linux/net/ipv4/tcp_output.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:     Ross Biro
  10 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche, <flla@stud.uni-sb.de>
  14 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *              Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:     Pedro Roque     :       Retransmit queue handled by TCP.
  24 *                              :       Fragmentation on mtu decrease
  25 *                              :       Segment collapse on retransmit
  26 *                              :       AF independence
  27 *
  28 *              Linus Torvalds  :       send_delayed_ack
  29 *              David S. Miller :       Charge memory using the right skb
  30 *                                      during syn/ack processing.
  31 *              David S. Miller :       Output engine completely rewritten.
  32 *              Andrea Arcangeli:       SYNACK carry ts_recent in tsecr.
  33 *              Cacophonix Gaul :       draft-minshall-nagle-01
  34 *              J Hadi Salim    :       ECN support
  35 *
  36 */
  37
  38#define pr_fmt(fmt) "TCP: " fmt
  39
  40#include <net/tcp.h>
  41#include <net/mptcp.h>
  42
  43#include <linux/compiler.h>
  44#include <linux/gfp.h>
  45#include <linux/module.h>
  46#include <linux/static_key.h>
  47
  48#include <trace/events/tcp.h>
  49
  50/* Refresh clocks of a TCP socket,
  51 * ensuring monotically increasing values.
  52 */
  53void tcp_mstamp_refresh(struct tcp_sock *tp)
  54{
  55        u64 val = tcp_clock_ns();
  56
  57        tp->tcp_clock_cache = val;
  58        tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
  59}
  60
  61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  62                           int push_one, gfp_t gfp);
  63
  64/* Account for new data that has been sent to the network. */
  65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  66{
  67        struct inet_connection_sock *icsk = inet_csk(sk);
  68        struct tcp_sock *tp = tcp_sk(sk);
  69        unsigned int prior_packets = tp->packets_out;
  70
  71        WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
  72
  73        __skb_unlink(skb, &sk->sk_write_queue);
  74        tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  75
  76        if (tp->highest_sack == NULL)
  77                tp->highest_sack = skb;
  78
  79        tp->packets_out += tcp_skb_pcount(skb);
  80        if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  81                tcp_rearm_rto(sk);
  82
  83        NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  84                      tcp_skb_pcount(skb));
  85}
  86
  87/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  88 * window scaling factor due to loss of precision.
  89 * If window has been shrunk, what should we make? It is not clear at all.
  90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  92 * invalid. OK, let's make this for now:
  93 */
  94static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  95{
  96        const struct tcp_sock *tp = tcp_sk(sk);
  97
  98        if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  99            (tp->rx_opt.wscale_ok &&
 100             ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
 101                return tp->snd_nxt;
 102        else
 103                return tcp_wnd_end(tp);
 104}
 105
 106/* Calculate mss to advertise in SYN segment.
 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 108 *
 109 * 1. It is independent of path mtu.
 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 112 *    attached devices, because some buggy hosts are confused by
 113 *    large MSS.
 114 * 4. We do not make 3, we advertise MSS, calculated from first
 115 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 116 *    This may be overridden via information stored in routing table.
 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 118 *    probably even Jumbo".
 119 */
 120static __u16 tcp_advertise_mss(struct sock *sk)
 121{
 122        struct tcp_sock *tp = tcp_sk(sk);
 123        const struct dst_entry *dst = __sk_dst_get(sk);
 124        int mss = tp->advmss;
 125
 126        if (dst) {
 127                unsigned int metric = dst_metric_advmss(dst);
 128
 129                if (metric < mss) {
 130                        mss = metric;
 131                        tp->advmss = mss;
 132                }
 133        }
 134
 135        return (__u16)mss;
 136}
 137
 138/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 139 * This is the first part of cwnd validation mechanism.
 140 */
 141void tcp_cwnd_restart(struct sock *sk, s32 delta)
 142{
 143        struct tcp_sock *tp = tcp_sk(sk);
 144        u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 145        u32 cwnd = tp->snd_cwnd;
 146
 147        tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 148
 149        tp->snd_ssthresh = tcp_current_ssthresh(sk);
 150        restart_cwnd = min(restart_cwnd, cwnd);
 151
 152        while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 153                cwnd >>= 1;
 154        tp->snd_cwnd = max(cwnd, restart_cwnd);
 155        tp->snd_cwnd_stamp = tcp_jiffies32;
 156        tp->snd_cwnd_used = 0;
 157}
 158
 159/* Congestion state accounting after a packet has been sent. */
 160static void tcp_event_data_sent(struct tcp_sock *tp,
 161                                struct sock *sk)
 162{
 163        struct inet_connection_sock *icsk = inet_csk(sk);
 164        const u32 now = tcp_jiffies32;
 165
 166        if (tcp_packets_in_flight(tp) == 0)
 167                tcp_ca_event(sk, CA_EVENT_TX_START);
 168
 169        /* If this is the first data packet sent in response to the
 170         * previous received data,
 171         * and it is a reply for ato after last received packet,
 172         * increase pingpong count.
 173         */
 174        if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
 175            (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 176                inet_csk_inc_pingpong_cnt(sk);
 177
 178        tp->lsndtime = now;
 179}
 180
 181/* Account for an ACK we sent. */
 182static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
 183                                      u32 rcv_nxt)
 184{
 185        struct tcp_sock *tp = tcp_sk(sk);
 186
 187        if (unlikely(tp->compressed_ack)) {
 188                NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
 189                              tp->compressed_ack);
 190                tp->compressed_ack = 0;
 191                if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
 192                        __sock_put(sk);
 193        }
 194
 195        if (unlikely(rcv_nxt != tp->rcv_nxt))
 196                return;  /* Special ACK sent by DCTCP to reflect ECN */
 197        tcp_dec_quickack_mode(sk, pkts);
 198        inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 199}
 200
 201/* Determine a window scaling and initial window to offer.
 202 * Based on the assumption that the given amount of space
 203 * will be offered. Store the results in the tp structure.
 204 * NOTE: for smooth operation initial space offering should
 205 * be a multiple of mss if possible. We assume here that mss >= 1.
 206 * This MUST be enforced by all callers.
 207 */
 208void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 209                               __u32 *rcv_wnd, __u32 *window_clamp,
 210                               int wscale_ok, __u8 *rcv_wscale,
 211                               __u32 init_rcv_wnd)
 212{
 213        unsigned int space = (__space < 0 ? 0 : __space);
 214
 215        /* If no clamp set the clamp to the max possible scaled window */
 216        if (*window_clamp == 0)
 217                (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 218        space = min(*window_clamp, space);
 219
 220        /* Quantize space offering to a multiple of mss if possible. */
 221        if (space > mss)
 222                space = rounddown(space, mss);
 223
 224        /* NOTE: offering an initial window larger than 32767
 225         * will break some buggy TCP stacks. If the admin tells us
 226         * it is likely we could be speaking with such a buggy stack
 227         * we will truncate our initial window offering to 32K-1
 228         * unless the remote has sent us a window scaling option,
 229         * which we interpret as a sign the remote TCP is not
 230         * misinterpreting the window field as a signed quantity.
 231         */
 232        if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 233                (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 234        else
 235                (*rcv_wnd) = min_t(u32, space, U16_MAX);
 236
 237        if (init_rcv_wnd)
 238                *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 239
 240        *rcv_wscale = 0;
 241        if (wscale_ok) {
 242                /* Set window scaling on max possible window */
 243                space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 244                space = max_t(u32, space, sysctl_rmem_max);
 245                space = min_t(u32, space, *window_clamp);
 246                *rcv_wscale = clamp_t(int, ilog2(space) - 15,
 247                                      0, TCP_MAX_WSCALE);
 248        }
 249        /* Set the clamp no higher than max representable value */
 250        (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 251}
 252EXPORT_SYMBOL(tcp_select_initial_window);
 253
 254/* Chose a new window to advertise, update state in tcp_sock for the
 255 * socket, and return result with RFC1323 scaling applied.  The return
 256 * value can be stuffed directly into th->window for an outgoing
 257 * frame.
 258 */
 259static u16 tcp_select_window(struct sock *sk)
 260{
 261        struct tcp_sock *tp = tcp_sk(sk);
 262        u32 old_win = tp->rcv_wnd;
 263        u32 cur_win = tcp_receive_window(tp);
 264        u32 new_win = __tcp_select_window(sk);
 265
 266        /* Never shrink the offered window */
 267        if (new_win < cur_win) {
 268                /* Danger Will Robinson!
 269                 * Don't update rcv_wup/rcv_wnd here or else
 270                 * we will not be able to advertise a zero
 271                 * window in time.  --DaveM
 272                 *
 273                 * Relax Will Robinson.
 274                 */
 275                if (new_win == 0)
 276                        NET_INC_STATS(sock_net(sk),
 277                                      LINUX_MIB_TCPWANTZEROWINDOWADV);
 278                new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 279        }
 280        tp->rcv_wnd = new_win;
 281        tp->rcv_wup = tp->rcv_nxt;
 282
 283        /* Make sure we do not exceed the maximum possible
 284         * scaled window.
 285         */
 286        if (!tp->rx_opt.rcv_wscale &&
 287            sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 288                new_win = min(new_win, MAX_TCP_WINDOW);
 289        else
 290                new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 291
 292        /* RFC1323 scaling applied */
 293        new_win >>= tp->rx_opt.rcv_wscale;
 294
 295        /* If we advertise zero window, disable fast path. */
 296        if (new_win == 0) {
 297                tp->pred_flags = 0;
 298                if (old_win)
 299                        NET_INC_STATS(sock_net(sk),
 300                                      LINUX_MIB_TCPTOZEROWINDOWADV);
 301        } else if (old_win == 0) {
 302                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 303        }
 304
 305        return new_win;
 306}
 307
 308/* Packet ECN state for a SYN-ACK */
 309static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 310{
 311        const struct tcp_sock *tp = tcp_sk(sk);
 312
 313        TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 314        if (!(tp->ecn_flags & TCP_ECN_OK))
 315                TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 316        else if (tcp_ca_needs_ecn(sk) ||
 317                 tcp_bpf_ca_needs_ecn(sk))
 318                INET_ECN_xmit(sk);
 319}
 320
 321/* Packet ECN state for a SYN.  */
 322static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 323{
 324        struct tcp_sock *tp = tcp_sk(sk);
 325        bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 326        bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 327                tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 328
 329        if (!use_ecn) {
 330                const struct dst_entry *dst = __sk_dst_get(sk);
 331
 332                if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 333                        use_ecn = true;
 334        }
 335
 336        tp->ecn_flags = 0;
 337
 338        if (use_ecn) {
 339                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 340                tp->ecn_flags = TCP_ECN_OK;
 341                if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 342                        INET_ECN_xmit(sk);
 343        }
 344}
 345
 346static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 347{
 348        if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 349                /* tp->ecn_flags are cleared at a later point in time when
 350                 * SYN ACK is ultimatively being received.
 351                 */
 352                TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 353}
 354
 355static void
 356tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 357{
 358        if (inet_rsk(req)->ecn_ok)
 359                th->ece = 1;
 360}
 361
 362/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 363 * be sent.
 364 */
 365static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 366                         struct tcphdr *th, int tcp_header_len)
 367{
 368        struct tcp_sock *tp = tcp_sk(sk);
 369
 370        if (tp->ecn_flags & TCP_ECN_OK) {
 371                /* Not-retransmitted data segment: set ECT and inject CWR. */
 372                if (skb->len != tcp_header_len &&
 373                    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 374                        INET_ECN_xmit(sk);
 375                        if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 376                                tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 377                                th->cwr = 1;
 378                                skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 379                        }
 380                } else if (!tcp_ca_needs_ecn(sk)) {
 381                        /* ACK or retransmitted segment: clear ECT|CE */
 382                        INET_ECN_dontxmit(sk);
 383                }
 384                if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 385                        th->ece = 1;
 386        }
 387}
 388
 389/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 390 * auto increment end seqno.
 391 */
 392static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 393{
 394        skb->ip_summed = CHECKSUM_PARTIAL;
 395
 396        TCP_SKB_CB(skb)->tcp_flags = flags;
 397        TCP_SKB_CB(skb)->sacked = 0;
 398
 399        tcp_skb_pcount_set(skb, 1);
 400
 401        TCP_SKB_CB(skb)->seq = seq;
 402        if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 403                seq++;
 404        TCP_SKB_CB(skb)->end_seq = seq;
 405}
 406
 407static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 408{
 409        return tp->snd_una != tp->snd_up;
 410}
 411
 412#define OPTION_SACK_ADVERTISE   (1 << 0)
 413#define OPTION_TS               (1 << 1)
 414#define OPTION_MD5              (1 << 2)
 415#define OPTION_WSCALE           (1 << 3)
 416#define OPTION_FAST_OPEN_COOKIE (1 << 8)
 417#define OPTION_SMC              (1 << 9)
 418#define OPTION_MPTCP            (1 << 10)
 419
 420static void smc_options_write(__be32 *ptr, u16 *options)
 421{
 422#if IS_ENABLED(CONFIG_SMC)
 423        if (static_branch_unlikely(&tcp_have_smc)) {
 424                if (unlikely(OPTION_SMC & *options)) {
 425                        *ptr++ = htonl((TCPOPT_NOP  << 24) |
 426                                       (TCPOPT_NOP  << 16) |
 427                                       (TCPOPT_EXP <<  8) |
 428                                       (TCPOLEN_EXP_SMC_BASE));
 429                        *ptr++ = htonl(TCPOPT_SMC_MAGIC);
 430                }
 431        }
 432#endif
 433}
 434
 435struct tcp_out_options {
 436        u16 options;            /* bit field of OPTION_* */
 437        u16 mss;                /* 0 to disable */
 438        u8 ws;                  /* window scale, 0 to disable */
 439        u8 num_sack_blocks;     /* number of SACK blocks to include */
 440        u8 hash_size;           /* bytes in hash_location */
 441        __u8 *hash_location;    /* temporary pointer, overloaded */
 442        __u32 tsval, tsecr;     /* need to include OPTION_TS */
 443        struct tcp_fastopen_cookie *fastopen_cookie;    /* Fast open cookie */
 444        struct mptcp_out_options mptcp;
 445};
 446
 447static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
 448{
 449#if IS_ENABLED(CONFIG_MPTCP)
 450        if (unlikely(OPTION_MPTCP & opts->options))
 451                mptcp_write_options(ptr, &opts->mptcp);
 452#endif
 453}
 454
 455/* Write previously computed TCP options to the packet.
 456 *
 457 * Beware: Something in the Internet is very sensitive to the ordering of
 458 * TCP options, we learned this through the hard way, so be careful here.
 459 * Luckily we can at least blame others for their non-compliance but from
 460 * inter-operability perspective it seems that we're somewhat stuck with
 461 * the ordering which we have been using if we want to keep working with
 462 * those broken things (not that it currently hurts anybody as there isn't
 463 * particular reason why the ordering would need to be changed).
 464 *
 465 * At least SACK_PERM as the first option is known to lead to a disaster
 466 * (but it may well be that other scenarios fail similarly).
