linux/net/wireless/util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017       Intel Deutschland GmbH
   8 * Copyright (C) 2018-2020 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29                            u32 basic_rates, int bitrate)
  30{
  31        struct ieee80211_rate *result = &sband->bitrates[0];
  32        int i;
  33
  34        for (i = 0; i < sband->n_bitrates; i++) {
  35                if (!(basic_rates & BIT(i)))
  36                        continue;
  37                if (sband->bitrates[i].bitrate > bitrate)
  38                        continue;
  39                result = &sband->bitrates[i];
  40        }
  41
  42        return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47                              enum nl80211_bss_scan_width scan_width)
  48{
  49        struct ieee80211_rate *bitrates;
  50        u32 mandatory_rates = 0;
  51        enum ieee80211_rate_flags mandatory_flag;
  52        int i;
  53
  54        if (WARN_ON(!sband))
  55                return 1;
  56
  57        if (sband->band == NL80211_BAND_2GHZ) {
  58                if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59                    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60                        mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61                else
  62                        mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63        } else {
  64                mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65        }
  66
  67        bitrates = sband->bitrates;
  68        for (i = 0; i < sband->n_bitrates; i++)
  69                if (bitrates[i].flags & mandatory_flag)
  70                        mandatory_rates |= BIT(i);
  71        return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  76{
  77        /* see 802.11 17.3.8.3.2 and Annex J
  78         * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79        if (chan <= 0)
  80                return 0; /* not supported */
  81        switch (band) {
  82        case NL80211_BAND_2GHZ:
  83                if (chan == 14)
  84                        return MHZ_TO_KHZ(2484);
  85                else if (chan < 14)
  86                        return MHZ_TO_KHZ(2407 + chan * 5);
  87                break;
  88        case NL80211_BAND_5GHZ:
  89                if (chan >= 182 && chan <= 196)
  90                        return MHZ_TO_KHZ(4000 + chan * 5);
  91                else
  92                        return MHZ_TO_KHZ(5000 + chan * 5);
  93                break;
  94        case NL80211_BAND_6GHZ:
  95                /* see 802.11ax D6.1 27.3.23.2 */
  96                if (chan == 2)
  97                        return MHZ_TO_KHZ(5935);
  98                if (chan <= 233)
  99                        return MHZ_TO_KHZ(5950 + chan * 5);
 100                break;
 101        case NL80211_BAND_60GHZ:
 102                if (chan < 7)
 103                        return MHZ_TO_KHZ(56160 + chan * 2160);
 104                break;
 105        case NL80211_BAND_S1GHZ:
 106                return 902000 + chan * 500;
 107        default:
 108                ;
 109        }
 110        return 0; /* not supported */
 111}
 112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 113
 114int ieee80211_freq_khz_to_channel(u32 freq)
 115{
 116        /* TODO: just handle MHz for now */
 117        freq = KHZ_TO_MHZ(freq);
 118
 119        /* see 802.11 17.3.8.3.2 and Annex J */
 120        if (freq == 2484)
 121                return 14;
 122        else if (freq < 2484)
 123                return (freq - 2407) / 5;
 124        else if (freq >= 4910 && freq <= 4980)
 125                return (freq - 4000) / 5;
 126        else if (freq < 5925)
 127                return (freq - 5000) / 5;
 128        else if (freq == 5935)
 129                return 2;
 130        else if (freq <= 45000) /* DMG band lower limit */
 131                /* see 802.11ax D6.1 27.3.22.2 */
 132                return (freq - 5950) / 5;
 133        else if (freq >= 58320 && freq <= 70200)
 134                return (freq - 56160) / 2160;
 135        else
 136                return 0;
 137}
 138EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 139
 140struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 141                                                    u32 freq)
 142{
 143        enum nl80211_band band;
 144        struct ieee80211_supported_band *sband;
 145        int i;
 146
 147        for (band = 0; band < NUM_NL80211_BANDS; band++) {
 148                sband = wiphy->bands[band];
 149
 150                if (!sband)
 151                        continue;
 152
 153                for (i = 0; i < sband->n_channels; i++) {
 154                        struct ieee80211_channel *chan = &sband->channels[i];
 155
 156                        if (ieee80211_channel_to_khz(chan) == freq)
 157                                return chan;
 158                }
 159        }
 160
 161        return NULL;
 162}
 163EXPORT_SYMBOL(ieee80211_get_channel_khz);
 164
 165static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 166{
 167        int i, want;
 168
 169        switch (sband->band) {
 170        case NL80211_BAND_5GHZ:
 171        case NL80211_BAND_6GHZ:
 172                want = 3;
 173                for (i = 0; i < sband->n_bitrates; i++) {
 174                        if (sband->bitrates[i].bitrate == 60 ||
 175                            sband->bitrates[i].bitrate == 120 ||
 176                            sband->bitrates[i].bitrate == 240) {
 177                                sband->bitrates[i].flags |=
 178                                        IEEE80211_RATE_MANDATORY_A;
 179                                want--;
 180                        }
 181                }
 182                WARN_ON(want);
 183                break;
 184        case NL80211_BAND_2GHZ:
 185                want = 7;
 186                for (i = 0; i < sband->n_bitrates; i++) {
 187                        switch (sband->bitrates[i].bitrate) {
 188                        case 10:
 189                        case 20:
 190                        case 55:
 191                        case 110:
 192                                sband->bitrates[i].flags |=
 193                                        IEEE80211_RATE_MANDATORY_B |
 194                                        IEEE80211_RATE_MANDATORY_G;
 195                                want--;
 196                                break;
 197                        case 60:
 198                        case 120:
 199                        case 240:
 200                                sband->bitrates[i].flags |=
 201                                        IEEE80211_RATE_MANDATORY_G;
 202                                want--;
 203                                fallthrough;
 204                        default:
 205                                sband->bitrates[i].flags |=
 206                                        IEEE80211_RATE_ERP_G;
 207                                break;
 208                        }
 209                }
 210                WARN_ON(want != 0 && want != 3);
 211                break;
 212        case NL80211_BAND_60GHZ:
 213                /* check for mandatory HT MCS 1..4 */
 214                WARN_ON(!sband->ht_cap.ht_supported);
 215                WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 216                break;
 217        case NL80211_BAND_S1GHZ:
 218                /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 219                 * mandatory is ok.
