linux/net/tls/tls_sw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
   5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
   6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
   7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
   8 *
   9 * This software is available to you under a choice of one of two
  10 * licenses.  You may choose to be licensed under the terms of the GNU
  11 * General Public License (GPL) Version 2, available from the file
  12 * COPYING in the main directory of this source tree, or the
  13 * OpenIB.org BSD license below:
  14 *
  15 *     Redistribution and use in source and binary forms, with or
  16 *     without modification, are permitted provided that the following
  17 *     conditions are met:
  18 *
  19 *      - Redistributions of source code must retain the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer.
  22 *
  23 *      - Redistributions in binary form must reproduce the above
  24 *        copyright notice, this list of conditions and the following
  25 *        disclaimer in the documentation and/or other materials
  26 *        provided with the distribution.
  27 *
  28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  35 * SOFTWARE.
  36 */
  37
  38#include <linux/sched/signal.h>
  39#include <linux/module.h>
  40#include <crypto/aead.h>
  41
  42#include <net/strparser.h>
  43#include <net/tls.h>
  44
  45static int __skb_nsg(struct sk_buff *skb, int offset, int len,
  46                     unsigned int recursion_level)
  47{
  48        int start = skb_headlen(skb);
  49        int i, chunk = start - offset;
  50        struct sk_buff *frag_iter;
  51        int elt = 0;
  52
  53        if (unlikely(recursion_level >= 24))
  54                return -EMSGSIZE;
  55
  56        if (chunk > 0) {
  57                if (chunk > len)
  58                        chunk = len;
  59                elt++;
  60                len -= chunk;
  61                if (len == 0)
  62                        return elt;
  63                offset += chunk;
  64        }
  65
  66        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  67                int end;
  68
  69                WARN_ON(start > offset + len);
  70
  71                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
  72                chunk = end - offset;
  73                if (chunk > 0) {
  74                        if (chunk > len)
  75                                chunk = len;
  76                        elt++;
  77                        len -= chunk;
  78                        if (len == 0)
  79                                return elt;
  80                        offset += chunk;
  81                }
  82                start = end;
  83        }
  84
  85        if (unlikely(skb_has_frag_list(skb))) {
  86                skb_walk_frags(skb, frag_iter) {
  87                        int end, ret;
  88
  89                        WARN_ON(start > offset + len);
  90
  91                        end = start + frag_iter->len;
  92                        chunk = end - offset;
  93                        if (chunk > 0) {
  94                                if (chunk > len)
  95                                        chunk = len;
  96                                ret = __skb_nsg(frag_iter, offset - start, chunk,
  97                                                recursion_level + 1);
  98                                if (unlikely(ret < 0))
  99                                        return ret;
 100                                elt += ret;
 101                                len -= chunk;
 102                                if (len == 0)
 103                                        return elt;
 104                                offset += chunk;
 105                        }
 106                        start = end;
 107                }
 108        }
 109        BUG_ON(len);
 110        return elt;
 111}
 112
 113/* Return the number of scatterlist elements required to completely map the
 114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
 115 */
 116static int skb_nsg(struct sk_buff *skb, int offset, int len)
 117{
 118        return __skb_nsg(skb, offset, len, 0);
 119}
 120
 121static int padding_length(struct tls_sw_context_rx *ctx,
 122                          struct tls_prot_info *prot, struct sk_buff *skb)
 123{
 124        struct strp_msg *rxm = strp_msg(skb);
 125        int sub = 0;
 126
 127        /* Determine zero-padding length */
 128        if (prot->version == TLS_1_3_VERSION) {
 129                char content_type = 0;
 130                int err;
 131                int back = 17;
 132
 133                while (content_type == 0) {
 134                        if (back > rxm->full_len - prot->prepend_size)
 135                                return -EBADMSG;
 136                        err = skb_copy_bits(skb,
 137                                            rxm->offset + rxm->full_len - back,
 138                                            &content_type, 1);
 139                        if (err)
 140                                return err;
 141                        if (content_type)
 142                                break;
 143                        sub++;
 144                        back++;
 145                }
 146                ctx->control = content_type;
 147        }
 148        return sub;
 149}
 150
 151static void tls_decrypt_done(struct crypto_async_request *req, int err)
 152{
 153        struct aead_request *aead_req = (struct aead_request *)req;
 154        struct scatterlist *sgout = aead_req->dst;
 155        struct scatterlist *sgin = aead_req->src;
 156        struct tls_sw_context_rx *ctx;
 157        struct tls_context *tls_ctx;
 158        struct tls_prot_info *prot;
 159        struct scatterlist *sg;
 160        struct sk_buff *skb;
 161        unsigned int pages;
 162        int pending;
 163
 164        skb = (struct sk_buff *)req->data;
 165        tls_ctx = tls_get_ctx(skb->sk);
 166        ctx = tls_sw_ctx_rx(tls_ctx);
 167        prot = &tls_ctx->prot_info;
 168
 169        /* Propagate if there was an err */
 170        if (err) {
 171                if (err == -EBADMSG)
 172                        TLS_INC_STATS(sock_net(skb->sk),
 173                                      LINUX_MIB_TLSDECRYPTERROR);
 174                ctx->async_wait.err = err;
 175                tls_err_abort(skb->sk, err);
 176        } else {
 177                struct strp_msg *rxm = strp_msg(skb);
 178                int pad;
 179
 180                pad = padding_length(ctx, prot, skb);
 181                if (pad < 0) {
 182                        ctx->async_wait.err = pad;
 183                        tls_err_abort(skb->sk, pad);
 184                } else {
 185                        rxm->full_len -= pad;
 186                        rxm->offset += prot->prepend_size;
 187                        rxm->full_len -= prot->overhead_size;
 188                }
 189        }
 190
 191        /* After using skb->sk to propagate sk through crypto async callback
 192         * we need to NULL it again.
 193         */
 194        skb->sk = NULL;
 195
 196
 197        /* Free the destination pages if skb was not decrypted inplace */
 198        if (sgout != sgin) {
 199                /* Skip the first S/G entry as it points to AAD */
 200                for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
 201                        if (!sg)
 202                                break;
 203                        put_page(sg_page(sg));
 204                }
 205        }
 206
 207        kfree(aead_req);
 208
 209        spin_lock_bh(&ctx->decrypt_compl_lock);
 210        pending = atomic_dec_return(&ctx->decrypt_pending);
 211
 212        if (!pending && ctx->async_notify)
 213                complete(&ctx->async_wait.completion);
 214        spin_unlock_bh(&ctx->decrypt_compl_lock);
 215}
 216
 217static int tls_do_decryption(struct sock *sk,
 218                             struct sk_buff *skb,
 219                             struct scatterlist *sgin,
 220                             struct scatterlist *sgout,
 221                             char *iv_recv,
 222                             size_t data_len,
 223                             struct aead_request *aead_req,
 224                             bool async)
 225{
 226        struct tls_context *tls_ctx = tls_get_ctx(sk);
 227        struct tls_prot_info *prot = &tls_ctx->prot_info;
 228        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
 229        int ret;
 230
 231        aead_request_set_tfm(aead_req, ctx->aead_recv);
 232        aead_request_set_ad(aead_req, prot->aad_size);
 233        aead_request_set_crypt(aead_req, sgin, sgout,
 234                               data_len + prot->tag_size,
 235                               (u8 *)iv_recv);
 236
 237        if (async) {
 238                /* Using skb->sk to push sk through to crypto async callback
 239                 * handler. This allows propagating errors up to the socket
 240                 * if needed. It _must_ be cleared in the async handler
 241                 * before consume_skb is called. We _know_ skb->sk is NULL
 242                 * because it is a clone from strparser.
 243                 */
 244                skb->sk = sk;
 245                aead_request_set_callback(aead_req,
 246                                          CRYPTO_TFM_REQ_MAY_BACKLOG,
 247                                          tls_decrypt_done, skb);
 248                atomic_inc(&ctx->decrypt_pending);
 249        } else {
 250                aead_request_set_callback(aead_req,
 251                                          CRYPTO_TFM_REQ_MAY_BACKLOG,
 252                                          crypto_req_done, &ctx->async_wait);
 253        }
 254
 255        ret = crypto_aead_decrypt(aead_req);
 256        if (ret == -EINPROGRESS) {
 257                if (async)
 258                        return ret;
 259
 260                ret = crypto_wait_req(ret, &ctx->async_wait);
 261        }
 262
 263        if (async)
 264                atomic_dec(&ctx->decrypt_pending);
 265
 266        return ret;
 267}
 268
 269static void tls_trim_both_msgs(struct sock *sk, int target_size)
 270{
 271        struct tls_context *tls_ctx = tls_get_ctx(sk);
 272        struct tls_prot_info *prot = &tls_ctx->prot_info;
 273        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 274        struct tls_rec *rec = ctx->open_rec;
 275
 276        sk_msg_trim(sk, &rec->msg_plaintext, target_size);
 277        if (target_size > 0)
 278                target_size += prot->overhead_size;
 279        sk_msg_trim(sk, &rec->msg_encrypted, target_size);
 280}
 281
 282static int tls_alloc_encrypted_msg(struct sock *sk, int len)
 283{
 284        struct tls_context *tls_ctx = tls_get_ctx(sk);
 285        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 286        struct tls_rec *rec = ctx->open_rec;
 287        struct sk_msg *msg_en = &rec->msg_encrypted;
 288
 289        return sk_msg_alloc(sk, msg_en, len, 0);
 290}
 291
 292static int tls_clone_plaintext_msg(struct sock *sk, int required)
 293{
 294        struct tls_context *tls_ctx = tls_get_ctx(sk);
 295        struct tls_prot_info *prot = &tls_ctx->prot_info;
 296        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 297        struct tls_rec *rec = ctx->open_rec;
 298        struct sk_msg *msg_pl = &rec->msg_plaintext;
 299        struct sk_msg *msg_en = &rec->msg_encrypted;
 300        int skip, len;
 301
 302        /* We add page references worth len bytes from encrypted sg
 303         * at the end of plaintext sg. It is guaranteed that msg_en
 304         * has enough required room (ensured by caller).