 467 */
 468static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 469                              struct tcp_out_options *opts)
 470{
 471        u16 options = opts->options;    /* mungable copy */
 472
 473        if (unlikely(OPTION_MD5 & options)) {
 474                *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 475                               (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 476                /* overload cookie hash location */
 477                opts->hash_location = (__u8 *)ptr;
 478                ptr += 4;
 479        }
 480
 481        if (unlikely(opts->mss)) {
 482                *ptr++ = htonl((TCPOPT_MSS << 24) |
 483                               (TCPOLEN_MSS << 16) |
 484                               opts->mss);
 485        }
 486
 487        if (likely(OPTION_TS & options)) {
 488                if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 489                        *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 490                                       (TCPOLEN_SACK_PERM << 16) |
 491                                       (TCPOPT_TIMESTAMP << 8) |
 492                                       TCPOLEN_TIMESTAMP);
 493                        options &= ~OPTION_SACK_ADVERTISE;
 494                } else {
 495                        *ptr++ = htonl((TCPOPT_NOP << 24) |
 496                                       (TCPOPT_NOP << 16) |
 497                                       (TCPOPT_TIMESTAMP << 8) |
 498                                       TCPOLEN_TIMESTAMP);
 499                }
 500                *ptr++ = htonl(opts->tsval);
 501                *ptr++ = htonl(opts->tsecr);
 502        }
 503
 504        if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 505                *ptr++ = htonl((TCPOPT_NOP << 24) |
 506                               (TCPOPT_NOP << 16) |
 507                               (TCPOPT_SACK_PERM << 8) |
 508                               TCPOLEN_SACK_PERM);
 509        }
 510
 511        if (unlikely(OPTION_WSCALE & options)) {
 512                *ptr++ = htonl((TCPOPT_NOP << 24) |
 513                               (TCPOPT_WINDOW << 16) |
 514                               (TCPOLEN_WINDOW << 8) |
 515                               opts->ws);
 516        }
 517
 518        if (unlikely(opts->num_sack_blocks)) {
 519                struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 520                        tp->duplicate_sack : tp->selective_acks;
 521                int this_sack;
 522
 523                *ptr++ = htonl((TCPOPT_NOP  << 24) |
 524                               (TCPOPT_NOP  << 16) |
 525                               (TCPOPT_SACK <<  8) |
 526                               (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 527                                                     TCPOLEN_SACK_PERBLOCK)));
 528
 529                for (this_sack = 0; this_sack < opts->num_sack_blocks;
 530                     ++this_sack) {
 531                        *ptr++ = htonl(sp[this_sack].start_seq);
 532                        *ptr++ = htonl(sp[this_sack].end_seq);
 533                }
 534
 535                tp->rx_opt.dsack = 0;
 536        }
 537
 538        if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 539                struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 540                u8 *p = (u8 *)ptr;
 541                u32 len; /* Fast Open option length */
 542
 543                if (foc->exp) {
 544                        len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 545                        *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 546                                     TCPOPT_FASTOPEN_MAGIC);
 547                        p += TCPOLEN_EXP_FASTOPEN_BASE;
 548                } else {
 549                        len = TCPOLEN_FASTOPEN_BASE + foc->len;
 550                        *p++ = TCPOPT_FASTOPEN;
 551                        *p++ = len;
 552                }
 553
 554                memcpy(p, foc->val, foc->len);
 555                if ((len & 3) == 2) {
 556                        p[foc->len] = TCPOPT_NOP;
 557                        p[foc->len + 1] = TCPOPT_NOP;
 558                }
 559                ptr += (len + 3) >> 2;
 560        }
 561
 562        smc_options_write(ptr, &options);
 563
 564        mptcp_options_write(ptr, opts);
 565}
 566
 567static void smc_set_option(const struct tcp_sock *tp,
 568                           struct tcp_out_options *opts,
 569                           unsigned int *remaining)
 570{
 571#if IS_ENABLED(CONFIG_SMC)
 572        if (static_branch_unlikely(&tcp_have_smc)) {
 573                if (tp->syn_smc) {
 574                        if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 575                                opts->options |= OPTION_SMC;
 576                                *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 577                        }
 578                }
 579        }
 580#endif
 581}
 582
 583static void smc_set_option_cond(const struct tcp_sock *tp,
 584                                const struct inet_request_sock *ireq,
 585                                struct tcp_out_options *opts,
 586                                unsigned int *remaining)
 587{
 588#if IS_ENABLED(CONFIG_SMC)
 589        if (static_branch_unlikely(&tcp_have_smc)) {
 590                if (tp->syn_smc && ireq->smc_ok) {
 591                        if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 592                                opts->options |= OPTION_SMC;
 593                                *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 594                        }
 595                }
 596        }
 597#endif
 598}
 599
 600static void mptcp_set_option_cond(const struct request_sock *req,
 601                                  struct tcp_out_options *opts,
 602                                  unsigned int *remaining)
 603{
 604        if (rsk_is_mptcp(req)) {
 605                unsigned int size;
 606
 607                if (mptcp_synack_options(req, &size, &opts->mptcp)) {
 608                        if (*remaining >= size) {
 609                                opts->options |= OPTION_MPTCP;
 610                                *remaining -= size;
 611                        }
 612                }
 613        }
 614}
 615
 616/* Compute TCP options for SYN packets. This is not the final
 617 * network wire format yet.
 618 */
 619static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 620                                struct tcp_out_options *opts,
 621                                struct tcp_md5sig_key **md5)
 622{
 623        struct tcp_sock *tp = tcp_sk(sk);
 624        unsigned int remaining = MAX_TCP_OPTION_SPACE;
 625        struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 626
 627        *md5 = NULL;
 628#ifdef CONFIG_TCP_MD5SIG
 629        if (static_branch_unlikely(&tcp_md5_needed) &&
 630            rcu_access_pointer(tp->md5sig_info)) {
 631                *md5 = tp->af_specific->md5_lookup(sk, sk);
 632                if (*md5) {
 633                        opts->options |= OPTION_MD5;
 634                        remaining -= TCPOLEN_MD5SIG_ALIGNED;
 635                }
 636        }
 637#endif
 638
 639        /* We always get an MSS option.  The option bytes which will be seen in
 640         * normal data packets should timestamps be used, must be in the MSS
 641         * advertised.  But we subtract them from tp->mss_cache so that
 642         * calculations in tcp_sendmsg are simpler etc.  So account for this
 643         * fact here if necessary.  If we don't do this correctly, as a
 644         * receiver we won't recognize data packets as being full sized when we
 645         * should, and thus we won't abide by the delayed ACK rules correctly.
 646         * SACKs don't matter, we never delay an ACK when we have any of those
 647         * going out.  */
 648        opts->mss = tcp_advertise_mss(sk);
 649        remaining -= TCPOLEN_MSS_ALIGNED;
 650
 651        if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
 652                opts->options |= OPTION_TS;
 653                opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 654                opts->tsecr = tp->rx_opt.ts_recent;
 655                remaining -= TCPOLEN_TSTAMP_ALIGNED;
 656        }
 657        if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
 658                opts->ws = tp->rx_opt.rcv_wscale;
 659                opts->options |= OPTION_WSCALE;
 660                remaining -= TCPOLEN_WSCALE_ALIGNED;
 661        }
 662        if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
 663                opts->options |= OPTION_SACK_ADVERTISE;
 664                if (unlikely(!(OPTION_TS & opts->options)))
 665                        remaining -= TCPOLEN_SACKPERM_ALIGNED;
 666        }
 667
 668        if (fastopen && fastopen->cookie.len >= 0) {
 669                u32 need = fastopen->cookie.len;
 670
 671                need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 672                                               TCPOLEN_FASTOPEN_BASE;
 673                need = (need + 3) & ~3U;  /* Align to 32 bits */
 674                if (remaining >= need) {
 675                        opts->options |= OPTION_FAST_OPEN_COOKIE;
 676                        opts->fastopen_cookie = &fastopen->cookie;
 677                        remaining -= need;
 678                        tp->syn_fastopen = 1;
 679                        tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 680                }
 681        }
 682
 683        smc_set_option(tp, opts, &remaining);
 684
 685        if (sk_is_mptcp(sk)) {
 686                unsigned int size;
 687
 688                if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
 689                        opts->options |= OPTION_MPTCP;
 690                        remaining -= size;
 691                }
 692        }
 693
 694        return MAX_TCP_OPTION_SPACE - remaining;
 695}
 696
 697/* Set up TCP options for SYN-ACKs. */
 698static unsigned int tcp_synack_options(const struct sock *sk,
 699                                       struct request_sock *req,
 700                                       unsigned int mss, struct sk_buff *skb,
 701                                       struct tcp_out_options *opts,
 702                                       const struct tcp_md5sig_key *md5,
 703                                       struct tcp_fastopen_cookie *foc,
 704                                       enum tcp_synack_type synack_type)
 705{
 706        struct inet_request_sock *ireq = inet_rsk(req);
 707        unsigned int remaining = MAX_TCP_OPTION_SPACE;
 708
 709#ifdef CONFIG_TCP_MD5SIG
 710        if (md5) {
 711                opts->options |= OPTION_MD5;
 712                remaining -= TCPOLEN_MD5SIG_ALIGNED;
 713
 714                /* We can't fit any SACK blocks in a packet with MD5 + TS
 715                 * options. There was discussion about disabling SACK
 716                 * rather than TS in order to fit in better with old,
 717                 * buggy kernels, but that was deemed to be unnecessary.
 718                 */
 719                if (synack_type != TCP_SYNACK_COOKIE)
 720                        ireq->tstamp_ok &= !ireq->sack_ok;
 721        }
 722#endif
 723
 724        /* We always send an MSS option. */
 725        opts->mss = mss;
 726        remaining -= TCPOLEN_MSS_ALIGNED;
 727
 728        if (likely(ireq->wscale_ok)) {
 729                opts->ws = ireq->rcv_wscale;
 730                opts->options |= OPTION_WSCALE;
 731                remaining -= TCPOLEN_WSCALE_ALIGNED;
 732        }
 733        if (likely(ireq->tstamp_ok)) {
 734                opts->options |= OPTION_TS;
 735                opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
 736                opts->tsecr = req->ts_recent;
 737                remaining -= TCPOLEN_TSTAMP_ALIGNED;
 738        }
 739        if (likely(ireq->sack_ok)) {
 740                opts->options |= OPTION_SACK_ADVERTISE;
 741                if (unlikely(!ireq->tstamp_ok))
 742                        remaining -= TCPOLEN_SACKPERM_ALIGNED;
 743        }
 744        if (foc != NULL && foc->len >= 0) {
 745                u32 need = foc->len;
 746
 747                need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 748                                   TCPOLEN_FASTOPEN_BASE;
 749                need = (need + 3) & ~3U;  /* Align to 32 bits */
 750                if (remaining >= need) {
 751                        opts->options |= OPTION_FAST_OPEN_COOKIE;
 752                        opts->fastopen_cookie = foc;
 753                        remaining -= need;
 754                }
 755        }
 756
 757        mptcp_set_option_cond(req, opts, &remaining);
 758
 759        smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 760
 761        return MAX_TCP_OPTION_SPACE - remaining;
 762}
 763
 764/* Compute TCP options for ESTABLISHED sockets. This is not the
 765 * final wire format yet.
 766 */
 767static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 768                                        struct tcp_out_options *opts,
 769                                        struct tcp_md5sig_key **md5)
 770{
 771        struct tcp_sock *tp = tcp_sk(sk);
 772        unsigned int size = 0;
 773        unsigned int eff_sacks;
 774
 775        opts->options = 0;
 776
 777        *md5 = NULL;
 778#ifdef CONFIG_TCP_MD5SIG
 779        if (static_branch_unlikely(&tcp_md5_needed) &&
 780            rcu_access_pointer(tp->md5sig_info)) {
 781                *md5 = tp->af_specific->md5_lookup(sk, sk);
 782                if (*md5) {
 783                        opts->options |= OPTION_MD5;
 784                        size += TCPOLEN_MD5SIG_ALIGNED;
 785                }
 786        }
 787#endif
 788
 789        if (likely(tp->rx_opt.tstamp_ok)) {
 790                opts->options |= OPTION_TS;
 791                opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 792                opts->tsecr = tp->rx_opt.ts_recent;
 793                size += TCPOLEN_TSTAMP_ALIGNED;
 794        }
 795
 796        /* MPTCP options have precedence over SACK for the limited TCP
 797         * option space because a MPTCP connection would be forced to
 798         * fall back to regular TCP if a required multipath option is
 799         * missing. SACK still gets a chance to use whatever space is
 800         * left.
 801         */
 802        if (sk_is_mptcp(sk)) {
 803                unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 804                unsigned int opt_size = 0;
 805
 806                if (mptcp_established_options(sk, skb, &opt_size, remaining,
 807                                              &opts->mptcp)) {
 808                        opts->options |= OPTION_MPTCP;
 809                        size += opt_size;
 810                }
 811        }
 812
 813        eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 814        if (unlikely(eff_sacks)) {
 815                const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 816                if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
 817                                         TCPOLEN_SACK_PERBLOCK))
 818                        return size;
 819
 820                opts->num_sack_blocks =
 821                        min_t(unsigned int, eff_sacks,
 822                              (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 823                              TCPOLEN_SACK_PERBLOCK);
 824
 825                size += TCPOLEN_SACK_BASE_ALIGNED +
 826                        opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 827        }
 828
 829        return size;
 830}
 831
 832
 833/* TCP SMALL QUEUES (TSQ)
 834 *
 835 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 836 * to reduce RTT and bufferbloat.
 837 * We do this using a special skb destructor (tcp_wfree).
 838 *
 839 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 840 * needs to be reallocated in a driver.
 841 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 842 *
 843 * Since transmit from skb destructor is forbidden, we use a tasklet
 844 * to process all sockets that eventually need to send more skbs.
 845 * We use one tasklet per cpu, with its own queue of sockets.
 846 */
 847struct tsq_tasklet {
 848        struct tasklet_struct   tasklet;
 849        struct list_head        head; /* queue of tcp sockets */
 850};
 851static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 852
 853static void tcp_tsq_write(struct sock *sk)
 854{
 855        if ((1 << sk->sk_state) &
 856            (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 857             TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
 858                struct tcp_sock *tp = tcp_sk(sk);
 859
 860                if (tp->lost_out > tp->retrans_out &&
 861                    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
 862                        tcp_mstamp_refresh(tp);
 863                        tcp_xmit_retransmit_queue(sk);
 864                }
 865
 866                tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
 867                               0, GFP_ATOMIC);
 868        }
 869}
 870
 871static void tcp_tsq_handler(struct sock *sk)
 872{
 873        bh_lock_sock(sk);
 874        if (!sock_owned_by_user(sk))
 875                tcp_tsq_write(sk);
 876        else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
 877                sock_hold(sk);
 878        bh_unlock_sock(sk);
 879}
 880/*
 881 * One tasklet per cpu tries to send more skbs.
 882 * We run in tasklet context but need to disable irqs when
 883 * transferring tsq->head because tcp_wfree() might
 884 * interrupt us (non NAPI drivers)
 885 */
 886static void tcp_tasklet_func(unsigned long data)
 887{
 888        struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 889        LIST_HEAD(list);
 890        unsigned long flags;
 891        struct list_head *q, *n;
 892        struct tcp_sock *tp;
 893        struct sock *sk;
 894
 895        local_irq_save(flags);
 896        list_splice_init(&tsq->head, &list);
 897        local_irq_restore(flags);
 898
 899        list_for_each_safe(q, n, &list) {
 900                tp = list_entry(q, struct tcp_sock, tsq_node);
 901                list_del(&tp->tsq_node);
 902
 903                sk = (struct sock *)tp;
 904                smp_mb__before_atomic();
 905                clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
 906
 907                tcp_tsq_handler(sk);
 908                sk_free(sk);
 909        }
 910}
 911
 912#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |           \
 913                          TCPF_WRITE_TIMER_DEFERRED |   \
 914                          TCPF_DELACK_TIMER_DEFERRED |  \
 915                          TCPF_MTU_REDUCED_DEFERRED)
 916/**
 917 * tcp_release_cb - tcp release_sock() callback
 918 * @sk: socket
 919 *
 920 * called from release_sock() to perform protocol dependent
 921 * actions before socket release.
