linux/net/vmw_vsock/af_vsock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VMware vSockets Driver
   4 *
   5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
   6 */
   7
   8/* Implementation notes:
   9 *
  10 * - There are two kinds of sockets: those created by user action (such as
  11 * calling socket(2)) and those created by incoming connection request packets.
  12 *
  13 * - There are two "global" tables, one for bound sockets (sockets that have
  14 * specified an address that they are responsible for) and one for connected
  15 * sockets (sockets that have established a connection with another socket).
  16 * These tables are "global" in that all sockets on the system are placed
  17 * within them. - Note, though, that the bound table contains an extra entry
  18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
  19 * that list. The bound table is used solely for lookup of sockets when packets
  20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
  21 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
  22 * sockets out of the bound hash buckets will reduce the chance of collisions
  23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
  24 * socket type in the hash table lookups.
  25 *
  26 * - Sockets created by user action will either be "client" sockets that
  27 * initiate a connection or "server" sockets that listen for connections; we do
  28 * not support simultaneous connects (two "client" sockets connecting).
  29 *
  30 * - "Server" sockets are referred to as listener sockets throughout this
  31 * implementation because they are in the TCP_LISTEN state.  When a
  32 * connection request is received (the second kind of socket mentioned above),
  33 * we create a new socket and refer to it as a pending socket.  These pending
  34 * sockets are placed on the pending connection list of the listener socket.
  35 * When future packets are received for the address the listener socket is
  36 * bound to, we check if the source of the packet is from one that has an
  37 * existing pending connection.  If it does, we process the packet for the
  38 * pending socket.  When that socket reaches the connected state, it is removed
  39 * from the listener socket's pending list and enqueued in the listener
  40 * socket's accept queue.  Callers of accept(2) will accept connected sockets
  41 * from the listener socket's accept queue.  If the socket cannot be accepted
  42 * for some reason then it is marked rejected.  Once the connection is
  43 * accepted, it is owned by the user process and the responsibility for cleanup
  44 * falls with that user process.
  45 *
  46 * - It is possible that these pending sockets will never reach the connected
  47 * state; in fact, we may never receive another packet after the connection
  48 * request.  Because of this, we must schedule a cleanup function to run in the
  49 * future, after some amount of time passes where a connection should have been
  50 * established.  This function ensures that the socket is off all lists so it
  51 * cannot be retrieved, then drops all references to the socket so it is cleaned
  52 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
  53 * function will also cleanup rejected sockets, those that reach the connected
  54 * state but leave it before they have been accepted.
  55 *
  56 * - Lock ordering for pending or accept queue sockets is:
  57 *
  58 *     lock_sock(listener);
  59 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
  60 *
  61 * Using explicit nested locking keeps lockdep happy since normally only one
  62 * lock of a given class may be taken at a time.
  63 *
  64 * - Sockets created by user action will be cleaned up when the user process
  65 * calls close(2), causing our release implementation to be called. Our release
  66 * implementation will perform some cleanup then drop the last reference so our
  67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
  68 * perform additional cleanup that's common for both types of sockets.
  69 *
  70 * - A socket's reference count is what ensures that the structure won't be
  71 * freed.  Each entry in a list (such as the "global" bound and connected tables
  72 * and the listener socket's pending list and connected queue) ensures a
  73 * reference.  When we defer work until process context and pass a socket as our
  74 * argument, we must ensure the reference count is increased to ensure the
  75 * socket isn't freed before the function is run; the deferred function will
  76 * then drop the reference.
  77 *
  78 * - sk->sk_state uses the TCP state constants because they are widely used by
  79 * other address families and exposed to userspace tools like ss(8):
  80 *
  81 *   TCP_CLOSE - unconnected
  82 *   TCP_SYN_SENT - connecting
  83 *   TCP_ESTABLISHED - connected
  84 *   TCP_CLOSING - disconnecting
  85 *   TCP_LISTEN - listening
  86 */
  87
  88#include <linux/types.h>
  89#include <linux/bitops.h>
  90#include <linux/cred.h>
  91#include <linux/init.h>
  92#include <linux/io.h>
  93#include <linux/kernel.h>
  94#include <linux/sched/signal.h>
  95#include <linux/kmod.h>
  96#include <linux/list.h>
  97#include <linux/miscdevice.h>
  98#include <linux/module.h>
  99#include <linux/mutex.h>
 100#include <linux/net.h>
 101#include <linux/poll.h>
 102#include <linux/random.h>
 103#include <linux/skbuff.h>
 104#include <linux/smp.h>
 105#include <linux/socket.h>
 106#include <linux/stddef.h>
 107#include <linux/unistd.h>
 108#include <linux/wait.h>
 109#include <linux/workqueue.h>
 110#include <net/sock.h>
 111#include <net/af_vsock.h>
 112
 113static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
 114static void vsock_sk_destruct(struct sock *sk);
 115static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
 116
 117/* Protocol family. */
 118static struct proto vsock_proto = {
 119        .name = "AF_VSOCK",
 120        .owner = THIS_MODULE,
 121        .obj_size = sizeof(struct vsock_sock),
 122};
 123
 124/* The default peer timeout indicates how long we will wait for a peer response
 125 * to a control message.
 126 */
 127#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
 128
 129#define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
 130#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
 131#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
 132
 133/* Transport used for host->guest communication */
 134static const struct vsock_transport *transport_h2g;
 135/* Transport used for guest->host communication */
 136static const struct vsock_transport *transport_g2h;
 137/* Transport used for DGRAM communication */
 138static const struct vsock_transport *transport_dgram;
 139/* Transport used for local communication */
 140static const struct vsock_transport *transport_local;
 141static DEFINE_MUTEX(vsock_register_mutex);
 142
 143/**** UTILS ****/
 144
 145/* Each bound VSocket is stored in the bind hash table and each connected
 146 * VSocket is stored in the connected hash table.
 147 *
 148 * Unbound sockets are all put on the same list attached to the end of the hash
 149 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
 150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
 151 * represents the list that addr hashes to).
 152 *
 153 * Specifically, we initialize the vsock_bind_table array to a size of
 154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
 155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
 156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
 157 * mods with VSOCK_HASH_SIZE to ensure this.
