOTE: interesting situation not covered by specs.
5415         * Misbehaving sender may send urg ptr, pointing to segment,
5416         * which we already have in ofo queue. We are not able to fetch
5417         * such data and will stay in TCP_URG_NOTYET until will be eaten
5418         * by recvmsg(). Seems, we are not obliged to handle such wicked
5419         * situations. But it is worth to think about possibility of some
5420         * DoSes using some hypothetical application level deadlock.
5421         */
5422        if (before(ptr, tp->rcv_nxt))
5423                return;
5424
5425        /* Do we already have a newer (or duplicate) urgent pointer? */
5426        if (tp->urg_data && !after(ptr, tp->urg_seq))
5427                return;
5428
5429        /* Tell the world about our new urgent pointer. */
5430        sk_send_sigurg(sk);
5431
5432        /* We may be adding urgent data when the last byte read was
5433         * urgent. To do this requires some care. We cannot just ignore
5434         * tp->copied_seq since we would read the last urgent byte again
5435         * as data, nor can we alter copied_seq until this data arrives
5436         * or we break the semantics of SIOCATMARK (and thus sockatmark())
5437         *
5438         * NOTE. Double Dutch. Rendering to plain English: author of comment
5439         * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5440         * and expect that both A and B disappear from stream. This is _wrong_.
5441         * Though this happens in BSD with high probability, this is occasional.
5442         * Any application relying on this is buggy. Note also, that fix "works"
5443         * only in this artificial test. Insert some normal data between A and B and we will
5444         * decline of BSD again. Verdict: it is better to remove to trap
5445         * buggy users.
5446         */
5447        if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5448            !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5449                struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5450                tp->copied_seq++;
5451                if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5452                        __skb_unlink(skb, &sk->sk_receive_queue);
5453                        __kfree_skb(skb);
5454                }
5455        }
5456
5457        tp->urg_data = TCP_URG_NOTYET;
5458        WRITE_ONCE(tp->urg_seq, ptr);
5459
5460        /* Disable header prediction. */
5461        tp->pred_flags = 0;
5462}
5463
5464/* This is the 'fast' part of urgent handling. */
5465static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5466{
5467        struct tcp_sock *tp = tcp_sk(sk);
5468
5469        /* Check if we get a new urgent pointer - normally not. */
5470        if (th->urg)
5471                tcp_check_urg(sk, th);
5472
5473        /* Do we wait for any urgent data? - normally not... */
5474        if (tp->urg_data == TCP_URG_NOTYET) {
5475                u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5476                          th->syn;
5477
5478                /* Is the urgent pointer pointing into this packet? */
5479                if (ptr < skb->len) {
5480                        u8 tmp;
5481                        if (skb_copy_bits(skb, ptr, &tmp, 1))
5482                                BUG();
5483                        tp->urg_data = TCP_URG_VALID | tmp;
5484                        if (!sock_flag(sk, SOCK_DEAD))
5485                                sk->sk_data_ready(sk);
5486                }
5487        }
5488}
5489
5490/* Accept RST for rcv_nxt - 1 after a FIN.
5491 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5492 * FIN is sent followed by a RST packet. The RST is sent with the same
5493 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5494 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5495 * ACKs on the closed socket. In addition middleboxes can drop either the
5496 * challenge ACK or a subsequent RST.
5497 */
5498static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5499{
5500        struct tcp_sock *tp = tcp_sk(sk);
5501
5502        return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5503                        (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5504                                               TCPF_CLOSING));
5505}
5506
5507/* Does PAWS and seqno based validation of an incoming segment, flags will
5508 * play significant role here.
5509 */
5510static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5511                                  const struct tcphdr *th, int syn_inerr)
5512{
5513        struct tcp_sock *tp = tcp_sk(sk);
5514        bool rst_seq_match = false;
5515
5516        /* RFC1323: H1. Apply PAWS check first. */
5517        if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5518            tp->rx_opt.saw_tstamp &&
5519            tcp_paws_discard(sk, skb)) {
5520                if (!th->rst) {
5521                        NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5522                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5523                                                  LINUX_MIB_TCPACKSKIPPEDPAWS,
5524                                                  &tp->last_oow_ack_time))
5525                                tcp_send_dupack(sk, skb);
5526                        goto discard;
5527                }
5528                /* Reset is accepted even if it did not pass PAWS. */
5529        }
5530
5531        /* Step 1: check sequence number */
5532        if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5533                /* RFC793, page 37: "In all states except SYN-SENT, all reset
5534                 * (RST) segments are validated by checking their SEQ-fields."
5535                 * And page 69: "If an incoming segment is not acceptable,
5536                 * an acknowledgment should be sent in reply (unless the RST
5537                 * bit is set, if so drop the segment and return)".
5538                 */
5539                if (!th->rst) {
5540                        if (th->syn)
5541                                goto syn_challenge;
5542                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5543                                                  LINUX_MIB_TCPACKSKIPPEDSEQ,
5544                                                  &tp->last_oow_ack_time))
5545                                tcp_send_dupack(sk, skb);
5546                } else if (tcp_reset_check(sk, skb)) {
5547                        tcp_reset(sk);
5548                }
5549                goto discard;
5550        }
5551
5552        /* Step 2: check RST bit */
5553        if (th->rst) {
5554                /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5555                 * FIN and SACK too if available):
5556                 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5557                 * the right-most SACK block,
5558                 * then
5559                 *     RESET the connection
5560                 * else
5561                 *     Send a challenge ACK
5562                 */
5563                if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5564                    tcp_reset_check(sk, skb)) {
5565                        rst_seq_match = true;
5566                } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5567                        struct tcp_sack_block *sp = &tp->selective_acks[0];
5568                        int max_sack = sp[0].end_seq;
5569                        int this_sack;
5570
5571                        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5572                             ++this_sack) {
5573                                max_sack = after(sp[this_sack].end_seq,
5574                                                 max_sack) ?