 220                 */
 221                WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 222                break;
 223        case NUM_NL80211_BANDS:
 224        default:
 225                WARN_ON(1);
 226                break;
 227        }
 228}
 229
 230void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 231{
 232        enum nl80211_band band;
 233
 234        for (band = 0; band < NUM_NL80211_BANDS; band++)
 235                if (wiphy->bands[band])
 236                        set_mandatory_flags_band(wiphy->bands[band]);
 237}
 238
 239bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 240{
 241        int i;
 242        for (i = 0; i < wiphy->n_cipher_suites; i++)
 243                if (cipher == wiphy->cipher_suites[i])
 244                        return true;
 245        return false;
 246}
 247
 248int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 249                                   struct key_params *params, int key_idx,
 250                                   bool pairwise, const u8 *mac_addr)
 251{
 252        int max_key_idx = 5;
 253
 254        if (wiphy_ext_feature_isset(&rdev->wiphy,
 255                                    NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 256            wiphy_ext_feature_isset(&rdev->wiphy,
 257                                    NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 258                max_key_idx = 7;
 259        if (key_idx < 0 || key_idx > max_key_idx)
 260                return -EINVAL;
 261
 262        if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 263                return -EINVAL;
 264
 265        if (pairwise && !mac_addr)
 266                return -EINVAL;
 267
 268        switch (params->cipher) {
 269        case WLAN_CIPHER_SUITE_TKIP:
 270                /* Extended Key ID can only be used with CCMP/GCMP ciphers */
 271                if ((pairwise && key_idx) ||
 272                    params->mode != NL80211_KEY_RX_TX)
 273                        return -EINVAL;
 274                break;
 275        case WLAN_CIPHER_SUITE_CCMP:
 276        case WLAN_CIPHER_SUITE_CCMP_256:
 277        case WLAN_CIPHER_SUITE_GCMP:
 278        case WLAN_CIPHER_SUITE_GCMP_256:
 279                /* IEEE802.11-2016 allows only 0 and - when supporting
 280                 * Extended Key ID - 1 as index for pairwise keys.
 281                 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 282                 * the driver supports Extended Key ID.
 283                 * @NL80211_KEY_SET_TX can't be set when installing and
 284                 * validating a key.
 285                 */
 286                if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 287                    params->mode == NL80211_KEY_SET_TX)
 288                        return -EINVAL;
 289                if (wiphy_ext_feature_isset(&rdev->wiphy,
 290                                            NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 291                        if (pairwise && (key_idx < 0 || key_idx > 1))
 292                                return -EINVAL;
 293                } else if (pairwise && key_idx) {
 294                        return -EINVAL;
 295                }
 296                break;
 297        case WLAN_CIPHER_SUITE_AES_CMAC:
 298        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 299        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 300        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 301                /* Disallow BIP (group-only) cipher as pairwise cipher */
 302                if (pairwise)
 303                        return -EINVAL;
 304                if (key_idx < 4)
 305                        return -EINVAL;
 306                break;
 307        case WLAN_CIPHER_SUITE_WEP40:
 308        case WLAN_CIPHER_SUITE_WEP104:
 309                if (key_idx > 3)
 310                        return -EINVAL;
 311        default:
 312                break;
 313        }
 314
 315        switch (params->cipher) {
 316        case WLAN_CIPHER_SUITE_WEP40:
 317                if (params->key_len != WLAN_KEY_LEN_WEP40)
 318                        return -EINVAL;
 319                break;
 320        case WLAN_CIPHER_SUITE_TKIP:
 321                if (params->key_len != WLAN_KEY_LEN_TKIP)
 322                        return -EINVAL;
 323                break;
 324        case WLAN_CIPHER_SUITE_CCMP:
 325                if (params->key_len != WLAN_KEY_LEN_CCMP)
 326                        return -EINVAL;
 327                break;
 328        case WLAN_CIPHER_SUITE_CCMP_256:
 329                if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 330                        return -EINVAL;
 331                break;
 332        case WLAN_CIPHER_SUITE_GCMP:
 333                if (params->key_len != WLAN_KEY_LEN_GCMP)
 334                        return -EINVAL;
 335                break;
 336        case WLAN_CIPHER_SUITE_GCMP_256:
 337                if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 338                        return -EINVAL;
 339                break;
 340        case WLAN_CIPHER_SUITE_WEP104:
 341                if (params->key_len != WLAN_KEY_LEN_WEP104)
 342                        return -EINVAL;
 343                break;
 344        case WLAN_CIPHER_SUITE_AES_CMAC:
 345                if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 346                        return -EINVAL;
 347                break;
 348        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 349                if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 350                        return -EINVAL;
 351                break;
 352        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 353                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 354                        return -EINVAL;
 355                break;
 356        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 357                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 358                        return -EINVAL;
 359                break;
 360        default:
 361                /*
 362                 * We don't know anything about this algorithm,
 363                 * allow using it -- but the driver must check
 364                 * all parameters! We still check below whether
 365                 * or not the driver supports this algorithm,
 366                 * of course.