 158 */
 159#define MAX_PORT_RETRIES        24
 160
 161#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
 162#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
 163#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
 164
 165/* XXX This can probably be implemented in a better way. */
 166#define VSOCK_CONN_HASH(src, dst)                               \
 167        (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
 168#define vsock_connected_sockets(src, dst)               \
 169        (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
 170#define vsock_connected_sockets_vsk(vsk)                                \
 171        vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
 172
 173struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
 174EXPORT_SYMBOL_GPL(vsock_bind_table);
 175struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
 176EXPORT_SYMBOL_GPL(vsock_connected_table);
 177DEFINE_SPINLOCK(vsock_table_lock);
 178EXPORT_SYMBOL_GPL(vsock_table_lock);
 179
 180/* Autobind this socket to the local address if necessary. */
 181static int vsock_auto_bind(struct vsock_sock *vsk)
 182{
 183        struct sock *sk = sk_vsock(vsk);
 184        struct sockaddr_vm local_addr;
 185
 186        if (vsock_addr_bound(&vsk->local_addr))
 187                return 0;
 188        vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 189        return __vsock_bind(sk, &local_addr);
 190}
 191
 192static void vsock_init_tables(void)
 193{
 194        int i;
 195
 196        for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
 197                INIT_LIST_HEAD(&vsock_bind_table[i]);
 198
 199        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
 200                INIT_LIST_HEAD(&vsock_connected_table[i]);
 201}
 202
 203static void __vsock_insert_bound(struct list_head *list,
 204                                 struct vsock_sock *vsk)
 205{
 206        sock_hold(&vsk->sk);
 207        list_add(&vsk->bound_table, list);
 208}
 209
 210static void __vsock_insert_connected(struct list_head *list,
 211                                     struct vsock_sock *vsk)
 212{
 213        sock_hold(&vsk->sk);
 214        list_add(&vsk->connected_table, list);
 215}
 216
 217static void __vsock_remove_bound(struct vsock_sock *vsk)
 218{
 219        list_del_init(&vsk->bound_table);
 220        sock_put(&vsk->sk);
 221}
 222
 223static void __vsock_remove_connected(struct vsock_sock *vsk)
 224{
 225        list_del_init(&vsk->connected_table);
 226        sock_put(&vsk->sk);
 227}
 228
 229static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
 230{
 231        struct vsock_sock *vsk;
 232
 233        list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
 234                if (vsock_addr_equals_addr(addr, &vsk->local_addr))
 235                        return sk_vsock(vsk);
 236
 237                if (addr->svm_port == vsk->local_addr.svm_port &&
 238                    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
 239                     addr->svm_cid == VMADDR_CID_ANY))
 240                        return sk_vsock(vsk);
 241        }
 242
 243        return NULL;
 244}
 245
 246static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
 247                                                  struct sockaddr_vm *dst)
 248{
 249        struct vsock_sock *vsk;
 250
 251        list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
 252                            connected_table) {
 253                if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
 254                    dst->svm_port == vsk->local_addr.svm_port) {
 255                        return sk_vsock(vsk);
 256                }
 257        }
 258
 259        return NULL;
 260}
 261
 262static void vsock_insert_unbound(struct vsock_sock *vsk)
 263{
 264        spin_lock_bh(&vsock_table_lock);
 265        __vsock_insert_bound(vsock_unbound_sockets, vsk);
 266        spin_unlock_bh(&vsock_table_lock);
 267}
 268
 269void vsock_insert_connected(struct vsock_sock *vsk)
 270{
 271        struct list_head *list = vsock_connected_sockets(
 272                &vsk->remote_addr, &vsk->local_addr);
 273
 274        spin_lock_bh(&vsock_table_lock);
 275        __vsock_insert_connected(list, vsk);
 276        spin_unlock_bh(&vsock_table_lock);
 277}
 278EXPORT_SYMBOL_GPL(vsock_insert_connected);
 279
 280void vsock_remove_bound(struct vsock_sock *vsk)
 281{
 282        spin_lock_bh(&vsock_table_lock);
 283        if (__vsock_in_bound_table(vsk))
 284                __vsock_remove_bound(vsk);
 285        spin_unlock_bh(&vsock_table_lock);
 286}
 287EXPORT_SYMBOL_GPL(vsock_remove_bound);
 288
 289void vsock_remove_connected(struct vsock_sock *vsk)
 290{
 291        spin_lock_bh(&vsock_table_lock);
 292        if (__vsock_in_connected_table(vsk))
 293                __vsock_remove_connected(vsk);
 294        spin_unlock_bh(&vsock_table_lock);
 295}
 296EXPORT_SYMBOL_GPL(vsock_remove_connected);
 297
 298struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
 299{
 300        struct sock *sk;
 301
 302        spin_lock_bh(&vsock_table_lock);
 303        sk = __vsock_find_bound_socket(addr);
 304        if (sk)
 305                sock_hold(sk);
 306
 307        spin_unlock_bh(&vsock_table_lock);
 308
 309        return sk;
 310}
 311EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
 312
 313struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
 314                                         struct sockaddr_vm *dst)
 315{
 316        struct sock *sk;
 317
 318        spin_lock_bh(&vsock_table_lock);
 319        sk = __vsock_find_connected_socket(src, dst);
 320        if (sk)
 321                sock_hold(sk);
 322
 323        spin_unlock_bh(&vsock_table_lock);
 324
 325        return sk;
 326}
 327EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
 328
 329void vsock_remove_sock(struct vsock_sock *vsk)
 330{
 331        vsock_remove_bound(vsk);
 332        vsock_remove_connected(vsk);
 333}
 334EXPORT_SYMBOL_GPL(vsock_remove_sock);
 335
 336void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
 337{
 338        int i;
 339
 340        spin_lock_bh(&vsock_table_lock);
 341
 342        for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
 343                struct vsock_sock *vsk;
 344                list_for_each_entry(vsk, &vsock_connected_table[i],
 345                                    connected_table)
 346                        fn(sk_vsock(vsk));
 347        }
 348
 349        spin_unlock_bh(&vsock_table_lock);
 350}
 351EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
 352
 353void vsock_add_pending(struct sock *listener, struct sock *pending)
 354{
 355        struct vsock_sock *vlistener;
 356        struct vsock_sock *vpending;
 357
 358        vlistener = vsock_sk(listener);
 359        vpending = vsock_sk(pending);
 360
 361        sock_hold(pending);
 362        sock_hold(listener);
 363        list_add_tail(&vpending->pending_links, &vlistener->pending_links);
 364}
 365EXPORT_SYMBOL_GPL(vsock_add_pending);
 366
 367void vsock_remove_pending(struct sock *listener, struct sock *pending)
 368{
 369        struct vsock_sock *vpending = vsock_sk(pending);
 370
 371        list_del_init(&vpending->pending_links);
 372        sock_put(listener);
 373        sock_put(pending);
 374}
 375EXPORT_SYMBOL_GPL(vsock_remove_pending);
 376
 377void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
 378{
 379        struct vsock_sock *vlistener;
 380        struct vsock_sock *vconnected;
 381
 382        vlistener = vsock_sk(listener);
 383        vconnected = vsock_sk(connected);
 384
 385        sock_hold(connected);
 386        sock_hold(listener);
 387        list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
 388}
 389EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
 390
 391static bool vsock_use_local_transport(unsigned int remote_cid)
 392{
 393        if (!transport_local)
 394                return false;
 395
 396        if (remote_cid == VMADDR_CID_LOCAL)
 397                return true;
 398
 399        if (transport_g2h) {
 400                return remote_cid == transport_g2h->get_local_cid();
 401        } else {
 402                return remote_cid == VMADDR_CID_HOST;
 403        }
 404}
 405
 406static void vsock_deassign_transport(struct vsock_sock *vsk)
 407{
 408        if (!vsk->transport)
 409                return;
 410
 411        vsk->transport->destruct(vsk);
 412        module_put(vsk->transport->module);
 413        vsk->transport = NULL;
 414}
 415
 416/* Assign a transport to a socket and call the .init transport callback.
 417 *
 418 * Note: for stream socket this must be called when vsk->remote_addr is set
 419 * (e.g. during the connect() or when a connection request on a listener
 420 * socket is received).
 421 * The vsk->remote_addr is used to decide which transport to use:
 422 *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
 423 *    g2h is not loaded, will use local transport;
 424 *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
 425 *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
 426 */
 427int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
 428{
 429        const struct vsock_transport *new_transport;
 430        struct sock *sk = sk_vsock(vsk);
 431        unsigned int remote_cid = vsk->remote_addr.svm_cid;
 432        int ret;
 433
 434        switch (sk->sk_type) {
 435        case SOCK_DGRAM:
 436                new_transport = transport_dgram;
 437                break;
 438        case SOCK_STREAM:
 439                if (vsock_use_local_transport(remote_cid))
 440                        new_transport = transport_local;
 441                else if (remote_cid <= VMADDR_CID_HOST)
 442                        new_transport = transport_g2h;
 443                else
 444                        new_transport = transport_h2g;
 445                break;
 446        default:
 447                return -ESOCKTNOSUPPORT;
 448        }
 449
 450        if (vsk->transport) {
 451                if (vsk->transport == new_transport)
 452                        return 0;
 453
 454                /* transport->release() must be called with sock lock acquired.
 455                 * This path can only be taken during vsock_stream_connect(),
 456                 * where we have already held the sock lock.
 457                 * In the other cases, this function is called on a new socket
 458                 * which is not assigned to any transport.
 459                 */
 460                vsk->transport->release(vsk);
 461                vsock_deassign_transport(vsk);
 462        }
 463
 464        /* We increase the module refcnt to prevent the transport unloading
 465         * while there are open sockets assigned to it.
 466         */
 467        if (!new_transport || !try_module_get(new_transport->module))
 468                return -ENODEV;
 469
 470        ret = new_transport->init(vsk, psk);
 471        if (ret) {
 472                module_put(new_transport->module);
 473                return ret;
 474        }
 475
 476        vsk->transport = new_transport;
 477
 478        return 0;
 479}
 480EXPORT_SYMBOL_GPL(vsock_assign_transport);
 481
 482bool vsock_find_cid(unsigned int cid)
 483{
 484        if (transport_g2h && cid == transport_g2h->get_local_cid())
 485                return true;
 486
 487        if (transport_h2g && cid == VMADDR_CID_HOST)
 488                return true;
 489
 490        if (transport_local && cid == VMADDR_CID_LOCAL)
 491                return true;
 492
 493        return false;
 494}
 495EXPORT_SYMBOL_GPL(vsock_find_cid);
 496
 497static struct sock *vsock_dequeue_accept(struct sock *listener)
 498{
 499        struct vsock_sock *vlistener;
 500        struct vsock_sock *vconnected;
 501
 502        vlistener = vsock_sk(listener);
 503
 504        if (list_empty(&vlistener->accept_queue))
 505                return NULL;
 506
 507        vconnected = list_entry(vlistener->accept_queue.next,
 508                                struct vsock_sock, accept_queue);
 509
 510        list_del_init(&vconnected->accept_queue);
 511        sock_put(listener);
 512        /* The caller will need a reference on the connected socket so we let
 513         * it call sock_put().