 305         */
 306        len = required - msg_pl->sg.size;
 307
 308        /* Skip initial bytes in msg_en's data to be able to use
 309         * same offset of both plain and encrypted data.
 310         */
 311        skip = prot->prepend_size + msg_pl->sg.size;
 312
 313        return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
 314}
 315
 316static struct tls_rec *tls_get_rec(struct sock *sk)
 317{
 318        struct tls_context *tls_ctx = tls_get_ctx(sk);
 319        struct tls_prot_info *prot = &tls_ctx->prot_info;
 320        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 321        struct sk_msg *msg_pl, *msg_en;
 322        struct tls_rec *rec;
 323        int mem_size;
 324
 325        mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
 326
 327        rec = kzalloc(mem_size, sk->sk_allocation);
 328        if (!rec)
 329                return NULL;
 330
 331        msg_pl = &rec->msg_plaintext;
 332        msg_en = &rec->msg_encrypted;
 333
 334        sk_msg_init(msg_pl);
 335        sk_msg_init(msg_en);
 336
 337        sg_init_table(rec->sg_aead_in, 2);
 338        sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
 339        sg_unmark_end(&rec->sg_aead_in[1]);
 340
 341        sg_init_table(rec->sg_aead_out, 2);
 342        sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
 343        sg_unmark_end(&rec->sg_aead_out[1]);
 344
 345        return rec;
 346}
 347
 348static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
 349{
 350        sk_msg_free(sk, &rec->msg_encrypted);
 351        sk_msg_free(sk, &rec->msg_plaintext);
 352        kfree(rec);
 353}
 354
 355static void tls_free_open_rec(struct sock *sk)
 356{
 357        struct tls_context *tls_ctx = tls_get_ctx(sk);
 358        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 359        struct tls_rec *rec = ctx->open_rec;
 360
 361        if (rec) {
 362                tls_free_rec(sk, rec);
 363                ctx->open_rec = NULL;
 364        }
 365}
 366
 367int tls_tx_records(struct sock *sk, int flags)
 368{
 369        struct tls_context *tls_ctx = tls_get_ctx(sk);
 370        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 371        struct tls_rec *rec, *tmp;
 372        struct sk_msg *msg_en;
 373        int tx_flags, rc = 0;
 374
 375        if (tls_is_partially_sent_record(tls_ctx)) {
 376                rec = list_first_entry(&ctx->tx_list,
 377                                       struct tls_rec, list);
 378
 379                if (flags == -1)
 380                        tx_flags = rec->tx_flags;
 381                else
 382                        tx_flags = flags;
 383
 384                rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
 385                if (rc)
 386                        goto tx_err;
 387
 388                /* Full record has been transmitted.
 389                 * Remove the head of tx_list
 390                 */
 391                list_del(&rec->list);
 392                sk_msg_free(sk, &rec->msg_plaintext);
 393                kfree(rec);
 394        }
 395
 396        /* Tx all ready records */
 397        list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
 398                if (READ_ONCE(rec->tx_ready)) {
 399                        if (flags == -1)
 400                                tx_flags = rec->tx_flags;
 401                        else
 402                                tx_flags = flags;
 403
 404                        msg_en = &rec->msg_encrypted;
 405                        rc = tls_push_sg(sk, tls_ctx,
 406                                         &msg_en->sg.data[msg_en->sg.curr],
 407                                         0, tx_flags);
 408                        if (rc)
 409                                goto tx_err;
 410
 411                        list_del(&rec->list);
 412                        sk_msg_free(sk, &rec->msg_plaintext);
 413                        kfree(rec);
 414                } else {
 415                        break;
 416                }
 417        }
 418
 419tx_err:
 420        if (rc < 0 && rc != -EAGAIN)
 421                tls_err_abort(sk, EBADMSG);
 422
 423        return rc;
 424}
 425
 426static void tls_encrypt_done(struct crypto_async_request *req, int err)
 427{
 428        struct aead_request *aead_req = (struct aead_request *)req;
 429        struct sock *sk = req->data;
 430        struct tls_context *tls_ctx = tls_get_ctx(sk);
 431        struct tls_prot_info *prot = &tls_ctx->prot_info;
 432        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 433        struct scatterlist *sge;
 434        struct sk_msg *msg_en;
 435        struct tls_rec *rec;
 436        bool ready = false;
 437        int pending;
 438
 439        rec = container_of(aead_req, struct tls_rec, aead_req);
 440        msg_en = &rec->msg_encrypted;
 441
 442        sge = sk_msg_elem(msg_en, msg_en->sg.curr);
 443        sge->offset -= prot->prepend_size;
 444        sge->length += prot->prepend_size;
 445
 446        /* Check if error is previously set on socket */
 447        if (err || sk->sk_err) {
 448                rec = NULL;
 449
 450                /* If err is already set on socket, return the same code */
 451                if (sk->sk_err) {
 452                        ctx->async_wait.err = sk->sk_err;
 453                } else {
 454                        ctx->async_wait.err = err;
 455                        tls_err_abort(sk, err);
 456                }
 457        }
 458
 459        if (rec) {
 460                struct tls_rec *first_rec;
 461
 462                /* Mark the record as ready for transmission */
 463                smp_store_mb(rec->tx_ready, true);
 464
 465                /* If received record is at head of tx_list, schedule tx */
 466                first_rec = list_first_entry(&ctx->tx_list,
 467                                             struct tls_rec, list);
 468                if (rec == first_rec)
 469                        ready = true;
 470        }
 471
 472        spin_lock_bh(&ctx->encrypt_compl_lock);
 473        pending = atomic_dec_return(&ctx->encrypt_pending);
 474
 475        if (!pending && ctx->async_notify)
 476                complete(&ctx->async_wait.completion);
 477        spin_unlock_bh(&ctx->encrypt_compl_lock);
 478
 479        if (!ready)
 480                return;
 481
 482        /* Schedule the transmission */
 483        if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
 484                schedule_delayed_work(&ctx->tx_work.work, 1);
 485}
 486
 487static int tls_do_encryption(struct sock *sk,
 488                             struct tls_context *tls_ctx,
 489                             struct tls_sw_context_tx *ctx,
 490                             struct aead_request *aead_req,
 491                             size_t data_len, u32 start)
 492{
 493        struct tls_prot_info *prot = &tls_ctx->prot_info;
 494        struct tls_rec *rec = ctx->open_rec;
 495        struct sk_msg *msg_en = &rec->msg_encrypted;
 496        struct scatterlist *sge = sk_msg_elem(msg_en, start);
 497        int rc, iv_offset = 0;
 498
 499        /* For CCM based ciphers, first byte of IV is a constant */
 500        if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
 501                rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
 502                iv_offset = 1;
 503        }
 504
 505        memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
 506               prot->iv_size + prot->salt_size);
 507
 508        xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
 509
 510        sge->offset += prot->prepend_size;
 511        sge->length -= prot->prepend_size;
 512
 513        msg_en->sg.curr = start;
 514
 515        aead_request_set_tfm(aead_req, ctx->aead_send);
 516        aead_request_set_ad(aead_req, prot->aad_size);
 517        aead_request_set_crypt(aead_req, rec->sg_aead_in,
 518                               rec->sg_aead_out,
 519                               data_len, rec->iv_data);
 520
 521        aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 522                                  tls_encrypt_done, sk);
 523
 524        /* Add the record in tx_list */
 525        list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
 526        atomic_inc(&ctx->encrypt_pending);
 527
 528        rc = crypto_aead_encrypt(aead_req);
 529        if (!rc || rc != -EINPROGRESS) {
 530                atomic_dec(&ctx->encrypt_pending);
 531                sge->offset -= prot->prepend_size;
 532                sge->length += prot->prepend_size;
 533        }
 534
 535        if (!rc) {
 536                WRITE_ONCE(rec->tx_ready, true);
 537        } else if (rc != -EINPROGRESS) {
 538                list_del(&rec->list);
 539                return rc;
 540        }
 541
 542        /* Unhook the record from context if encryption is not failure */
 543        ctx->open_rec = NULL;
 544        tls_advance_record_sn(sk, prot, &tls_ctx->tx);
 545        return rc;
 546}
 547
 548static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
 549                                 struct tls_rec **to, struct sk_msg *msg_opl,
 550                                 struct sk_msg *msg_oen, u32 split_point,
 551                                 u32 tx_overhead_size, u32 *orig_end)
 552{
 553        u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
 554        struct scatterlist *sge, *osge, *nsge;
 555        u32 orig_size = msg_opl->sg.size;
 556        struct scatterlist tmp = { };
 557        struct sk_msg *msg_npl;
 558        struct tls_rec *new;
 559        int ret;
 560
 561        new = tls_get_rec(sk);
 562        if (!new)
 563                return -ENOMEM;
 564        ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
 565                           tx_overhead_size, 0);
 566        if (ret < 0) {
 567                tls_free_rec(sk, new);
 568                return ret;
 569        }
 570
 571        *orig_end = msg_opl->sg.end;
 572        i = msg_opl->sg.start;
 573        sge = sk_msg_elem(msg_opl, i);
 574        while (apply && sge->length) {
 575                if (sge->length > apply) {
 576                        u32 len = sge->length - apply;
 577
 578                        get_page(sg_page(sge));
 579                        sg_set_page(&tmp, sg_page(sge), len,
 580                                    sge->offset + apply);
 581                        sge->length = apply;
 582                        bytes += apply;
 583                        apply = 0;
 584                } else {
 585                        apply -= sge->length;
 586                        bytes += sge->length;
 587                }
 588
 589                sk_msg_iter_var_next(i);
 590                if (i == msg_opl->sg.end)
 591                        break;
 592                sge = sk_msg_elem(msg_opl, i);
 593        }
 594
 595        msg_opl->sg.end = i;
 596        msg_opl->sg.curr = i;
 597        msg_opl->sg.copybreak = 0;
 598        msg_opl->apply_bytes = 0;
 599        msg_opl->sg.size = bytes;
 600
 601        msg_npl = &new->msg_plaintext;
 602        msg_npl->apply_bytes = apply;
 603        msg_npl->sg.size = orig_size - bytes;
 604
 605        j = msg_npl->sg.start;
 606        nsge = sk_msg_elem(msg_npl, j);
 607        if (tmp.length) {