5575                                        sp[this_sack].end_seq : max_sack;
5576                        }
5577
5578                        if (TCP_SKB_CB(skb)->seq == max_sack)
5579                                rst_seq_match = true;
5580                }
5581
5582                if (rst_seq_match)
5583                        tcp_reset(sk);
5584                else {
5585                        /* Disable TFO if RST is out-of-order
5586                         * and no data has been received
5587                         * for current active TFO socket
5588                         */
5589                        if (tp->syn_fastopen && !tp->data_segs_in &&
5590                            sk->sk_state == TCP_ESTABLISHED)
5591                                tcp_fastopen_active_disable(sk);
5592                        tcp_send_challenge_ack(sk, skb);
5593                }
5594                goto discard;
5595        }
5596
5597        /* step 3: check security and precedence [ignored] */
5598
5599        /* step 4: Check for a SYN
5600         * RFC 5961 4.2 : Send a challenge ack
5601         */
5602        if (th->syn) {
5603syn_challenge:
5604                if (syn_inerr)
5605                        TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5606                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5607                tcp_send_challenge_ack(sk, skb);
5608                goto discard;
5609        }
5610
5611        return true;
5612
5613discard:
5614        tcp_drop(sk, skb);
5615        return false;
5616}
5617
5618/*
5619 *      TCP receive function for the ESTABLISHED state.
5620 *
5621 *      It is split into a fast path and a slow path. The fast path is
5622 *      disabled when:
5623 *      - A zero window was announced from us - zero window probing
5624 *        is only handled properly in the slow path.
5625 *      - Out of order segments arrived.
5626 *      - Urgent data is expected.
5627 *      - There is no buffer space left
5628 *      - Unexpected TCP flags/window values/header lengths are received
5629 *        (detected by checking the TCP header against pred_flags)
5630 *      - Data is sent in both directions. Fast path only supports pure senders
5631 *        or pure receivers (this means either the sequence number or the ack
5632 *        value must stay constant)
5633 *      - Unexpected TCP option.
5634 *
5635 *      When these conditions are not satisfied it drops into a standard
5636 *      receive procedure patterned after RFC793 to handle all cases.
5637 *      The first three cases are guaranteed by proper pred_flags setting,
5638 *      the rest is checked inline. Fast processing is turned on in
5639 *      tcp_data_queue when everything is OK.
5640 */
5641void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5642{
5643        const struct tcphdr *th = (const struct tcphdr *)skb->data;
5644        struct tcp_sock *tp = tcp_sk(sk);
5645        unsigned int len = skb->len;
5646
5647        /* TCP congestion window tracking */
5648        trace_tcp_probe(sk, skb);
5649
5650        tcp_mstamp_refresh(tp);
5651        if (unlikely(!sk->sk_rx_dst))
5652                inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5653        /*
5654         *      Header prediction.
5655         *      The code loosely follows the one in the famous
5656         *      "30 instruction TCP receive" Van Jacobson mail.
5657         *
5658         *      Van's trick is to deposit buffers into socket queue
5659         *      on a device interrupt, to call tcp_recv function
5660         *      on the receive process context and checksum and copy
5661         *      the buffer to user space. smart...
5662         *
5663         *      Our current scheme is not silly either but we take the
5664         *      extra cost of the net_bh soft interrupt processing...
5665         *      We do checksum and copy also but from device to kernel.
5666         */
5667
5668        tp->rx_opt.saw_tstamp = 0;
5669
5670        /*      pred_flags is 0xS?10 << 16 + snd_wnd
5671         *      if header_prediction is to be made
5672         *      'S' will always be tp->tcp_header_len >> 2
5673         *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5674         *  turn it off (when there are holes in the receive
5675         *       space for instance)
5676         *      PSH flag is ignored.
5677         */
5678
5679        if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5680            TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5681            !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5682                int tcp_header_len = tp->tcp_header_len;
5683
5684                /* Timestamp header prediction: tcp_header_len
5685                 * is automatically equal to th->doff*4 due to pred_flags
5686                 * match.
5687                 */
5688
5689                /* Check timestamp */
5690                if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5691                        /* No? Slow path! */
5692                        if (!tcp_parse_aligned_timestamp(tp, th))
5693                                goto slow_path;
5694
5695                        /* If PAWS failed, check it more carefully in slow path */
5696                        if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5697                                goto slow_path;
5698
5699                        /* DO NOT update ts_recent here, if checksum fails
5700                         * and timestamp was corrupted part, it will result
5701                         * in a hung connection since we will drop all
5702                         * future packets due to the PAWS test.
5703                         */
5704                }
5705
5706                if (len <= tcp_header_len) {
5707                        /* Bulk data transfer: sender */
5708                        if (len == tcp_header_len) {
5709                                /* Predicted packet is in window by definition.
5710                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5711                                 * Hence, check seq<=rcv_wup reduces to:
5712                                 */
5713                                if (tcp_header_len ==
5714                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5715                                    tp->rcv_nxt == tp->rcv_wup)
5716                                        tcp_store_ts_recent(tp);
5717
5718                                /* We know that such packets are checksummed
5719                                 * on entry.
5720                                 */
5721                                tcp_ack(sk, skb, 0);
5722                                __kfree_skb(skb);
5723                                tcp_data_snd_check(sk);
5724                                /* When receiving pure ack in fast path, update
5725                                 * last ts ecr directly instead of calling
5726                                 * tcp_rcv_rtt_measure_ts()
5727                                 */
5728                                tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5729                                return;
5730                        } else { /* Header too small */
5731                                TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5732                                goto discard;
5733                        }
5734                } else {
5735                        int eaten = 0;
5736                        bool fragstolen = false;
5737
5738                        if (tcp_checksum_complete(skb))
5739                                goto csum_error;
5740
5741                        if ((int)skb->truesize > sk->sk_forward_alloc)
5742                                goto step5;
5743
5744                        /* Predicted packet is in window by definition.