 514         */
 515
 516        return sk_vsock(vconnected);
 517}
 518
 519static bool vsock_is_accept_queue_empty(struct sock *sk)
 520{
 521        struct vsock_sock *vsk = vsock_sk(sk);
 522        return list_empty(&vsk->accept_queue);
 523}
 524
 525static bool vsock_is_pending(struct sock *sk)
 526{
 527        struct vsock_sock *vsk = vsock_sk(sk);
 528        return !list_empty(&vsk->pending_links);
 529}
 530
 531static int vsock_send_shutdown(struct sock *sk, int mode)
 532{
 533        struct vsock_sock *vsk = vsock_sk(sk);
 534
 535        if (!vsk->transport)
 536                return -ENODEV;
 537
 538        return vsk->transport->shutdown(vsk, mode);
 539}
 540
 541static void vsock_pending_work(struct work_struct *work)
 542{
 543        struct sock *sk;
 544        struct sock *listener;
 545        struct vsock_sock *vsk;
 546        bool cleanup;
 547
 548        vsk = container_of(work, struct vsock_sock, pending_work.work);
 549        sk = sk_vsock(vsk);
 550        listener = vsk->listener;
 551        cleanup = true;
 552
 553        lock_sock(listener);
 554        lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
 555
 556        if (vsock_is_pending(sk)) {
 557                vsock_remove_pending(listener, sk);
 558
 559                sk_acceptq_removed(listener);
 560        } else if (!vsk->rejected) {
 561                /* We are not on the pending list and accept() did not reject
 562                 * us, so we must have been accepted by our user process.  We
 563                 * just need to drop our references to the sockets and be on
 564                 * our way.
 565                 */
 566                cleanup = false;
 567                goto out;
 568        }
 569
 570        /* We need to remove ourself from the global connected sockets list so
 571         * incoming packets can't find this socket, and to reduce the reference
 572         * count.
 573         */
 574        vsock_remove_connected(vsk);
 575
 576        sk->sk_state = TCP_CLOSE;
 577
 578out:
 579        release_sock(sk);
 580        release_sock(listener);
 581        if (cleanup)
 582                sock_put(sk);
 583
 584        sock_put(sk);
 585        sock_put(listener);
 586}
 587
 588/**** SOCKET OPERATIONS ****/
 589
 590static int __vsock_bind_stream(struct vsock_sock *vsk,
 591                               struct sockaddr_vm *addr)
 592{
 593        static u32 port;
 594        struct sockaddr_vm new_addr;
 595
 596        if (!port)
 597                port = LAST_RESERVED_PORT + 1 +
 598                        prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
 599
 600        vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
 601
 602        if (addr->svm_port == VMADDR_PORT_ANY) {
 603                bool found = false;
 604                unsigned int i;
 605
 606                for (i = 0; i < MAX_PORT_RETRIES; i++) {
 607                        if (port <= LAST_RESERVED_PORT)
 608                                port = LAST_RESERVED_PORT + 1;
 609
 610                        new_addr.svm_port = port++;
 611
 612                        if (!__vsock_find_bound_socket(&new_addr)) {
 613                                found = true;
 614                                break;
 615                        }
 616                }
 617
 618                if (!found)
 619                        return -EADDRNOTAVAIL;
 620        } else {
 621                /* If port is in reserved range, ensure caller
 622                 * has necessary privileges.
 623                 */
 624                if (addr->svm_port <= LAST_RESERVED_PORT &&
 625                    !capable(CAP_NET_BIND_SERVICE)) {
 626                        return -EACCES;
 627                }
 628
 629                if (__vsock_find_bound_socket(&new_addr))
 630                        return -EADDRINUSE;
 631        }
 632
 633        vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
 634
 635        /* Remove stream sockets from the unbound list and add them to the hash
 636         * table for easy lookup by its address.  The unbound list is simply an
 637         * extra entry at the end of the hash table, a trick used by AF_UNIX.
 638         */
 639        __vsock_remove_bound(vsk);
 640        __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
 641
 642        return 0;
 643}
 644
 645static int __vsock_bind_dgram(struct vsock_sock *vsk,
 646                              struct sockaddr_vm *addr)
 647{
 648        return vsk->transport->dgram_bind(vsk, addr);
 649}
 650
 651static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
 652{
 653        struct vsock_sock *vsk = vsock_sk(sk);
 654        int retval;
 655
 656        /* First ensure this socket isn't already bound. */
 657        if (vsock_addr_bound(&vsk->local_addr))
 658                return -EINVAL;
 659
 660        /* Now bind to the provided address or select appropriate values if
 661         * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
 662         * like AF_INET prevents binding to a non-local IP address (in most
 663         * cases), we only allow binding to a local CID.
 664         */
 665        if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
 666                return -EADDRNOTAVAIL;
 667
 668        switch (sk->sk_socket->type) {
 669        case SOCK_STREAM:
 670                spin_lock_bh(&vsock_table_lock);
 671                retval = __vsock_bind_stream(vsk, addr);
 672                spin_unlock_bh(&vsock_table_lock);
 673                break;
 674
 675        case SOCK_DGRAM:
 676                retval = __vsock_bind_dgram(vsk, addr);
 677                break;
 678
 679        default:
 680                retval = -EINVAL;
 681                break;
 682        }
 683
 684        return retval;
 685}
 686
 687static void vsock_connect_timeout(struct work_struct *work);
 688
 689static struct sock *__vsock_create(struct net *net,
 690                                   struct socket *sock,
 691                                   struct sock *parent,
 692                                   gfp_t priority,
 693                                   unsigned short type,
 694                                   int kern)
 695{
 696        struct sock *sk;
 697        struct vsock_sock *psk;
 698        struct vsock_sock *vsk;
 699
 700        sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
 701        if (!sk)
 702                return NULL;
 703
 704        sock_init_data(sock, sk);
 705
 706        /* sk->sk_type is normally set in sock_init_data, but only if sock is
 707         * non-NULL. We make sure that our sockets always have a type by
 708         * setting it here if needed.
 709         */
 710        if (!sock)
 711                sk->sk_type = type;
 712
 713        vsk = vsock_sk(sk);
 714        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 715        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 716
 717        sk->sk_destruct = vsock_sk_destruct;
 718        sk->sk_backlog_rcv = vsock_queue_rcv_skb;
 719        sock_reset_flag(sk, SOCK_DONE);
 720
 721        INIT_LIST_HEAD(&vsk->bound_table);
 722        INIT_LIST_HEAD(&vsk->connected_table);
 723        vsk->listener = NULL;
 724        INIT_LIST_HEAD(&vsk->pending_links);
 725        INIT_LIST_HEAD(&vsk->accept_queue);
 726        vsk->rejected = false;
 727        vsk->sent_request = false;
 728        vsk->ignore_connecting_rst = false;
 729        vsk->peer_shutdown = 0;
 730        INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
 731        INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
 732
 733        psk = parent ? vsock_sk(parent) : NULL;
 734        if (parent) {
 735                vsk->trusted = psk->trusted;
 736                vsk->owner = get_cred(psk->owner);
 737                vsk->connect_timeout = psk->connect_timeout;
 738                vsk->buffer_size = psk->buffer_size;
 739                vsk->buffer_min_size = psk->buffer_min_size;
 740                vsk->buffer_max_size = psk->buffer_max_size;
 741        } else {
 742                vsk->trusted = capable(CAP_NET_ADMIN);
 743                vsk->owner = get_current_cred();
 744                vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
 745                vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
 746                vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
 747                vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
 748        }
 749
 750        return sk;
 751}
 752
 753static void __vsock_release(struct sock *sk, int level)
 754{
 755        if (sk) {
 756                struct sock *pending;
 757                struct vsock_sock *vsk;
 758
 759                vsk = vsock_sk(sk);
 760                pending = NULL; /* Compiler warning. */
 761
 762                /* When "level" is SINGLE_DEPTH_NESTING, use the nested
 763                 * version to avoid the warning "possible recursive locking
 764                 * detected". When "level" is 0, lock_sock_nested(sk, level)
 765                 * is the same as lock_sock(sk).
 766                 */
 767                lock_sock_nested(sk, level);
 768
 769                if (vsk->transport)
 770                        vsk->transport->release(vsk);
 771                else if (sk->sk_type == SOCK_STREAM)
 772                        vsock_remove_sock(vsk);
 773
 774                sock_orphan(sk);
 775                sk->sk_shutdown = SHUTDOWN_MASK;
 776
 777                skb_queue_purge(&sk->sk_receive_queue);
 778
 779                /* Clean up any sockets that never were accepted. */
 780                while ((pending = vsock_dequeue_accept(sk)) != NULL) {
 781                        __vsock_release(pending, SINGLE_DEPTH_NESTING);
 782                        sock_put(pending);
 783                }
 784
 785                release_sock(sk);
 786                sock_put(sk);
 787        }
 788}
 789
 790static void vsock_sk_destruct(struct sock *sk)
 791{
 792        struct vsock_sock *vsk = vsock_sk(sk);
 793
 794        vsock_deassign_transport(vsk);
 795
 796        /* When clearing these addresses, there's no need to set the family and
 797         * possibly register the address family with the kernel.