 367                 */
 368                break;
 369        }
 370
 371        if (params->seq) {
 372                switch (params->cipher) {
 373                case WLAN_CIPHER_SUITE_WEP40:
 374                case WLAN_CIPHER_SUITE_WEP104:
 375                        /* These ciphers do not use key sequence */
 376                        return -EINVAL;
 377                case WLAN_CIPHER_SUITE_TKIP:
 378                case WLAN_CIPHER_SUITE_CCMP:
 379                case WLAN_CIPHER_SUITE_CCMP_256:
 380                case WLAN_CIPHER_SUITE_GCMP:
 381                case WLAN_CIPHER_SUITE_GCMP_256:
 382                case WLAN_CIPHER_SUITE_AES_CMAC:
 383                case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 384                case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 385                case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 386                        if (params->seq_len != 6)
 387                                return -EINVAL;
 388                        break;
 389                }
 390        }
 391
 392        if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 393                return -EINVAL;
 394
 395        return 0;
 396}
 397
 398unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 399{
 400        unsigned int hdrlen = 24;
 401
 402        if (ieee80211_is_data(fc)) {
 403                if (ieee80211_has_a4(fc))
 404                        hdrlen = 30;
 405                if (ieee80211_is_data_qos(fc)) {
 406                        hdrlen += IEEE80211_QOS_CTL_LEN;
 407                        if (ieee80211_has_order(fc))
 408                                hdrlen += IEEE80211_HT_CTL_LEN;
 409                }
 410                goto out;
 411        }
 412
 413        if (ieee80211_is_mgmt(fc)) {
 414                if (ieee80211_has_order(fc))
 415                        hdrlen += IEEE80211_HT_CTL_LEN;
 416                goto out;
 417        }
 418
 419        if (ieee80211_is_ctl(fc)) {
 420                /*
 421                 * ACK and CTS are 10 bytes, all others 16. To see how
 422                 * to get this condition consider
 423                 *   subtype mask:   0b0000000011110000 (0x00F0)
 424                 *   ACK subtype:    0b0000000011010000 (0x00D0)
 425                 *   CTS subtype:    0b0000000011000000 (0x00C0)
 426                 *   bits that matter:         ^^^      (0x00E0)
 427                 *   value of those: 0b0000000011000000 (0x00C0)
 428                 */
 429                if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 430                        hdrlen = 10;
 431                else
 432                        hdrlen = 16;
 433        }
 434out:
 435        return hdrlen;
 436}
 437EXPORT_SYMBOL(ieee80211_hdrlen);
 438
 439unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 440{
 441        const struct ieee80211_hdr *hdr =
 442                        (const struct ieee80211_hdr *)skb->data;
 443        unsigned int hdrlen;
 444
 445        if (unlikely(skb->len < 10))
 446                return 0;
 447        hdrlen = ieee80211_hdrlen(hdr->frame_control);
 448        if (unlikely(hdrlen > skb->len))
 449                return 0;
 450        return hdrlen;
 451}
 452EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 453
 454static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 455{
 456        int ae = flags & MESH_FLAGS_AE;
 457        /* 802.11-2012, 8.2.4.7.3 */
 458        switch (ae) {
 459        default:
 460        case 0:
 461                return 6;
 462        case MESH_FLAGS_AE_A4:
 463                return 12;
 464        case MESH_FLAGS_AE_A5_A6:
 465                return 18;
 466        }
 467}
 468
 469unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 470{
 471        return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 472}
 473EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 474
 475int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 476                                  const u8 *addr, enum nl80211_iftype iftype,
 477                                  u8 data_offset)
 478{
 479        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 480        struct {
 481                u8 hdr[ETH_ALEN] __aligned(2);
 482                __be16 proto;
 483        } payload;
 484        struct ethhdr tmp;
 485        u16 hdrlen;
 486        u8 mesh_flags = 0;
 487
 488        if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 489                return -1;
 490
 491        hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 492        if (skb->len < hdrlen + 8)
 493                return -1;
 494
 495        /* convert IEEE 802.11 header + possible LLC headers into Ethernet
 496         * header
 497         * IEEE 802.11 address fields:
 498         * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 499         *   0     0   DA    SA    BSSID n/a
 500         *   0     1   DA    BSSID SA    n/a
 501         *   1     0   BSSID SA    DA    n/a
 502         *   1     1   RA    TA    DA    SA
 503         */
 504        memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 505        memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 506
 507        if (iftype == NL80211_IFTYPE_MESH_POINT)
 508                skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 509
 510        mesh_flags &= MESH_FLAGS_AE;
 511
 512        switch (hdr->frame_control &
 513                cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 514        case cpu_to_le16(IEEE80211_FCTL_TODS):
 515                if (unlikely(iftype != NL80211_IFTYPE_AP &&
 516                             iftype != NL80211_IFTYPE_AP_VLAN &&