 608                memcpy(nsge, &tmp, sizeof(*nsge));
 609                sk_msg_iter_var_next(j);
 610                nsge = sk_msg_elem(msg_npl, j);
 611        }
 612
 613        osge = sk_msg_elem(msg_opl, i);
 614        while (osge->length) {
 615                memcpy(nsge, osge, sizeof(*nsge));
 616                sg_unmark_end(nsge);
 617                sk_msg_iter_var_next(i);
 618                sk_msg_iter_var_next(j);
 619                if (i == *orig_end)
 620                        break;
 621                osge = sk_msg_elem(msg_opl, i);
 622                nsge = sk_msg_elem(msg_npl, j);
 623        }
 624
 625        msg_npl->sg.end = j;
 626        msg_npl->sg.curr = j;
 627        msg_npl->sg.copybreak = 0;
 628
 629        *to = new;
 630        return 0;
 631}
 632
 633static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
 634                                  struct tls_rec *from, u32 orig_end)
 635{
 636        struct sk_msg *msg_npl = &from->msg_plaintext;
 637        struct sk_msg *msg_opl = &to->msg_plaintext;
 638        struct scatterlist *osge, *nsge;
 639        u32 i, j;
 640
 641        i = msg_opl->sg.end;
 642        sk_msg_iter_var_prev(i);
 643        j = msg_npl->sg.start;
 644
 645        osge = sk_msg_elem(msg_opl, i);
 646        nsge = sk_msg_elem(msg_npl, j);
 647
 648        if (sg_page(osge) == sg_page(nsge) &&
 649            osge->offset + osge->length == nsge->offset) {
 650                osge->length += nsge->length;
 651                put_page(sg_page(nsge));
 652        }
 653
 654        msg_opl->sg.end = orig_end;
 655        msg_opl->sg.curr = orig_end;
 656        msg_opl->sg.copybreak = 0;
 657        msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
 658        msg_opl->sg.size += msg_npl->sg.size;
 659
 660        sk_msg_free(sk, &to->msg_encrypted);
 661        sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
 662
 663        kfree(from);
 664}
 665
 666static int tls_push_record(struct sock *sk, int flags,
 667                           unsigned char record_type)
 668{
 669        struct tls_context *tls_ctx = tls_get_ctx(sk);
 670        struct tls_prot_info *prot = &tls_ctx->prot_info;
 671        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 672        struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
 673        u32 i, split_point, orig_end;
 674        struct sk_msg *msg_pl, *msg_en;
 675        struct aead_request *req;
 676        bool split;
 677        int rc;
 678
 679        if (!rec)
 680                return 0;
 681
 682        msg_pl = &rec->msg_plaintext;
 683        msg_en = &rec->msg_encrypted;
 684
 685        split_point = msg_pl->apply_bytes;
 686        split = split_point && split_point < msg_pl->sg.size;
 687        if (unlikely((!split &&
 688                      msg_pl->sg.size +
 689                      prot->overhead_size > msg_en->sg.size) ||
 690                     (split &&
 691                      split_point +
 692                      prot->overhead_size > msg_en->sg.size))) {
 693                split = true;
 694                split_point = msg_en->sg.size;
 695        }
 696        if (split) {
 697                rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
 698                                           split_point, prot->overhead_size,
 699                                           &orig_end);
 700                if (rc < 0)
 701                        return rc;
 702                /* This can happen if above tls_split_open_record allocates
 703                 * a single large encryption buffer instead of two smaller
 704                 * ones. In this case adjust pointers and continue without
 705                 * split.
 706                 */
 707                if (!msg_pl->sg.size) {
 708                        tls_merge_open_record(sk, rec, tmp, orig_end);
 709                        msg_pl = &rec->msg_plaintext;
 710                        msg_en = &rec->msg_encrypted;
 711                        split = false;
 712                }
 713                sk_msg_trim(sk, msg_en, msg_pl->sg.size +
 714                            prot->overhead_size);
 715        }
 716
 717        rec->tx_flags = flags;
 718        req = &rec->aead_req;
 719
 720        i = msg_pl->sg.end;
 721        sk_msg_iter_var_prev(i);
 722
 723        rec->content_type = record_type;
 724        if (prot->version == TLS_1_3_VERSION) {
 725                /* Add content type to end of message.  No padding added */
 726                sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
 727                sg_mark_end(&rec->sg_content_type);
 728                sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
 729                         &rec->sg_content_type);
 730        } else {
 731                sg_mark_end(sk_msg_elem(msg_pl, i));
 732        }
 733
 734        if (msg_pl->sg.end < msg_pl->sg.start) {
 735                sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
 736                         MAX_SKB_FRAGS - msg_pl->sg.start + 1,
 737                         msg_pl->sg.data);
 738        }
 739
 740        i = msg_pl->sg.start;
 741        sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
 742
 743        i = msg_en->sg.end;
 744        sk_msg_iter_var_prev(i);
 745        sg_mark_end(sk_msg_elem(msg_en, i));
 746
 747        i = msg_en->sg.start;
 748        sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
 749
 750        tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
 751                     tls_ctx->tx.rec_seq, prot->rec_seq_size,
 752                     record_type, prot->version);
 753
 754        tls_fill_prepend(tls_ctx,
 755                         page_address(sg_page(&msg_en->sg.data[i])) +
 756                         msg_en->sg.data[i].offset,
 757                         msg_pl->sg.size + prot->tail_size,
 758                         record_type, prot->version);
 759
 760        tls_ctx->pending_open_record_frags = false;
 761
 762        rc = tls_do_encryption(sk, tls_ctx, ctx, req,
 763                               msg_pl->sg.size + prot->tail_size, i);
 764        if (rc < 0) {
 765                if (rc != -EINPROGRESS) {
 766                        tls_err_abort(sk, EBADMSG);
 767                        if (split) {
 768                                tls_ctx->pending_open_record_frags = true;
 769                                tls_merge_open_record(sk, rec, tmp, orig_end);
 770                        }
 771                }
 772                ctx->async_capable = 1;
 773                return rc;
 774        } else if (split) {
 775                msg_pl = &tmp->msg_plaintext;
 776                msg_en = &tmp->msg_encrypted;
 777                sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
 778                tls_ctx->pending_open_record_frags = true;
 779                ctx->open_rec = tmp;
 780        }
 781
 782        return tls_tx_records(sk, flags);
 783}
 784
 785static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
 786                               bool full_record, u8 record_type,
 787                               ssize_t *copied, int flags)
 788{
 789        struct tls_context *tls_ctx = tls_get_ctx(sk);
 790        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 791        struct sk_msg msg_redir = { };
 792        struct sk_psock *psock;
 793        struct sock *sk_redir;
 794        struct tls_rec *rec;
 795        bool enospc, policy;
 796        int err = 0, send;
 797        u32 delta = 0;
 798
 799        policy = !(flags & MSG_SENDPAGE_NOPOLICY);
 800        psock = sk_psock_get(sk);
 801        if (!psock || !policy) {
 802                err = tls_push_record(sk, flags, record_type);
 803                if (err && sk->sk_err == EBADMSG) {
 804                        *copied -= sk_msg_free(sk, msg);
 805                        tls_free_open_rec(sk);
 806                        err = -sk->sk_err;
 807                }
 808                if (psock)
 809                        sk_psock_put(sk, psock);
 810                return err;
 811        }
 812more_data:
 813        enospc = sk_msg_full(msg);
 814        if (psock->eval == __SK_NONE) {
 815                delta = msg->sg.size;
 816                psock->eval = sk_psock_msg_verdict(sk, psock, msg);
 817                delta -= msg->sg.size;
 818        }
 819        if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
 820            !enospc && !full_record) {
 821                err = -ENOSPC;
 822                goto out_err;
 823        }
 824        msg->cork_bytes = 0;
 825        send = msg->sg.size;
 826        if (msg->apply_bytes && msg->apply_bytes < send)
 827                send = msg->apply_bytes;
 828
 829        switch (psock->eval) {
 830        case __SK_PASS:
 831                err = tls_push_record(sk, flags, record_type);
 832                if (err && sk->sk_err == EBADMSG) {
 833                        *copied -= sk_msg_free(sk, msg);
 834                        tls_free_open_rec(sk);
 835                        err = -sk->sk_err;
 836                        goto out_err;
 837                }
 838                break;
 839        case __SK_REDIRECT:
 840                sk_redir = psock->sk_redir;
 841                memcpy(&msg_redir, msg, sizeof(*msg));
 842                if (msg->apply_bytes < send)
 843                        msg->apply_bytes = 0;
 844                else
 845                        msg->apply_bytes -= send;
 846                sk_msg_return_zero(sk, msg, send);
 847                msg->sg.size -= send;
 848                release_sock(sk);
 849                err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
 850                lock_sock(sk);
 851                if (err < 0) {
 852                        *copied -= sk_msg_free_nocharge(sk, &msg_redir);
 853                        msg->sg.size = 0;
 854                }
 855                if (msg->sg.size == 0)
 856                        tls_free_open_rec(sk);
 857                break;
 858        case __SK_DROP:
 859        default:
 860                sk_msg_free_partial(sk, msg, send);
 861                if (msg->apply_bytes < send)
 862                        msg->apply_bytes = 0;
 863                else
 864                        msg->apply_bytes -= send;
 865                if (msg->sg.size == 0)
 866                        tls_free_open_rec(sk);
 867                *copied -= (send + delta);
 868                err = -EACCES;
 869        }
 870
 871        if (likely(!err)) {
 872                bool reset_eval = !ctx->open_rec;
 873
 874                rec = ctx->open_rec;
 875                if (rec) {
 876                        msg = &rec->msg_plaintext;
 877                        if (!msg->apply_bytes)
 878                                reset_eval = true;
 879                }
 880                if (reset_eval) {
 881                        psock->eval = __SK_NONE;
 882                        if (psock->sk_redir) {
 883                                sock_put(psock->sk_redir);
 884                                psock->sk_redir = NULL;
 885                        }
 886                }
 887                if (rec)
 888                        goto more_data;
 889        }
 890 out_err:
 891        sk_psock_put(sk, psock);
 892        return err;
 893}
 894
 895static int tls_sw_push_pending_record(struct sock *sk, int flags)
 896{
 897        struct tls_context *tls_ctx = tls_get_ctx(sk);
 898        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 899        struct tls_rec *rec = ctx->open_rec;
 900        struct sk_msg *msg_pl;
 901        size_t copied;
 902
 903        if (!rec)
 904                return 0;
 905
 906        msg_pl = &rec->msg_plaintext;
 907        copied = msg_pl->sg.size;
 908        if (!copied)
 909                return 0;
 910
 911        return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
 912                                   &copied, flags);
 913}
 914
 915int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 916{
 917        long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
 918        struct tls_context *tls_ctx = tls_get_ctx(sk);
 919        struct tls_prot_info *prot = &tls_ctx->prot_info;
 920        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 921        bool async_capable = ctx->async_capable;
 922        unsigned char record_type = TLS_RECORD_TYPE_DATA;
 923        bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
 924        bool eor = !(msg->msg_flags & MSG_MORE);
 925        size_t try_to_copy;
 926        ssize_t copied = 0;
 927        struct sk_msg *msg_pl, *msg_en;
 928        struct tls_rec *rec;
 929        int required_size;
 930        int num_async = 0;
 931        bool full_record;
 932        int record_room;
 933        int num_zc = 0;
 934        int orig_size;
 935        int ret = 0;
 936        int pending;
 937
 938        if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
 939                               MSG_CMSG_COMPAT))
 940                return -EOPNOTSUPP;
 941
 942        mutex_lock(&tls_ctx->tx_lock);
 943        lock_sock(sk);
 944
 945        if (unlikely(msg->msg_controllen)) {
 946                ret = tls_proccess_cmsg(sk, msg, &record_type);
 947                if (ret) {
 948                        if (ret == -EINPROGRESS)
 949                                num_async++;
 950                        else if (ret != -EAGAIN)
 951                                goto send_end;
 952                }
 953        }
 954
 955        while (msg_data_left(msg)) {
 956                if (sk->sk_err) {
 957                        ret = -sk->sk_err;
 958                        goto send_end;
 959                }
 960
 961                if (ctx->open_rec)
 962                        rec = ctx->open_rec;
 963                else
 964                        rec = ctx->open_rec = tls_get_rec(sk);
 965                if (!rec) {
 966                        ret = -ENOMEM;
 967                        goto send_end;
 968                }
 969
 970                msg_pl = &rec->msg_plaintext;
 971                msg_en = &rec->msg_encrypted;
 972
 973                orig_size = msg_pl->sg.size;
 974                full_record = false;
 975                try_to_copy = msg_data_left(msg);
 976                record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
 977                if (try_to_copy >= record_room) {
 978                        try_to_copy = record_room;
 979                        full_record = true;
 980                }
 981
 982                required_size = msg_pl->sg.size + try_to_copy +
 983                                prot->overhead_size;
 984
 985                if (!sk_stream_memory_free(sk))
 986                        goto wait_for_sndbuf;
 987
 988alloc_encrypted:
 989                ret = tls_alloc_encrypted_msg(sk, required_size);
 990                if (ret) {
 991                        if (ret != -ENOSPC)
 992                                goto wait_for_memory;
 993
 994                        /* Adjust try_to_copy according to the amount that was
 995                         * actually allocated. The difference is due
 996                         * to max sg elements limit
 997                         */
 998                        try_to_copy -= required_size - msg_en->sg.size;
 999                        full_record = true;
1000                }
1001
1002                if (!is_kvec && (full_record || eor) && !async_capable) {
1003                        u32 first = msg_pl->sg.end;
1004
1005                        ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006                                                        msg_pl, try_to_copy);
1007                        if (ret)
1008                                goto fallback_to_reg_send;
1009
1010                        num_zc++;
1011                        copied += try_to_copy;
1012
1013                        sk_msg_sg_copy_set(msg_pl, first);
1014                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015                                                  record_type, &copied,
1016                                                  msg->msg_flags);
1017                        if (ret) {
1018                                if (ret == -EINPROGRESS)
1019                                        num_async++;
1020                                else if (ret == -ENOMEM)
1021                                        goto wait_for_memory;
1022                                else if (ctx->open_rec && ret == -ENOSPC)
1023                                        goto rollback_iter;
1024                                else if (ret != -EAGAIN)
1025                                        goto send_end;
1026                        }
1027                        continue;
1028rollback_iter:
1029                        copied -= try_to_copy;
1030                        sk_msg_sg_copy_clear(msg_pl, first);
1031                        iov_iter_revert(&msg->msg_iter,
1032                                        msg_pl->sg.size - orig_size);
1033fallback_to_reg_send:
1034                        sk_msg_trim(sk, msg_pl, orig_size);
1035                }
1036
1037                required_size = msg_pl->sg.size + try_to_copy;
1038
1039                ret = tls_clone_plaintext_msg(sk, required_size);
1040                if (ret) {
1041                        if (ret != -ENOSPC)
1042                                goto send_end;
1043
1044                        /* Adjust try_to_copy according to the amount that was
1045                         * actually allocated. The difference is due
1046                         * to max sg elements limit
1047                         */
1048                        try_to_copy -= required_size - msg_pl->sg.size;
1049                        full_record = true;
1050                        sk_msg_trim(sk, msg_en,
1051                                    msg_pl->sg.size + prot->overhead_size);
1052                }
1053
1054                if (try_to_copy) {
1055                        ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056                                                       msg_pl, try_to_copy);
1057                        if (ret < 0)
1058                                goto trim_sgl;
1059                }
1060
1061                /* Open records defined only if successfully copied, otherwise
1062                 * we would trim the sg but not reset the open record frags.
1063                 */
1064                tls_ctx->pending_open_record_frags = true;
1065                copied += try_to_copy;
1066                if (full_record || eor) {
1067                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068                                                  record_type, &copied,
1069                                                  msg->msg_flags);
1070                        if (ret) {
1071                                if (ret == -EINPROGRESS)
1072                                        num_async++;
1073                                else if (ret == -ENOMEM)
1074                                        goto wait_for_memory;
1075                                else if (ret != -EAGAIN) {
1076                                        if (ret == -ENOSPC)
1077                                                ret = 0;
1078                                        goto send_end;
1079                                }
1080                        }
1081                }
1082
1083                continue;
1084
1085wait_for_sndbuf:
1086                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087wait_for_memory:
1088                ret = sk_stream_wait_memory(sk, &timeo);
1089                if (ret) {
1090trim_sgl:
1091                        if (ctx->open_rec)
1092                                tls_trim_both_msgs(sk, orig_size);
1093                        goto send_end;
1094                }
1095
1096                if (ctx->open_rec && msg_en->sg.size < required_size)
1097                        goto alloc_encrypted;
1098        }
1099
1100        if (!num_async) {
1101                goto send_end;
1102        } else if (num_zc) {
1103                /* Wait for pending encryptions to get completed */
1104                spin_lock_bh(&ctx->encrypt_compl_lock);
1105                ctx->async_notify = true;
1106
1107                pending = atomic_read(&ctx->encrypt_pending);
1108                spin_unlock_bh(&ctx->encrypt_compl_lock);
1109                if (pending)
1110                        crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111                else
1112                        reinit_completion(&ctx->async_wait.completion);
1113
1114                /* There can be no concurrent accesses, since we have no
1115                 * pending encrypt operations
1116                 */
1117                WRITE_ONCE(ctx->async_notify, false);
1118
1119                if (ctx->async_wait.err) {
1120                        ret = ctx->async_wait.err;
1121                        copied = 0;
1122                }
1123        }
1124
1125        /* Transmit if any encryptions have completed */
1126        if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127                cancel_delayed_work(&ctx->tx_work.work);
1128                tls_tx_records(sk, msg->msg_flags);
1129        }
1130
1131send_end:
1132        ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134        release_sock(sk);
1135        mutex_unlock(&tls_ctx->tx_lock);
1136        return copied > 0 ? copied : ret;
1137}
1138
1139static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140                              int offset, size_t size, int flags)
1141{
1142        long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143        struct tls_context *tls_ctx = tls_get_ctx(sk);
1144        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145        struct tls_prot_info *prot = &tls_ctx->prot_info;
1146        unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147        struct sk_msg *msg_pl;
1148        struct tls_rec *rec;
1149        int num_async = 0;
1150        ssize_t copied = 0;
1151        bool full_record;
1152        int record_room;
1153        int ret = 0;
1154        bool eor;
1155
1156        eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1157        sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159        /* Call the sk_stream functions to manage the sndbuf mem. */
1160        while (size > 0) {
1161                size_t copy, required_size;