 798         */
 799        vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 800        vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
 801
 802        put_cred(vsk->owner);
 803}
 804
 805static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 806{
 807        int err;
 808
 809        err = sock_queue_rcv_skb(sk, skb);
 810        if (err)
 811                kfree_skb(skb);
 812
 813        return err;
 814}
 815
 816struct sock *vsock_create_connected(struct sock *parent)
 817{
 818        return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
 819                              parent->sk_type, 0);
 820}
 821EXPORT_SYMBOL_GPL(vsock_create_connected);
 822
 823s64 vsock_stream_has_data(struct vsock_sock *vsk)
 824{
 825        return vsk->transport->stream_has_data(vsk);
 826}
 827EXPORT_SYMBOL_GPL(vsock_stream_has_data);
 828
 829s64 vsock_stream_has_space(struct vsock_sock *vsk)
 830{
 831        return vsk->transport->stream_has_space(vsk);
 832}
 833EXPORT_SYMBOL_GPL(vsock_stream_has_space);
 834
 835static int vsock_release(struct socket *sock)
 836{
 837        __vsock_release(sock->sk, 0);
 838        sock->sk = NULL;
 839        sock->state = SS_FREE;
 840
 841        return 0;
 842}
 843
 844static int
 845vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
 846{
 847        int err;
 848        struct sock *sk;
 849        struct sockaddr_vm *vm_addr;
 850
 851        sk = sock->sk;
 852
 853        if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
 854                return -EINVAL;
 855
 856        lock_sock(sk);
 857        err = __vsock_bind(sk, vm_addr);
 858        release_sock(sk);
 859
 860        return err;
 861}
 862
 863static int vsock_getname(struct socket *sock,
 864                         struct sockaddr *addr, int peer)
 865{
 866        int err;
 867        struct sock *sk;
 868        struct vsock_sock *vsk;
 869        struct sockaddr_vm *vm_addr;
 870
 871        sk = sock->sk;
 872        vsk = vsock_sk(sk);
 873        err = 0;
 874
 875        lock_sock(sk);
 876
 877        if (peer) {
 878                if (sock->state != SS_CONNECTED) {
 879                        err = -ENOTCONN;
 880                        goto out;
 881                }
 882                vm_addr = &vsk->remote_addr;
 883        } else {
 884                vm_addr = &vsk->local_addr;
 885        }
 886
 887        if (!vm_addr) {
 888                err = -EINVAL;
 889                goto out;
 890        }
 891
 892        /* sys_getsockname() and sys_getpeername() pass us a
 893         * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
 894         * that macro is defined in socket.c instead of .h, so we hardcode its
 895         * value here.
 896         */
 897        BUILD_BUG_ON(sizeof(*vm_addr) > 128);
 898        memcpy(addr, vm_addr, sizeof(*vm_addr));
 899        err = sizeof(*vm_addr);
 900
 901out:
 902        release_sock(sk);
 903        return err;
 904}
 905
 906static int vsock_shutdown(struct socket *sock, int mode)
 907{
 908        int err;
 909        struct sock *sk;
 910
 911        /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
 912         * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
 913         * here like the other address families do.  Note also that the
 914         * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
 915         * which is what we want.
 916         */
 917        mode++;
 918
 919        if ((mode & ~SHUTDOWN_MASK) || !mode)
 920                return -EINVAL;
 921
 922        /* If this is a STREAM socket and it is not connected then bail out
 923         * immediately.  If it is a DGRAM socket then we must first kick the
 924         * socket so that it wakes up from any sleeping calls, for example
 925         * recv(), and then afterwards return the error.
 926         */
 927
 928        sk = sock->sk;
 929        if (sock->state == SS_UNCONNECTED) {
 930                err = -ENOTCONN;
 931                if (sk->sk_type == SOCK_STREAM)
 932                        return err;
 933        } else {
 934                sock->state = SS_DISCONNECTING;
 935                err = 0;
 936        }
 937
 938        /* Receive and send shutdowns are treated alike. */
 939        mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
 940        if (mode) {
 941                lock_sock(sk);
 942                sk->sk_shutdown |= mode;
 943                sk->sk_state_change(sk);
 944                release_sock(sk);
 945
 946                if (sk->sk_type == SOCK_STREAM) {
 947                        sock_reset_flag(sk, SOCK_DONE);
 948                        vsock_send_shutdown(sk, mode);
 949                }
 950        }
 951
 952        return err;
 953}
 954
 955static __poll_t vsock_poll(struct file *file, struct socket *sock,
 956                               poll_table *wait)
 957{
 958        struct sock *sk;
 959        __poll_t mask;
 960        struct vsock_sock *vsk;
 961
 962        sk = sock->sk;
 963        vsk = vsock_sk(sk);
 964
 965        poll_wait(file, sk_sleep(sk), wait);
 966        mask = 0;
 967
 968        if (sk->sk_err)
 969                /* Signify that there has been an error on this socket. */
 970                mask |= EPOLLERR;
 971
 972        /* INET sockets treat local write shutdown and peer write shutdown as a
 973         * case of EPOLLHUP set.
 974         */
 975        if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
 976            ((sk->sk_shutdown & SEND_SHUTDOWN) &&
 977             (vsk->peer_shutdown & SEND_SHUTDOWN))) {
 978                mask |= EPOLLHUP;
 979        }
 980
 981        if (sk->sk_shutdown & RCV_SHUTDOWN ||
 982            vsk->peer_shutdown & SEND_SHUTDOWN) {
 983                mask |= EPOLLRDHUP;
 984        }
 985
 986        if (sock->type == SOCK_DGRAM) {
 987                /* For datagram sockets we can read if there is something in
 988                 * the queue and write as long as the socket isn't shutdown for
 989                 * sending.
 990                 */
 991                if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
 992                    (sk->sk_shutdown & RCV_SHUTDOWN)) {
 993                        mask |= EPOLLIN | EPOLLRDNORM;
 994                }
 995
 996                if (!(sk->sk_shutdown & SEND_SHUTDOWN))
 997                        mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
 998
 999        } else if (sock->type == SOCK_STREAM) {
1000                const struct vsock_transport *transport = vsk->transport;
1001                lock_sock(sk);
1002
1003                /* Listening sockets that have connections in their accept
1004                 * queue can be read.
1005                 */
1006                if (sk->sk_state == TCP_LISTEN
1007                    && !vsock_is_accept_queue_empty(sk))
1008                        mask |= EPOLLIN | EPOLLRDNORM;
1009
1010                /* If there is something in the queue then we can read. */
1011                if (transport && transport->stream_is_active(vsk) &&
1012                    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1013                        bool data_ready_now = false;
1014                        int ret = transport->notify_poll_in(
1015                                        vsk, 1, &data_ready_now);
1016                        if (ret < 0) {
1017                                mask |= EPOLLERR;
1018                        } else {
1019                                if (data_ready_now)
1020                                        mask |= EPOLLIN | EPOLLRDNORM;
1021
1022                        }
1023                }
1024
1025                /* Sockets whose connections have been closed, reset, or
1026                 * terminated should also be considered read, and we check the
1027                 * shutdown flag for that.
1028                 */
1029                if (sk->sk_shutdown & RCV_SHUTDOWN ||
1030                    vsk->peer_shutdown & SEND_SHUTDOWN) {
1031                        mask |= EPOLLIN | EPOLLRDNORM;
1032                }
1033
1034                /* Connected sockets that can produce data can be written. */
1035                if (transport && sk->sk_state == TCP_ESTABLISHED) {
1036                        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1037                                bool space_avail_now = false;
1038                                int ret = transport->notify_poll_out(
1039                                                vsk, 1, &space_avail_now);
1040                                if (ret < 0) {
1041                                        mask |= EPOLLERR;
1042                                } else {
1043                                        if (space_avail_now)
1044                                                /* Remove EPOLLWRBAND since INET
1045                                                 * sockets are not setting it.
1046                                                 */
1047                                                mask |= EPOLLOUT | EPOLLWRNORM;
1048
1049                                }
1050                        }
1051                }
1052
1053                /* Simulate INET socket poll behaviors, which sets
1054                 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1055                 * but local send is not shutdown.