5745                         * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5746                         * Hence, check seq<=rcv_wup reduces to:
5747                         */
5748                        if (tcp_header_len ==
5749                            (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5750                            tp->rcv_nxt == tp->rcv_wup)
5751                                tcp_store_ts_recent(tp);
5752
5753                        tcp_rcv_rtt_measure_ts(sk, skb);
5754
5755                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5756
5757                        /* Bulk data transfer: receiver */
5758                        __skb_pull(skb, tcp_header_len);
5759                        eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5760
5761                        tcp_event_data_recv(sk, skb);
5762
5763                        if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5764                                /* Well, only one small jumplet in fast path... */
5765                                tcp_ack(sk, skb, FLAG_DATA);
5766                                tcp_data_snd_check(sk);
5767                                if (!inet_csk_ack_scheduled(sk))
5768                                        goto no_ack;
5769                        }
5770
5771                        __tcp_ack_snd_check(sk, 0);
5772no_ack:
5773                        if (eaten)
5774                                kfree_skb_partial(skb, fragstolen);
5775                        tcp_data_ready(sk);
5776                        return;
5777                }
5778        }
5779
5780slow_path:
5781        if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5782                goto csum_error;
5783
5784        if (!th->ack && !th->rst && !th->syn)
5785                goto discard;
5786
5787        /*
5788         *      Standard slow path.
5789         */
5790
5791        if (!tcp_validate_incoming(sk, skb, th, 1))
5792                return;
5793
5794step5:
5795        if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5796                goto discard;
5797
5798        tcp_rcv_rtt_measure_ts(sk, skb);
5799
5800        /* Process urgent data. */
5801        tcp_urg(sk, skb, th);
5802
5803        /* step 7: process the segment text */
5804        tcp_data_queue(sk, skb);
5805
5806        tcp_data_snd_check(sk);
5807        tcp_ack_snd_check(sk);
5808        return;
5809
5810csum_error:
5811        TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5812        TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5813
5814discard:
5815        tcp_drop(sk, skb);
5816}
5817EXPORT_SYMBOL(tcp_rcv_established);
5818
5819void tcp_init_transfer(struct sock *sk, int bpf_op)
5820{
5821        struct inet_connection_sock *icsk = inet_csk(sk);
5822        struct tcp_sock *tp = tcp_sk(sk);
5823
5824        tcp_mtup_init(sk);
5825        icsk->icsk_af_ops->rebuild_header(sk);
5826        tcp_init_metrics(sk);
5827
5828        /* Initialize the congestion window to start the transfer.
5829         * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5830         * retransmitted. In light of RFC6298 more aggressive 1sec
5831         * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5832         * retransmission has occurred.
5833         */
5834        if (tp->total_retrans > 1 && tp->undo_marker)
5835                tp->snd_cwnd = 1;
5836        else
5837                tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5838        tp->snd_cwnd_stamp = tcp_jiffies32;
5839
5840        tcp_call_bpf(sk, bpf_op, 0, NULL);
5841        tcp_init_congestion_control(sk);
5842        tcp_init_buffer_space(sk);
5843}
5844
5845void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5846{
5847        struct tcp_sock *tp = tcp_sk(sk);
5848        struct inet_connection_sock *icsk = inet_csk(sk);
5849
5850        tcp_set_state(sk, TCP_ESTABLISHED);
5851        icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5852
5853        if (skb) {
5854                icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5855                security_inet_conn_established(sk, skb);
5856                sk_mark_napi_id(sk, skb);
5857        }
5858
5859        tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5860
5861        /* Prevent spurious tcp_cwnd_restart() on first data
5862         * packet.
5863         */
5864        tp->lsndtime = tcp_jiffies32;
5865
5866        if (sock_flag(sk, SOCK_KEEPOPEN))
5867                inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5868
5869        if (!tp->rx_opt.snd_wscale)
5870                __tcp_fast_path_on(tp, tp->snd_wnd);
5871        else
5872                tp->pred_flags = 0;
5873}
5874
5875static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5876                                    struct tcp_fastopen_cookie *cookie)
5877{
5878        struct tcp_sock *tp = tcp_sk(sk);
5879        struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5880        u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5881        bool syn_drop = false;
5882
5883        if (mss == tp->rx_opt.user_mss) {
5884                struct tcp_options_received opt;
5885
5886                /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5887                tcp_clear_options(&opt);
5888                opt.user_mss = opt.mss_clamp = 0;
5889                tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5890                mss = opt.mss_clamp;
5891        }
5892
5893        if (!tp->syn_fastopen) {
5894                /* Ignore an unsolicited cookie */
5895                cookie->len = -1;
5896        } else if (tp->total_retrans) {
5897                /* SYN timed out and the SYN-ACK neither has a cookie nor
5898                 * acknowledges data. Presumably the remote received only
5899                 * the retransmitted (regular) SYNs: either the original
5900                 * SYN-data or the corresponding SYN-ACK was dropped.
5901                 */
5902                syn_drop = (cookie->len < 0 && data);
5903        } else if (cookie->len < 0 && !tp->syn_data) {
5904                /* We requested a cookie but didn't get it. If we did not use
5905                 * the (old) exp opt format then try so next time (try_exp=1).