 517                             iftype != NL80211_IFTYPE_P2P_GO))
 518                        return -1;
 519                break;
 520        case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 521                if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 522                             iftype != NL80211_IFTYPE_MESH_POINT &&
 523                             iftype != NL80211_IFTYPE_AP_VLAN &&
 524                             iftype != NL80211_IFTYPE_STATION))
 525                        return -1;
 526                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 527                        if (mesh_flags == MESH_FLAGS_AE_A4)
 528                                return -1;
 529                        if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 530                                skb_copy_bits(skb, hdrlen +
 531                                        offsetof(struct ieee80211s_hdr, eaddr1),
 532                                        tmp.h_dest, 2 * ETH_ALEN);
 533                        }
 534                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 535                }
 536                break;
 537        case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 538                if ((iftype != NL80211_IFTYPE_STATION &&
 539                     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 540                     iftype != NL80211_IFTYPE_MESH_POINT) ||
 541                    (is_multicast_ether_addr(tmp.h_dest) &&
 542                     ether_addr_equal(tmp.h_source, addr)))
 543                        return -1;
 544                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 545                        if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 546                                return -1;
 547                        if (mesh_flags == MESH_FLAGS_AE_A4)
 548                                skb_copy_bits(skb, hdrlen +
 549                                        offsetof(struct ieee80211s_hdr, eaddr1),
 550                                        tmp.h_source, ETH_ALEN);
 551                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 552                }
 553                break;
 554        case cpu_to_le16(0):
 555                if (iftype != NL80211_IFTYPE_ADHOC &&
 556                    iftype != NL80211_IFTYPE_STATION &&
 557                    iftype != NL80211_IFTYPE_OCB)
 558                                return -1;
 559                break;
 560        }
 561
 562        skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 563        tmp.h_proto = payload.proto;
 564
 565        if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 566                    tmp.h_proto != htons(ETH_P_AARP) &&
 567                    tmp.h_proto != htons(ETH_P_IPX)) ||
 568                   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 569                /* remove RFC1042 or Bridge-Tunnel encapsulation and
 570                 * replace EtherType */
 571                hdrlen += ETH_ALEN + 2;
 572        else
 573                tmp.h_proto = htons(skb->len - hdrlen);
 574
 575        pskb_pull(skb, hdrlen);
 576
 577        if (!ehdr)
 578                ehdr = skb_push(skb, sizeof(struct ethhdr));
 579        memcpy(ehdr, &tmp, sizeof(tmp));
 580
 581        return 0;
 582}
 583EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 584
 585static void
 586__frame_add_frag(struct sk_buff *skb, struct page *page,
 587                 void *ptr, int len, int size)
 588{
 589        struct skb_shared_info *sh = skb_shinfo(skb);
 590        int page_offset;
 591
 592        get_page(page);
 593        page_offset = ptr - page_address(page);
 594        skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 595}
 596
 597static void
 598__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 599                            int offset, int len)
 600{
 601        struct skb_shared_info *sh = skb_shinfo(skb);
 602        const skb_frag_t *frag = &sh->frags[0];
 603        struct page *frag_page;
 604        void *frag_ptr;
 605        int frag_len, frag_size;
 606        int head_size = skb->len - skb->data_len;
 607        int cur_len;
 608
 609        frag_page = virt_to_head_page(skb->head);
 610        frag_ptr = skb->data;
 611        frag_size = head_size;
 612
 613        while (offset >= frag_size) {
 614                offset -= frag_size;
 615                frag_page = skb_frag_page(frag);
 616                frag_ptr = skb_frag_address(frag);
 617                frag_size = skb_frag_size(frag);
 618                frag++;
 619        }
 620
 621        frag_ptr += offset;
 622        frag_len = frag_size - offset;
 623
 624        cur_len = min(len, frag_len);
 625
 626        __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 627        len -= cur_len;
 628
 629        while (len > 0) {
 630                frag_len = skb_frag_size(frag);
 631                cur_len = min(len, frag_len);
 632                __frame_add_frag(frame, skb_frag_page(frag),
 633                                 skb_frag_address(frag), cur_len, frag_len);
 634                len -= cur_len;
 635                frag++;
 636        }
 637}
 638
 639static struct sk_buff *
 640__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 641                       int offset, int len, bool reuse_frag)
 642{
 643        struct sk_buff *frame;
 644        int cur_len = len;
 645
 646        if (skb->len - offset < len)
 647                return NULL;
 648
 649        /*
 650         * When reusing framents, copy some data to the head to simplify
 651         * ethernet header handling and speed up protocol header processing
 652         * in the stack later.