1056                 */
1057                if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1058                        if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1059                                mask |= EPOLLOUT | EPOLLWRNORM;
1060
1061                }
1062
1063                release_sock(sk);
1064        }
1065
1066        return mask;
1067}
1068
1069static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1070                               size_t len)
1071{
1072        int err;
1073        struct sock *sk;
1074        struct vsock_sock *vsk;
1075        struct sockaddr_vm *remote_addr;
1076        const struct vsock_transport *transport;
1077
1078        if (msg->msg_flags & MSG_OOB)
1079                return -EOPNOTSUPP;
1080
1081        /* For now, MSG_DONTWAIT is always assumed... */
1082        err = 0;
1083        sk = sock->sk;
1084        vsk = vsock_sk(sk);
1085        transport = vsk->transport;
1086
1087        lock_sock(sk);
1088
1089        err = vsock_auto_bind(vsk);
1090        if (err)
1091                goto out;
1092
1093
1094        /* If the provided message contains an address, use that.  Otherwise
1095         * fall back on the socket's remote handle (if it has been connected).
1096         */
1097        if (msg->msg_name &&
1098            vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1099                            &remote_addr) == 0) {
1100                /* Ensure this address is of the right type and is a valid
1101                 * destination.
1102                 */
1103
1104                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1105                        remote_addr->svm_cid = transport->get_local_cid();
1106
1107                if (!vsock_addr_bound(remote_addr)) {
1108                        err = -EINVAL;
1109                        goto out;
1110                }
1111        } else if (sock->state == SS_CONNECTED) {
1112                remote_addr = &vsk->remote_addr;
1113
1114                if (remote_addr->svm_cid == VMADDR_CID_ANY)
1115                        remote_addr->svm_cid = transport->get_local_cid();
1116
1117                /* XXX Should connect() or this function ensure remote_addr is
1118                 * bound?
1119                 */
1120                if (!vsock_addr_bound(&vsk->remote_addr)) {
1121                        err = -EINVAL;
1122                        goto out;
1123                }
1124        } else {
1125                err = -EINVAL;
1126                goto out;
1127        }
1128
1129        if (!transport->dgram_allow(remote_addr->svm_cid,
1130                                    remote_addr->svm_port)) {
1131                err = -EINVAL;
1132                goto out;
1133        }
1134
1135        err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1136
1137out:
1138        release_sock(sk);
1139        return err;
1140}
1141
1142static int vsock_dgram_connect(struct socket *sock,
1143                               struct sockaddr *addr, int addr_len, int flags)
1144{
1145        int err;
1146        struct sock *sk;
1147        struct vsock_sock *vsk;
1148        struct sockaddr_vm *remote_addr;
1149
1150        sk = sock->sk;
1151        vsk = vsock_sk(sk);
1152
1153        err = vsock_addr_cast(addr, addr_len, &remote_addr);
1154        if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1155                lock_sock(sk);
1156                vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1157                                VMADDR_PORT_ANY);
1158                sock->state = SS_UNCONNECTED;
1159                release_sock(sk);
1160                return 0;
1161        } else if (err != 0)
1162                return -EINVAL;
1163
1164        lock_sock(sk);
1165
1166        err = vsock_auto_bind(vsk);
1167        if (err)
1168                goto out;
1169
1170        if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1171                                         remote_addr->svm_port)) {
1172                err = -EINVAL;
1173                goto out;
1174        }
1175
1176        memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1177        sock->state = SS_CONNECTED;
1178
1179out:
1180        release_sock(sk);
1181        return err;
1182}
1183
1184static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1185                               size_t len, int flags)
1186{
1187        struct vsock_sock *vsk = vsock_sk(sock->sk);
1188
1189        return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1190}
1191
1192static const struct proto_ops vsock_dgram_ops = {
1193        .family = PF_VSOCK,
1194        .owner = THIS_MODULE,
1195        .release = vsock_release,
1196        .bind = vsock_bind,
1197        .connect = vsock_dgram_connect,
1198        .socketpair = sock_no_socketpair,
1199        .accept = sock_no_accept,
1200        .getname = vsock_getname,
1201        .poll = vsock_poll,
1202        .ioctl = sock_no_ioctl,
1203        .listen = sock_no_listen,
1204        .shutdown = vsock_shutdown,
1205        .sendmsg = vsock_dgram_sendmsg,
1206        .recvmsg = vsock_dgram_recvmsg,
1207        .mmap = sock_no_mmap,
1208        .sendpage = sock_no_sendpage,
1209};
1210
1211static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1212{
1213        const struct vsock_transport *transport = vsk->transport;
1214
1215        if (!transport->cancel_pkt)
1216                return -EOPNOTSUPP;
1217
1218        return transport->cancel_pkt(vsk);
1219}
1220
1221static void vsock_connect_timeout(struct work_struct *work)
1222{
1223        struct sock *sk;
1224        struct vsock_sock *vsk;
1225        int cancel = 0;
1226
1227        vsk = container_of(work, struct vsock_sock, connect_work.work);
1228        sk = sk_vsock(vsk);
1229
1230        lock_sock(sk);
1231        if (sk->sk_state == TCP_SYN_SENT &&
1232            (sk->sk_shutdown != SHUTDOWN_MASK)) {
1233                sk->sk_state = TCP_CLOSE;
1234                sk->sk_err = ETIMEDOUT;
1235                sk->sk_error_report(sk);
1236                cancel = 1;
1237        }
1238        release_sock(sk);
1239        if (cancel)
1240                vsock_transport_cancel_pkt(vsk);
1241
1242        sock_put(sk);
1243}
1244
1245static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1246                                int addr_len, int flags)
1247{
1248        int err;
1249        struct sock *sk;
1250        struct vsock_sock *vsk;
1251        const struct vsock_transport *transport;
1252        struct sockaddr_vm *remote_addr;
1253        long timeout;
1254        DEFINE_WAIT(wait);
1255
1256        err = 0;
1257        sk = sock->sk;
1258        vsk = vsock_sk(sk);
1259
1260        lock_sock(sk);
1261
1262        /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1263        switch (sock->state) {
1264        case SS_CONNECTED:
1265                err = -EISCONN;
1266                goto out;
1267        case SS_DISCONNECTING:
1268                err = -EINVAL;
1269                goto out;
1270        case SS_CONNECTING:
1271                /* This continues on so we can move sock into the SS_CONNECTED
1272                 * state once the connection has completed (at which point err
1273                 * will be set to zero also).  Otherwise, we will either wait
1274                 * for the connection or return -EALREADY should this be a
1275                 * non-blocking call.
1276                 */
1277                err = -EALREADY;
1278                break;
1279        default:
1280                if ((sk->sk_state == TCP_LISTEN) ||
1281                    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1282                        err = -EINVAL;
1283                        goto out;
1284                }
1285
1286                /* Set the remote address that we are connecting to. */
1287                memcpy(&vsk->remote_addr, remote_addr,
1288                       sizeof(vsk->remote_addr));
1289
1290                err = vsock_assign_transport(vsk, NULL);
1291                if (err)
1292                        goto out;
1293
1294                transport = vsk->transport;
1295
1296                /* The hypervisor and well-known contexts do not have socket
1297                 * endpoints.
1298                 */
1299                if (!transport ||
1300                    !transport->stream_allow(remote_addr->svm_cid,
1301                                             remote_addr->svm_port)) {
1302                        err = -ENETUNREACH;
1303                        goto out;
1304                }
1305
1306                err = vsock_auto_bind(vsk);
1307                if (err)
1308                        goto out;
1309
1310                sk->sk_state = TCP_SYN_SENT;
1311
1312                err = transport->connect(vsk);
1313                if (err < 0)
1314                        goto out;
1315
1316                /* Mark sock as connecting and set the error code to in
1317                 * progress in case this is a non-blocking connect.
1318                 */
1319                sock->state = SS_CONNECTING;
1320                err = -EINPROGRESS;
1321        }
1322
1323        /* The receive path will handle all communication until we are able to
1324         * enter the connected state.  Here we wait for the connection to be
1325         * completed or a notification of an error.
1326         */
1327        timeout = vsk->connect_timeout;
1328        prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1329
1330        while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1331                if (flags & O_NONBLOCK) {
1332                        /* If we're not going to block, we schedule a timeout
1333                         * function to generate a timeout on the connection
1334                         * attempt, in case the peer doesn't respond in a
1335                         * timely manner. We hold on to the socket until the
1336                         * timeout fires.