 922 */
 923void tcp_release_cb(struct sock *sk)
 924{
 925        unsigned long flags, nflags;
 926
 927        /* perform an atomic operation only if at least one flag is set */
 928        do {
 929                flags = sk->sk_tsq_flags;
 930                if (!(flags & TCP_DEFERRED_ALL))
 931                        return;
 932                nflags = flags & ~TCP_DEFERRED_ALL;
 933        } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
 934
 935        if (flags & TCPF_TSQ_DEFERRED) {
 936                tcp_tsq_write(sk);
 937                __sock_put(sk);
 938        }
 939        /* Here begins the tricky part :
 940         * We are called from release_sock() with :
 941         * 1) BH disabled
 942         * 2) sk_lock.slock spinlock held
 943         * 3) socket owned by us (sk->sk_lock.owned == 1)
 944         *
 945         * But following code is meant to be called from BH handlers,
 946         * so we should keep BH disabled, but early release socket ownership
 947         */
 948        sock_release_ownership(sk);
 949
 950        if (flags & TCPF_WRITE_TIMER_DEFERRED) {
 951                tcp_write_timer_handler(sk);
 952                __sock_put(sk);
 953        }
 954        if (flags & TCPF_DELACK_TIMER_DEFERRED) {
 955                tcp_delack_timer_handler(sk);
 956                __sock_put(sk);
 957        }
 958        if (flags & TCPF_MTU_REDUCED_DEFERRED) {
 959                inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 960                __sock_put(sk);
 961        }
 962}
 963EXPORT_SYMBOL(tcp_release_cb);
 964
 965void __init tcp_tasklet_init(void)
 966{
 967        int i;
 968
 969        for_each_possible_cpu(i) {
 970                struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 971
 972                INIT_LIST_HEAD(&tsq->head);
 973                tasklet_init(&tsq->tasklet,
 974                             tcp_tasklet_func,
 975                             (unsigned long)tsq);
 976        }
 977}
 978
 979/*
 980 * Write buffer destructor automatically called from kfree_skb.
 981 * We can't xmit new skbs from this context, as we might already
 982 * hold qdisc lock.
 983 */
 984void tcp_wfree(struct sk_buff *skb)
 985{
 986        struct sock *sk = skb->sk;
 987        struct tcp_sock *tp = tcp_sk(sk);
 988        unsigned long flags, nval, oval;
 989
 990        /* Keep one reference on sk_wmem_alloc.
 991         * Will be released by sk_free() from here or tcp_tasklet_func()
 992         */
 993        WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
 994
 995        /* If this softirq is serviced by ksoftirqd, we are likely under stress.
 996         * Wait until our queues (qdisc + devices) are drained.
 997         * This gives :
 998         * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 999         * - chance for incoming ACK (processed by another cpu maybe)
1000         *   to migrate this flow (skb->ooo_okay will be eventually set)
1001         */
1002        if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1003                goto out;
1004
1005        for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1006                struct tsq_tasklet *tsq;
1007                bool empty;
1008
1009                if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1010                        goto out;
1011
1012                nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1013                nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1014                if (nval != oval)
1015                        continue;
1016
1017                /* queue this socket to tasklet queue */
1018                local_irq_save(flags);
1019                tsq = this_cpu_ptr(&tsq_tasklet);
1020                empty = list_empty(&tsq->head);
1021                list_add(&tp->tsq_node, &tsq->head);
1022                if (empty)
1023                        tasklet_schedule(&tsq->tasklet);
1024                local_irq_restore(flags);
1025                return;
1026        }
1027out:
1028        sk_free(sk);
1029}
1030
1031/* Note: Called under soft irq.
1032 * We can call TCP stack right away, unless socket is owned by user.
1033 */
1034enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1035{
1036        struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1037        struct sock *sk = (struct sock *)tp;
1038
1039        tcp_tsq_handler(sk);
1040        sock_put(sk);
1041
1042        return HRTIMER_NORESTART;
1043}
1044
1045static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1046                                      u64 prior_wstamp)
1047{
1048        struct tcp_sock *tp = tcp_sk(sk);
1049
1050        if (sk->sk_pacing_status != SK_PACING_NONE) {
1051                unsigned long rate = sk->sk_pacing_rate;
1052
1053                /* Original sch_fq does not pace first 10 MSS
1054                 * Note that tp->data_segs_out overflows after 2^32 packets,
1055                 * this is a minor annoyance.
1056                 */
1057                if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1058                        u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1059                        u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1060
1061                        /* take into account OS jitter */
1062                        len_ns -= min_t(u64, len_ns / 2, credit);
1063                        tp->tcp_wstamp_ns += len_ns;
1064                }
1065        }
1066        list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1067}
1068
1069INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1070INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1071INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1072
1073/* This routine actually transmits TCP packets queued in by
1074 * tcp_do_sendmsg().  This is used by both the initial
1075 * transmission and possible later retransmissions.
1076 * All SKB's seen here are completely headerless.  It is our
1077 * job to build the TCP header, and pass the packet down to
1078 * IP so it can do the same plus pass the packet off to the
1079 * device.
1080 *
1081 * We are working here with either a clone of the original
1082 * SKB, or a fresh unique copy made by the retransmit engine.
1083 */
1084static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1085                              int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1086{
1087        const struct inet_connection_sock *icsk = inet_csk(sk);
1088        struct inet_sock *inet;
1089        struct tcp_sock *tp;
1090        struct tcp_skb_cb *tcb;
1091        struct tcp_out_options opts;
1092        unsigned int tcp_options_size, tcp_header_size;
1093        struct sk_buff *oskb = NULL;
1094        struct tcp_md5sig_key *md5;
1095        struct tcphdr *th;
1096        u64 prior_wstamp;
1097        int err;
1098
1099        BUG_ON(!skb || !tcp_skb_pcount(skb));
1100        tp = tcp_sk(sk);
1101        prior_wstamp = tp->tcp_wstamp_ns;
1102        tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1103        skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1104        if (clone_it) {
1105                TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1106                        - tp->snd_una;
1107                oskb = skb;
1108
1109                tcp_skb_tsorted_save(oskb) {
1110                        if (unlikely(skb_cloned(oskb)))
1111                                skb = pskb_copy(oskb, gfp_mask);
1112                        else
1113                                skb = skb_clone(oskb, gfp_mask);
1114                } tcp_skb_tsorted_restore(oskb);
1115
1116                if (unlikely(!skb))
1117                        return -ENOBUFS;
1118                /* retransmit skbs might have a non zero value in skb->dev
1119                 * because skb->dev is aliased with skb->rbnode.rb_left
1120                 */
1121                skb->dev = NULL;
1122        }
1123
1124        inet = inet_sk(sk);
1125        tcb = TCP_SKB_CB(skb);
1126        memset(&opts, 0, sizeof(opts));
1127
1128        if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1129                tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1130        } else {
1131                tcp_options_size = tcp_established_options(sk, skb, &opts,
1132                                                           &md5);
1133                /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1134                 * at receiver : This slightly improve GRO performance.
1135                 * Note that we do not force the PSH flag for non GSO packets,
1136                 * because they might be sent under high congestion events,
1137                 * and in this case it is better to delay the delivery of 1-MSS
1138                 * packets and thus the corresponding ACK packet that would
1139                 * release the following packet.
1140                 */
1141                if (tcp_skb_pcount(skb) > 1)
1142                        tcb->tcp_flags |= TCPHDR_PSH;
1143        }
1144        tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1145
1146        /* if no packet is in qdisc/device queue, then allow XPS to select
1147         * another queue. We can be called from tcp_tsq_handler()
1148         * which holds one reference to sk.
1149         *
1150         * TODO: Ideally, in-flight pure ACK packets should not matter here.
1151         * One way to get this would be to set skb->truesize = 2 on them.
1152         */
1153        skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1154
1155        /* If we had to use memory reserve to allocate this skb,
1156         * this might cause drops if packet is looped back :
1157         * Other socket might not have SOCK_MEMALLOC.
1158         * Packets not looped back do not care about pfmemalloc.
1159         */
1160        skb->pfmemalloc = 0;
1161
1162        skb_push(skb, tcp_header_size);
1163        skb_reset_transport_header(skb);
1164
1165        skb_orphan(skb);
1166        skb->sk = sk;
1167        skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1168        skb_set_hash_from_sk(skb, sk);
1169        refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1170
1171        skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1172
1173        /* Build TCP header and checksum it. */
1174        th = (struct tcphdr *)skb->data;
1175        th->source              = inet->inet_sport;
1176        th->dest                = inet->inet_dport;
1177        th->seq                 = htonl(tcb->seq);
1178        th->ack_seq             = htonl(rcv_nxt);
1179        *(((__be16 *)th) + 6)   = htons(((tcp_header_size >> 2) << 12) |
1180                                        tcb->tcp_flags);
1181
1182        th->check               = 0;
1183        th->urg_ptr             = 0;
1184
1185        /* The urg_mode check is necessary during a below snd_una win probe */
1186        if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1187                if (before(tp->snd_up, tcb->seq + 0x10000)) {
1188                        th->urg_ptr = htons(tp->snd_up - tcb->seq);
1189                        th->urg = 1;
1190                } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1191                        th->urg_ptr = htons(0xFFFF);
1192                        th->urg = 1;
1193                }
1194        }
1195
1196        tcp_options_write((__be32 *)(th + 1), tp, &opts);
1197        skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1198        if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1199                th->window      = htons(tcp_select_window(sk));
1200                tcp_ecn_send(sk, skb, th, tcp_header_size);
1201        } else {
1202                /* RFC1323: The window in SYN & SYN/ACK segments
1203                 * is never scaled.
1204                 */
1205                th->window      = htons(min(tp->rcv_wnd, 65535U));
1206        }
1207#ifdef CONFIG_TCP_MD5SIG
1208        /* Calculate the MD5 hash, as we have all we need now */
1209        if (md5) {
1210                sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1211                tp->af_specific->calc_md5_hash(opts.hash_location,
1212                                               md5, sk, skb);
1213        }
1214#endif
1215
1216        INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1217                           tcp_v6_send_check, tcp_v4_send_check,
1218                           sk, skb);
1219
1220        if (likely(tcb->tcp_flags & TCPHDR_ACK))
1221                tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1222
1223        if (skb->len != tcp_header_size) {
1224                tcp_event_data_sent(tp, sk);
1225                tp->data_segs_out += tcp_skb_pcount(skb);
1226                tp->bytes_sent += skb->len - tcp_header_size;
1227        }
1228
1229        if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1230                TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1231                              tcp_skb_pcount(skb));
1232
1233        tp->segs_out += tcp_skb_pcount(skb);
1234        /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1235        skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1236        skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1237
1238        /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1239
1240        /* Cleanup our debris for IP stacks */
1241        memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1242                               sizeof(struct inet6_skb_parm)));
1243
1244        tcp_add_tx_delay(skb, tp);
1245
1246        err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1247                                 inet6_csk_xmit, ip_queue_xmit,
1248                                 sk, skb, &inet->cork.fl);
1249
1250        if (unlikely(err > 0)) {
1251                tcp_enter_cwr(sk);
1252                err = net_xmit_eval(err);
1253        }
1254        if (!err && oskb) {
1255                tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1256                tcp_rate_skb_sent(sk, oskb);
1257        }
1258        return err;
1259}
1260
1261static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1262                            gfp_t gfp_mask)
1263{
1264        return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1265                                  tcp_sk(sk)->rcv_nxt);
1266}
1267
1268/* This routine just queues the buffer for sending.
1269 *
1270 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1271 * otherwise socket can stall.
1272 */
1273static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1274{
1275        struct tcp_sock *tp = tcp_sk(sk);
1276
1277        /* Advance write_seq and place onto the write_queue. */
1278        WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1279        __skb_header_release(skb);
1280        tcp_add_write_queue_tail(sk, skb);
1281        sk_wmem_queued_add(sk, skb->truesize);
1282        sk_mem_charge(sk, skb->truesize);
1283}
1284
1285/* Initialize TSO segments for a packet. */
1286static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1287{
1288        if (skb->len <= mss_now) {
1289                /* Avoid the costly divide in the normal
1290                 * non-TSO case.
1291                 */
1292                tcp_skb_pcount_set(skb, 1);
1293                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1294        } else {
1295                tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1296                TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1297        }
1298}
1299
1300/* Pcount in the middle of the write queue got changed, we need to do various
1301 * tweaks to fix counters
1302 */
1303static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1304{
1305        struct tcp_sock *tp = tcp_sk(sk);
1306
1307        tp->packets_out -= decr;
1308
1309        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1310                tp->sacked_out -= decr;
1311        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1312                tp->retrans_out -= decr;
1313        if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1314                tp->lost_out -= decr;
1315
1316        /* Reno case is special. Sigh... */
1317        if (tcp_is_reno(tp) && decr > 0)
1318                tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1319
1320        if (tp->lost_skb_hint &&
1321            before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1322            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1323                tp->lost_cnt_hint -= decr;
1324
1325        tcp_verify_left_out(tp);
1326}
1327
1328static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1329{
1330        return TCP_SKB_CB(skb)->txstamp_ack ||
1331                (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1332}
1333
1334static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1335{
1336        struct skb_shared_info *shinfo = skb_shinfo(skb);
1337
1338        if (unlikely(tcp_has_tx_tstamp(skb)) &&
1339            !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1340                struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1341                u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1342
1343                shinfo->tx_flags &= ~tsflags;
1344                shinfo2->tx_flags |= tsflags;
1345                swap(shinfo->tskey, shinfo2->tskey);
1346                TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1347                TCP_SKB_CB(skb)->txstamp_ack = 0;
1348        }
1349}
1350
1351static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1352{
1353        TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1354        TCP_SKB_CB(skb)->eor = 0;
1355}
1356
1357/* Insert buff after skb on the write or rtx queue of sk.  */
1358static void tcp_insert_write_queue_after(struct sk_buff *skb,
1359                                         struct sk_buff *buff,
1360                                         struct sock *sk,
1361                                         enum tcp_queue tcp_queue)
1362{
1363        if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1364                __skb_queue_after(&sk->sk_write_queue, skb, buff);
1365        else
1366                tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1367}
1368
1369/* Function to create two new TCP segments.  Shrinks the given segment
1370 * to the specified size and appends a new segment with the rest of the
1371 * packet to the list.  This won't be called frequently, I hope.
1372 * Remember, these are still headerless SKBs at this point.
1373 */
1374int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1375                 struct sk_buff *skb, u32 len,
1376                 unsigned int mss_now, gfp_t gfp)
1377{
1378        struct tcp_sock *tp = tcp_sk(sk);
1379        struct sk_buff *buff;
1380        int nsize, old_factor;
1381        long limit;
1382        int nlen;
1383        u8 flags;
1384
1385        if (WARN_ON(len > skb->len))
1386                return -EINVAL;
1387
1388        nsize = skb_headlen(skb) - len;
1389        if (nsize < 0)
1390                nsize = 0;
1391
1392        /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1393         * We need some allowance to not penalize applications setting small
1394         * SO_SNDBUF values.
1395         * Also allow first and last skb in retransmit queue to be split.
1396         */
1397        limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1398        if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1399                     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1400                     skb != tcp_rtx_queue_head(sk) &&
1401                     skb != tcp_rtx_queue_tail(sk))) {
1402                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1403                return -ENOMEM;
1404        }
1405
1406        if (skb_unclone(skb, gfp))
1407                return -ENOMEM;
1408
1409        /* Get a new skb... force flag on. */
1410        buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1411        if (!buff)
1412                return -ENOMEM; /* We'll just try again later. */
1413        skb_copy_decrypted(buff, skb);
1414
1415        sk_wmem_queued_add(sk, buff->truesize);
1416        sk_mem_charge(sk, buff->truesize);
1417        nlen = skb->len - len - nsize;
1418        buff->truesize += nlen;
1419        skb->truesize -= nlen;
1420
1421        /* Correct the sequence numbers. */
1422        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1423        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1424        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1425
1426        /* PSH and FIN should only be set in the second packet. */
1427        flags = TCP_SKB_CB(skb)->tcp_flags;
1428        TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1429        TCP_SKB_CB(buff)->tcp_flags = flags;
1430        TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1431        tcp_skb_fragment_eor(skb, buff);
1432
1433        skb_split(skb, buff, len);
1434
1435        buff->ip_summed = CHECKSUM_PARTIAL;
1436
1437        buff->tstamp = skb->tstamp;
1438        tcp_fragment_tstamp(skb, buff);
1439
1440        old_factor = tcp_skb_pcount(skb);
1441
1442        /* Fix up tso_factor for both original and new SKB.  */
1443        tcp_set_skb_tso_segs(skb, mss_now);
1444        tcp_set_skb_tso_segs(buff, mss_now);
1445
1446        /* Update delivered info for the new segment */
1447        TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1448
1449        /* If this packet has been sent out already, we must
1450         * adjust the various packet counters.