 653         */
 654        if (reuse_frag)
 655                cur_len = min_t(int, len, 32);
 656
 657        /*
 658         * Allocate and reserve two bytes more for payload
 659         * alignment since sizeof(struct ethhdr) is 14.
 660         */
 661        frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 662        if (!frame)
 663                return NULL;
 664
 665        skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 666        skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 667
 668        len -= cur_len;
 669        if (!len)
 670                return frame;
 671
 672        offset += cur_len;
 673        __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 674
 675        return frame;
 676}
 677
 678void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 679                              const u8 *addr, enum nl80211_iftype iftype,
 680                              const unsigned int extra_headroom,
 681                              const u8 *check_da, const u8 *check_sa)
 682{
 683        unsigned int hlen = ALIGN(extra_headroom, 4);
 684        struct sk_buff *frame = NULL;
 685        u16 ethertype;
 686        u8 *payload;
 687        int offset = 0, remaining;
 688        struct ethhdr eth;
 689        bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 690        bool reuse_skb = false;
 691        bool last = false;
 692
 693        while (!last) {
 694                unsigned int subframe_len;
 695                int len;
 696                u8 padding;
 697
 698                skb_copy_bits(skb, offset, &eth, sizeof(eth));
 699                len = ntohs(eth.h_proto);
 700                subframe_len = sizeof(struct ethhdr) + len;
 701                padding = (4 - subframe_len) & 0x3;
 702
 703                /* the last MSDU has no padding */
 704                remaining = skb->len - offset;
 705                if (subframe_len > remaining)
 706                        goto purge;
 707
 708                offset += sizeof(struct ethhdr);
 709                last = remaining <= subframe_len + padding;
 710
 711                /* FIXME: should we really accept multicast DA? */
 712                if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 713                     !ether_addr_equal(check_da, eth.h_dest)) ||
 714                    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 715                        offset += len + padding;
 716                        continue;
 717                }
 718
 719                /* reuse skb for the last subframe */
 720                if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 721                        skb_pull(skb, offset);
 722                        frame = skb;
 723                        reuse_skb = true;
 724                } else {
 725                        frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 726                                                       reuse_frag);
 727                        if (!frame)
 728                                goto purge;
 729
 730                        offset += len + padding;
 731                }
 732
 733                skb_reset_network_header(frame);
 734                frame->dev = skb->dev;
 735                frame->priority = skb->priority;
 736
 737                payload = frame->data;
 738                ethertype = (payload[6] << 8) | payload[7];
 739                if (likely((ether_addr_equal(payload, rfc1042_header) &&
 740                            ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 741                           ether_addr_equal(payload, bridge_tunnel_header))) {
 742                        eth.h_proto = htons(ethertype);
 743                        skb_pull(frame, ETH_ALEN + 2);
 744                }
 745
 746                memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 747                __skb_queue_tail(list, frame);
 748        }
 749
 750        if (!reuse_skb)
 751                dev_kfree_skb(skb);
 752
 753        return;
 754
 755 purge:
 756        __skb_queue_purge(list);
 757        dev_kfree_skb(skb);
 758}
 759EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 760
 761/* Given a data frame determine the 802.1p/1d tag to use. */
 762unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 763                                    struct cfg80211_qos_map *qos_map)
 764{
 765        unsigned int dscp;
 766        unsigned char vlan_priority;
 767        unsigned int ret;
 768
 769        /* skb->priority values from 256->263 are magic values to
 770         * directly indicate a specific 802.1d priority.  This is used
 771         * to allow 802.1d priority to be passed directly in from VLAN
 772         * tags, etc.
 773         */
 774        if (skb->priority >= 256 && skb->priority <= 263) {
 775                ret = skb->priority - 256;
 776                goto out;
 777        }
 778
 779        if (skb_vlan_tag_present(skb)) {
 780                vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 781                        >> VLAN_PRIO_SHIFT;
 782                if (vlan_priority > 0) {
 783                        ret = vlan_priority;
 784                        goto out;
 785                }
 786        }
 787
 788        switch (skb->protocol) {
 789        case htons(ETH_P_IP):
 790                dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 791                break;
 792        case htons(ETH_P_IPV6):
 793                dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 794                break;
 795        case htons(ETH_P_MPLS_UC):
 796        case htons(ETH_P_MPLS_MC): {
 797                struct mpls_label mpls_tmp, *mpls;
 798
 799                mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 800                                          sizeof(*mpls), &mpls_tmp);
 801                if (!mpls)
 802                        return 0;
 803
 804                ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 805                        >> MPLS_LS_TC_SHIFT;
 806                goto out;
 807        }
 808        case htons(ETH_P_80221):
 809                /* 802.21 is always network control traffic */
 810                return 7;
 811        default:
 812                return 0;
 813        }
 814
 815        if (qos_map) {
 816                unsigned int i, tmp_dscp = dscp >> 2;
 817
 818                for (i = 0; i < qos_map->num_des; i++) {