1337                         */
1338                        sock_hold(sk);
1339                        schedule_delayed_work(&vsk->connect_work, timeout);
1340
1341                        /* Skip ahead to preserve error code set above. */
1342                        goto out_wait;
1343                }
1344
1345                release_sock(sk);
1346                timeout = schedule_timeout(timeout);
1347                lock_sock(sk);
1348
1349                if (signal_pending(current)) {
1350                        err = sock_intr_errno(timeout);
1351                        sk->sk_state = TCP_CLOSE;
1352                        sock->state = SS_UNCONNECTED;
1353                        vsock_transport_cancel_pkt(vsk);
1354                        goto out_wait;
1355                } else if (timeout == 0) {
1356                        err = -ETIMEDOUT;
1357                        sk->sk_state = TCP_CLOSE;
1358                        sock->state = SS_UNCONNECTED;
1359                        vsock_transport_cancel_pkt(vsk);
1360                        goto out_wait;
1361                }
1362
1363                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1364        }
1365
1366        if (sk->sk_err) {
1367                err = -sk->sk_err;
1368                sk->sk_state = TCP_CLOSE;
1369                sock->state = SS_UNCONNECTED;
1370        } else {
1371                err = 0;
1372        }
1373
1374out_wait:
1375        finish_wait(sk_sleep(sk), &wait);
1376out:
1377        release_sock(sk);
1378        return err;
1379}
1380
1381static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1382                        bool kern)
1383{
1384        struct sock *listener;
1385        int err;
1386        struct sock *connected;
1387        struct vsock_sock *vconnected;
1388        long timeout;
1389        DEFINE_WAIT(wait);
1390
1391        err = 0;
1392        listener = sock->sk;
1393
1394        lock_sock(listener);
1395
1396        if (sock->type != SOCK_STREAM) {
1397                err = -EOPNOTSUPP;
1398                goto out;
1399        }
1400
1401        if (listener->sk_state != TCP_LISTEN) {
1402                err = -EINVAL;
1403                goto out;
1404        }
1405
1406        /* Wait for children sockets to appear; these are the new sockets
1407         * created upon connection establishment.
1408         */
1409        timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1410        prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1411
1412        while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1413               listener->sk_err == 0) {
1414                release_sock(listener);
1415                timeout = schedule_timeout(timeout);
1416                finish_wait(sk_sleep(listener), &wait);
1417                lock_sock(listener);
1418
1419                if (signal_pending(current)) {
1420                        err = sock_intr_errno(timeout);
1421                        goto out;
1422                } else if (timeout == 0) {
1423                        err = -EAGAIN;
1424                        goto out;
1425                }
1426
1427                prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1428        }
1429        finish_wait(sk_sleep(listener), &wait);
1430
1431        if (listener->sk_err)
1432                err = -listener->sk_err;
1433
1434        if (connected) {
1435                sk_acceptq_removed(listener);
1436
1437                lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1438                vconnected = vsock_sk(connected);
1439
1440                /* If the listener socket has received an error, then we should
1441                 * reject this socket and return.  Note that we simply mark the
1442                 * socket rejected, drop our reference, and let the cleanup
1443                 * function handle the cleanup; the fact that we found it in
1444                 * the listener's accept queue guarantees that the cleanup
1445                 * function hasn't run yet.
1446                 */
1447                if (err) {
1448                        vconnected->rejected = true;
1449                } else {
1450                        newsock->state = SS_CONNECTED;
1451                        sock_graft(connected, newsock);
1452                }
1453
1454                release_sock(connected);
1455                sock_put(connected);
1456        }
1457
1458out:
1459        release_sock(listener);
1460        return err;
1461}
1462
1463static int vsock_listen(struct socket *sock, int backlog)
1464{
1465        int err;
1466        struct sock *sk;
1467        struct vsock_sock *vsk;
1468
1469        sk = sock->sk;
1470
1471        lock_sock(sk);
1472
1473        if (sock->type != SOCK_STREAM) {
1474                err = -EOPNOTSUPP;
1475                goto out;
1476        }
1477
1478        if (sock->state != SS_UNCONNECTED) {
1479                err = -EINVAL;
1480                goto out;
1481        }
1482
1483        vsk = vsock_sk(sk);
1484
1485        if (!vsock_addr_bound(&vsk->local_addr)) {
1486                err = -EINVAL;
1487                goto out;
1488        }
1489
1490        sk->sk_max_ack_backlog = backlog;
1491        sk->sk_state = TCP_LISTEN;
1492
1493        err = 0;
1494
1495out:
1496        release_sock(sk);
1497        return err;
1498}
1499
1500static void vsock_update_buffer_size(struct vsock_sock *vsk,
1501                                     const struct vsock_transport *transport,
1502                                     u64 val)
1503{
1504        if (val > vsk->buffer_max_size)
1505                val = vsk->buffer_max_size;
1506
1507        if (val < vsk->buffer_min_size)
1508                val = vsk->buffer_min_size;
1509
1510        if (val != vsk->buffer_size &&
1511            transport && transport->notify_buffer_size)
1512                transport->notify_buffer_size(vsk, &val);
1513
1514        vsk->buffer_size = val;
1515}
1516
1517static int vsock_stream_setsockopt(struct socket *sock,
1518                                   int level,
1519                                   int optname,
1520                                   sockptr_t optval,
1521                                   unsigned int optlen)
1522{
1523        int err;
1524        struct sock *sk;
1525        struct vsock_sock *vsk;
1526        const struct vsock_transport *transport;
1527        u64 val;
1528
1529        if (level != AF_VSOCK)
1530                return -ENOPROTOOPT;
1531
1532#define COPY_IN(_v)                                       \
1533        do {                                              \
1534                if (optlen < sizeof(_v)) {                \
1535                        err = -EINVAL;                    \
1536                        goto exit;                        \
1537                }                                         \
1538                if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1539                        err = -EFAULT;                                  \
1540                        goto exit;                                      \
1541                }                                                       \
1542        } while (0)
1543
1544        err = 0;
1545        sk = sock->sk;
1546        vsk = vsock_sk(sk);
1547        transport = vsk->transport;
1548
1549        lock_sock(sk);
1550
1551        switch (optname) {
1552        case SO_VM_SOCKETS_BUFFER_SIZE:
1553                COPY_IN(val);
1554                vsock_update_buffer_size(vsk, transport, val);
1555                break;
1556
1557        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1558                COPY_IN(val);
1559                vsk->buffer_max_size = val;
1560                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1561                break;
1562
1563        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1564                COPY_IN(val);
1565                vsk->buffer_min_size = val;
1566                vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1567                break;
1568
1569        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1570                struct __kernel_old_timeval tv;
1571                COPY_IN(tv);
1572                if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1573                    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1574                        vsk->connect_timeout = tv.tv_sec * HZ +
1575                            DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1576                        if (vsk->connect_timeout == 0)
1577                                vsk->connect_timeout =
1578                                    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1579
1580                } else {
1581                        err = -ERANGE;
1582                }
1583                break;
1584        }
1585
1586        default:
1587                err = -ENOPROTOOPT;
1588                break;
1589        }
1590
1591#undef COPY_IN
1592
1593exit:
1594        release_sock(sk);
1595        return err;
1596}
1597
1598static int vsock_stream_getsockopt(struct socket *sock,
1599                                   int level, int optname,
1600                                   char __user *optval,
1601                                   int __user *optlen)
1602{
1603        int err;
1604        int len;
1605        struct sock *sk;
1606        struct vsock_sock *vsk;
1607        u64 val;
1608
1609        if (level != AF_VSOCK)
1610                return -ENOPROTOOPT;
1611
1612        err = get_user(len, optlen);
1613        if (err != 0)
1614                return err;
1615
1616#define COPY_OUT(_v)                            \
1617        do {                                    \
1618                if (len < sizeof(_v))           \
1619                        return -EINVAL;         \
1620                                                \
1621                len = sizeof(_v);               \
1622                if (copy_to_user(optval, &_v, len) != 0)        \
1623                        return -EFAULT;                         \
1624                                                                \
1625        } while (0)
1626
1627        err = 0;
1628        sk = sock->sk;
1629        vsk = vsock_sk(sk);
1630
1631        switch (optname) {
1632        case SO_VM_SOCKETS_BUFFER_SIZE:
1633                val = vsk->buffer_size;
1634                COPY_OUT(val);
1635                break;
1636
1637        case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1638                val = vsk->buffer_max_size;
1639                COPY_OUT(val);
1640                break;
1641
1642        case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1643                val = vsk->buffer_min_size;
1644                COPY_OUT(val);
1645                break;
1646
1647        case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1648                struct __kernel_old_timeval tv;