1451         */
1452        if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1453                int diff = old_factor - tcp_skb_pcount(skb) -
1454                        tcp_skb_pcount(buff);
1455
1456                if (diff)
1457                        tcp_adjust_pcount(sk, skb, diff);
1458        }
1459
1460        /* Link BUFF into the send queue. */
1461        __skb_header_release(buff);
1462        tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1463        if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1464                list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1465
1466        return 0;
1467}
1468
1469/* This is similar to __pskb_pull_tail(). The difference is that pulled
1470 * data is not copied, but immediately discarded.
1471 */
1472static int __pskb_trim_head(struct sk_buff *skb, int len)
1473{
1474        struct skb_shared_info *shinfo;
1475        int i, k, eat;
1476
1477        eat = min_t(int, len, skb_headlen(skb));
1478        if (eat) {
1479                __skb_pull(skb, eat);
1480                len -= eat;
1481                if (!len)
1482                        return 0;
1483        }
1484        eat = len;
1485        k = 0;
1486        shinfo = skb_shinfo(skb);
1487        for (i = 0; i < shinfo->nr_frags; i++) {
1488                int size = skb_frag_size(&shinfo->frags[i]);
1489
1490                if (size <= eat) {
1491                        skb_frag_unref(skb, i);
1492                        eat -= size;
1493                } else {
1494                        shinfo->frags[k] = shinfo->frags[i];
1495                        if (eat) {
1496                                skb_frag_off_add(&shinfo->frags[k], eat);
1497                                skb_frag_size_sub(&shinfo->frags[k], eat);
1498                                eat = 0;
1499                        }
1500                        k++;
1501                }
1502        }
1503        shinfo->nr_frags = k;
1504
1505        skb->data_len -= len;
1506        skb->len = skb->data_len;
1507        return len;
1508}
1509
1510/* Remove acked data from a packet in the transmit queue. */
1511int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1512{
1513        u32 delta_truesize;
1514
1515        if (skb_unclone(skb, GFP_ATOMIC))
1516                return -ENOMEM;
1517
1518        delta_truesize = __pskb_trim_head(skb, len);
1519
1520        TCP_SKB_CB(skb)->seq += len;
1521        skb->ip_summed = CHECKSUM_PARTIAL;
1522
1523        if (delta_truesize) {
1524                skb->truesize      -= delta_truesize;
1525                sk_wmem_queued_add(sk, -delta_truesize);
1526                sk_mem_uncharge(sk, delta_truesize);
1527                sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1528        }
1529
1530        /* Any change of skb->len requires recalculation of tso factor. */
1531        if (tcp_skb_pcount(skb) > 1)
1532                tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1533
1534        return 0;
1535}
1536
1537/* Calculate MSS not accounting any TCP options.  */
1538static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1539{
1540        const struct tcp_sock *tp = tcp_sk(sk);
1541        const struct inet_connection_sock *icsk = inet_csk(sk);
1542        int mss_now;
1543
1544        /* Calculate base mss without TCP options:
1545           It is MMS_S - sizeof(tcphdr) of rfc1122
1546         */
1547        mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1548
1549        /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1550        if (icsk->icsk_af_ops->net_frag_header_len) {
1551                const struct dst_entry *dst = __sk_dst_get(sk);
1552
1553                if (dst && dst_allfrag(dst))
1554                        mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1555        }
1556
1557        /* Clamp it (mss_clamp does not include tcp options) */
1558        if (mss_now > tp->rx_opt.mss_clamp)
1559                mss_now = tp->rx_opt.mss_clamp;
1560
1561        /* Now subtract optional transport overhead */
1562        mss_now -= icsk->icsk_ext_hdr_len;
1563
1564        /* Then reserve room for full set of TCP options and 8 bytes of data */
1565        mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1566        return mss_now;
1567}
1568
1569/* Calculate MSS. Not accounting for SACKs here.  */
1570int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1571{
1572        /* Subtract TCP options size, not including SACKs */
1573        return __tcp_mtu_to_mss(sk, pmtu) -
1574               (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1575}
1576
1577/* Inverse of above */
1578int tcp_mss_to_mtu(struct sock *sk, int mss)
1579{
1580        const struct tcp_sock *tp = tcp_sk(sk);
1581        const struct inet_connection_sock *icsk = inet_csk(sk);
1582        int mtu;
1583
1584        mtu = mss +
1585              tp->tcp_header_len +
1586              icsk->icsk_ext_hdr_len +
1587              icsk->icsk_af_ops->net_header_len;
1588
1589        /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1590        if (icsk->icsk_af_ops->net_frag_header_len) {
1591                const struct dst_entry *dst = __sk_dst_get(sk);
1592
1593                if (dst && dst_allfrag(dst))
1594                        mtu += icsk->icsk_af_ops->net_frag_header_len;
1595        }
1596        return mtu;
1597}
1598EXPORT_SYMBOL(tcp_mss_to_mtu);
1599
1600/* MTU probing init per socket */
1601void tcp_mtup_init(struct sock *sk)
1602{
1603        struct tcp_sock *tp = tcp_sk(sk);
1604        struct inet_connection_sock *icsk = inet_csk(sk);
1605        struct net *net = sock_net(sk);
1606
1607        icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1608        icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1609                               icsk->icsk_af_ops->net_header_len;
1610        icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1611        icsk->icsk_mtup.probe_size = 0;
1612        if (icsk->icsk_mtup.enabled)
1613                icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1614}
1615EXPORT_SYMBOL(tcp_mtup_init);
1616
1617/* This function synchronize snd mss to current pmtu/exthdr set.
1618
1619   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1620   for TCP options, but includes only bare TCP header.
1621
1622   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1623   It is minimum of user_mss and mss received with SYN.
1624   It also does not include TCP options.
1625
1626   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1627
1628   tp->mss_cache is current effective sending mss, including
1629   all tcp options except for SACKs. It is evaluated,
1630   taking into account current pmtu, but never exceeds
1631   tp->rx_opt.mss_clamp.
1632
1633   NOTE1. rfc1122 clearly states that advertised MSS
1634   DOES NOT include either tcp or ip options.
1635
1636   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1637   are READ ONLY outside this function.         --ANK (980731)
1638 */
1639unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1640{
1641        struct tcp_sock *tp = tcp_sk(sk);
1642        struct inet_connection_sock *icsk = inet_csk(sk);
1643        int mss_now;
1644
1645        if (icsk->icsk_mtup.search_high > pmtu)
1646                icsk->icsk_mtup.search_high = pmtu;
1647
1648        mss_now = tcp_mtu_to_mss(sk, pmtu);
1649        mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1650
1651        /* And store cached results */
1652        icsk->icsk_pmtu_cookie = pmtu;
1653        if (icsk->icsk_mtup.enabled)
1654                mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1655        tp->mss_cache = mss_now;
1656
1657        return mss_now;
1658}
1659EXPORT_SYMBOL(tcp_sync_mss);
1660
1661/* Compute the current effective MSS, taking SACKs and IP options,
1662 * and even PMTU discovery events into account.
1663 */
1664unsigned int tcp_current_mss(struct sock *sk)
1665{
1666        const struct tcp_sock *tp = tcp_sk(sk);
1667        const struct dst_entry *dst = __sk_dst_get(sk);
1668        u32 mss_now;
1669        unsigned int header_len;
1670        struct tcp_out_options opts;
1671        struct tcp_md5sig_key *md5;
1672
1673        mss_now = tp->mss_cache;
1674
1675        if (dst) {
1676                u32 mtu = dst_mtu(dst);
1677                if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1678                        mss_now = tcp_sync_mss(sk, mtu);
1679        }
1680
1681        header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1682                     sizeof(struct tcphdr);
1683        /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1684         * some common options. If this is an odd packet (because we have SACK
1685         * blocks etc) then our calculated header_len will be different, and
1686         * we have to adjust mss_now correspondingly */
1687        if (header_len != tp->tcp_header_len) {
1688                int delta = (int) header_len - tp->tcp_header_len;
1689                mss_now -= delta;
1690        }
1691
1692        return mss_now;
1693}
1694
1695/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1696 * As additional protections, we do not touch cwnd in retransmission phases,
1697 * and if application hit its sndbuf limit recently.
1698 */
1699static void tcp_cwnd_application_limited(struct sock *sk)
1700{
1701        struct tcp_sock *tp = tcp_sk(sk);
1702
1703        if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1704            sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1705                /* Limited by application or receiver window. */
1706                u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1707                u32 win_used = max(tp->snd_cwnd_used, init_win);
1708                if (win_used < tp->snd_cwnd) {
1709                        tp->snd_ssthresh = tcp_current_ssthresh(sk);
1710                        tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1711                }
1712                tp->snd_cwnd_used = 0;
1713        }
1714        tp->snd_cwnd_stamp = tcp_jiffies32;
1715}
1716
1717static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1718{
1719        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1720        struct tcp_sock *tp = tcp_sk(sk);
1721
1722        /* Track the maximum number of outstanding packets in each
1723         * window, and remember whether we were cwnd-limited then.
1724         */
1725        if (!before(tp->snd_una, tp->max_packets_seq) ||
1726            tp->packets_out > tp->max_packets_out) {
1727                tp->max_packets_out = tp->packets_out;
1728                tp->max_packets_seq = tp->snd_nxt;
1729                tp->is_cwnd_limited = is_cwnd_limited;
1730        }
1731
1732        if (tcp_is_cwnd_limited(sk)) {
1733                /* Network is feed fully. */
1734                tp->snd_cwnd_used = 0;
1735                tp->snd_cwnd_stamp = tcp_jiffies32;
1736        } else {
1737                /* Network starves. */
1738                if (tp->packets_out > tp->snd_cwnd_used)
1739                        tp->snd_cwnd_used = tp->packets_out;
1740
1741                if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1742                    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1743                    !ca_ops->cong_control)
1744                        tcp_cwnd_application_limited(sk);
1745
1746                /* The following conditions together indicate the starvation
1747                 * is caused by insufficient sender buffer:
1748                 * 1) just sent some data (see tcp_write_xmit)
1749                 * 2) not cwnd limited (this else condition)
1750                 * 3) no more data to send (tcp_write_queue_empty())
1751                 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1752                 */
1753                if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1754                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1755                    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1756                        tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1757        }
1758}
1759
1760/* Minshall's variant of the Nagle send check. */
1761static bool tcp_minshall_check(const struct tcp_sock *tp)
1762{
1763        return after(tp->snd_sml, tp->snd_una) &&
1764                !after(tp->snd_sml, tp->snd_nxt);
1765}
1766
1767/* Update snd_sml if this skb is under mss
1768 * Note that a TSO packet might end with a sub-mss segment
1769 * The test is really :
1770 * if ((skb->len % mss) != 0)
1771 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1772 * But we can avoid doing the divide again given we already have
1773 *  skb_pcount = skb->len / mss_now
1774 */
1775static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1776                                const struct sk_buff *skb)
1777{
1778        if (skb->len < tcp_skb_pcount(skb) * mss_now)
1779                tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1780}
1781
1782/* Return false, if packet can be sent now without violation Nagle's rules:
1783 * 1. It is full sized. (provided by caller in %partial bool)
1784 * 2. Or it contains FIN. (already checked by caller)
1785 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1786 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1787 *    With Minshall's modification: all sent small packets are ACKed.
1788 */
1789static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1790                            int nonagle)
1791{
1792        return partial &&
1793                ((nonagle & TCP_NAGLE_CORK) ||
1794                 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1795}
1796
1797/* Return how many segs we'd like on a TSO packet,
1798 * to send one TSO packet per ms
1799 */
1800static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1801                            int min_tso_segs)
1802{
1803        u32 bytes, segs;
1804
1805        bytes = min_t(unsigned long,
1806                      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1807                      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1808
1809        /* Goal is to send at least one packet per ms,
1810         * not one big TSO packet every 100 ms.
1811         * This preserves ACK clocking and is consistent
1812         * with tcp_tso_should_defer() heuristic.
1813         */
1814        segs = max_t(u32, bytes / mss_now, min_tso_segs);
1815
1816        return segs;
1817}
1818
1819/* Return the number of segments we want in the skb we are transmitting.
1820 * See if congestion control module wants to decide; otherwise, autosize.
1821 */
1822static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1823{
1824        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1825        u32 min_tso, tso_segs;
1826
1827        min_tso = ca_ops->min_tso_segs ?
1828                        ca_ops->min_tso_segs(sk) :
1829                        sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1830
1831        tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1832        return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1833}
1834
1835/* Returns the portion of skb which can be sent right away */
1836static unsigned int tcp_mss_split_point(const struct sock *sk,
1837                                        const struct sk_buff *skb,
1838                                        unsigned int mss_now,
1839                                        unsigned int max_segs,
1840                                        int nonagle)
1841{
1842        const struct tcp_sock *tp = tcp_sk(sk);
1843        u32 partial, needed, window, max_len;
1844
1845        window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1846        max_len = mss_now * max_segs;
1847
1848        if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1849                return max_len;
1850
1851        needed = min(skb->len, window);
1852
1853        if (max_len <= needed)
1854                return max_len;
1855
1856        partial = needed % mss_now;
1857        /* If last segment is not a full MSS, check if Nagle rules allow us
1858         * to include this last segment in this skb.
1859         * Otherwise, we'll split the skb at last MSS boundary
1860         */
1861        if (tcp_nagle_check(partial != 0, tp, nonagle))
1862                return needed - partial;
1863
1864        return needed;
1865}
1866
1867/* Can at least one segment of SKB be sent right now, according to the
1868 * congestion window rules?  If so, return how many segments are allowed.
1869 */
1870static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1871                                         const struct sk_buff *skb)
1872{
1873        u32 in_flight, cwnd, halfcwnd;
1874
1875        /* Don't be strict about the congestion window for the final FIN.  */
1876        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1877            tcp_skb_pcount(skb) == 1)
1878                return 1;
1879
1880        in_flight = tcp_packets_in_flight(tp);
1881        cwnd = tp->snd_cwnd;
1882        if (in_flight >= cwnd)
1883                return 0;
1884
1885        /* For better scheduling, ensure we have at least
1886         * 2 GSO packets in flight.
1887         */
1888        halfcwnd = max(cwnd >> 1, 1U);
1889        return min(halfcwnd, cwnd - in_flight);
1890}
1891
1892/* Initialize TSO state of a skb.
1893 * This must be invoked the first time we consider transmitting
1894 * SKB onto the wire.
1895 */
1896static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1897{
1898        int tso_segs = tcp_skb_pcount(skb);
1899
1900        if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1901                tcp_set_skb_tso_segs(skb, mss_now);
1902                tso_segs = tcp_skb_pcount(skb);
1903        }
1904        return tso_segs;
1905}
1906
1907
1908/* Return true if the Nagle test allows this packet to be
1909 * sent now.
1910 */
1911static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1912                                  unsigned int cur_mss, int nonagle)
1913{
1914        /* Nagle rule does not apply to frames, which sit in the middle of the
1915         * write_queue (they have no chances to get new data).
1916         *
1917         * This is implemented in the callers, where they modify the 'nonagle'
1918         * argument based upon the location of SKB in the send queue.
1919         */
1920        if (nonagle & TCP_NAGLE_PUSH)
1921                return true;
1922
1923        /* Don't use the nagle rule for urgent data (or for the final FIN). */
1924        if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1925                return true;
1926
1927        if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1928                return true;
1929
1930        return false;
1931}
1932
1933/* Does at least the first segment of SKB fit into the send window? */
1934static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1935                             const struct sk_buff *skb,
1936                             unsigned int cur_mss)
1937{
1938        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1939
1940        if (skb->len > cur_mss)
1941                end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1942
1943        return !after(end_seq, tcp_wnd_end(tp));
1944}
1945
1946/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1947 * which is put after SKB on the list.  It is very much like
1948 * tcp_fragment() except that it may make several kinds of assumptions
1949 * in order to speed up the splitting operation.  In particular, we
1950 * know that all the data is in scatter-gather pages, and that the
1951 * packet has never been sent out before (and thus is not cloned).