5906                 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5907                 */
5908                try_exp = tp->syn_fastopen_exp ? 2 : 1;
5909        }
5910
5911        tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5912
5913        if (data) { /* Retransmit unacked data in SYN */
5914                if (tp->total_retrans)
5915                        tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5916                else
5917                        tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5918                skb_rbtree_walk_from(data) {
5919                        if (__tcp_retransmit_skb(sk, data, 1))
5920                                break;
5921                }
5922                tcp_rearm_rto(sk);
5923                NET_INC_STATS(sock_net(sk),
5924                                LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5925                return true;
5926        }
5927        tp->syn_data_acked = tp->syn_data;
5928        if (tp->syn_data_acked) {
5929                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5930                /* SYN-data is counted as two separate packets in tcp_ack() */
5931                if (tp->delivered > 1)
5932                        --tp->delivered;
5933        }
5934
5935        tcp_fastopen_add_skb(sk, synack);
5936
5937        return false;
5938}
5939
5940static void smc_check_reset_syn(struct tcp_sock *tp)
5941{
5942#if IS_ENABLED(CONFIG_SMC)
5943        if (static_branch_unlikely(&tcp_have_smc)) {
5944                if (tp->syn_smc && !tp->rx_opt.smc_ok)
5945                        tp->syn_smc = 0;
5946        }
5947#endif
5948}
5949
5950static void tcp_try_undo_spurious_syn(struct sock *sk)
5951{
5952        struct tcp_sock *tp = tcp_sk(sk);
5953        u32 syn_stamp;
5954
5955        /* undo_marker is set when SYN or SYNACK times out. The timeout is
5956         * spurious if the ACK's timestamp option echo value matches the
5957         * original SYN timestamp.
5958         */
5959        syn_stamp = tp->retrans_stamp;
5960        if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5961            syn_stamp == tp->rx_opt.rcv_tsecr)
5962                tp->undo_marker = 0;
5963}
5964
5965static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5966                                         const struct tcphdr *th)
5967{
5968        struct inet_connection_sock *icsk = inet_csk(sk);
5969        struct tcp_sock *tp = tcp_sk(sk);
5970        struct tcp_fastopen_cookie foc = { .len = -1 };
5971        int saved_clamp = tp->rx_opt.mss_clamp;
5972        bool fastopen_fail;
5973
5974        tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5975        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5976                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5977
5978        if (th->ack) {
5979                /* rfc793:
5980                 * "If the state is SYN-SENT then
5981                 *    first check the ACK bit
5982                 *      If the ACK bit is set
5983                 *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5984                 *        a reset (unless the RST bit is set, if so drop
5985                 *        the segment and return)"
5986                 */
5987                if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5988                    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5989                        /* Previous FIN/ACK or RST/ACK might be ignored. */
5990                        if (icsk->icsk_retransmits == 0)
5991                                inet_csk_reset_xmit_timer(sk,
5992                                                ICSK_TIME_RETRANS,
5993                                                TCP_TIMEOUT_MIN, TCP_RTO_MAX);
5994                        goto reset_and_undo;
5995                }
5996
5997                if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5998                    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5999                             tcp_time_stamp(tp))) {
6000                        NET_INC_STATS(sock_net(sk),
6001                                        LINUX_MIB_PAWSACTIVEREJECTED);
6002                        goto reset_and_undo;
6003                }
6004
6005                /* Now ACK is acceptable.
6006                 *
6007                 * "If the RST bit is set
6008                 *    If the ACK was acceptable then signal the user "error:
6009                 *    connection reset", drop the segment, enter CLOSED state,
6010                 *    delete TCB, and return."
6011                 */
6012
6013                if (th->rst) {
6014                        tcp_reset(sk);
6015                        goto discard;
6016                }
6017
6018                /* rfc793:
6019                 *   "fifth, if neither of the SYN or RST bits is set then
6020                 *    drop the segment and return."
6021                 *
6022                 *    See note below!
6023                 *                                        --ANK(990513)
6024                 */
6025                if (!th->syn)
6026                        goto discard_and_undo;
6027
6028                /* rfc793:
6029                 *   "If the SYN bit is on ...
6030                 *    are acceptable then ...
6031                 *    (our SYN has been ACKed), change the connection
6032                 *    state to ESTABLISHED..."
6033                 */
6034
6035                tcp_ecn_rcv_synack(tp, th);
6036
6037                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6038                tcp_try_undo_spurious_syn(sk);
6039                tcp_ack(sk, skb, FLAG_SLOWPATH);
6040
6041                /* Ok.. it's good. Set up sequence numbers and
6042                 * move to established.
6043                 */
6044                WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6045                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6046
6047                /* RFC1323: The window in SYN & SYN/ACK segments is
6048                 * never scaled.
6049                 */
6050                tp->snd_wnd = ntohs(th->window);
6051
6052                if (!tp->rx_opt.wscale_ok) {
6053                        tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6054                        tp->window_clamp = min(tp->window_clamp, 65535U);
6055                }
6056
6057                if (tp->rx_opt.saw_tstamp) {
6058                        tp->rx_opt.tstamp_ok       = 1;
6059                        tp->tcp_header_len =
6060                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6061                        tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
6062                        tcp_store_ts_recent(tp);
6063                } else {
6064                        tp->tcp_header_len = sizeof(struct tcphdr);
6065                }
6066
6067                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6068                tcp_initialize_rcv_mss(sk);
6069
6070                /* Remember, tcp_poll() does not lock socket!
6071                 * Change state from SYN-SENT only after copied_seq
6072                 * is initialized. */
6073                WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6074
6075                smc_check_reset_syn(tp);
6076
6077                smp_mb();
6078
6079                tcp_finish_connect(sk, skb);
6080
6081                fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6082                                tcp_rcv_fastopen_synack(sk, skb, &foc);
6083
6084                if (!sock_flag(sk, SOCK_DEAD)) {
6085                        sk->sk_state_change(sk);
6086                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6087                }
6088                if (fastopen_fail)
6089                        return -1;
6090                if (sk->sk_write_pending ||
6091                    icsk->icsk_accept_queue.rskq_defer_accept ||
6092                    inet_csk_in_pingpong_mode(sk)) {
6093                        /* Save one ACK. Data will be ready after
6094                         * several ticks, if write_pending is set.