 819                        if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 820                                ret = qos_map->dscp_exception[i].up;
 821                                goto out;
 822                        }
 823                }
 824
 825                for (i = 0; i < 8; i++) {
 826                        if (tmp_dscp >= qos_map->up[i].low &&
 827                            tmp_dscp <= qos_map->up[i].high) {
 828                                ret = i;
 829                                goto out;
 830                        }
 831                }
 832        }
 833
 834        ret = dscp >> 5;
 835out:
 836        return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 837}
 838EXPORT_SYMBOL(cfg80211_classify8021d);
 839
 840const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 841{
 842        const struct cfg80211_bss_ies *ies;
 843
 844        ies = rcu_dereference(bss->ies);
 845        if (!ies)
 846                return NULL;
 847
 848        return cfg80211_find_elem(id, ies->data, ies->len);
 849}
 850EXPORT_SYMBOL(ieee80211_bss_get_elem);
 851
 852void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 853{
 854        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 855        struct net_device *dev = wdev->netdev;
 856        int i;
 857
 858        if (!wdev->connect_keys)
 859                return;
 860
 861        for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 862                if (!wdev->connect_keys->params[i].cipher)
 863                        continue;
 864                if (rdev_add_key(rdev, dev, i, false, NULL,
 865                                 &wdev->connect_keys->params[i])) {
 866                        netdev_err(dev, "failed to set key %d\n", i);
 867                        continue;
 868                }
 869                if (wdev->connect_keys->def == i &&
 870                    rdev_set_default_key(rdev, dev, i, true, true)) {
 871                        netdev_err(dev, "failed to set defkey %d\n", i);
 872                        continue;
 873                }
 874        }
 875
 876        kfree_sensitive(wdev->connect_keys);
 877        wdev->connect_keys = NULL;
 878}
 879
 880void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 881{
 882        struct cfg80211_event *ev;
 883        unsigned long flags;
 884
 885        spin_lock_irqsave(&wdev->event_lock, flags);
 886        while (!list_empty(&wdev->event_list)) {
 887                ev = list_first_entry(&wdev->event_list,
 888                                      struct cfg80211_event, list);
 889                list_del(&ev->list);
 890                spin_unlock_irqrestore(&wdev->event_lock, flags);
 891
 892                wdev_lock(wdev);
 893                switch (ev->type) {
 894                case EVENT_CONNECT_RESULT:
 895                        __cfg80211_connect_result(
 896                                wdev->netdev,
 897                                &ev->cr,
 898                                ev->cr.status == WLAN_STATUS_SUCCESS);
 899                        break;
 900                case EVENT_ROAMED:
 901                        __cfg80211_roamed(wdev, &ev->rm);
 902                        break;
 903                case EVENT_DISCONNECTED:
 904                        __cfg80211_disconnected(wdev->netdev,
 905                                                ev->dc.ie, ev->dc.ie_len,
 906                                                ev->dc.reason,
 907                                                !ev->dc.locally_generated);
 908                        break;
 909                case EVENT_IBSS_JOINED:
 910                        __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 911                                               ev->ij.channel);
 912                        break;
 913                case EVENT_STOPPED:
 914                        __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 915                        break;
 916                case EVENT_PORT_AUTHORIZED:
 917                        __cfg80211_port_authorized(wdev, ev->pa.bssid);
 918                        break;
 919                }
 920                wdev_unlock(wdev);
 921
 922                kfree(ev);
 923
 924                spin_lock_irqsave(&wdev->event_lock, flags);
 925        }
 926        spin_unlock_irqrestore(&wdev->event_lock, flags);
 927}
 928
 929void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 930{
 931        struct wireless_dev *wdev;
 932
 933        ASSERT_RTNL();
 934
 935        list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 936                cfg80211_process_wdev_events(wdev);
 937}
 938
 939int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 940                          struct net_device *dev, enum nl80211_iftype ntype,
 941                          struct vif_params *params)
 942{
 943        int err;
 944        enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 945
 946        ASSERT_RTNL();
 947
 948        /* don't support changing VLANs, you just re-create them */
 949        if (otype == NL80211_IFTYPE_AP_VLAN)
 950                return -EOPNOTSUPP;
 951
 952        /* cannot change into P2P device or NAN */
 953        if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 954            ntype == NL80211_IFTYPE_NAN)
 955                return -EOPNOTSUPP;
 956
 957        if (!rdev->ops->change_virtual_intf ||
 958            !(rdev->wiphy.interface_modes & (1 << ntype)))
 959                return -EOPNOTSUPP;
 960
 961        /* if it's part of a bridge, reject changing type to station/ibss */
 962        if (netif_is_bridge_port(dev) &&
 963            (ntype == NL80211_IFTYPE_ADHOC ||
 964             ntype == NL80211_IFTYPE_STATION ||
 965             ntype == NL80211_IFTYPE_P2P_CLIENT))
 966                return -EBUSY;
 967
 968        if (ntype != otype) {
 969                dev->ieee80211_ptr->use_4addr = false;
 970                dev->ieee80211_ptr->mesh_id_up_len = 0;
 971                wdev_lock(dev->ieee80211_ptr);
 972                rdev_set_qos_map(rdev, dev, NULL);
 973                wdev_unlock(dev->ieee80211_ptr);
 974
 975                switch (otype) {
 976                case NL80211_IFTYPE_AP:
 977                        cfg80211_stop_ap(rdev, dev, true);
 978                        break;
 979                case NL80211_IFTYPE_ADHOC:
 980                        cfg80211_leave_ibss(rdev, dev, false);