1952 */
1953static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1954                        unsigned int mss_now, gfp_t gfp)
1955{
1956        int nlen = skb->len - len;
1957        struct sk_buff *buff;
1958        u8 flags;
1959
1960        /* All of a TSO frame must be composed of paged data.  */
1961        if (skb->len != skb->data_len)
1962                return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1963                                    skb, len, mss_now, gfp);
1964
1965        buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1966        if (unlikely(!buff))
1967                return -ENOMEM;
1968        skb_copy_decrypted(buff, skb);
1969
1970        sk_wmem_queued_add(sk, buff->truesize);
1971        sk_mem_charge(sk, buff->truesize);
1972        buff->truesize += nlen;
1973        skb->truesize -= nlen;
1974
1975        /* Correct the sequence numbers. */
1976        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1977        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1978        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1979
1980        /* PSH and FIN should only be set in the second packet. */
1981        flags = TCP_SKB_CB(skb)->tcp_flags;
1982        TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1983        TCP_SKB_CB(buff)->tcp_flags = flags;
1984
1985        /* This packet was never sent out yet, so no SACK bits. */
1986        TCP_SKB_CB(buff)->sacked = 0;
1987
1988        tcp_skb_fragment_eor(skb, buff);
1989
1990        buff->ip_summed = CHECKSUM_PARTIAL;
1991        skb_split(skb, buff, len);
1992        tcp_fragment_tstamp(skb, buff);
1993
1994        /* Fix up tso_factor for both original and new SKB.  */
1995        tcp_set_skb_tso_segs(skb, mss_now);
1996        tcp_set_skb_tso_segs(buff, mss_now);
1997
1998        /* Link BUFF into the send queue. */
1999        __skb_header_release(buff);
2000        tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2001
2002        return 0;
2003}
2004
2005/* Try to defer sending, if possible, in order to minimize the amount
2006 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2007 *
2008 * This algorithm is from John Heffner.
2009 */
2010static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2011                                 bool *is_cwnd_limited,
2012                                 bool *is_rwnd_limited,
2013                                 u32 max_segs)
2014{
2015        const struct inet_connection_sock *icsk = inet_csk(sk);
2016        u32 send_win, cong_win, limit, in_flight;
2017        struct tcp_sock *tp = tcp_sk(sk);
2018        struct sk_buff *head;
2019        int win_divisor;
2020        s64 delta;
2021
2022        if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2023                goto send_now;
2024
2025        /* Avoid bursty behavior by allowing defer
2026         * only if the last write was recent (1 ms).
2027         * Note that tp->tcp_wstamp_ns can be in the future if we have
2028         * packets waiting in a qdisc or device for EDT delivery.
2029         */
2030        delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2031        if (delta > 0)
2032                goto send_now;
2033
2034        in_flight = tcp_packets_in_flight(tp);
2035
2036        BUG_ON(tcp_skb_pcount(skb) <= 1);
2037        BUG_ON(tp->snd_cwnd <= in_flight);
2038
2039        send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2040
2041        /* From in_flight test above, we know that cwnd > in_flight.  */
2042        cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2043
2044        limit = min(send_win, cong_win);
2045
2046        /* If a full-sized TSO skb can be sent, do it. */
2047        if (limit >= max_segs * tp->mss_cache)
2048                goto send_now;
2049
2050        /* Middle in queue won't get any more data, full sendable already? */
2051        if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2052                goto send_now;
2053
2054        win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2055        if (win_divisor) {
2056                u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2057
2058                /* If at least some fraction of a window is available,
2059                 * just use it.
2060                 */
2061                chunk /= win_divisor;
2062                if (limit >= chunk)
2063                        goto send_now;
2064        } else {
2065                /* Different approach, try not to defer past a single
2066                 * ACK.  Receiver should ACK every other full sized
2067                 * frame, so if we have space for more than 3 frames
2068                 * then send now.
2069                 */
2070                if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2071                        goto send_now;
2072        }
2073
2074        /* TODO : use tsorted_sent_queue ? */
2075        head = tcp_rtx_queue_head(sk);
2076        if (!head)
2077                goto send_now;
2078        delta = tp->tcp_clock_cache - head->tstamp;
2079        /* If next ACK is likely to come too late (half srtt), do not defer */
2080        if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2081                goto send_now;
2082
2083        /* Ok, it looks like it is advisable to defer.
2084         * Three cases are tracked :
2085         * 1) We are cwnd-limited
2086         * 2) We are rwnd-limited
2087         * 3) We are application limited.
2088         */
2089        if (cong_win < send_win) {
2090                if (cong_win <= skb->len) {
2091                        *is_cwnd_limited = true;
2092                        return true;
2093                }
2094        } else {
2095                if (send_win <= skb->len) {
2096                        *is_rwnd_limited = true;
2097                        return true;
2098                }
2099        }
2100
2101        /* If this packet won't get more data, do not wait. */
2102        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2103            TCP_SKB_CB(skb)->eor)
2104                goto send_now;
2105
2106        return true;
2107
2108send_now:
2109        return false;
2110}
2111
2112static inline void tcp_mtu_check_reprobe(struct sock *sk)
2113{
2114        struct inet_connection_sock *icsk = inet_csk(sk);
2115        struct tcp_sock *tp = tcp_sk(sk);
2116        struct net *net = sock_net(sk);
2117        u32 interval;
2118        s32 delta;
2119
2120        interval = net->ipv4.sysctl_tcp_probe_interval;
2121        delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2122        if (unlikely(delta >= interval * HZ)) {
2123                int mss = tcp_current_mss(sk);
2124
2125                /* Update current search range */
2126                icsk->icsk_mtup.probe_size = 0;
2127                icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2128                        sizeof(struct tcphdr) +
2129                        icsk->icsk_af_ops->net_header_len;
2130                icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2131
2132                /* Update probe time stamp */
2133                icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2134        }
2135}
2136
2137static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2138{
2139        struct sk_buff *skb, *next;
2140
2141        skb = tcp_send_head(sk);
2142        tcp_for_write_queue_from_safe(skb, next, sk) {
2143                if (len <= skb->len)
2144                        break;
2145
2146                if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2147                        return false;
2148
2149                len -= skb->len;
2150        }
2151
2152        return true;
2153}
2154
2155/* Create a new MTU probe if we are ready.
2156 * MTU probe is regularly attempting to increase the path MTU by
2157 * deliberately sending larger packets.  This discovers routing
2158 * changes resulting in larger path MTUs.
2159 *
2160 * Returns 0 if we should wait to probe (no cwnd available),
2161 *         1 if a probe was sent,
2162 *         -1 otherwise
2163 */
2164static int tcp_mtu_probe(struct sock *sk)
2165{
2166        struct inet_connection_sock *icsk = inet_csk(sk);
2167        struct tcp_sock *tp = tcp_sk(sk);
2168        struct sk_buff *skb, *nskb, *next;
2169        struct net *net = sock_net(sk);
2170        int probe_size;
2171        int size_needed;
2172        int copy, len;
2173        int mss_now;
2174        int interval;
2175
2176        /* Not currently probing/verifying,
2177         * not in recovery,
2178         * have enough cwnd, and
2179         * not SACKing (the variable headers throw things off)
2180         */
2181        if (likely(!icsk->icsk_mtup.enabled ||
2182                   icsk->icsk_mtup.probe_size ||
2183                   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2184                   tp->snd_cwnd < 11 ||
2185                   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2186                return -1;
2187
2188        /* Use binary search for probe_size between tcp_mss_base,
2189         * and current mss_clamp. if (search_high - search_low)
2190         * smaller than a threshold, backoff from probing.
2191         */
2192        mss_now = tcp_current_mss(sk);
2193        probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2194                                    icsk->icsk_mtup.search_low) >> 1);
2195        size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2196        interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2197        /* When misfortune happens, we are reprobing actively,
2198         * and then reprobe timer has expired. We stick with current
2199         * probing process by not resetting search range to its orignal.
2200         */
2201        if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2202                interval < net->ipv4.sysctl_tcp_probe_threshold) {
2203                /* Check whether enough time has elaplased for
2204                 * another round of probing.
2205                 */
2206                tcp_mtu_check_reprobe(sk);
2207                return -1;
2208        }
2209
2210        /* Have enough data in the send queue to probe? */
2211        if (tp->write_seq - tp->snd_nxt < size_needed)
2212                return -1;
2213
2214        if (tp->snd_wnd < size_needed)
2215                return -1;
2216        if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2217                return 0;
2218
2219        /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2220        if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2221                if (!tcp_packets_in_flight(tp))
2222                        return -1;
2223                else
2224                        return 0;
2225        }
2226
2227        if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2228                return -1;
2229
2230        /* We're allowed to probe.  Build it now. */
2231        nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2232        if (!nskb)
2233                return -1;
2234        sk_wmem_queued_add(sk, nskb->truesize);
2235        sk_mem_charge(sk, nskb->truesize);
2236
2237        skb = tcp_send_head(sk);
2238        skb_copy_decrypted(nskb, skb);
2239
2240        TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2241        TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2242        TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2243        TCP_SKB_CB(nskb)->sacked = 0;
2244        nskb->csum = 0;
2245        nskb->ip_summed = CHECKSUM_PARTIAL;
2246
2247        tcp_insert_write_queue_before(nskb, skb, sk);
2248        tcp_highest_sack_replace(sk, skb, nskb);
2249
2250        len = 0;
2251        tcp_for_write_queue_from_safe(skb, next, sk) {
2252                copy = min_t(int, skb->len, probe_size - len);
2253                skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2254
2255                if (skb->len <= copy) {
2256                        /* We've eaten all the data from this skb.
2257                         * Throw it away. */
2258                        TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2259                        /* If this is the last SKB we copy and eor is set
2260                         * we need to propagate it to the new skb.
2261                         */
2262                        TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2263                        tcp_skb_collapse_tstamp(nskb, skb);
2264                        tcp_unlink_write_queue(skb, sk);
2265                        sk_wmem_free_skb(sk, skb);
2266                } else {
2267                        TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2268                                                   ~(TCPHDR_FIN|TCPHDR_PSH);
2269                        if (!skb_shinfo(skb)->nr_frags) {
2270                                skb_pull(skb, copy);
2271                        } else {
2272                                __pskb_trim_head(skb, copy);
2273                                tcp_set_skb_tso_segs(skb, mss_now);
2274                        }
2275                        TCP_SKB_CB(skb)->seq += copy;
2276                }
2277
2278                len += copy;
2279
2280                if (len >= probe_size)
2281                        break;
2282        }
2283        tcp_init_tso_segs(nskb, nskb->len);
2284
2285        /* We're ready to send.  If this fails, the probe will
2286         * be resegmented into mss-sized pieces by tcp_write_xmit().
2287         */
2288        if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2289                /* Decrement cwnd here because we are sending
2290                 * effectively two packets. */
2291                tp->snd_cwnd--;
2292                tcp_event_new_data_sent(sk, nskb);
2293
2294                icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2295                tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2296                tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2297
2298                return 1;
2299        }
2300
2301        return -1;
2302}
2303
2304static bool tcp_pacing_check(struct sock *sk)
2305{
2306        struct tcp_sock *tp = tcp_sk(sk);
2307
2308        if (!tcp_needs_internal_pacing(sk))
2309                return false;
2310
2311        if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2312                return false;
2313
2314        if (!hrtimer_is_queued(&tp->pacing_timer)) {
2315                hrtimer_start(&tp->pacing_timer,
2316                              ns_to_ktime(tp->tcp_wstamp_ns),
2317                              HRTIMER_MODE_ABS_PINNED_SOFT);
2318                sock_hold(sk);
2319        }
2320        return true;
2321}
2322
2323/* TCP Small Queues :
2324 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2325 * (These limits are doubled for retransmits)
2326 * This allows for :
2327 *  - better RTT estimation and ACK scheduling
2328 *  - faster recovery
2329 *  - high rates
2330 * Alas, some drivers / subsystems require a fair amount
2331 * of queued bytes to ensure line rate.
2332 * One example is wifi aggregation (802.11 AMPDU)
2333 */
2334static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2335                                  unsigned int factor)
2336{
2337        unsigned long limit;
2338
2339        limit = max_t(unsigned long,
2340                      2 * skb->truesize,
2341                      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2342        if (sk->sk_pacing_status == SK_PACING_NONE)
2343                limit = min_t(unsigned long, limit,
2344                              sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2345        limit <<= factor;
2346
2347        if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2348            tcp_sk(sk)->tcp_tx_delay) {
2349                u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2350
2351                /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2352                 * approximate our needs assuming an ~100% skb->truesize overhead.
2353                 * USEC_PER_SEC is approximated by 2^20.
2354                 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2355                 */
2356                extra_bytes >>= (20 - 1);
2357                limit += extra_bytes;
2358        }
2359        if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2360                /* Always send skb if rtx queue is empty.
2361                 * No need to wait for TX completion to call us back,
2362                 * after softirq/tasklet schedule.
2363                 * This helps when TX completions are delayed too much.
2364                 */
2365                if (tcp_rtx_queue_empty(sk))
2366                        return false;
2367
2368                set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2369                /* It is possible TX completion already happened
2370                 * before we set TSQ_THROTTLED, so we must
2371                 * test again the condition.
2372                 */
2373                smp_mb__after_atomic();
2374                if (refcount_read(&sk->sk_wmem_alloc) > limit)
2375                        return true;
2376        }
2377        return false;
2378}
2379
2380static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2381{
2382        const u32 now = tcp_jiffies32;
2383        enum tcp_chrono old = tp->chrono_type;
2384
2385        if (old > TCP_CHRONO_UNSPEC)
2386                tp->chrono_stat[old - 1] += now - tp->chrono_start;
2387        tp->chrono_start = now;
2388        tp->chrono_type = new;
2389}
2390
2391void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2392{
2393        struct tcp_sock *tp = tcp_sk(sk);
2394
2395        /* If there are multiple conditions worthy of tracking in a
2396         * chronograph then the highest priority enum takes precedence
2397         * over the other conditions. So that if something "more interesting"
2398         * starts happening, stop the previous chrono and start a new one.
2399         */
2400        if (type > tp->chrono_type)
2401                tcp_chrono_set(tp, type);
2402}
2403
2404void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2405{
2406        struct tcp_sock *tp = tcp_sk(sk);
2407
2408
2409        /* There are multiple conditions worthy of tracking in a
2410         * chronograph, so that the highest priority enum takes
2411         * precedence over the other conditions (see tcp_chrono_start).
2412         * If a condition stops, we only stop chrono tracking if
2413         * it's the "most interesting" or current chrono we are
2414         * tracking and starts busy chrono if we have pending data.
2415         */
2416        if (tcp_rtx_and_write_queues_empty(sk))
2417                tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2418        else if (type == tp->chrono_type)
2419                tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2420}
2421
2422/* This routine writes packets to the network.  It advances the
2423 * send_head.  This happens as incoming acks open up the remote
2424 * window for us.
2425 *
2426 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2427 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2428 * account rare use of URG, this is not a big flaw.
2429 *
2430 * Send at most one packet when push_one > 0. Temporarily ignore
2431 * cwnd limit to force at most one packet out when push_one == 2.
2432
2433 * Returns true, if no segments are in flight and we have queued segments,
2434 * but cannot send anything now because of SWS or another problem.