6095                         *
6096                         * It may be deleted, but with this feature tcpdumps
6097                         * look so _wonderfully_ clever, that I was not able
6098                         * to stand against the temptation 8)     --ANK
6099                         */
6100                        inet_csk_schedule_ack(sk);
6101                        tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6102                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6103                                                  TCP_DELACK_MAX, TCP_RTO_MAX);
6104
6105discard:
6106                        tcp_drop(sk, skb);
6107                        return 0;
6108                } else {
6109                        tcp_send_ack(sk);
6110                }
6111                return -1;
6112        }
6113
6114        /* No ACK in the segment */
6115
6116        if (th->rst) {
6117                /* rfc793:
6118                 * "If the RST bit is set
6119                 *
6120                 *      Otherwise (no ACK) drop the segment and return."
6121                 */
6122
6123                goto discard_and_undo;
6124        }
6125
6126        /* PAWS check. */
6127        if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6128            tcp_paws_reject(&tp->rx_opt, 0))
6129                goto discard_and_undo;
6130
6131        if (th->syn) {
6132                /* We see SYN without ACK. It is attempt of
6133                 * simultaneous connect with crossed SYNs.
6134                 * Particularly, it can be connect to self.
6135                 */
6136                tcp_set_state(sk, TCP_SYN_RECV);
6137
6138                if (tp->rx_opt.saw_tstamp) {
6139                        tp->rx_opt.tstamp_ok = 1;
6140                        tcp_store_ts_recent(tp);
6141                        tp->tcp_header_len =
6142                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6143                } else {
6144                        tp->tcp_header_len = sizeof(struct tcphdr);
6145                }
6146
6147                WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6148                WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6149                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6150
6151                /* RFC1323: The window in SYN & SYN/ACK segments is
6152                 * never scaled.
6153                 */
6154                tp->snd_wnd    = ntohs(th->window);
6155                tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6156                tp->max_window = tp->snd_wnd;
6157
6158                tcp_ecn_rcv_syn(tp, th);
6159
6160                tcp_mtup_init(sk);
6161                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6162                tcp_initialize_rcv_mss(sk);
6163
6164                tcp_send_synack(sk);
6165#if 0
6166                /* Note, we could accept data and URG from this segment.
6167                 * There are no obstacles to make this (except that we must
6168                 * either change tcp_recvmsg() to prevent it from returning data
6169                 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6170                 *
6171                 * However, if we ignore data in ACKless segments sometimes,
6172                 * we have no reasons to accept it sometimes.
6173                 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6174                 * is not flawless. So, discard packet for sanity.
6175                 * Uncomment this return to process the data.
6176                 */
6177                return -1;
6178#else
6179                goto discard;
6180#endif
6181        }
6182        /* "fifth, if neither of the SYN or RST bits is set then
6183         * drop the segment and return."
6184         */
6185
6186discard_and_undo:
6187        tcp_clear_options(&tp->rx_opt);
6188        tp->rx_opt.mss_clamp = saved_clamp;
6189        goto discard;
6190
6191reset_and_undo:
6192        tcp_clear_options(&tp->rx_opt);
6193        tp->rx_opt.mss_clamp = saved_clamp;
6194        return 1;
6195}
6196
6197static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6198{
6199        struct request_sock *req;
6200
6201        /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6202         * undo. If peer SACKs triggered fast recovery, we can't undo here.
6203         */
6204        if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6205                tcp_try_undo_loss(sk, false);
6206
6207        /* Reset rtx states to prevent spurious retransmits_timed_out() */
6208        tcp_sk(sk)->retrans_stamp = 0;
6209        inet_csk(sk)->icsk_retransmits = 0;
6210
6211        /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6212         * we no longer need req so release it.
6213         */
6214        req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6215                                        lockdep_sock_is_held(sk));
6216        reqsk_fastopen_remove(sk, req, false);
6217
6218        /* Re-arm the timer because data may have been sent out.
6219         * This is similar to the regular data transmission case
6220         * when new data has just been ack'ed.
6221         *
6222         * (TFO) - we could try to be more aggressive and
6223         * retransmitting any data sooner based on when they
6224         * are sent out.
6225         */
6226        tcp_rearm_rto(sk);
6227}
6228
6229/*
6230 *      This function implements the receiving procedure of RFC 793 for
6231 *      all states except ESTABLISHED and TIME_WAIT.
6232 *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6233 *      address independent.
6234 */
6235
6236int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6237{
6238        struct tcp_sock *tp = tcp_sk(sk);
6239        struct inet_connection_sock *icsk = inet_csk(sk);
6240        const struct tcphdr *th = tcp_hdr(skb);
6241        struct request_sock *req;
6242        int queued = 0;
6243        bool acceptable;
6244
6245        switch (sk->sk_state) {
6246        case TCP_CLOSE:
6247                goto discard;
6248
6249        case TCP_LISTEN:
6250                if (th->ack)
6251                        return 1;
6252
6253                if (th->rst)
6254                        goto discard;
6255
6256                if (th->syn) {
6257                        if (th->fin)
6258                                goto discard;
6259                        /* It is possible that we process SYN packets from backlog,
6260                         * so we need to make sure to disable BH and RCU right there.