1162
1163                if (sk->sk_err) {
1164                        ret = -sk->sk_err;
1165                        goto sendpage_end;
1166                }
1167
1168                if (ctx->open_rec)
1169                        rec = ctx->open_rec;
1170                else
1171                        rec = ctx->open_rec = tls_get_rec(sk);
1172                if (!rec) {
1173                        ret = -ENOMEM;
1174                        goto sendpage_end;
1175                }
1176
1177                msg_pl = &rec->msg_plaintext;
1178
1179                full_record = false;
1180                record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181                copy = size;
1182                if (copy >= record_room) {
1183                        copy = record_room;
1184                        full_record = true;
1185                }
1186
1187                required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189                if (!sk_stream_memory_free(sk))
1190                        goto wait_for_sndbuf;
1191alloc_payload:
1192                ret = tls_alloc_encrypted_msg(sk, required_size);
1193                if (ret) {
1194                        if (ret != -ENOSPC)
1195                                goto wait_for_memory;
1196
1197                        /* Adjust copy according to the amount that was
1198                         * actually allocated. The difference is due
1199                         * to max sg elements limit
1200                         */
1201                        copy -= required_size - msg_pl->sg.size;
1202                        full_record = true;
1203                }
1204
1205                sk_msg_page_add(msg_pl, page, copy, offset);
1206                sk_mem_charge(sk, copy);
1207
1208                offset += copy;
1209                size -= copy;
1210                copied += copy;
1211
1212                tls_ctx->pending_open_record_frags = true;
1213                if (full_record || eor || sk_msg_full(msg_pl)) {
1214                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215                                                  record_type, &copied, flags);
1216                        if (ret) {
1217                                if (ret == -EINPROGRESS)
1218                                        num_async++;
1219                                else if (ret == -ENOMEM)
1220                                        goto wait_for_memory;
1221                                else if (ret != -EAGAIN) {
1222                                        if (ret == -ENOSPC)
1223                                                ret = 0;
1224                                        goto sendpage_end;
1225                                }
1226                        }
1227                }
1228                continue;
1229wait_for_sndbuf:
1230                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231wait_for_memory:
1232                ret = sk_stream_wait_memory(sk, &timeo);
1233                if (ret) {
1234                        if (ctx->open_rec)
1235                                tls_trim_both_msgs(sk, msg_pl->sg.size);
1236                        goto sendpage_end;
1237                }
1238
1239                if (ctx->open_rec)
1240                        goto alloc_payload;
1241        }
1242
1243        if (num_async) {
1244                /* Transmit if any encryptions have completed */
1245                if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246                        cancel_delayed_work(&ctx->tx_work.work);
1247                        tls_tx_records(sk, flags);
1248                }
1249        }
1250sendpage_end:
1251        ret = sk_stream_error(sk, flags, ret);
1252        return copied > 0 ? copied : ret;
1253}
1254
1255int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256                           int offset, size_t size, int flags)
1257{
1258        if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259                      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260                      MSG_NO_SHARED_FRAGS))
1261                return -EOPNOTSUPP;
1262
1263        return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264}
1265
1266int tls_sw_sendpage(struct sock *sk, struct page *page,
1267                    int offset, size_t size, int flags)
1268{
1269        struct tls_context *tls_ctx = tls_get_ctx(sk);
1270        int ret;
1271
1272        if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273                      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274                return -EOPNOTSUPP;
1275
1276        mutex_lock(&tls_ctx->tx_lock);
1277        lock_sock(sk);
1278        ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279        release_sock(sk);
1280        mutex_unlock(&tls_ctx->tx_lock);
1281        return ret;
1282}
1283
1284static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1285                                     int flags, long timeo, int *err)
1286{
1287        struct tls_context *tls_ctx = tls_get_ctx(sk);
1288        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1289        struct sk_buff *skb;
1290        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291
1292        while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1293                if (sk->sk_err) {
1294                        *err = sock_error(sk);
1295                        return NULL;
1296                }
1297
1298                if (sk->sk_shutdown & RCV_SHUTDOWN)
1299                        return NULL;
1300
1301                if (sock_flag(sk, SOCK_DONE))
1302                        return NULL;
1303
1304                if ((flags & MSG_DONTWAIT) || !timeo) {
1305                        *err = -EAGAIN;
1306                        return NULL;
1307                }
1308
1309                add_wait_queue(sk_sleep(sk), &wait);
1310                sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1311                sk_wait_event(sk, &timeo,
1312                              ctx->recv_pkt != skb ||
1313                              !sk_psock_queue_empty(psock),
1314                              &wait);
1315                sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1316                remove_wait_queue(sk_sleep(sk), &wait);
1317
1318                /* Handle signals */
1319                if (signal_pending(current)) {
1320                        *err = sock_intr_errno(timeo);
1321                        return NULL;
1322                }
1323        }
1324
1325        return skb;
1326}
1327
1328static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1329                               int length, int *pages_used,
1330                               unsigned int *size_used,
1331                               struct scatterlist *to,
1332                               int to_max_pages)
1333{
1334        int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1335        struct page *pages[MAX_SKB_FRAGS];
1336        unsigned int size = *size_used;
1337        ssize_t copied, use;
1338        size_t offset;
1339
1340        while (length > 0) {
1341                i = 0;
1342                maxpages = to_max_pages - num_elem;
1343                if (maxpages == 0) {
1344                        rc = -EFAULT;
1345                        goto out;
1346                }
1347                copied = iov_iter_get_pages(from, pages,
1348                                            length,
1349                                            maxpages, &offset);
1350                if (copied <= 0) {
1351                        rc = -EFAULT;
1352                        goto out;
1353                }
1354
1355                iov_iter_advance(from, copied);
1356
1357                length -= copied;
1358                size += copied;
1359                while (copied) {
1360                        use = min_t(int, copied, PAGE_SIZE - offset);
1361
1362                        sg_set_page(&to[num_elem],
1363                                    pages[i], use, offset);
1364                        sg_unmark_end(&to[num_elem]);
1365                        /* We do not uncharge memory from this API */
1366
1367                        offset = 0;
1368                        copied -= use;
1369
1370                        i++;
1371                        num_elem++;
1372                }
1373        }
1374        /* Mark the end in the last sg entry if newly added */
1375        if (num_elem > *pages_used)
1376                sg_mark_end(&to[num_elem - 1]);
1377out:
1378        if (rc)
1379                iov_iter_revert(from, size - *size_used);
1380        *size_used = size;
1381        *pages_used = num_elem;
1382
1383        return rc;
1384}
1385
1386/* This function decrypts the input skb into either out_iov or in out_sg
1387 * or in skb buffers itself. The input parameter 'zc' indicates if
1388 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1389 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1390 * NULL, then the decryption happens inside skb buffers itself, i.e.
1391 * zero-copy gets disabled and 'zc' is updated.
1392 */
1393
1394static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1395                            struct iov_iter *out_iov,
1396                            struct scatterlist *out_sg,
1397                            int *chunk, bool *zc, bool async)
1398{
1399        struct tls_context *tls_ctx = tls_get_ctx(sk);
1400        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1401        struct tls_prot_info *prot = &tls_ctx->prot_info;
1402        struct strp_msg *rxm = strp_msg(skb);
1403        int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1404        struct aead_request *aead_req;
1405        struct sk_buff *unused;
1406        u8 *aad, *iv, *mem = NULL;
1407        struct scatterlist *sgin = NULL;
1408        struct scatterlist *sgout = NULL;
1409        const int data_len = rxm->full_len - prot->overhead_size +
1410                             prot->tail_size;
1411        int iv_offset = 0;
1412
1413        if (*zc && (out_iov || out_sg)) {
1414                if (out_iov)
1415                        n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1416                else
1417                        n_sgout = sg_nents(out_sg);
1418                n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1419                                 rxm->full_len - prot->prepend_size);
1420        } else {
1421                n_sgout = 0;
1422                *zc = false;
1423                n_sgin = skb_cow_data(skb, 0, &unused);
1424        }
1425
1426        if (n_sgin < 1)
1427                return -EBADMSG;
1428
1429        /* Increment to accommodate AAD */
1430        n_sgin = n_sgin + 1;
1431
1432        nsg = n_sgin + n_sgout;
1433
1434        aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1435        mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1436        mem_size = mem_size + prot->aad_size;
1437        mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1438
1439        /* Allocate a single block of memory which contains
1440         * aead_req || sgin[] || sgout[] || aad || iv.
1441         * This order achieves correct alignment for aead_req, sgin, sgout.