2435 */
2436static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2437                           int push_one, gfp_t gfp)
2438{
2439        struct tcp_sock *tp = tcp_sk(sk);
2440        struct sk_buff *skb;
2441        unsigned int tso_segs, sent_pkts;
2442        int cwnd_quota;
2443        int result;
2444        bool is_cwnd_limited = false, is_rwnd_limited = false;
2445        u32 max_segs;
2446
2447        sent_pkts = 0;
2448
2449        tcp_mstamp_refresh(tp);
2450        if (!push_one) {
2451                /* Do MTU probing. */
2452                result = tcp_mtu_probe(sk);
2453                if (!result) {
2454                        return false;
2455                } else if (result > 0) {
2456                        sent_pkts = 1;
2457                }
2458        }
2459
2460        max_segs = tcp_tso_segs(sk, mss_now);
2461        while ((skb = tcp_send_head(sk))) {
2462                unsigned int limit;
2463
2464                if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2465                        /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2466                        skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2467                        list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2468                        tcp_init_tso_segs(skb, mss_now);
2469                        goto repair; /* Skip network transmission */
2470                }
2471
2472                if (tcp_pacing_check(sk))
2473                        break;
2474
2475                tso_segs = tcp_init_tso_segs(skb, mss_now);
2476                BUG_ON(!tso_segs);
2477
2478                cwnd_quota = tcp_cwnd_test(tp, skb);
2479                if (!cwnd_quota) {
2480                        if (push_one == 2)
2481                                /* Force out a loss probe pkt. */
2482                                cwnd_quota = 1;
2483                        else
2484                                break;
2485                }
2486
2487                if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2488                        is_rwnd_limited = true;
2489                        break;
2490                }
2491
2492                if (tso_segs == 1) {
2493                        if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2494                                                     (tcp_skb_is_last(sk, skb) ?
2495                                                      nonagle : TCP_NAGLE_PUSH))))
2496                                break;
2497                } else {
2498                        if (!push_one &&
2499                            tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2500                                                 &is_rwnd_limited, max_segs))
2501                                break;
2502                }
2503
2504                limit = mss_now;
2505                if (tso_segs > 1 && !tcp_urg_mode(tp))
2506                        limit = tcp_mss_split_point(sk, skb, mss_now,
2507                                                    min_t(unsigned int,
2508                                                          cwnd_quota,
2509                                                          max_segs),
2510                                                    nonagle);
2511
2512                if (skb->len > limit &&
2513                    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2514                        break;
2515
2516                if (tcp_small_queue_check(sk, skb, 0))
2517                        break;
2518
2519                /* Argh, we hit an empty skb(), presumably a thread
2520                 * is sleeping in sendmsg()/sk_stream_wait_memory().
2521                 * We do not want to send a pure-ack packet and have
2522                 * a strange looking rtx queue with empty packet(s).
2523                 */
2524                if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2525                        break;
2526
2527                if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2528                        break;
2529
2530repair:
2531                /* Advance the send_head.  This one is sent out.
2532                 * This call will increment packets_out.
2533                 */
2534                tcp_event_new_data_sent(sk, skb);
2535
2536                tcp_minshall_update(tp, mss_now, skb);
2537                sent_pkts += tcp_skb_pcount(skb);
2538
2539                if (push_one)
2540                        break;
2541        }
2542
2543        if (is_rwnd_limited)
2544                tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2545        else
2546                tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2547
2548        if (likely(sent_pkts)) {
2549                if (tcp_in_cwnd_reduction(sk))
2550                        tp->prr_out += sent_pkts;
2551
2552                /* Send one loss probe per tail loss episode. */
2553                if (push_one != 2)
2554                        tcp_schedule_loss_probe(sk, false);
2555                is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2556                tcp_cwnd_validate(sk, is_cwnd_limited);
2557                return false;
2558        }
2559        return !tp->packets_out && !tcp_write_queue_empty(sk);
2560}
2561
2562bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2563{
2564        struct inet_connection_sock *icsk = inet_csk(sk);
2565        struct tcp_sock *tp = tcp_sk(sk);
2566        u32 timeout, rto_delta_us;
2567        int early_retrans;
2568
2569        /* Don't do any loss probe on a Fast Open connection before 3WHS
2570         * finishes.
2571         */
2572        if (rcu_access_pointer(tp->fastopen_rsk))
2573                return false;
2574
2575        early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2576        /* Schedule a loss probe in 2*RTT for SACK capable connections
2577         * not in loss recovery, that are either limited by cwnd or application.
2578         */
2579        if ((early_retrans != 3 && early_retrans != 4) ||
2580            !tp->packets_out || !tcp_is_sack(tp) ||
2581            (icsk->icsk_ca_state != TCP_CA_Open &&
2582             icsk->icsk_ca_state != TCP_CA_CWR))
2583                return false;
2584
2585        /* Probe timeout is 2*rtt. Add minimum RTO to account
2586         * for delayed ack when there's one outstanding packet. If no RTT
2587         * sample is available then probe after TCP_TIMEOUT_INIT.
2588         */
2589        if (tp->srtt_us) {
2590                timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2591                if (tp->packets_out == 1)
2592                        timeout += TCP_RTO_MIN;
2593                else
2594                        timeout += TCP_TIMEOUT_MIN;
2595        } else {
2596                timeout = TCP_TIMEOUT_INIT;
2597        }
2598
2599        /* If the RTO formula yields an earlier time, then use that time. */
2600        rto_delta_us = advancing_rto ?
2601                        jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2602                        tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2603        if (rto_delta_us > 0)
2604                timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2605
2606        tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2607        return true;
2608}
2609
2610/* Thanks to skb fast clones, we can detect if a prior transmit of
2611 * a packet is still in a qdisc or driver queue.
2612 * In this case, there is very little point doing a retransmit !
2613 */
2614static bool skb_still_in_host_queue(const struct sock *sk,
2615                                    const struct sk_buff *skb)
2616{
2617        if (unlikely(skb_fclone_busy(sk, skb))) {
2618                NET_INC_STATS(sock_net(sk),
2619                              LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2620                return true;
2621        }
2622        return false;
2623}
2624
2625/* When probe timeout (PTO) fires, try send a new segment if possible, else
2626 * retransmit the last segment.
2627 */
2628void tcp_send_loss_probe(struct sock *sk)
2629{
2630        struct tcp_sock *tp = tcp_sk(sk);
2631        struct sk_buff *skb;
2632        int pcount;
2633        int mss = tcp_current_mss(sk);
2634
2635        /* At most one outstanding TLP */
2636        if (tp->tlp_high_seq)
2637                goto rearm_timer;
2638
2639        tp->tlp_retrans = 0;
2640        skb = tcp_send_head(sk);
2641        if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2642                pcount = tp->packets_out;
2643                tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2644                if (tp->packets_out > pcount)
2645                        goto probe_sent;
2646                goto rearm_timer;
2647        }
2648        skb = skb_rb_last(&sk->tcp_rtx_queue);
2649        if (unlikely(!skb)) {
2650                WARN_ONCE(tp->packets_out,
2651                          "invalid inflight: %u state %u cwnd %u mss %d\n",
2652                          tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2653                inet_csk(sk)->icsk_pending = 0;
2654                return;
2655        }
2656
2657        if (skb_still_in_host_queue(sk, skb))
2658                goto rearm_timer;
2659
2660        pcount = tcp_skb_pcount(skb);
2661        if (WARN_ON(!pcount))
2662                goto rearm_timer;
2663
2664        if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2665                if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2666                                          (pcount - 1) * mss, mss,
2667                                          GFP_ATOMIC)))
2668                        goto rearm_timer;
2669                skb = skb_rb_next(skb);
2670        }
2671
2672        if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2673                goto rearm_timer;
2674
2675        if (__tcp_retransmit_skb(sk, skb, 1))
2676                goto rearm_timer;
2677
2678        tp->tlp_retrans = 1;
2679
2680probe_sent:
2681        /* Record snd_nxt for loss detection. */
2682        tp->tlp_high_seq = tp->snd_nxt;
2683
2684        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2685        /* Reset s.t. tcp_rearm_rto will restart timer from now */
2686        inet_csk(sk)->icsk_pending = 0;
2687rearm_timer:
2688        tcp_rearm_rto(sk);
2689}
2690
2691/* Push out any pending frames which were held back due to
2692 * TCP_CORK or attempt at coalescing tiny packets.
2693 * The socket must be locked by the caller.
2694 */
2695void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2696                               int nonagle)
2697{
2698        /* If we are closed, the bytes will have to remain here.
2699         * In time closedown will finish, we empty the write queue and
2700         * all will be happy.
2701         */
2702        if (unlikely(sk->sk_state == TCP_CLOSE))
2703                return;
2704
2705        if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2706                           sk_gfp_mask(sk, GFP_ATOMIC)))
2707                tcp_check_probe_timer(sk);
2708}
2709
2710/* Send _single_ skb sitting at the send head. This function requires
2711 * true push pending frames to setup probe timer etc.
2712 */
2713void tcp_push_one(struct sock *sk, unsigned int mss_now)
2714{
2715        struct sk_buff *skb = tcp_send_head(sk);
2716
2717        BUG_ON(!skb || skb->len < mss_now);
2718
2719        tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2720}
2721
2722/* This function returns the amount that we can raise the
2723 * usable window based on the following constraints
2724 *
2725 * 1. The window can never be shrunk once it is offered (RFC 793)
2726 * 2. We limit memory per socket
2727 *
2728 * RFC 1122:
2729 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2730 *  RECV.NEXT + RCV.WIN fixed until:
2731 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2732 *
2733 * i.e. don't raise the right edge of the window until you can raise
2734 * it at least MSS bytes.
2735 *
2736 * Unfortunately, the recommended algorithm breaks header prediction,
2737 * since header prediction assumes th->window stays fixed.
2738 *
2739 * Strictly speaking, keeping th->window fixed violates the receiver
2740 * side SWS prevention criteria. The problem is that under this rule
2741 * a stream of single byte packets will cause the right side of the
2742 * window to always advance by a single byte.
2743 *
2744 * Of course, if the sender implements sender side SWS prevention
2745 * then this will not be a problem.
2746 *
2747 * BSD seems to make the following compromise:
2748 *
2749 *      If the free space is less than the 1/4 of the maximum
2750 *      space available and the free space is less than 1/2 mss,
2751 *      then set the window to 0.
2752 *      [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2753 *      Otherwise, just prevent the window from shrinking
2754 *      and from being larger than the largest representable value.
2755 *
2756 * This prevents incremental opening of the window in the regime
2757 * where TCP is limited by the speed of the reader side taking
2758 * data out of the TCP receive queue. It does nothing about
2759 * those cases where the window is constrained on the sender side
2760 * because the pipeline is full.
2761 *
2762 * BSD also seems to "accidentally" limit itself to windows that are a
2763 * multiple of MSS, at least until the free space gets quite small.
2764 * This would appear to be a side effect of the mbuf implementation.
2765 * Combining these two algorithms results in the observed behavior
2766 * of having a fixed window size at almost all times.
2767 *
2768 * Below we obtain similar behavior by forcing the offered window to
2769 * a multiple of the mss when it is feasible to do so.
2770 *
2771 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2772 * Regular options like TIMESTAMP are taken into account.
2773 */
2774u32 __tcp_select_window(struct sock *sk)
2775{
2776        struct inet_connection_sock *icsk = inet_csk(sk);
2777        struct tcp_sock *tp = tcp_sk(sk);
2778        /* MSS for the peer's data.  Previous versions used mss_clamp
2779         * here.  I don't know if the value based on our guesses
2780         * of peer's MSS is better for the performance.  It's more correct
2781         * but may be worse for the performance because of rcv_mss
2782         * fluctuations.  --SAW  1998/11/1
2783         */
2784        int mss = icsk->icsk_ack.rcv_mss;
2785        int free_space = tcp_space(sk);
2786        int allowed_space = tcp_full_space(sk);
2787        int full_space, window;
2788
2789        if (sk_is_mptcp(sk))
2790                mptcp_space(sk, &free_space, &allowed_space);
2791
2792        full_space = min_t(int, tp->window_clamp, allowed_space);
2793
2794        if (unlikely(mss > full_space)) {
2795                mss = full_space;
2796                if (mss <= 0)
2797                        return 0;
2798        }
2799        if (free_space < (full_space >> 1)) {
2800                icsk->icsk_ack.quick = 0;
2801
2802                if (tcp_under_memory_pressure(sk))
2803                        tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2804                                               4U * tp->advmss);
2805
2806                /* free_space might become our new window, make sure we don't
2807                 * increase it due to wscale.
2808                 */
2809                free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2810
2811                /* if free space is less than mss estimate, or is below 1/16th
2812                 * of the maximum allowed, try to move to zero-window, else
2813                 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2814                 * new incoming data is dropped due to memory limits.
2815                 * With large window, mss test triggers way too late in order
2816                 * to announce zero window in time before rmem limit kicks in.
2817                 */
2818                if (free_space < (allowed_space >> 4) || free_space < mss)
2819                        return 0;
2820        }
2821
2822        if (free_space > tp->rcv_ssthresh)
2823                free_space = tp->rcv_ssthresh;
2824
2825        /* Don't do rounding if we are using window scaling, since the
2826         * scaled window will not line up with the MSS boundary anyway.
2827         */
2828        if (tp->rx_opt.rcv_wscale) {
2829                window = free_space;
2830
2831                /* Advertise enough space so that it won't get scaled away.
2832                 * Import case: prevent zero window announcement if
2833                 * 1<<rcv_wscale > mss.
2834                 */
2835                window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2836        } else {
2837                window = tp->rcv_wnd;
2838                /* Get the largest window that is a nice multiple of mss.
2839                 * Window clamp already applied above.
2840                 * If our current window offering is within 1 mss of the
2841                 * free space we just keep it. This prevents the divide
2842                 * and multiply from happening most of the time.
2843                 * We also don't do any window rounding when the free space
2844                 * is too small.
2845                 */
2846                if (window <= free_space - mss || window > free_space)
2847                        window = rounddown(free_space, mss);
2848                else if (mss == full_space &&
2849                         free_space > window + (full_space >> 1))
2850                        window = free_space;
2851        }
2852
2853        return window;
2854}
2855
2856void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2857                             const struct sk_buff *next_skb)
2858{
2859        if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2860                const struct skb_shared_info *next_shinfo =
2861                        skb_shinfo(next_skb);
2862                struct skb_shared_info *shinfo = skb_shinfo(skb);
2863
2864                shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2865                shinfo->tskey = next_shinfo->tskey;
2866                TCP_SKB_CB(skb)->txstamp_ack |=
2867                        TCP_SKB_CB(next_skb)->txstamp_ack;
2868        }
2869}
2870
2871/* Collapses two adjacent SKB's during retransmission. */
2872static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2873{
2874        struct tcp_sock *tp = tcp_sk(sk);
2875        struct sk_buff *next_skb = skb_rb_next(skb);
2876        int next_skb_size;
2877
2878        next_skb_size = next_skb->len;
2879
2880        BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2881
2882        if (next_skb_size) {
2883                if (next_skb_size <= skb_availroom(skb))
2884                        skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2885                                      next_skb_size);
2886                else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2887                        return false;
2888        }
2889        tcp_highest_sack_replace(sk, next_skb, skb);
2890
2891        /* Update sequence range on original skb. */
2892        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2893
2894        /* Merge over control information. This moves PSH/FIN etc. over */
2895        TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2896
2897        /* All done, get rid of second SKB and account for it so
2898         * packet counting does not break.
2899         */
2900        TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2901        TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2902
2903        /* changed transmit queue under us so clear hints */
2904        tcp_clear_retrans_hints_partial(tp);
2905        if (next_skb == tp->retransmit_skb_hint)
2906                tp->retransmit_skb_hint = skb;
2907
2908        tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2909
2910        tcp_skb_collapse_tstamp(skb, next_skb);
2911
2912        tcp_rtx_queue_unlink_and_free(next_skb, sk);
2913        return true;
2914}
2915
2916/* Check if coalescing SKBs is legal. */
2917static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2918{
2919        if (tcp_skb_pcount(skb) > 1)
2920                return false;
2921        if (skb_cloned(skb))
2922                return false;
2923        /* Some heuristics for collapsing over SACK'd could be invented */
2924        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2925                return false;
2926
2927        return true;
2928}
2929
2930/* Collapse packets in the retransmit queue to make to create
2931 * less packets on the wire. This is only done on retransmission.