 981                        break;
 982                case NL80211_IFTYPE_STATION:
 983                case NL80211_IFTYPE_P2P_CLIENT:
 984                        wdev_lock(dev->ieee80211_ptr);
 985                        cfg80211_disconnect(rdev, dev,
 986                                            WLAN_REASON_DEAUTH_LEAVING, true);
 987                        wdev_unlock(dev->ieee80211_ptr);
 988                        break;
 989                case NL80211_IFTYPE_MESH_POINT:
 990                        /* mesh should be handled? */
 991                        break;
 992                default:
 993                        break;
 994                }
 995
 996                cfg80211_process_rdev_events(rdev);
 997                cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
 998        }
 999
1000        err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1001
1002        WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1003
1004        if (!err && params && params->use_4addr != -1)
1005                dev->ieee80211_ptr->use_4addr = params->use_4addr;
1006
1007        if (!err) {
1008                dev->priv_flags &= ~IFF_DONT_BRIDGE;
1009                switch (ntype) {
1010                case NL80211_IFTYPE_STATION:
1011                        if (dev->ieee80211_ptr->use_4addr)
1012                                break;
1013                        fallthrough;
1014                case NL80211_IFTYPE_OCB:
1015                case NL80211_IFTYPE_P2P_CLIENT:
1016                case NL80211_IFTYPE_ADHOC:
1017                        dev->priv_flags |= IFF_DONT_BRIDGE;
1018                        break;
1019                case NL80211_IFTYPE_P2P_GO:
1020                case NL80211_IFTYPE_AP:
1021                case NL80211_IFTYPE_AP_VLAN:
1022                case NL80211_IFTYPE_WDS:
1023                case NL80211_IFTYPE_MESH_POINT:
1024                        /* bridging OK */
1025                        break;
1026                case NL80211_IFTYPE_MONITOR:
1027                        /* monitor can't bridge anyway */
1028                        break;
1029                case NL80211_IFTYPE_UNSPECIFIED:
1030                case NUM_NL80211_IFTYPES:
1031                        /* not happening */
1032                        break;
1033                case NL80211_IFTYPE_P2P_DEVICE:
1034                case NL80211_IFTYPE_NAN:
1035                        WARN_ON(1);
1036                        break;
1037                }
1038        }
1039
1040        if (!err && ntype != otype && netif_running(dev)) {
1041                cfg80211_update_iface_num(rdev, ntype, 1);
1042                cfg80211_update_iface_num(rdev, otype, -1);
1043        }
1044
1045        return err;
1046}
1047
1048static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1049{
1050        int modulation, streams, bitrate;
1051
1052        /* the formula below does only work for MCS values smaller than 32 */
1053        if (WARN_ON_ONCE(rate->mcs >= 32))
1054                return 0;
1055
1056        modulation = rate->mcs & 7;
1057        streams = (rate->mcs >> 3) + 1;
1058
1059        bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1060
1061        if (modulation < 4)
1062                bitrate *= (modulation + 1);
1063        else if (modulation == 4)
1064                bitrate *= (modulation + 2);
1065        else
1066                bitrate *= (modulation + 3);
1067
1068        bitrate *= streams;
1069
1070        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1071                bitrate = (bitrate / 9) * 10;
1072
1073        /* do NOT round down here */
1074        return (bitrate + 50000) / 100000;
1075}
1076
1077static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1078{
1079        static const u32 __mcs2bitrate[] = {
1080                /* control PHY */
1081                [0] =   275,
1082                /* SC PHY */
1083                [1] =  3850,
1084                [2] =  7700,
1085                [3] =  9625,
1086                [4] = 11550,
1087                [5] = 12512, /* 1251.25 mbps */
1088                [6] = 15400,
1089                [7] = 19250,
1090                [8] = 23100,
1091                [9] = 25025,
1092                [10] = 30800,
1093                [11] = 38500,
1094                [12] = 46200,
1095                /* OFDM PHY */
1096                [13] =  6930,
1097                [14] =  8662, /* 866.25 mbps */
1098                [15] = 13860,
1099                [16] = 17325,
1100                [17] = 20790,
1101                [18] = 27720,
1102                [19] = 34650,
1103                [20] = 41580,
1104                [21] = 45045,
1105                [22] = 51975,
1106                [23] = 62370,
1107                [24] = 67568, /* 6756.75 mbps */
1108                /* LP-SC PHY */
1109                [25] =  6260,
1110                [26] =  8340,
1111                [27] = 11120,
1112                [28] = 12510,
1113                [29] = 16680,
1114                [30] = 22240,
1115                [31] = 25030,
1116        };
1117
1118        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1119                return 0;
1120
1121        return __mcs2bitrate[rate->mcs];
1122}
1123
1124static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1125{
1126        static const u32 __mcs2bitrate[] = {
1127                /* control PHY */
1128                [0] =   275,
1129                /* SC PHY */
1130                [1] =  3850,
1131                [2] =  7700,
1132                [3] =  9625,
1133                [4] = 11550,
1134                [5] = 12512, /* 1251.25 mbps */
1135                [6] = 13475,
1136                [7] = 15400,
1137                [8] = 19250,
1138                [9] = 23100,
1139                [10] = 25025,
1140                [11] = 26950,
1141                [12] = 30800,
1142                [13] = 38500,
1143                [14] = 46200,
1144                [15] = 50050,
1145                [16] = 53900,
1146                [17] = 57750,
1147                [18] = 69300,
1148                [19] = 75075,
1149                [20] = 80850,
1150        };
1151
1152        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1153                return 0;
1154
1155        return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1156}
1157
1158static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1159{
1160        static const u32 base[4][10] = {