1649                tv.tv_sec = vsk->connect_timeout / HZ;
1650                tv.tv_usec =
1651                    (vsk->connect_timeout -
1652                     tv.tv_sec * HZ) * (1000000 / HZ);
1653                COPY_OUT(tv);
1654                break;
1655        }
1656        default:
1657                return -ENOPROTOOPT;
1658        }
1659
1660        err = put_user(len, optlen);
1661        if (err != 0)
1662                return -EFAULT;
1663
1664#undef COPY_OUT
1665
1666        return 0;
1667}
1668
1669static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1670                                size_t len)
1671{
1672        struct sock *sk;
1673        struct vsock_sock *vsk;
1674        const struct vsock_transport *transport;
1675        ssize_t total_written;
1676        long timeout;
1677        int err;
1678        struct vsock_transport_send_notify_data send_data;
1679        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1680
1681        sk = sock->sk;
1682        vsk = vsock_sk(sk);
1683        transport = vsk->transport;
1684        total_written = 0;
1685        err = 0;
1686
1687        if (msg->msg_flags & MSG_OOB)
1688                return -EOPNOTSUPP;
1689
1690        lock_sock(sk);
1691
1692        /* Callers should not provide a destination with stream sockets. */
1693        if (msg->msg_namelen) {
1694                err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1695                goto out;
1696        }
1697
1698        /* Send data only if both sides are not shutdown in the direction. */
1699        if (sk->sk_shutdown & SEND_SHUTDOWN ||
1700            vsk->peer_shutdown & RCV_SHUTDOWN) {
1701                err = -EPIPE;
1702                goto out;
1703        }
1704
1705        if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1706            !vsock_addr_bound(&vsk->local_addr)) {
1707                err = -ENOTCONN;
1708                goto out;
1709        }
1710
1711        if (!vsock_addr_bound(&vsk->remote_addr)) {
1712                err = -EDESTADDRREQ;
1713                goto out;
1714        }
1715
1716        /* Wait for room in the produce queue to enqueue our user's data. */
1717        timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1718
1719        err = transport->notify_send_init(vsk, &send_data);
1720        if (err < 0)
1721                goto out;
1722
1723        while (total_written < len) {
1724                ssize_t written;
1725
1726                add_wait_queue(sk_sleep(sk), &wait);
1727                while (vsock_stream_has_space(vsk) == 0 &&
1728                       sk->sk_err == 0 &&
1729                       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1730                       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1731
1732                        /* Don't wait for non-blocking sockets. */
1733                        if (timeout == 0) {
1734                                err = -EAGAIN;
1735                                remove_wait_queue(sk_sleep(sk), &wait);
1736                                goto out_err;
1737                        }
1738
1739                        err = transport->notify_send_pre_block(vsk, &send_data);
1740                        if (err < 0) {
1741                                remove_wait_queue(sk_sleep(sk), &wait);
1742                                goto out_err;
1743                        }
1744
1745                        release_sock(sk);
1746                        timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1747                        lock_sock(sk);
1748                        if (signal_pending(current)) {
1749                                err = sock_intr_errno(timeout);
1750                                remove_wait_queue(sk_sleep(sk), &wait);
1751                                goto out_err;
1752                        } else if (timeout == 0) {
1753                                err = -EAGAIN;
1754                                remove_wait_queue(sk_sleep(sk), &wait);
1755                                goto out_err;
1756                        }
1757                }
1758                remove_wait_queue(sk_sleep(sk), &wait);
1759
1760                /* These checks occur both as part of and after the loop
1761                 * conditional since we need to check before and after
1762                 * sleeping.
1763                 */
1764                if (sk->sk_err) {
1765                        err = -sk->sk_err;
1766                        goto out_err;
1767                } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1768                           (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1769                        err = -EPIPE;
1770                        goto out_err;
1771                }
1772
1773                err = transport->notify_send_pre_enqueue(vsk, &send_data);
1774                if (err < 0)
1775                        goto out_err;
1776
1777                /* Note that enqueue will only write as many bytes as are free
1778                 * in the produce queue, so we don't need to ensure len is
1779                 * smaller than the queue size.  It is the caller's
1780                 * responsibility to check how many bytes we were able to send.
1781                 */
1782
1783                written = transport->stream_enqueue(
1784                                vsk, msg,
1785                                len - total_written);
1786                if (written < 0) {
1787                        err = -ENOMEM;
1788                        goto out_err;
1789                }
1790
1791                total_written += written;
1792
1793                err = transport->notify_send_post_enqueue(
1794                                vsk, written, &send_data);
1795                if (err < 0)
1796                        goto out_err;
1797
1798        }
1799
1800out_err:
1801        if (total_written > 0)
1802                err = total_written;
1803out:
1804        release_sock(sk);
1805        return err;
1806}
1807
1808
1809static int
1810vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1811                     int flags)
1812{
1813        struct sock *sk;
1814        struct vsock_sock *vsk;
1815        const struct vsock_transport *transport;
1816        int err;
1817        size_t target;
1818        ssize_t copied;
1819        long timeout;
1820        struct vsock_transport_recv_notify_data recv_data;
1821
1822        DEFINE_WAIT(wait);
1823
1824        sk = sock->sk;
1825        vsk = vsock_sk(sk);
1826        transport = vsk->transport;
1827        err = 0;
1828
1829        lock_sock(sk);
1830
1831        if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1832                /* Recvmsg is supposed to return 0 if a peer performs an
1833                 * orderly shutdown. Differentiate between that case and when a
1834                 * peer has not connected or a local shutdown occured with the
1835                 * SOCK_DONE flag.
1836                 */
1837                if (sock_flag(sk, SOCK_DONE))
1838                        err = 0;
1839                else
1840                        err = -ENOTCONN;
1841
1842                goto out;
1843        }
1844
1845        if (flags & MSG_OOB) {
1846                err = -EOPNOTSUPP;
1847                goto out;
1848        }
1849
1850        /* We don't check peer_shutdown flag here since peer may actually shut
1851         * down, but there can be data in the queue that a local socket can
1852         * receive.
1853         */
1854        if (sk->sk_shutdown & RCV_SHUTDOWN) {
1855                err = 0;
1856                goto out;
1857        }
1858
1859        /* It is valid on Linux to pass in a zero-length receive buffer.  This
1860         * is not an error.  We may as well bail out now.
1861         */
1862        if (!len) {
1863                err = 0;
1864                goto out;
1865        }
1866
1867        /* We must not copy less than target bytes into the user's buffer
1868         * before returning successfully, so we wait for the consume queue to
1869         * have that much data to consume before dequeueing.  Note that this
1870         * makes it impossible to handle cases where target is greater than the
1871         * queue size.
1872         */
1873        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1874        if (target >= transport->stream_rcvhiwat(vsk)) {
1875                err = -ENOMEM;
1876                goto out;
1877        }
1878        timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1879        copied = 0;
1880
1881        err = transport->notify_recv_init(vsk, target, &recv_data);
1882        if (err < 0)
1883                goto out;
1884
1885
1886        while (1) {
1887                s64 ready;
1888
1889                prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1890                ready = vsock_stream_has_data(vsk);
1891
1892                if (ready == 0) {
1893                        if (sk->sk_err != 0 ||
1894                            (sk->sk_shutdown & RCV_SHUTDOWN) ||
1895                            (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1896                                finish_wait(sk_sleep(sk), &wait);
1897                                break;
1898                        }
1899                        /* Don't wait for non-blocking sockets. */
1900                        if (timeout == 0) {
1901                                err = -EAGAIN;
1902                                finish_wait(sk_sleep(sk), &wait);
1903                                break;
1904                        }
1905
1906                        err = transport->notify_recv_pre_block(
1907                                        vsk, target, &recv_data);
1908                        if (err < 0) {
1909                                finish_wait(sk_sleep(sk), &wait);
1910                                break;
1911                        }
1912                        release_sock(sk);
1913                        timeout = schedule_timeout(timeout);
1914                        lock_sock(sk);
1915
1916                        if (signal_pending(current)) {
1917                                err = sock_intr_errno(timeout);
1918                                finish_wait(sk_sleep(sk), &wait);
1919                                break;
1920                        } else if (timeout == 0) {
1921                                err = -EAGAIN;
1922                                finish_wait(sk_sleep(sk), &wait);
1923                                break;
1924                        }
1925                } else {
1926                        ssize_t read;
1927
1928                        finish_wait(sk_sleep(sk), &wait);
1929
1930                        if (ready < 0) {
1931                                /* Invalid queue pair content. XXX This should
1932                                * be changed to a connection reset in a later
1933                                * change.