2932 */
2933static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2934                                     int space)
2935{
2936        struct tcp_sock *tp = tcp_sk(sk);
2937        struct sk_buff *skb = to, *tmp;
2938        bool first = true;
2939
2940        if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2941                return;
2942        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2943                return;
2944
2945        skb_rbtree_walk_from_safe(skb, tmp) {
2946                if (!tcp_can_collapse(sk, skb))
2947                        break;
2948
2949                if (!tcp_skb_can_collapse(to, skb))
2950                        break;
2951
2952                space -= skb->len;
2953
2954                if (first) {
2955                        first = false;
2956                        continue;
2957                }
2958
2959                if (space < 0)
2960                        break;
2961
2962                if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2963                        break;
2964
2965                if (!tcp_collapse_retrans(sk, to))
2966                        break;
2967        }
2968}
2969
2970/* This retransmits one SKB.  Policy decisions and retransmit queue
2971 * state updates are done by the caller.  Returns non-zero if an
2972 * error occurred which prevented the send.
2973 */
2974int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2975{
2976        struct inet_connection_sock *icsk = inet_csk(sk);
2977        struct tcp_sock *tp = tcp_sk(sk);
2978        unsigned int cur_mss;
2979        int diff, len, err;
2980
2981
2982        /* Inconclusive MTU probe */
2983        if (icsk->icsk_mtup.probe_size)
2984                icsk->icsk_mtup.probe_size = 0;
2985
2986        /* Do not sent more than we queued. 1/4 is reserved for possible
2987         * copying overhead: fragmentation, tunneling, mangling etc.
2988         */
2989        if (refcount_read(&sk->sk_wmem_alloc) >
2990            min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2991                  sk->sk_sndbuf))
2992                return -EAGAIN;
2993
2994        if (skb_still_in_host_queue(sk, skb))
2995                return -EBUSY;
2996
2997        if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2998                if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2999                        WARN_ON_ONCE(1);
3000                        return -EINVAL;
3001                }
3002                if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3003                        return -ENOMEM;
3004        }
3005
3006        if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3007                return -EHOSTUNREACH; /* Routing failure or similar. */
3008
3009        cur_mss = tcp_current_mss(sk);
3010
3011        /* If receiver has shrunk his window, and skb is out of
3012         * new window, do not retransmit it. The exception is the
3013         * case, when window is shrunk to zero. In this case
3014         * our retransmit serves as a zero window probe.
3015         */
3016        if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3017            TCP_SKB_CB(skb)->seq != tp->snd_una)
3018                return -EAGAIN;
3019
3020        len = cur_mss * segs;
3021        if (skb->len > len) {
3022                if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3023                                 cur_mss, GFP_ATOMIC))
3024                        return -ENOMEM; /* We'll try again later. */
3025        } else {
3026                if (skb_unclone(skb, GFP_ATOMIC))
3027                        return -ENOMEM;
3028
3029                diff = tcp_skb_pcount(skb);
3030                tcp_set_skb_tso_segs(skb, cur_mss);
3031                diff -= tcp_skb_pcount(skb);
3032                if (diff)
3033                        tcp_adjust_pcount(sk, skb, diff);
3034                if (skb->len < cur_mss)
3035                        tcp_retrans_try_collapse(sk, skb, cur_mss);
3036        }
3037
3038        /* RFC3168, section 6.1.1.1. ECN fallback */
3039        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3040                tcp_ecn_clear_syn(sk, skb);
3041
3042        /* Update global and local TCP statistics. */
3043        segs = tcp_skb_pcount(skb);
3044        TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3045        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3046                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3047        tp->total_retrans += segs;
3048        tp->bytes_retrans += skb->len;
3049
3050        /* make sure skb->data is aligned on arches that require it
3051         * and check if ack-trimming & collapsing extended the headroom
3052         * beyond what csum_start can cover.
3053         */
3054        if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3055                     skb_headroom(skb) >= 0xFFFF)) {
3056                struct sk_buff *nskb;
3057
3058                tcp_skb_tsorted_save(skb) {
3059                        nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3060                        if (nskb) {
3061                                nskb->dev = NULL;
3062                                err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3063                        } else {
3064                                err = -ENOBUFS;
3065                        }
3066                } tcp_skb_tsorted_restore(skb);
3067
3068                if (!err) {
3069                        tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3070                        tcp_rate_skb_sent(sk, skb);
3071                }
3072        } else {
3073                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3074        }
3075
3076        /* To avoid taking spuriously low RTT samples based on a timestamp
3077         * for a transmit that never happened, always mark EVER_RETRANS
3078         */
3079        TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3080
3081        if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3082                tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3083                                  TCP_SKB_CB(skb)->seq, segs, err);
3084
3085        if (likely(!err)) {
3086                trace_tcp_retransmit_skb(sk, skb);
3087        } else if (err != -EBUSY) {
3088                NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3089        }
3090        return err;
3091}
3092
3093int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3094{
3095        struct tcp_sock *tp = tcp_sk(sk);
3096        int err = __tcp_retransmit_skb(sk, skb, segs);
3097
3098        if (err == 0) {
3099#if FASTRETRANS_DEBUG > 0
3100                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3101                        net_dbg_ratelimited("retrans_out leaked\n");
3102                }
3103#endif
3104                TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3105                tp->retrans_out += tcp_skb_pcount(skb);
3106        }
3107
3108        /* Save stamp of the first (attempted) retransmit. */
3109        if (!tp->retrans_stamp)
3110                tp->retrans_stamp = tcp_skb_timestamp(skb);
3111
3112        if (tp->undo_retrans < 0)
3113                tp->undo_retrans = 0;
3114        tp->undo_retrans += tcp_skb_pcount(skb);
3115        return err;
3116}
3117
3118/* This gets called after a retransmit timeout, and the initially
3119 * retransmitted data is acknowledged.  It tries to continue
3120 * resending the rest of the retransmit queue, until either
3121 * we've sent it all or the congestion window limit is reached.
3122 */
3123void tcp_xmit_retransmit_queue(struct sock *sk)
3124{
3125        const struct inet_connection_sock *icsk = inet_csk(sk);
3126        struct sk_buff *skb, *rtx_head, *hole = NULL;
3127        struct tcp_sock *tp = tcp_sk(sk);
3128        bool rearm_timer = false;
3129        u32 max_segs;
3130        int mib_idx;
3131
3132        if (!tp->packets_out)
3133                return;
3134
3135        rtx_head = tcp_rtx_queue_head(sk);
3136        skb = tp->retransmit_skb_hint ?: rtx_head;
3137        max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3138        skb_rbtree_walk_from(skb) {
3139                __u8 sacked;
3140                int segs;
3141
3142                if (tcp_pacing_check(sk))
3143                        break;
3144
3145                /* we could do better than to assign each time */
3146                if (!hole)
3147                        tp->retransmit_skb_hint = skb;
3148
3149                segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3150                if (segs <= 0)
3151                        break;
3152                sacked = TCP_SKB_CB(skb)->sacked;
3153                /* In case tcp_shift_skb_data() have aggregated large skbs,
3154                 * we need to make sure not sending too bigs TSO packets
3155                 */
3156                segs = min_t(int, segs, max_segs);
3157
3158                if (tp->retrans_out >= tp->lost_out) {
3159                        break;
3160                } else if (!(sacked & TCPCB_LOST)) {
3161                        if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3162                                hole = skb;
3163                        continue;
3164
3165                } else {
3166                        if (icsk->icsk_ca_state != TCP_CA_Loss)
3167                                mib_idx = LINUX_MIB_TCPFASTRETRANS;
3168                        else
3169                                mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3170                }
3171
3172                if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3173                        continue;
3174
3175                if (tcp_small_queue_check(sk, skb, 1))
3176                        break;
3177
3178                if (tcp_retransmit_skb(sk, skb, segs))
3179                        break;
3180
3181                NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3182
3183                if (tcp_in_cwnd_reduction(sk))
3184                        tp->prr_out += tcp_skb_pcount(skb);
3185
3186                if (skb == rtx_head &&
3187                    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3188                        rearm_timer = true;
3189
3190        }
3191        if (rearm_timer)
3192                tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3193                                     inet_csk(sk)->icsk_rto,
3194                                     TCP_RTO_MAX);
3195}
3196
3197/* We allow to exceed memory limits for FIN packets to expedite
3198 * connection tear down and (memory) recovery.
3199 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3200 * or even be forced to close flow without any FIN.
3201 * In general, we want to allow one skb per socket to avoid hangs
3202 * with edge trigger epoll()
3203 */
3204void sk_forced_mem_schedule(struct sock *sk, int size)
3205{
3206        int amt;
3207
3208        if (size <= sk->sk_forward_alloc)
3209                return;
3210        amt = sk_mem_pages(size);
3211        sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3212        sk_memory_allocated_add(sk, amt);
3213
3214        if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3215                mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3216}
3217
3218/* Send a FIN. The caller locks the socket for us.
3219 * We should try to send a FIN packet really hard, but eventually give up.
3220 */
3221void tcp_send_fin(struct sock *sk)
3222{
3223        struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3224        struct tcp_sock *tp = tcp_sk(sk);
3225
3226        /* Optimization, tack on the FIN if we have one skb in write queue and
3227         * this skb was not yet sent, or we are under memory pressure.
3228         * Note: in the latter case, FIN packet will be sent after a timeout,
3229         * as TCP stack thinks it has already been transmitted.
3230         */
3231        tskb = tail;
3232        if (!tskb && tcp_under_memory_pressure(sk))
3233                tskb = skb_rb_last(&sk->tcp_rtx_queue);
3234
3235        if (tskb) {
3236                TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3237                TCP_SKB_CB(tskb)->end_seq++;
3238                tp->write_seq++;
3239                if (!tail) {
3240                        /* This means tskb was already sent.
3241                         * Pretend we included the FIN on previous transmit.
3242                         * We need to set tp->snd_nxt to the value it would have
3243                         * if FIN had been sent. This is because retransmit path
3244                         * does not change tp->snd_nxt.
3245                         */
3246                        WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3247                        return;
3248                }
3249        } else {
3250                skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3251                if (unlikely(!skb))
3252                        return;
3253
3254                INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3255                skb_reserve(skb, MAX_TCP_HEADER);
3256                sk_forced_mem_schedule(sk, skb->truesize);
3257                /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3258                tcp_init_nondata_skb(skb, tp->write_seq,
3259                                     TCPHDR_ACK | TCPHDR_FIN);
3260                tcp_queue_skb(sk, skb);
3261        }
3262        __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3263}
3264
3265/* We get here when a process closes a file descriptor (either due to
3266 * an explicit close() or as a byproduct of exit()'ing) and there
3267 * was unread data in the receive queue.  This behavior is recommended
3268 * by RFC 2525, section 2.17.  -DaveM
3269 */
3270void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3271{
3272        struct sk_buff *skb;
3273
3274        TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3275
3276        /* NOTE: No TCP options attached and we never retransmit this. */
3277        skb = alloc_skb(MAX_TCP_HEADER, priority);
3278        if (!skb) {
3279                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3280                return;
3281        }
3282
3283        /* Reserve space for headers and prepare control bits. */
3284        skb_reserve(skb, MAX_TCP_HEADER);
3285        tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3286                             TCPHDR_ACK | TCPHDR_RST);
3287        tcp_mstamp_refresh(tcp_sk(sk));
3288        /* Send it off. */
3289        if (tcp_transmit_skb(sk, skb, 0, priority))
3290                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3291
3292        /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3293         * skb here is different to the troublesome skb, so use NULL
3294         */
3295        trace_tcp_send_reset(sk, NULL);
3296}
3297
3298/* Send a crossed SYN-ACK during socket establishment.
3299 * WARNING: This routine must only be called when we have already sent
3300 * a SYN packet that crossed the incoming SYN that caused this routine
3301 * to get called. If this assumption fails then the initial rcv_wnd
3302 * and rcv_wscale values will not be correct.
3303 */
3304int tcp_send_synack(struct sock *sk)
3305{
3306        struct sk_buff *skb;
3307
3308        skb = tcp_rtx_queue_head(sk);
3309        if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3310                pr_err("%s: wrong queue state\n", __func__);
3311                return -EFAULT;
3312        }
3313        if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3314                if (skb_cloned(skb)) {
3315                        struct sk_buff *nskb;
3316
3317                        tcp_skb_tsorted_save(skb) {
3318                                nskb = skb_copy(skb, GFP_ATOMIC);
3319                        } tcp_skb_tsorted_restore(skb);
3320                        if (!nskb)
3321                                return -ENOMEM;
3322                        INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3323                        tcp_highest_sack_replace(sk, skb, nskb);
3324                        tcp_rtx_queue_unlink_and_free(skb, sk);
3325                        __skb_header_release(nskb);
3326                        tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3327                        sk_wmem_queued_add(sk, nskb->truesize);
3328                        sk_mem_charge(sk, nskb->truesize);
3329                        skb = nskb;
3330                }
3331
3332                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3333                tcp_ecn_send_synack(sk, skb);
3334        }
3335        return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3336}
3337
3338/**
3339 * tcp_make_synack - Prepare a SYN-ACK.
3340 * sk: listener socket
3341 * dst: dst entry attached to the SYNACK
3342 * req: request_sock pointer
3343 * foc: cookie for tcp fast open
3344 * synack_type: Type of synback to prepare
3345 *
3346 * Allocate one skb and build a SYNACK packet.
3347 * @dst is consumed : Caller should not use it again.
3348 */
3349struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3350                                struct request_sock *req,
3351                                struct tcp_fastopen_cookie *foc,
3352                                enum tcp_synack_type synack_type)
3353{
3354        struct inet_request_sock *ireq = inet_rsk(req);
3355        const struct tcp_sock *tp = tcp_sk(sk);
3356        struct tcp_md5sig_key *md5 = NULL;
3357        struct tcp_out_options opts;
3358        struct sk_buff *skb;
3359        int tcp_header_size;
3360        struct tcphdr *th;
3361        int mss;
3362        u64 now;
3363
3364        skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3365        if (unlikely(!skb)) {
3366                dst_release(dst);
3367                return NULL;
3368        }
3369        /* Reserve space for headers. */
3370        skb_reserve(skb, MAX_TCP_HEADER);
3371
3372        switch (synack_type) {
3373        case TCP_SYNACK_NORMAL:
3374                skb_set_owner_w(skb, req_to_sk(req));
3375                break;
3376        case TCP_SYNACK_COOKIE:
3377                /* Under synflood, we do not attach skb to a socket,
3378                 * to avoid false sharing.
3379                 */
3380                break;
3381        case TCP_SYNACK_FASTOPEN:
3382                /* sk is a const pointer, because we want to express multiple
3383                 * cpu might call us concurrently.
3384                 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3385                 */
3386                skb_set_owner_w(skb, (struct sock *)sk);
3387                break;
3388        }
3389        skb_dst_set(skb, dst);
3390
3391        mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3392
3393        memset(&opts, 0, sizeof(opts));
3394        now = tcp_clock_ns();
3395#ifdef CONFIG_SYN_COOKIES
3396        if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3397                skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3398        else
3399#endif
3400        {
3401                skb->skb_mstamp_ns = now;
3402                if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3403                        tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3404        }
3405
3406#ifdef CONFIG_TCP_MD5SIG
3407        rcu_read_lock();
3408        md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3409#endif
3410        skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3411        tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3412                                             foc, synack_type) + sizeof(*th);
3413
3414        skb_push(skb, tcp_header_size);
3415        skb_reset_transport_header(skb);
3416
3417        th = (struct tcphdr *)skb->data;
3418        memset(th, 0, sizeof(struct tcphdr));
3419        th->syn = 1;
3420        th->ack = 1;
3421        tcp_ecn_make_synack(req, th);
3422        th->source = htons(ireq->ir_num);
3423        th->dest = ireq->ir_rmt_port;
3424        skb->mark = ireq->ir_mark;
3425        skb->ip_summed = CHECKSUM_PARTIAL;
3426        th->seq = htonl(tcp_rsk(req)->snt_isn);
3427        /* XXX data is queued and acked as is. No buffer/window check */
3428        th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3429
3430        /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3431        th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3432        tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3433        th->doff = (tcp_header_size >> 2);
3434        __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3435
3436#ifdef CONFIG_TCP_MD5SIG
3437        /* Okay, we have all we need - do the md5 hash if needed */
3438        if (md5)
3439                tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3440                                               md5, req_to_sk(req), skb);
3441        rcu_read_unlock();
3442#endif
3443
3444        skb->skb_mstamp_ns = now;
3445        tcp_add_tx_delay(skb, tp);
3446
3447        return skb;
3448}
3449EXPORT_SYMBOL(tcp_make_synack);
3450
3451static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3452{
3453        struct inet_connection_sock *icsk = inet_csk(sk);
3454        const struct tcp_congestion_ops *ca;
3455        u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3456
3457        if (ca_key == TCP_CA_UNSPEC)
3458                return;
3459
3460        rcu_read_lock();
3461        ca = tcp_ca_find_key(ca_key);
3462        if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3463                bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3464                icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3465                icsk->icsk_ca_ops = ca;
3466        }
3467        rcu_read_unlock();
3468}
3469
3470/* Do all connect socket setups that can be done AF independent. */
3471static void tcp_connect_init(struct sock *sk)
3472{
3473        const struct dst_entry *dst = __sk_dst_get(sk);
3474        struct tcp_sock *tp = tcp_sk(sk);
3475        __u8 rcv_wscale;
3476        u32 rcv_wnd;
3477
3478        /* We'll fix this up when we get a response from the other end.