6261                         */
6262                        rcu_read_lock();
6263                        local_bh_disable();
6264                        acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6265                        local_bh_enable();
6266                        rcu_read_unlock();
6267
6268                        if (!acceptable)
6269                                return 1;
6270                        consume_skb(skb);
6271                        return 0;
6272                }
6273                goto discard;
6274
6275        case TCP_SYN_SENT:
6276                tp->rx_opt.saw_tstamp = 0;
6277                tcp_mstamp_refresh(tp);
6278                queued = tcp_rcv_synsent_state_process(sk, skb, th);
6279                if (queued >= 0)
6280                        return queued;
6281
6282                /* Do step6 onward by hand. */
6283                tcp_urg(sk, skb, th);
6284                __kfree_skb(skb);
6285                tcp_data_snd_check(sk);
6286                return 0;
6287        }
6288
6289        tcp_mstamp_refresh(tp);
6290        tp->rx_opt.saw_tstamp = 0;
6291        req = rcu_dereference_protected(tp->fastopen_rsk,
6292                                        lockdep_sock_is_held(sk));
6293        if (req) {
6294                bool req_stolen;
6295
6296                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6297                    sk->sk_state != TCP_FIN_WAIT1);
6298
6299                if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6300                        goto discard;
6301        }
6302
6303        if (!th->ack && !th->rst && !th->syn)
6304                goto discard;
6305
6306        if (!tcp_validate_incoming(sk, skb, th, 0))
6307                return 0;
6308
6309        /* step 5: check the ACK field */
6310        acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6311                                      FLAG_UPDATE_TS_RECENT |
6312                                      FLAG_NO_CHALLENGE_ACK) > 0;
6313
6314        if (!acceptable) {
6315                if (sk->sk_state == TCP_SYN_RECV)
6316                        return 1;       /* send one RST */
6317                tcp_send_challenge_ack(sk, skb);
6318                goto discard;
6319        }
6320        switch (sk->sk_state) {
6321        case TCP_SYN_RECV:
6322                tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6323                if (!tp->srtt_us)
6324                        tcp_synack_rtt_meas(sk, req);
6325
6326                if (req) {
6327                        tcp_rcv_synrecv_state_fastopen(sk);
6328                } else {
6329                        tcp_try_undo_spurious_syn(sk);
6330                        tp->retrans_stamp = 0;
6331                        tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6332                        WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6333                }
6334                smp_mb();
6335                tcp_set_state(sk, TCP_ESTABLISHED);
6336                sk->sk_state_change(sk);
6337
6338                /* Note, that this wakeup is only for marginal crossed SYN case.
6339                 * Passively open sockets are not waked up, because
6340                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6341                 */
6342                if (sk->sk_socket)
6343                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6344
6345                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6346                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6347                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6348
6349                if (tp->rx_opt.tstamp_ok)
6350                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6351
6352                if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6353                        tcp_update_pacing_rate(sk);
6354
6355                /* Prevent spurious tcp_cwnd_restart() on first data packet */
6356                tp->lsndtime = tcp_jiffies32;
6357
6358                tcp_initialize_rcv_mss(sk);
6359                tcp_fast_path_on(tp);
6360                break;
6361
6362        case TCP_FIN_WAIT1: {
6363                int tmo;
6364
6365                if (req)
6366                        tcp_rcv_synrecv_state_fastopen(sk);
6367
6368                if (tp->snd_una != tp->write_seq)
6369                        break;
6370
6371                tcp_set_state(sk, TCP_FIN_WAIT2);
6372                sk->sk_shutdown |= SEND_SHUTDOWN;
6373
6374                sk_dst_confirm(sk);
6375
6376                if (!sock_flag(sk, SOCK_DEAD)) {
6377                        /* Wake up lingering close() */
6378                        sk->sk_state_change(sk);
6379                        break;
6380                }
6381
6382                if (tp->linger2 < 0) {
6383                        tcp_done(sk);
6384                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6385                        return 1;
6386                }
6387                if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6388                    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6389                        /* Receive out of order FIN after close() */
6390                        if (tp->syn_fastopen && th->fin)
6391                                tcp_fastopen_active_disable(sk);
6392                        tcp_done(sk);
6393                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6394                        return 1;
6395                }
6396
6397                tmo = tcp_fin_time(sk);
6398                if (tmo > TCP_TIMEWAIT_LEN) {
6399                        inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6400                } else if (th->fin || sock_owned_by_user(sk)) {
6401                        /* Bad case. We could lose such FIN otherwise.
6402                         * It is not a big problem, but it looks confusing
6403                         * and not so rare event. We still can lose it now,
6404                         * if it spins in bh_lock_sock(), but it is really
6405                         * marginal case.
6406                         */
6407                        inet_csk_reset_keepalive_timer(sk, tmo);
6408                } else {
6409                        tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6410                        goto discard;
6411                }
6412                break;
6413        }
6414
6415        case TCP_CLOSING:
6416                if (tp->snd_una == tp->write_seq) {
6417                        tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6418                        goto discard;
6419                }
6420                break;
6421
6422        case TCP_LAST_ACK:
6423                if (tp->snd_una == tp->write_seq) {
6424                        tcp_update_metrics(sk);
6425                        tcp_done(sk);
6426                        goto discard;
6427                }
6428                break;
6429        }
6430
6431        /* step 6: check the URG bit */
6432        tcp_urg(sk, skb, th);
6433
6434        /* step 7: process the segment text */
6435        switch (sk->sk_state) {
6436        case TCP_CLOSE_WAIT:
6437        case TCP_CLOSING:
6438        case TCP_LAST_ACK:
6439                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6440                        if (sk_is_mptcp(sk))
6441                                mptcp_incoming_options(sk, skb, &tp->rx_opt);
6442                        break;
6443                }
6444                fallthrough;
6445        case TCP_FIN_WAIT1:
6446        case TCP_FIN_WAIT2:
6447                /* RFC 793 says to queue data in these states,
6448                 * RFC 1122 says we MUST send a reset.
6449                 * BSD 4.4 also does reset.