1442         */
1443        mem = kmalloc(mem_size, sk->sk_allocation);
1444        if (!mem)
1445                return -ENOMEM;
1446
1447        /* Segment the allocated memory */
1448        aead_req = (struct aead_request *)mem;
1449        sgin = (struct scatterlist *)(mem + aead_size);
1450        sgout = sgin + n_sgin;
1451        aad = (u8 *)(sgout + n_sgout);
1452        iv = aad + prot->aad_size;
1453
1454        /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1455        if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1456                iv[0] = 2;
1457                iv_offset = 1;
1458        }
1459
1460        /* Prepare IV */
1461        err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1462                            iv + iv_offset + prot->salt_size,
1463                            prot->iv_size);
1464        if (err < 0) {
1465                kfree(mem);
1466                return err;
1467        }
1468        if (prot->version == TLS_1_3_VERSION)
1469                memcpy(iv + iv_offset, tls_ctx->rx.iv,
1470                       crypto_aead_ivsize(ctx->aead_recv));
1471        else
1472                memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1473
1474        xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1475
1476        /* Prepare AAD */
1477        tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1478                     prot->tail_size,
1479                     tls_ctx->rx.rec_seq, prot->rec_seq_size,
1480                     ctx->control, prot->version);
1481
1482        /* Prepare sgin */
1483        sg_init_table(sgin, n_sgin);
1484        sg_set_buf(&sgin[0], aad, prot->aad_size);
1485        err = skb_to_sgvec(skb, &sgin[1],
1486                           rxm->offset + prot->prepend_size,
1487                           rxm->full_len - prot->prepend_size);
1488        if (err < 0) {
1489                kfree(mem);
1490                return err;
1491        }
1492
1493        if (n_sgout) {
1494                if (out_iov) {
1495                        sg_init_table(sgout, n_sgout);
1496                        sg_set_buf(&sgout[0], aad, prot->aad_size);
1497
1498                        *chunk = 0;
1499                        err = tls_setup_from_iter(sk, out_iov, data_len,
1500                                                  &pages, chunk, &sgout[1],
1501                                                  (n_sgout - 1));
1502                        if (err < 0)
1503                                goto fallback_to_reg_recv;
1504                } else if (out_sg) {
1505                        memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1506                } else {
1507                        goto fallback_to_reg_recv;
1508                }
1509        } else {
1510fallback_to_reg_recv:
1511                sgout = sgin;
1512                pages = 0;
1513                *chunk = data_len;
1514                *zc = false;
1515        }
1516
1517        /* Prepare and submit AEAD request */
1518        err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1519                                data_len, aead_req, async);
1520        if (err == -EINPROGRESS)
1521                return err;
1522
1523        /* Release the pages in case iov was mapped to pages */
1524        for (; pages > 0; pages--)
1525                put_page(sg_page(&sgout[pages]));
1526
1527        kfree(mem);
1528        return err;
1529}
1530
1531static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1532                              struct iov_iter *dest, int *chunk, bool *zc,
1533                              bool async)
1534{
1535        struct tls_context *tls_ctx = tls_get_ctx(sk);
1536        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1537        struct tls_prot_info *prot = &tls_ctx->prot_info;
1538        struct strp_msg *rxm = strp_msg(skb);
1539        int pad, err = 0;
1540
1541        if (!ctx->decrypted) {
1542                if (tls_ctx->rx_conf == TLS_HW) {
1543                        err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1544                        if (err < 0)
1545                                return err;
1546                }
1547
1548                /* Still not decrypted after tls_device */
1549                if (!ctx->decrypted) {
1550                        err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1551                                               async);
1552                        if (err < 0) {
1553                                if (err == -EINPROGRESS)
1554                                        tls_advance_record_sn(sk, prot,
1555                                                              &tls_ctx->rx);
1556                                else if (err == -EBADMSG)
1557                                        TLS_INC_STATS(sock_net(sk),
1558                                                      LINUX_MIB_TLSDECRYPTERROR);
1559                                return err;
1560                        }
1561                } else {
1562                        *zc = false;
1563                }
1564
1565                pad = padding_length(ctx, prot, skb);
1566                if (pad < 0)
1567                        return pad;
1568
1569                rxm->full_len -= pad;
1570                rxm->offset += prot->prepend_size;
1571                rxm->full_len -= prot->overhead_size;
1572                tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1573                ctx->decrypted = 1;
1574                ctx->saved_data_ready(sk);
1575        } else {
1576                *zc = false;
1577        }
1578
1579        return err;
1580}
1581
1582int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1583                struct scatterlist *sgout)
1584{
1585        bool zc = true;
1586        int chunk;
1587
1588        return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1589}
1590
1591static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1592                               unsigned int len)
1593{
1594        struct tls_context *tls_ctx = tls_get_ctx(sk);
1595        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1596
1597        if (skb) {
1598                struct strp_msg *rxm = strp_msg(skb);
1599
1600                if (len < rxm->full_len) {
1601                        rxm->offset += len;
1602                        rxm->full_len -= len;
1603                        return false;
1604                }
1605                consume_skb(skb);
1606        }
1607
1608        /* Finished with message */
1609        ctx->recv_pkt = NULL;
1610        __strp_unpause(&ctx->strp);
1611
1612        return true;
1613}
1614
1615/* This function traverses the rx_list in tls receive context to copies the
1616 * decrypted records into the buffer provided by caller zero copy is not
1617 * true. Further, the records are removed from the rx_list if it is not a peek
1618 * case and the record has been consumed completely.
1619 */
1620static int process_rx_list(struct tls_sw_context_rx *ctx,
1621                           struct msghdr *msg,
1622                           u8 *control,
1623                           bool *cmsg,
1624                           size_t skip,
1625                           size_t len,
1626                           bool zc,
1627                           bool is_peek)
1628{
1629        struct sk_buff *skb = skb_peek(&ctx->rx_list);
1630        u8 ctrl = *control;
1631        u8 msgc = *cmsg;
1632        struct tls_msg *tlm;
1633        ssize_t copied = 0;
1634
1635        /* Set the record type in 'control' if caller didn't pass it */
1636        if (!ctrl && skb) {
1637                tlm = tls_msg(skb);
1638                ctrl = tlm->control;
1639        }
1640
1641        while (skip && skb) {
1642                struct strp_msg *rxm = strp_msg(skb);
1643                tlm = tls_msg(skb);
1644
1645                /* Cannot process a record of different type */
1646                if (ctrl != tlm->control)
1647                        return 0;
1648
1649                if (skip < rxm->full_len)
1650                        break;
1651
1652                skip = skip - rxm->full_len;
1653                skb = skb_peek_next(skb, &ctx->rx_list);
1654        }
1655
1656        while (len && skb) {
1657                struct sk_buff *next_skb;
1658                struct strp_msg *rxm = strp_msg(skb);
1659                int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1660
1661                tlm = tls_msg(skb);
1662
1663                /* Cannot process a record of different type */
1664                if (ctrl != tlm->control)
1665                        return 0;
1666
1667                /* Set record type if not already done. For a non-data record,
1668                 * do not proceed if record type could not be copied.
1669                 */
1670                if (!msgc) {
1671                        int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1672                                            sizeof(ctrl), &ctrl);
1673                        msgc = true;
1674                        if (ctrl != TLS_RECORD_TYPE_DATA) {
1675                                if (cerr || msg->msg_flags & MSG_CTRUNC)
1676                                        return -EIO;
1677
1678                                *cmsg = msgc;
1679                        }
1680                }
1681
1682                if (!zc || (rxm->full_len - skip) > len) {
1683                        int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1684                                                    msg, chunk);
1685                        if (err < 0)
1686                                return err;
1687                }
1688
1689                len = len - chunk;
1690                copied = copied + chunk;
1691
1692                /* Consume the data from record if it is non-peek case*/
1693                if (!is_peek) {
1694                        rxm->offset = rxm->offset + chunk;
1695                        rxm->full_len = rxm->full_len - chunk;
1696
1697                        /* Return if there is unconsumed data in the record */
1698                        if (rxm->full_len - skip)
1699                                break;
1700                }
1701
1702                /* The remaining skip-bytes must lie in 1st record in rx_list.
1703                 * So from the 2nd record, 'skip' should be 0.
1704                 */
1705                skip = 0;
1706
1707                if (msg)
1708                        msg->msg_flags |= MSG_EOR;
1709
1710                next_skb = skb_peek_next(skb, &ctx->rx_list);
1711
1712                if (!is_peek) {
1713                        skb_unlink(skb, &ctx->rx_list);
1714                        consume_skb(skb);
1715                }
1716
1717                skb = next_skb;
1718        }
1719
1720        *control = ctrl;
1721        return copied;
1722}
1723
1724int tls_sw_recvmsg(struct sock *sk,
1725                   struct msghdr *msg,
1726                   size_t len,
1727                   int nonblock,
1728                   int flags,
1729                   int *addr_len)
1730{
1731        struct tls_context *tls_ctx = tls_get_ctx(sk);
1732        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1733        struct tls_prot_info *prot = &tls_ctx->prot_info;
1734        struct sk_psock *psock;
1735        unsigned char control = 0;
1736        ssize_t decrypted = 0;
1737        struct strp_msg *rxm;
1738        struct tls_msg *tlm;
1739        struct sk_buff *skb;
1740        ssize_t copied = 0;
1741        bool cmsg = false;
1742        int target, err = 0;
1743        long timeo;
1744        bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1745        bool is_peek = flags & MSG_PEEK;
1746        bool bpf_strp_enabled;
1747        int num_async = 0;
1748        int pending;
1749
1750        flags |= nonblock;
1751
1752        if (unlikely(flags & MSG_ERRQUEUE))
1753                return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1754
1755        psock = sk_psock_get(sk);
1756        lock_sock(sk);
1757        bpf_strp_enabled = sk_psock_strp_enabled(psock);
1758
1759        /* Process pending decrypted records. It must be non-zero-copy */
1760        err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1761                              is_peek);
1762        if (err < 0) {
1763                tls_err_abort(sk, err);
1764                goto end;
1765        } else {
1766                copied = err;
1767        }
1768
1769        if (len <= copied)
1770                goto recv_end;
1771
1772        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1773        len = len - copied;
1774        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1775
1776        while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1777                bool retain_skb = false;
1778                bool zc = false;
1779                int to_decrypt;
1780                int chunk = 0;
1781                bool async_capable;
1782                bool async = false;
1783
1784                skb = tls_wait_data(sk, psock, flags, timeo, &err);
1785                if (!skb) {
1786                        if (psock) {
1787                                int ret = __tcp_bpf_recvmsg(sk, psock,
1788                                                            msg, len, flags);
1789
1790                                if (ret > 0) {
1791                                        decrypted += ret;
1792                                        len -= ret;
1793                                        continue;
1794                                }
1795                        }
1796                        goto recv_end;
1797                } else {
1798                        tlm = tls_msg(skb);
1799                        if (prot->version == TLS_1_3_VERSION)
1800                                tlm->control = 0;
1801                        else
1802                                tlm->control = ctx->control;
1803                }
1804
1805                rxm = strp_msg(skb);
1806
1807                to_decrypt = rxm->full_len - prot->overhead_size;
1808
1809                if (to_decrypt <= len && !is_kvec && !is_peek &&
1810                    ctx->control == TLS_RECORD_TYPE_DATA &&
1811                    prot->version != TLS_1_3_VERSION &&
1812                    !bpf_strp_enabled)
1813                        zc = true;
1814
1815                /* Do not use async mode if record is non-data */
1816                if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1817                        async_capable = ctx->async_capable;
1818                else
1819                        async_capable = false;
1820
1821                err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1822                                         &chunk, &zc, async_capable);
1823                if (err < 0 && err != -EINPROGRESS) {
1824                        tls_err_abort(sk, EBADMSG);
1825                        goto recv_end;
1826                }
1827
1828                if (err == -EINPROGRESS) {
1829                        async = true;
1830                        num_async++;
1831                } else if (prot->version == TLS_1_3_VERSION) {
1832                        tlm->control = ctx->control;
1833                }
1834
1835                /* If the type of records being processed is not known yet,
1836                 * set it to record type just dequeued. If it is already known,
1837                 * but does not match the record type just dequeued, go to end.
1838                 * We always get record type here since for tls1.2, record type
1839                 * is known just after record is dequeued from stream parser.
1840                 * For tls1.3, we disable async.