3479         * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3480         */
3481        tp->tcp_header_len = sizeof(struct tcphdr);
3482        if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3483                tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3484
3485#ifdef CONFIG_TCP_MD5SIG
3486        if (tp->af_specific->md5_lookup(sk, sk))
3487                tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3488#endif
3489
3490        /* If user gave his TCP_MAXSEG, record it to clamp */
3491        if (tp->rx_opt.user_mss)
3492                tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3493        tp->max_window = 0;
3494        tcp_mtup_init(sk);
3495        tcp_sync_mss(sk, dst_mtu(dst));
3496
3497        tcp_ca_dst_init(sk, dst);
3498
3499        if (!tp->window_clamp)
3500                tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3501        tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3502
3503        tcp_initialize_rcv_mss(sk);
3504
3505        /* limit the window selection if the user enforce a smaller rx buffer */
3506        if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3507            (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3508                tp->window_clamp = tcp_full_space(sk);
3509
3510        rcv_wnd = tcp_rwnd_init_bpf(sk);
3511        if (rcv_wnd == 0)
3512                rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3513
3514        tcp_select_initial_window(sk, tcp_full_space(sk),
3515                                  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3516                                  &tp->rcv_wnd,
3517                                  &tp->window_clamp,
3518                                  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3519                                  &rcv_wscale,
3520                                  rcv_wnd);
3521
3522        tp->rx_opt.rcv_wscale = rcv_wscale;
3523        tp->rcv_ssthresh = tp->rcv_wnd;
3524
3525        sk->sk_err = 0;
3526        sock_reset_flag(sk, SOCK_DONE);
3527        tp->snd_wnd = 0;
3528        tcp_init_wl(tp, 0);
3529        tcp_write_queue_purge(sk);
3530        tp->snd_una = tp->write_seq;
3531        tp->snd_sml = tp->write_seq;
3532        tp->snd_up = tp->write_seq;
3533        WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3534
3535        if (likely(!tp->repair))
3536                tp->rcv_nxt = 0;
3537        else
3538                tp->rcv_tstamp = tcp_jiffies32;
3539        tp->rcv_wup = tp->rcv_nxt;
3540        WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3541
3542        inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3543        inet_csk(sk)->icsk_retransmits = 0;
3544        tcp_clear_retrans(tp);
3545}
3546
3547static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3548{
3549        struct tcp_sock *tp = tcp_sk(sk);
3550        struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3551
3552        tcb->end_seq += skb->len;
3553        __skb_header_release(skb);
3554        sk_wmem_queued_add(sk, skb->truesize);
3555        sk_mem_charge(sk, skb->truesize);
3556        WRITE_ONCE(tp->write_seq, tcb->end_seq);
3557        tp->packets_out += tcp_skb_pcount(skb);
3558}
3559
3560/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3561 * queue a data-only packet after the regular SYN, such that regular SYNs
3562 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3563 * only the SYN sequence, the data are retransmitted in the first ACK.
3564 * If cookie is not cached or other error occurs, falls back to send a
3565 * regular SYN with Fast Open cookie request option.
3566 */
3567static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3568{
3569        struct tcp_sock *tp = tcp_sk(sk);
3570        struct tcp_fastopen_request *fo = tp->fastopen_req;
3571        int space, err = 0;
3572        struct sk_buff *syn_data;
3573
3574        tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3575        if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3576                goto fallback;
3577
3578        /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3579         * user-MSS. Reserve maximum option space for middleboxes that add
3580         * private TCP options. The cost is reduced data space in SYN :(
3581         */
3582        tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3583
3584        space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3585                MAX_TCP_OPTION_SPACE;
3586
3587        space = min_t(size_t, space, fo->size);
3588
3589        /* limit to order-0 allocations */
3590        space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3591
3592        syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3593        if (!syn_data)
3594                goto fallback;
3595        syn_data->ip_summed = CHECKSUM_PARTIAL;
3596        memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3597        if (space) {
3598                int copied = copy_from_iter(skb_put(syn_data, space), space,
3599                                            &fo->data->msg_iter);
3600                if (unlikely(!copied)) {
3601                        tcp_skb_tsorted_anchor_cleanup(syn_data);
3602                        kfree_skb(syn_data);
3603                        goto fallback;
3604                }
3605                if (copied != space) {
3606                        skb_trim(syn_data, copied);
3607                        space = copied;
3608                }
3609                skb_zcopy_set(syn_data, fo->uarg, NULL);
3610        }
3611        /* No more data pending in inet_wait_for_connect() */
3612        if (space == fo->size)
3613                fo->data = NULL;
3614        fo->copied = space;
3615
3616        tcp_connect_queue_skb(sk, syn_data);
3617        if (syn_data->len)
3618                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3619
3620        err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3621
3622        syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3623
3624        /* Now full SYN+DATA was cloned and sent (or not),
3625         * remove the SYN from the original skb (syn_data)
3626         * we keep in write queue in case of a retransmit, as we
3627         * also have the SYN packet (with no data) in the same queue.
3628         */
3629        TCP_SKB_CB(syn_data)->seq++;
3630        TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3631        if (!err) {
3632                tp->syn_data = (fo->copied > 0);
3633                tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3634                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3635                goto done;
3636        }
3637
3638        /* data was not sent, put it in write_queue */
3639        __skb_queue_tail(&sk->sk_write_queue, syn_data);
3640        tp->packets_out -= tcp_skb_pcount(syn_data);
3641
3642fallback:
3643        /* Send a regular SYN with Fast Open cookie request option */
3644        if (fo->cookie.len > 0)
3645                fo->cookie.len = 0;
3646        err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3647        if (err)
3648                tp->syn_fastopen = 0;
3649done:
3650        fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3651        return err;
3652}
3653
3654/* Build a SYN and send it off. */
3655int tcp_connect(struct sock *sk)
3656{
3657        struct tcp_sock *tp = tcp_sk(sk);
3658        struct sk_buff *buff;
3659        int err;
3660
3661        tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3662
3663        if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3664                return -EHOSTUNREACH; /* Routing failure or similar. */
3665
3666        tcp_connect_init(sk);
3667
3668        if (unlikely(tp->repair)) {
3669                tcp_finish_connect(sk, NULL);
3670                return 0;
3671        }
3672
3673        buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3674        if (unlikely(!buff))
3675                return -ENOBUFS;
3676
3677        tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3678        tcp_mstamp_refresh(tp);
3679        tp->retrans_stamp = tcp_time_stamp(tp);
3680        tcp_connect_queue_skb(sk, buff);
3681        tcp_ecn_send_syn(sk, buff);
3682        tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3683
3684        /* Send off SYN; include data in Fast Open. */
3685        err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3686              tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3687        if (err == -ECONNREFUSED)
3688                return err;
3689
3690        /* We change tp->snd_nxt after the tcp_transmit_skb() call
3691         * in order to make this packet get counted in tcpOutSegs.
3692         */
3693        WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3694        tp->pushed_seq = tp->write_seq;
3695        buff = tcp_send_head(sk);
3696        if (unlikely(buff)) {
3697                WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3698                tp->pushed_seq  = TCP_SKB_CB(buff)->seq;
3699        }
3700        TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3701
3702        /* Timer for repeating the SYN until an answer. */
3703        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3704                                  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3705        return 0;
3706}
3707EXPORT_SYMBOL(tcp_connect);
3708
3709/* Send out a delayed ack, the caller does the policy checking
3710 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3711 * for details.
3712 */
3713void tcp_send_delayed_ack(struct sock *sk)
3714{
3715        struct inet_connection_sock *icsk = inet_csk(sk);
3716        int ato = icsk->icsk_ack.ato;
3717        unsigned long timeout;
3718
3719        if (ato > TCP_DELACK_MIN) {
3720                const struct tcp_sock *tp = tcp_sk(sk);
3721                int max_ato = HZ / 2;
3722
3723                if (inet_csk_in_pingpong_mode(sk) ||
3724                    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3725                        max_ato = TCP_DELACK_MAX;
3726
3727                /* Slow path, intersegment interval is "high". */
3728
3729                /* If some rtt estimate is known, use it to bound delayed ack.
3730                 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3731                 * directly.
3732                 */
3733                if (tp->srtt_us) {
3734                        int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3735                                        TCP_DELACK_MIN);
3736
3737                        if (rtt < max_ato)
3738                                max_ato = rtt;
3739                }
3740
3741                ato = min(ato, max_ato);
3742        }
3743
3744        /* Stay within the limit we were given */
3745        timeout = jiffies + ato;
3746
3747        /* Use new timeout only if there wasn't a older one earlier. */
3748        if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3749                /* If delack timer was blocked or is about to expire,
3750                 * send ACK now.
3751                 */
3752                if (icsk->icsk_ack.blocked ||
3753                    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3754                        tcp_send_ack(sk);
3755                        return;
3756                }
3757
3758                if (!time_before(timeout, icsk->icsk_ack.timeout))
3759                        timeout = icsk->icsk_ack.timeout;
3760        }
3761        icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3762        icsk->icsk_ack.timeout = timeout;
3763        sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3764}
3765
3766/* This routine sends an ack and also updates the window. */
3767void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3768{
3769        struct sk_buff *buff;
3770
3771        /* If we have been reset, we may not send again. */
3772        if (sk->sk_state == TCP_CLOSE)
3773                return;
3774
3775        /* We are not putting this on the write queue, so
3776         * tcp_transmit_skb() will set the ownership to this
3777         * sock.
3778         */
3779        buff = alloc_skb(MAX_TCP_HEADER,
3780                         sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3781        if (unlikely(!buff)) {
3782                inet_csk_schedule_ack(sk);
3783                inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3784                inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3785                                          TCP_DELACK_MAX, TCP_RTO_MAX);
3786                return;
3787        }
3788
3789        /* Reserve space for headers and prepare control bits. */
3790        skb_reserve(buff, MAX_TCP_HEADER);
3791        tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3792
3793        /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3794         * too much.
3795         * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3796         */
3797        skb_set_tcp_pure_ack(buff);
3798
3799        /* Send it off, this clears delayed acks for us. */
3800        __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3801}
3802EXPORT_SYMBOL_GPL(__tcp_send_ack);
3803
3804void tcp_send_ack(struct sock *sk)
3805{
3806        __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3807}
3808
3809/* This routine sends a packet with an out of date sequence
3810 * number. It assumes the other end will try to ack it.
3811 *
3812 * Question: what should we make while urgent mode?
3813 * 4.4BSD forces sending single byte of data. We cannot send
3814 * out of window data, because we have SND.NXT==SND.MAX...
3815 *
3816 * Current solution: to send TWO zero-length segments in urgent mode:
3817 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3818 * out-of-date with SND.UNA-1 to probe window.
3819 */
3820static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3821{
3822        struct tcp_sock *tp = tcp_sk(sk);
3823        struct sk_buff *skb;
3824
3825        /* We don't queue it, tcp_transmit_skb() sets ownership. */
3826        skb = alloc_skb(MAX_TCP_HEADER,
3827                        sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3828        if (!skb)
3829                return -1;
3830
3831        /* Reserve space for headers and set control bits. */
3832        skb_reserve(skb, MAX_TCP_HEADER);
3833        /* Use a previous sequence.  This should cause the other
3834         * end to send an ack.  Don't queue or clone SKB, just
3835         * send it.
3836         */
3837        tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3838        NET_INC_STATS(sock_net(sk), mib);
3839        return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3840}
3841
3842/* Called from setsockopt( ... TCP_REPAIR ) */
3843void tcp_send_window_probe(struct sock *sk)
3844{
3845        if (sk->sk_state == TCP_ESTABLISHED) {
3846                tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3847                tcp_mstamp_refresh(tcp_sk(sk));
3848                tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3849        }
3850}
3851
3852/* Initiate keepalive or window probe from timer. */
3853int tcp_write_wakeup(struct sock *sk, int mib)
3854{
3855        struct tcp_sock *tp = tcp_sk(sk);
3856        struct sk_buff *skb;
3857
3858        if (sk->sk_state == TCP_CLOSE)
3859                return -1;
3860
3861        skb = tcp_send_head(sk);
3862        if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3863                int err;
3864                unsigned int mss = tcp_current_mss(sk);
3865                unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3866
3867                if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3868                        tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3869
3870                /* We are probing the opening of a window
3871                 * but the window size is != 0
3872                 * must have been a result SWS avoidance ( sender )
3873                 */
3874                if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3875                    skb->len > mss) {
3876                        seg_size = min(seg_size, mss);
3877                        TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3878                        if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3879                                         skb, seg_size, mss, GFP_ATOMIC))
3880                                return -1;
3881                } else if (!tcp_skb_pcount(skb))
3882                        tcp_set_skb_tso_segs(skb, mss);
3883
3884                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3885                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3886                if (!err)
3887                        tcp_event_new_data_sent(sk, skb);
3888                return err;
3889        } else {
3890                if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3891                        tcp_xmit_probe_skb(sk, 1, mib);
3892                return tcp_xmit_probe_skb(sk, 0, mib);
3893        }
3894}
3895
3896/* A window probe timeout has occurred.  If window is not closed send
3897 * a partial packet else a zero probe.
3898 */
3899void tcp_send_probe0(struct sock *sk)
3900{
3901        struct inet_connection_sock *icsk = inet_csk(sk);
3902        struct tcp_sock *tp = tcp_sk(sk);
3903        struct net *net = sock_net(sk);
3904        unsigned long timeout;
3905        int err;
3906
3907        err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3908
3909        if (tp->packets_out || tcp_write_queue_empty(sk)) {
3910                /* Cancel probe timer, if it is not required. */
3911                icsk->icsk_probes_out = 0;
3912                icsk->icsk_backoff = 0;
3913                return;
3914        }
3915
3916        icsk->icsk_probes_out++;
3917        if (err <= 0) {
3918                if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3919                        icsk->icsk_backoff++;
3920                timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3921        } else {
3922                /* If packet was not sent due to local congestion,
3923                 * Let senders fight for local resources conservatively.
3924                 */
3925                timeout = TCP_RESOURCE_PROBE_INTERVAL;
3926        }
3927        tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
3928}
3929
3930int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3931{
3932        const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3933        struct flowi fl;
3934        int res;
3935
3936        tcp_rsk(req)->txhash = net_tx_rndhash();
3937        res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3938        if (!res) {
3939                __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3940                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3941                if (unlikely(tcp_passive_fastopen(sk)))
3942                        tcp_sk(sk)->total_retrans++;
3943                trace_tcp_retransmit_synack(sk, req);
3944        }
3945        return res;
3946}
3947EXPORT_SYMBOL(tcp_rtx_synack);
3948