6450                 */
6451                if (sk->sk_shutdown & RCV_SHUTDOWN) {
6452                        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6453                            after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6454                                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6455                                tcp_reset(sk);
6456                                return 1;
6457                        }
6458                }
6459                fallthrough;
6460        case TCP_ESTABLISHED:
6461                tcp_data_queue(sk, skb);
6462                queued = 1;
6463                break;
6464        }
6465
6466        /* tcp_data could move socket to TIME-WAIT */
6467        if (sk->sk_state != TCP_CLOSE) {
6468                tcp_data_snd_check(sk);
6469                tcp_ack_snd_check(sk);
6470        }
6471
6472        if (!queued) {
6473discard:
6474                tcp_drop(sk, skb);
6475        }
6476        return 0;
6477}
6478EXPORT_SYMBOL(tcp_rcv_state_process);
6479
6480static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6481{
6482        struct inet_request_sock *ireq = inet_rsk(req);
6483
6484        if (family == AF_INET)
6485                net_dbg_ratelimited("drop open request from %pI4/%u\n",
6486                                    &ireq->ir_rmt_addr, port);
6487#if IS_ENABLED(CONFIG_IPV6)
6488        else if (family == AF_INET6)
6489                net_dbg_ratelimited("drop open request from %pI6/%u\n",
6490                                    &ireq->ir_v6_rmt_addr, port);
6491#endif
6492}
6493
6494/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6495 *
6496 * If we receive a SYN packet with these bits set, it means a
6497 * network is playing bad games with TOS bits. In order to
6498 * avoid possible false congestion notifications, we disable
6499 * TCP ECN negotiation.
6500 *
6501 * Exception: tcp_ca wants ECN. This is required for DCTCP
6502 * congestion control: Linux DCTCP asserts ECT on all packets,
6503 * including SYN, which is most optimal solution; however,
6504 * others, such as FreeBSD do not.
6505 *
6506 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6507 * set, indicating the use of a future TCP extension (such as AccECN). See
6508 * RFC8311 ยง4.3 which updates RFC3168 to allow the development of such
6509 * extensions.
6510 */
6511static void tcp_ecn_create_request(struct request_sock *req,
6512                                   const struct sk_buff *skb,
6513                                   const struct sock *listen_sk,
6514                                   const struct dst_entry *dst)
6515{
6516        const struct tcphdr *th = tcp_hdr(skb);
6517        const struct net *net = sock_net(listen_sk);
6518        bool th_ecn = th->ece && th->cwr;
6519        bool ect, ecn_ok;
6520        u32 ecn_ok_dst;
6521
6522        if (!th_ecn)
6523                return;
6524
6525        ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6526        ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6527        ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6528
6529        if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6530            (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6531            tcp_bpf_ca_needs_ecn((struct sock *)req))
6532                inet_rsk(req)->ecn_ok = 1;
6533}
6534
6535static void tcp_openreq_init(struct request_sock *req,
6536                             const struct tcp_options_received *rx_opt,
6537                             struct sk_buff *skb, const struct sock *sk)
6538{
6539        struct inet_request_sock *ireq = inet_rsk(req);
6540
6541        req->rsk_rcv_wnd = 0;           /* So that tcp_send_synack() knows! */
6542        tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6543        tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6544        tcp_rsk(req)->snt_synack = 0;
6545        tcp_rsk(req)->last_oow_ack_time = 0;
6546        req->mss = rx_opt->mss_clamp;
6547        req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6548        ireq->tstamp_ok = rx_opt->tstamp_ok;
6549        ireq->sack_ok = rx_opt->sack_ok;
6550        ireq->snd_wscale = rx_opt->snd_wscale;
6551        ireq->wscale_ok = rx_opt->wscale_ok;
6552        ireq->acked = 0;
6553        ireq->ecn_ok = 0;
6554        ireq->ir_rmt_port = tcp_hdr(skb)->source;
6555        ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6556        ireq->ir_mark = inet_request_mark(sk, skb);
6557#if IS_ENABLED(CONFIG_SMC)
6558        ireq->smc_ok = rx_opt->smc_ok;
6559#endif
6560}
6561
6562struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6563                                      struct sock *sk_listener,
6564                                      bool attach_listener)
6565{
6566        struct request_sock *req = reqsk_alloc(ops, sk_listener,
6567                                               attach_listener);
6568
6569        if (req) {
6570                struct inet_request_sock *ireq = inet_rsk(req);
6571
6572                ireq->ireq_opt = NULL;
6573#if IS_ENABLED(CONFIG_IPV6)
6574                ireq->pktopts = NULL;
6575#endif
6576                atomic64_set(&ireq->ir_cookie, 0);
6577                ireq->ireq_state = TCP_NEW_SYN_RECV;
6578                write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6579                ireq->ireq_family = sk_listener->sk_family;
6580        }
6581
6582        return req;
6583}
6584EXPORT_SYMBOL(inet_reqsk_alloc);
6585
6586/*
6587 * Return true if a syncookie should be sent
6588 */
6589static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6590{
6591        struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6592        const char *msg = "Dropping request";
6593        bool want_cookie = false;
6594        struct net *net = sock_net(sk);
6595
6596#ifdef CONFIG_SYN_COOKIES
6597        if (net->ipv4.sysctl_tcp_syncookies) {
6598                msg = "Sending cookies";
6599                want_cookie = true;
6600                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6601        } else
6602#endif
6603                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6604
6605        if (!queue->synflood_warned &&
6606            net->ipv4.sysctl_tcp_syncookies != 2 &&
6607            xchg(&queue->synflood_warned, 1) == 0)
6608                net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6609                                     proto, sk->sk_num, msg);
6610
6611        return want_cookie;
6612}
6613
6614static void tcp_reqsk_record_syn(const struct sock *sk,
6615                                 struct request_sock *req,
6616                                 const struct sk_buff *skb)
6617{
6618        if (tcp_sk(sk)->save_syn) {
6619                u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6620                u32 *copy;
6621
6622                copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6623                if (copy) {
6624                        copy[0] = len;
6625                        memcpy(&copy[1], skb_network_header(skb), len);
6626                        req->saved_syn = copy;
6627                }
6628        }
6629}
6630
6631/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6632 * used for SYN cookie generation.