1841                 */
1842
1843                if (!control)
1844                        control = tlm->control;
1845                else if (control != tlm->control)
1846                        goto recv_end;
1847
1848                if (!cmsg) {
1849                        int cerr;
1850
1851                        cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1852                                        sizeof(control), &control);
1853                        cmsg = true;
1854                        if (control != TLS_RECORD_TYPE_DATA) {
1855                                if (cerr || msg->msg_flags & MSG_CTRUNC) {
1856                                        err = -EIO;
1857                                        goto recv_end;
1858                                }
1859                        }
1860                }
1861
1862                if (async)
1863                        goto pick_next_record;
1864
1865                if (!zc) {
1866                        if (bpf_strp_enabled) {
1867                                err = sk_psock_tls_strp_read(psock, skb);
1868                                if (err != __SK_PASS) {
1869                                        rxm->offset = rxm->offset + rxm->full_len;
1870                                        rxm->full_len = 0;
1871                                        if (err == __SK_DROP)
1872                                                consume_skb(skb);
1873                                        ctx->recv_pkt = NULL;
1874                                        __strp_unpause(&ctx->strp);
1875                                        continue;
1876                                }
1877                        }
1878
1879                        if (rxm->full_len > len) {
1880                                retain_skb = true;
1881                                chunk = len;
1882                        } else {
1883                                chunk = rxm->full_len;
1884                        }
1885
1886                        err = skb_copy_datagram_msg(skb, rxm->offset,
1887                                                    msg, chunk);
1888                        if (err < 0)
1889                                goto recv_end;
1890
1891                        if (!is_peek) {
1892                                rxm->offset = rxm->offset + chunk;
1893                                rxm->full_len = rxm->full_len - chunk;
1894                        }
1895                }
1896
1897pick_next_record:
1898                if (chunk > len)
1899                        chunk = len;
1900
1901                decrypted += chunk;
1902                len -= chunk;
1903
1904                /* For async or peek case, queue the current skb */
1905                if (async || is_peek || retain_skb) {
1906                        skb_queue_tail(&ctx->rx_list, skb);
1907                        skb = NULL;
1908                }
1909
1910                if (tls_sw_advance_skb(sk, skb, chunk)) {
1911                        /* Return full control message to
1912                         * userspace before trying to parse
1913                         * another message type
1914                         */
1915                        msg->msg_flags |= MSG_EOR;
1916                        if (ctx->control != TLS_RECORD_TYPE_DATA)
1917                                goto recv_end;
1918                } else {
1919                        break;
1920                }
1921        }
1922
1923recv_end:
1924        if (num_async) {
1925                /* Wait for all previously submitted records to be decrypted */
1926                spin_lock_bh(&ctx->decrypt_compl_lock);
1927                ctx->async_notify = true;
1928                pending = atomic_read(&ctx->decrypt_pending);
1929                spin_unlock_bh(&ctx->decrypt_compl_lock);
1930                if (pending) {
1931                        err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1932                        if (err) {
1933                                /* one of async decrypt failed */
1934                                tls_err_abort(sk, err);
1935                                copied = 0;
1936                                decrypted = 0;
1937                                goto end;
1938                        }
1939                } else {
1940                        reinit_completion(&ctx->async_wait.completion);
1941                }
1942
1943                /* There can be no concurrent accesses, since we have no
1944                 * pending decrypt operations
1945                 */
1946                WRITE_ONCE(ctx->async_notify, false);
1947
1948                /* Drain records from the rx_list & copy if required */
1949                if (is_peek || is_kvec)
1950                        err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1951                                              decrypted, false, is_peek);
1952                else
1953                        err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1954                                              decrypted, true, is_peek);
1955                if (err < 0) {
1956                        tls_err_abort(sk, err);
1957                        copied = 0;
1958                        goto end;
1959                }
1960        }
1961
1962        copied += decrypted;
1963
1964end:
1965        release_sock(sk);
1966        if (psock)
1967                sk_psock_put(sk, psock);
1968        return copied ? : err;
1969}
1970
1971ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1972                           struct pipe_inode_info *pipe,
1973                           size_t len, unsigned int flags)
1974{
1975        struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1976        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1977        struct strp_msg *rxm = NULL;
1978        struct sock *sk = sock->sk;
1979        struct sk_buff *skb;
1980        ssize_t copied = 0;
1981        int err = 0;
1982        long timeo;
1983        int chunk;
1984        bool zc = false;
1985
1986        lock_sock(sk);
1987
1988        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1989
1990        skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1991        if (!skb)
1992                goto splice_read_end;
1993
1994        if (!ctx->decrypted) {
1995                err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1996
1997                /* splice does not support reading control messages */
1998                if (ctx->control != TLS_RECORD_TYPE_DATA) {
1999                        err = -EINVAL;
2000                        goto splice_read_end;
2001                }
2002
2003                if (err < 0) {
2004                        tls_err_abort(sk, EBADMSG);
2005                        goto splice_read_end;
2006                }
2007                ctx->decrypted = 1;
2008        }
2009        rxm = strp_msg(skb);
2010
2011        chunk = min_t(unsigned int, rxm->full_len, len);
2012        copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2013        if (copied < 0)
2014                goto splice_read_end;
2015
2016        if (likely(!(flags & MSG_PEEK)))
2017                tls_sw_advance_skb(sk, skb, copied);
2018
2019splice_read_end:
2020        release_sock(sk);
2021        return copied ? : err;
2022}
2023
2024bool tls_sw_stream_read(const struct sock *sk)
2025{
2026        struct tls_context *tls_ctx = tls_get_ctx(sk);
2027        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2028        bool ingress_empty = true;
2029        struct sk_psock *psock;
2030
2031        rcu_read_lock();
2032        psock = sk_psock(sk);
2033        if (psock)
2034                ingress_empty = list_empty(&psock->ingress_msg);
2035        rcu_read_unlock();
2036
2037        return !ingress_empty || ctx->recv_pkt ||
2038                !skb_queue_empty(&ctx->rx_list);
2039}
2040
2041static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2042{
2043        struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2044        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2045        struct tls_prot_info *prot = &tls_ctx->prot_info;
2046        char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2047        struct strp_msg *rxm = strp_msg(skb);
2048        size_t cipher_overhead;
2049        size_t data_len = 0;
2050        int ret;
2051
2052        /* Verify that we have a full TLS header, or wait for more data */
2053        if (rxm->offset + prot->prepend_size > skb->len)
2054                return 0;
2055
2056        /* Sanity-check size of on-stack buffer. */
2057        if (WARN_ON(prot->prepend_size > sizeof(header))) {
2058                ret = -EINVAL;
2059                goto read_failure;
2060        }
2061
2062        /* Linearize header to local buffer */
2063        ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2064
2065        if (ret < 0)
2066                goto read_failure;
2067
2068        ctx->control = header[0];
2069
2070        data_len = ((header[4] & 0xFF) | (header[3] << 8));
2071
2072        cipher_overhead = prot->tag_size;
2073        if (prot->version != TLS_1_3_VERSION)
2074                cipher_overhead += prot->iv_size;
2075
2076        if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2077            prot->tail_size) {
2078                ret = -EMSGSIZE;
2079                goto read_failure;
2080        }
2081        if (data_len < cipher_overhead) {
2082                ret = -EBADMSG;
2083                goto read_failure;
2084        }
2085
2086        /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2087        if (header[1] != TLS_1_2_VERSION_MINOR ||
2088            header[2] != TLS_1_2_VERSION_MAJOR) {
2089                ret = -EINVAL;
2090                goto read_failure;
2091        }
2092
2093        tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2094                                     TCP_SKB_CB(skb)->seq + rxm->offset);
2095        return data_len + TLS_HEADER_SIZE;
2096
2097read_failure:
2098        tls_err_abort(strp->sk, ret);
2099
2100        return ret;
2101}
2102
2103static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2104{
2105        struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2106        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2107
2108        ctx->decrypted = 0;
2109
2110        ctx->recv_pkt = skb;
2111        strp_pause(strp);
2112
2113        ctx->saved_data_ready(strp->sk);
2114}
2115
2116static void tls_data_ready(struct sock *sk)
2117{
2118        struct tls_context *tls_ctx = tls_get_ctx(sk);
2119        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2120        struct sk_psock *psock;
2121
2122        strp_data_ready(&ctx->strp);
2123
2124        psock = sk_psock_get(sk);
2125        if (psock) {
2126                if (!list_empty(&psock->ingress_msg))
2127                        ctx->saved_data_ready(sk);
2128                sk_psock_put(sk, psock);
2129        }
2130}
2131
2132void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2133{
2134        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2135
2136        set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2137        set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2138        cancel_delayed_work_sync(&ctx->tx_work.work);
2139}
2140
2141void tls_sw_release_resources_tx(struct sock *sk)
2142{
2143        struct tls_context *tls_ctx = tls_get_ctx(sk);
2144        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2145        struct tls_rec *rec, *tmp;
2146        int pending;
2147
2148        /* Wait for any pending async encryptions to complete */
2149        spin_lock_bh(&ctx->encrypt_compl_lock);
2150        ctx->async_notify = true;
2151        pending = atomic_read(&ctx->encrypt_pending);
2152        spin_unlock_bh(&ctx->encrypt_compl_lock);
2153
2154        if (pending)
2155                crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2156
2157        tls_tx_records(sk, -1);
2158
2159        /* Free up un-sent records in tx_list. First, free
2160         * the partially sent record if any at head of tx_list.
2161         */
2162        if (tls_ctx->partially_sent_record) {
2163                tls_free_partial_record(sk, tls_ctx);
2164                rec = list_first_entry(&ctx->tx_list,
2165                                       struct tls_rec, list);
2166                list_del(&rec->list);
2167                sk_msg_free(sk, &rec->msg_plaintext);
2168                kfree(rec);
2169        }
2170
2171        list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2172                list_del(&rec->list);
2173                sk_msg_free(sk, &rec->msg_encrypted);
2174                sk_msg_free(sk, &rec->msg_plaintext);
2175                kfree(rec);
2176        }
2177
2178        crypto_free_aead(ctx->aead_send);
2179        tls_free_open_rec(sk);
2180}
2181
2182void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2183{
2184        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2185
2186        kfree(ctx);
2187}
2188
2189void tls_sw_release_resources_rx(struct sock *sk)
2190{
2191        struct tls_context *tls_ctx = tls_get_ctx(sk);
2192        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2193
2194        kfree(tls_ctx->rx.rec_seq);
2195        kfree(tls_ctx->rx.iv);
2196
2197        if (ctx->aead_recv) {
2198                kfree_skb(ctx->recv_pkt);
2199                ctx->recv_pkt = NULL;
2200                skb_queue_purge(&ctx->rx_list);
2201                crypto_free_aead(ctx->aead_recv);
2202                strp_stop(&ctx->strp);
2203                /* If tls_sw_strparser_arm() was not called (cleanup paths)
2204                 * we still want to strp_stop(), but sk->sk_data_ready was
2205                 * never swapped.