1934                                */
1935
1936                                err = -ENOMEM;
1937                                goto out;
1938                        }
1939
1940                        err = transport->notify_recv_pre_dequeue(
1941                                        vsk, target, &recv_data);
1942                        if (err < 0)
1943                                break;
1944
1945                        read = transport->stream_dequeue(
1946                                        vsk, msg,
1947                                        len - copied, flags);
1948                        if (read < 0) {
1949                                err = -ENOMEM;
1950                                break;
1951                        }
1952
1953                        copied += read;
1954
1955                        err = transport->notify_recv_post_dequeue(
1956                                        vsk, target, read,
1957                                        !(flags & MSG_PEEK), &recv_data);
1958                        if (err < 0)
1959                                goto out;
1960
1961                        if (read >= target || flags & MSG_PEEK)
1962                                break;
1963
1964                        target -= read;
1965                }
1966        }
1967
1968        if (sk->sk_err)
1969                err = -sk->sk_err;
1970        else if (sk->sk_shutdown & RCV_SHUTDOWN)
1971                err = 0;
1972
1973        if (copied > 0)
1974                err = copied;
1975
1976out:
1977        release_sock(sk);
1978        return err;
1979}
1980
1981static const struct proto_ops vsock_stream_ops = {
1982        .family = PF_VSOCK,
1983        .owner = THIS_MODULE,
1984        .release = vsock_release,
1985        .bind = vsock_bind,
1986        .connect = vsock_stream_connect,
1987        .socketpair = sock_no_socketpair,
1988        .accept = vsock_accept,
1989        .getname = vsock_getname,
1990        .poll = vsock_poll,
1991        .ioctl = sock_no_ioctl,
1992        .listen = vsock_listen,
1993        .shutdown = vsock_shutdown,
1994        .setsockopt = vsock_stream_setsockopt,
1995        .getsockopt = vsock_stream_getsockopt,
1996        .sendmsg = vsock_stream_sendmsg,
1997        .recvmsg = vsock_stream_recvmsg,
1998        .mmap = sock_no_mmap,
1999        .sendpage = sock_no_sendpage,
2000};
2001
2002static int vsock_create(struct net *net, struct socket *sock,
2003                        int protocol, int kern)
2004{
2005        struct vsock_sock *vsk;
2006        struct sock *sk;
2007        int ret;
2008
2009        if (!sock)
2010                return -EINVAL;
2011
2012        if (protocol && protocol != PF_VSOCK)
2013                return -EPROTONOSUPPORT;
2014
2015        switch (sock->type) {
2016        case SOCK_DGRAM:
2017                sock->ops = &vsock_dgram_ops;
2018                break;
2019        case SOCK_STREAM:
2020                sock->ops = &vsock_stream_ops;
2021                break;
2022        default:
2023                return -ESOCKTNOSUPPORT;
2024        }
2025
2026        sock->state = SS_UNCONNECTED;
2027
2028        sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2029        if (!sk)
2030                return -ENOMEM;
2031
2032        vsk = vsock_sk(sk);
2033
2034        if (sock->type == SOCK_DGRAM) {
2035                ret = vsock_assign_transport(vsk, NULL);
2036                if (ret < 0) {
2037                        sock_put(sk);
2038                        return ret;
2039                }
2040        }
2041
2042        vsock_insert_unbound(vsk);
2043
2044        return 0;
2045}
2046
2047static const struct net_proto_family vsock_family_ops = {
2048        .family = AF_VSOCK,
2049        .create = vsock_create,
2050        .owner = THIS_MODULE,
2051};
2052
2053static long vsock_dev_do_ioctl(struct file *filp,
2054                               unsigned int cmd, void __user *ptr)
2055{
2056        u32 __user *p = ptr;
2057        u32 cid = VMADDR_CID_ANY;
2058        int retval = 0;
2059
2060        switch (cmd) {
2061        case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2062                /* To be compatible with the VMCI behavior, we prioritize the
2063                 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2064                 */
2065                if (transport_g2h)
2066                        cid = transport_g2h->get_local_cid();
2067                else if (transport_h2g)
2068                        cid = transport_h2g->get_local_cid();
2069
2070                if (put_user(cid, p) != 0)
2071                        retval = -EFAULT;
2072                break;
2073
2074        default:
2075                pr_err("Unknown ioctl %d\n", cmd);
2076                retval = -EINVAL;
2077        }
2078
2079        return retval;
2080}
2081
2082static long vsock_dev_ioctl(struct file *filp,
2083                            unsigned int cmd, unsigned long arg)
2084{
2085        return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2086}
2087
2088#ifdef CONFIG_COMPAT
2089static long vsock_dev_compat_ioctl(struct file *filp,
2090                                   unsigned int cmd, unsigned long arg)
2091{
2092        return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2093}
2094#endif
2095
2096static const struct file_operations vsock_device_ops = {
2097        .owner          = THIS_MODULE,
2098        .unlocked_ioctl = vsock_dev_ioctl,
2099#ifdef CONFIG_COMPAT
2100        .compat_ioctl   = vsock_dev_compat_ioctl,
2101#endif
2102        .open           = nonseekable_open,
2103};
2104
2105static struct miscdevice vsock_device = {
2106        .name           = "vsock",
2107        .fops           = &vsock_device_ops,
2108};
2109
2110static int __init vsock_init(void)
2111{
2112        int err = 0;
2113
2114        vsock_init_tables();
2115
2116        vsock_proto.owner = THIS_MODULE;
2117        vsock_device.minor = MISC_DYNAMIC_MINOR;
2118        err = misc_register(&vsock_device);
2119        if (err) {
2120                pr_err("Failed to register misc device\n");
2121                goto err_reset_transport;
2122        }
2123
2124        err = proto_register(&vsock_proto, 1);  /* we want our slab */
2125        if (err) {
2126                pr_err("Cannot register vsock protocol\n");
2127                goto err_deregister_misc;
2128        }
2129
2130        err = sock_register(&vsock_family_ops);
2131        if (err) {
2132                pr_err("could not register af_vsock (%d) address family: %d\n",
2133                       AF_VSOCK, err);
2134                goto err_unregister_proto;
2135        }
2136
2137        return 0;
2138
2139err_unregister_proto:
2140        proto_unregister(&vsock_proto);
2141err_deregister_misc:
2142        misc_deregister(&vsock_device);
2143err_reset_transport:
2144        return err;
2145}
2146
2147static void __exit vsock_exit(void)
2148{
2149        misc_deregister(&vsock_device);
2150        sock_unregister(AF_VSOCK);
2151        proto_unregister(&vsock_proto);
2152}
2153
2154const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2155{
2156        return vsk->transport;
2157}
2158EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2159
2160int vsock_core_register(const struct vsock_transport *t, int features)
2161{
2162        const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2163        int err = mutex_lock_interruptible(&vsock_register_mutex);
2164
2165        if (err)
2166                return err;
2167
2168        t_h2g = transport_h2g;
2169        t_g2h = transport_g2h;
2170        t_dgram = transport_dgram;
2171        t_local = transport_local;
2172
2173        if (features & VSOCK_TRANSPORT_F_H2G) {
2174                if (t_h2g) {
2175                        err = -EBUSY;
2176                        goto err_busy;
2177                }
2178                t_h2g = t;
2179        }
2180
2181        if (features & VSOCK_TRANSPORT_F_G2H) {
2182                if (t_g2h) {
2183                        err = -EBUSY;
2184                        goto err_busy;
2185                }
2186                t_g2h = t;
2187        }
2188
2189        if (features & VSOCK_TRANSPORT_F_DGRAM) {
2190                if (t_dgram) {
2191                        err = -EBUSY;
2192                        goto err_busy;
2193                }
2194                t_dgram = t;
2195        }
2196
2197        if (features & VSOCK_TRANSPORT_F_LOCAL) {
2198                if (t_local) {
2199                        err = -EBUSY;
2200                        goto err_busy;
2201                }
2202                t_local = t;
2203        }
2204
2205        transport_h2g = t_h2g;
2206        transport_g2h = t_g2h;
2207        transport_dgram = t_dgram;
2208        transport_local = t_local;
2209
2210err_busy:
2211        mutex_unlock(&vsock_register_mutex);
2212        return err;
2213}
2214EXPORT_SYMBOL_GPL(vsock_core_register);
2215
2216void vsock_core_unregister(const struct vsock_transport *t)
2217{
2218        mutex_lock(&vsock_register_mutex);
2219
2220        if (transport_h2g == t)
2221                transport_h2g = NULL;
2222
2223        if (transport_g2h == t)
2224                transport_g2h = NULL;
2225
2226        if (transport_dgram == t)
2227                transport_dgram = NULL;
2228
2229        if (transport_local == t)
2230                transport_local = NULL;
2231
2232        mutex_unlock(&vsock_register_mutex);
2233}
2234EXPORT_SYMBOL_GPL(vsock_core_unregister);
2235
2236module_init(vsock_init);
2237module_exit(vsock_exit);
2238
2239MODULE_AUTHOR("VMware, Inc.");
2240MODULE_DESCRIPTION("VMware Virtual Socket Family");
2241MODULE_VERSION("1.0.2.0-k");
2242MODULE_LICENSE("GPL v2");
2243