6633 */
6634u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6635                          const struct tcp_request_sock_ops *af_ops,
6636                          struct sock *sk, struct tcphdr *th)
6637{
6638        struct tcp_sock *tp = tcp_sk(sk);
6639        u16 mss;
6640
6641        if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6642            !inet_csk_reqsk_queue_is_full(sk))
6643                return 0;
6644
6645        if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6646                return 0;
6647
6648        if (sk_acceptq_is_full(sk)) {
6649                NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6650                return 0;
6651        }
6652
6653        mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6654        if (!mss)
6655                mss = af_ops->mss_clamp;
6656
6657        return mss;
6658}
6659EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6660
6661int tcp_conn_request(struct request_sock_ops *rsk_ops,
6662                     const struct tcp_request_sock_ops *af_ops,
6663                     struct sock *sk, struct sk_buff *skb)
6664{
6665        struct tcp_fastopen_cookie foc = { .len = -1 };
6666        __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6667        struct tcp_options_received tmp_opt;
6668        struct tcp_sock *tp = tcp_sk(sk);
6669        struct net *net = sock_net(sk);
6670        struct sock *fastopen_sk = NULL;
6671        struct request_sock *req;
6672        bool want_cookie = false;
6673        struct dst_entry *dst;
6674        struct flowi fl;
6675
6676        /* TW buckets are converted to open requests without
6677         * limitations, they conserve resources and peer is
6678         * evidently real one.
6679         */
6680        if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6681             inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6682                want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6683                if (!want_cookie)
6684                        goto drop;
6685        }
6686
6687        if (sk_acceptq_is_full(sk)) {
6688                NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6689                goto drop;
6690        }
6691
6692        req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6693        if (!req)
6694                goto drop;
6695
6696        req->syncookie = want_cookie;
6697        tcp_rsk(req)->af_specific = af_ops;
6698        tcp_rsk(req)->ts_off = 0;
6699#if IS_ENABLED(CONFIG_MPTCP)
6700        tcp_rsk(req)->is_mptcp = 0;
6701#endif
6702
6703        tcp_clear_options(&tmp_opt);
6704        tmp_opt.mss_clamp = af_ops->mss_clamp;
6705        tmp_opt.user_mss  = tp->rx_opt.user_mss;
6706        tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6707                          want_cookie ? NULL : &foc);
6708
6709        if (want_cookie && !tmp_opt.saw_tstamp)
6710                tcp_clear_options(&tmp_opt);
6711
6712        if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6713                tmp_opt.smc_ok = 0;
6714
6715        tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6716        tcp_openreq_init(req, &tmp_opt, skb, sk);
6717        inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6718
6719        /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6720        inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6721
6722        af_ops->init_req(req, sk, skb);
6723
6724        if (security_inet_conn_request(sk, skb, req))
6725                goto drop_and_free;
6726
6727        if (tmp_opt.tstamp_ok)
6728                tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6729
6730        dst = af_ops->route_req(sk, &fl, req);
6731        if (!dst)
6732                goto drop_and_free;
6733
6734        if (!want_cookie && !isn) {
6735                /* Kill the following clause, if you dislike this way. */
6736                if (!net->ipv4.sysctl_tcp_syncookies &&
6737                    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6738                     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6739                    !tcp_peer_is_proven(req, dst)) {
6740                        /* Without syncookies last quarter of
6741                         * backlog is filled with destinations,
6742                         * proven to be alive.
6743                         * It means that we continue to communicate
6744                         * to destinations, already remembered
6745                         * to the moment of synflood.
6746                         */
6747                        pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6748                                    rsk_ops->family);
6749                        goto drop_and_release;
6750                }
6751
6752                isn = af_ops->init_seq(skb);
6753        }
6754
6755        tcp_ecn_create_request(req, skb, sk, dst);
6756
6757        if (want_cookie) {
6758                isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6759                if (!tmp_opt.tstamp_ok)
6760                        inet_rsk(req)->ecn_ok = 0;
6761        }
6762
6763        tcp_rsk(req)->snt_isn = isn;
6764        tcp_rsk(req)->txhash = net_tx_rndhash();
6765        tcp_openreq_init_rwin(req, sk, dst);
6766        sk_rx_queue_set(req_to_sk(req), skb);
6767        if (!want_cookie) {
6768                tcp_reqsk_record_syn(sk, req, skb);
6769                fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6770        }
6771        if (fastopen_sk) {
6772                af_ops->send_synack(fastopen_sk, dst, &fl, req,
6773                                    &foc, TCP_SYNACK_FASTOPEN);
6774                /* Add the child socket directly into the accept queue */
6775                if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6776                        reqsk_fastopen_remove(fastopen_sk, req, false);
6777                        bh_unlock_sock(fastopen_sk);
6778                        sock_put(fastopen_sk);
6779                        goto drop_and_free;
6780                }
6781                sk->sk_data_ready(sk);
6782                bh_unlock_sock(fastopen_sk);
6783                sock_put(fastopen_sk);
6784        } else {
6785                tcp_rsk(req)->tfo_listener = false;
6786                if (!want_cookie)
6787                        inet_csk_reqsk_queue_hash_add(sk, req,
6788                                tcp_timeout_init((struct sock *)req));
6789                af_ops->send_synack(sk, dst, &fl, req, &foc,
6790                                    !want_cookie ? TCP_SYNACK_NORMAL :
6791                                                   TCP_SYNACK_COOKIE);
6792                if (want_cookie) {
6793                        reqsk_free(req);
6794                        return 0;
6795                }
6796        }
6797        reqsk_put(req);
6798        return 0;
6799
6800drop_and_release:
6801        dst_release(dst);
6802drop_and_free:
6803        __reqsk_free(req);
6804drop:
6805        tcp_listendrop(sk);
6806        return 0;
6807}
6808EXPORT_SYMBOL(tcp_conn_request);
6809