2206                 */
2207                if (ctx->saved_data_ready) {
2208                        write_lock_bh(&sk->sk_callback_lock);
2209                        sk->sk_data_ready = ctx->saved_data_ready;
2210                        write_unlock_bh(&sk->sk_callback_lock);
2211                }
2212        }
2213}
2214
2215void tls_sw_strparser_done(struct tls_context *tls_ctx)
2216{
2217        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2218
2219        strp_done(&ctx->strp);
2220}
2221
2222void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2223{
2224        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2225
2226        kfree(ctx);
2227}
2228
2229void tls_sw_free_resources_rx(struct sock *sk)
2230{
2231        struct tls_context *tls_ctx = tls_get_ctx(sk);
2232
2233        tls_sw_release_resources_rx(sk);
2234        tls_sw_free_ctx_rx(tls_ctx);
2235}
2236
2237/* The work handler to transmitt the encrypted records in tx_list */
2238static void tx_work_handler(struct work_struct *work)
2239{
2240        struct delayed_work *delayed_work = to_delayed_work(work);
2241        struct tx_work *tx_work = container_of(delayed_work,
2242                                               struct tx_work, work);
2243        struct sock *sk = tx_work->sk;
2244        struct tls_context *tls_ctx = tls_get_ctx(sk);
2245        struct tls_sw_context_tx *ctx;
2246
2247        if (unlikely(!tls_ctx))
2248                return;
2249
2250        ctx = tls_sw_ctx_tx(tls_ctx);
2251        if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2252                return;
2253
2254        if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2255                return;
2256        mutex_lock(&tls_ctx->tx_lock);
2257        lock_sock(sk);
2258        tls_tx_records(sk, -1);
2259        release_sock(sk);
2260        mutex_unlock(&tls_ctx->tx_lock);
2261}
2262
2263void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2264{
2265        struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2266
2267        /* Schedule the transmission if tx list is ready */
2268        if (is_tx_ready(tx_ctx) &&
2269            !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2270                schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2271}
2272
2273void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2274{
2275        struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2276
2277        write_lock_bh(&sk->sk_callback_lock);
2278        rx_ctx->saved_data_ready = sk->sk_data_ready;
2279        sk->sk_data_ready = tls_data_ready;
2280        write_unlock_bh(&sk->sk_callback_lock);
2281
2282        strp_check_rcv(&rx_ctx->strp);
2283}
2284
2285int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2286{
2287        struct tls_context *tls_ctx = tls_get_ctx(sk);
2288        struct tls_prot_info *prot = &tls_ctx->prot_info;
2289        struct tls_crypto_info *crypto_info;
2290        struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2291        struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2292        struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2293        struct tls_sw_context_tx *sw_ctx_tx = NULL;
2294        struct tls_sw_context_rx *sw_ctx_rx = NULL;
2295        struct cipher_context *cctx;
2296        struct crypto_aead **aead;
2297        struct strp_callbacks cb;
2298        u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2299        struct crypto_tfm *tfm;
2300        char *iv, *rec_seq, *key, *salt, *cipher_name;
2301        size_t keysize;
2302        int rc = 0;
2303
2304        if (!ctx) {
2305                rc = -EINVAL;
2306                goto out;
2307        }
2308
2309        if (tx) {
2310                if (!ctx->priv_ctx_tx) {
2311                        sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2312                        if (!sw_ctx_tx) {
2313                                rc = -ENOMEM;
2314                                goto out;
2315                        }
2316                        ctx->priv_ctx_tx = sw_ctx_tx;
2317                } else {
2318                        sw_ctx_tx =
2319                                (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2320                }
2321        } else {
2322                if (!ctx->priv_ctx_rx) {
2323                        sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2324                        if (!sw_ctx_rx) {
2325                                rc = -ENOMEM;
2326                                goto out;
2327                        }
2328                        ctx->priv_ctx_rx = sw_ctx_rx;
2329                } else {
2330                        sw_ctx_rx =
2331                                (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2332                }
2333        }
2334
2335        if (tx) {
2336                crypto_init_wait(&sw_ctx_tx->async_wait);
2337                spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2338                crypto_info = &ctx->crypto_send.info;
2339                cctx = &ctx->tx;
2340                aead = &sw_ctx_tx->aead_send;
2341                INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2342                INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2343                sw_ctx_tx->tx_work.sk = sk;
2344        } else {
2345                crypto_init_wait(&sw_ctx_rx->async_wait);
2346                spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2347                crypto_info = &ctx->crypto_recv.info;
2348                cctx = &ctx->rx;
2349                skb_queue_head_init(&sw_ctx_rx->rx_list);
2350                aead = &sw_ctx_rx->aead_recv;
2351        }
2352
2353        switch (crypto_info->cipher_type) {
2354        case TLS_CIPHER_AES_GCM_128: {
2355                nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2356                tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2357                iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2358                iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2359                rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2360                rec_seq =
2361                 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2362                gcm_128_info =
2363                        (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2364                keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2365                key = gcm_128_info->key;
2366                salt = gcm_128_info->salt;
2367                salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2368                cipher_name = "gcm(aes)";
2369                break;
2370        }
2371        case TLS_CIPHER_AES_GCM_256: {
2372                nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2373                tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2374                iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2375                iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2376                rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2377                rec_seq =
2378                 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2379                gcm_256_info =
2380                        (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2381                keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2382                key = gcm_256_info->key;
2383                salt = gcm_256_info->salt;
2384                salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2385                cipher_name = "gcm(aes)";
2386                break;
2387        }
2388        case TLS_CIPHER_AES_CCM_128: {
2389                nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2390                tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2391                iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2392                iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2393                rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2394                rec_seq =
2395                ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2396                ccm_128_info =
2397                (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2398                keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2399                key = ccm_128_info->key;
2400                salt = ccm_128_info->salt;
2401                salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2402                cipher_name = "ccm(aes)";
2403                break;
2404        }
2405        default:
2406                rc = -EINVAL;
2407                goto free_priv;
2408        }
2409
2410        /* Sanity-check the sizes for stack allocations. */
2411        if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2412            rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2413                rc = -EINVAL;
2414                goto free_priv;
2415        }
2416
2417        if (crypto_info->version == TLS_1_3_VERSION) {
2418                nonce_size = 0;
2419                prot->aad_size = TLS_HEADER_SIZE;
2420                prot->tail_size = 1;
2421        } else {
2422                prot->aad_size = TLS_AAD_SPACE_SIZE;
2423                prot->tail_size = 0;
2424        }
2425
2426        prot->version = crypto_info->version;
2427        prot->cipher_type = crypto_info->cipher_type;
2428        prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2429        prot->tag_size = tag_size;
2430        prot->overhead_size = prot->prepend_size +
2431                              prot->tag_size + prot->tail_size;
2432        prot->iv_size = iv_size;
2433        prot->salt_size = salt_size;
2434        cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2435        if (!cctx->iv) {
2436                rc = -ENOMEM;
2437                goto free_priv;
2438        }
2439        /* Note: 128 & 256 bit salt are the same size */
2440        prot->rec_seq_size = rec_seq_size;
2441        memcpy(cctx->iv, salt, salt_size);
2442        memcpy(cctx->iv + salt_size, iv, iv_size);
2443        cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2444        if (!cctx->rec_seq) {
2445                rc = -ENOMEM;
2446                goto free_iv;
2447        }
2448
2449        if (!*aead) {
2450                *aead = crypto_alloc_aead(cipher_name, 0, 0);
2451                if (IS_ERR(*aead)) {
2452                        rc = PTR_ERR(*aead);
2453                        *aead = NULL;
2454                        goto free_rec_seq;
2455                }
2456        }
2457
2458        ctx->push_pending_record = tls_sw_push_pending_record;
2459
2460        rc = crypto_aead_setkey(*aead, key, keysize);
2461
2462        if (rc)
2463                goto free_aead;
2464
2465        rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2466        if (rc)
2467                goto free_aead;
2468
2469        if (sw_ctx_rx) {
2470                tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2471
2472                if (crypto_info->version == TLS_1_3_VERSION)
2473                        sw_ctx_rx->async_capable = 0;
2474                else
2475                        sw_ctx_rx->async_capable =
2476                                !!(tfm->__crt_alg->cra_flags &
2477                                   CRYPTO_ALG_ASYNC);
2478
2479                /* Set up strparser */
2480                memset(&cb, 0, sizeof(cb));
2481                cb.rcv_msg = tls_queue;
2482                cb.parse_msg = tls_read_size;
2483
2484                strp_init(&sw_ctx_rx->strp, sk, &cb);
2485        }
2486
2487        goto out;
2488
2489free_aead:
2490        crypto_free_aead(*aead);
2491        *aead = NULL;
2492free_rec_seq:
2493        kfree(cctx->rec_seq);
2494        cctx->rec_seq = NULL;
2495free_iv:
2496        kfree(cctx->iv);
2497        cctx->iv = NULL;
2498free_priv:
2499        if (tx) {
2500                kfree(ctx->priv_ctx_tx);
2501                ctx->priv_ctx_tx = NULL;
2502        } else {
2503                kfree(ctx->priv_ctx_rx);
2504                ctx->priv_ctx_rx = NULL;
2505        }
2506out:
2507        return rc;
2508}
2509