1161                {   6500000,
1162                   13000000,
1163                   19500000,
1164                   26000000,
1165                   39000000,
1166                   52000000,
1167                   58500000,
1168                   65000000,
1169                   78000000,
1170                /* not in the spec, but some devices use this: */
1171                   86500000,
1172                },
1173                {  13500000,
1174                   27000000,
1175                   40500000,
1176                   54000000,
1177                   81000000,
1178                  108000000,
1179                  121500000,
1180                  135000000,
1181                  162000000,
1182                  180000000,
1183                },
1184                {  29300000,
1185                   58500000,
1186                   87800000,
1187                  117000000,
1188                  175500000,
1189                  234000000,
1190                  263300000,
1191                  292500000,
1192                  351000000,
1193                  390000000,
1194                },
1195                {  58500000,
1196                  117000000,
1197                  175500000,
1198                  234000000,
1199                  351000000,
1200                  468000000,
1201                  526500000,
1202                  585000000,
1203                  702000000,
1204                  780000000,
1205                },
1206        };
1207        u32 bitrate;
1208        int idx;
1209
1210        if (rate->mcs > 9)
1211                goto warn;
1212
1213        switch (rate->bw) {
1214        case RATE_INFO_BW_160:
1215                idx = 3;
1216                break;
1217        case RATE_INFO_BW_80:
1218                idx = 2;
1219                break;
1220        case RATE_INFO_BW_40:
1221                idx = 1;
1222                break;
1223        case RATE_INFO_BW_5:
1224        case RATE_INFO_BW_10:
1225        default:
1226                goto warn;
1227        case RATE_INFO_BW_20:
1228                idx = 0;
1229        }
1230
1231        bitrate = base[idx][rate->mcs];
1232        bitrate *= rate->nss;
1233
1234        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1235                bitrate = (bitrate / 9) * 10;
1236
1237        /* do NOT round down here */
1238        return (bitrate + 50000) / 100000;
1239 warn:
1240        WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1241                  rate->bw, rate->mcs, rate->nss);
1242        return 0;
1243}
1244
1245static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1246{
1247#define SCALE 2048
1248        u16 mcs_divisors[12] = {
1249                34133, /* 16.666666... */
1250                17067, /*  8.333333... */
1251                11378, /*  5.555555... */
1252                 8533, /*  4.166666... */
1253                 5689, /*  2.777777... */
1254                 4267, /*  2.083333... */
1255                 3923, /*  1.851851... */
1256                 3413, /*  1.666666... */
1257                 2844, /*  1.388888... */
1258                 2560, /*  1.250000... */
1259                 2276, /*  1.111111... */
1260                 2048, /*  1.000000... */
1261        };
1262        u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1263        u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1264        u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1265        u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1266        u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1267        u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1268        u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1269        u64 tmp;
1270        u32 result;
1271
1272        if (WARN_ON_ONCE(rate->mcs > 11))
1273                return 0;
1274
1275        if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1276                return 0;
1277        if (WARN_ON_ONCE(rate->he_ru_alloc >
1278                         NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1279                return 0;
1280        if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1281                return 0;
1282
1283        if (rate->bw == RATE_INFO_BW_160)
1284                result = rates_160M[rate->he_gi];
1285        else if (rate->bw == RATE_INFO_BW_80 ||
1286                 (rate->bw == RATE_INFO_BW_HE_RU &&
1287                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1288                result = rates_969[rate->he_gi];
1289        else if (rate->bw == RATE_INFO_BW_40 ||
1290                 (rate->bw == RATE_INFO_BW_HE_RU &&
1291                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1292                result = rates_484[rate->he_gi];
1293        else if (rate->bw == RATE_INFO_BW_20 ||
1294                 (rate->bw == RATE_INFO_BW_HE_RU &&
1295                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1296                result = rates_242[rate->he_gi];
1297        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1298                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1299                result = rates_106[rate->he_gi];
1300        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1301                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1302                result = rates_52[rate->he_gi];
1303        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1304                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1305                result = rates_26[rate->he_gi];
1306        else {
1307                WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1308                     rate->bw, rate->he_ru_alloc);
1309                return 0;
1310        }
1311
1312        /* now scale to the appropriate MCS */
1313        tmp = result;
1314        tmp *= SCALE;
1315        do_div(tmp, mcs_divisors[rate->mcs]);
1316        result = tmp;
1317
1318        /* and take NSS, DCM into account */
1319        result = (result * rate->nss) / 8;
1320        if (rate->he_dcm)
1321                result /= 2;
1322
1323        return result / 10000;
1324}
1325
1326u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1327{
1328        if (rate->flags & RATE_INFO_FLAGS_MCS)
1329                return cfg80211_calculate_bitrate_ht(rate);
1330        if (rate->flags & RATE_INFO_FLAGS_DMG)
1331                return cfg80211_calculate_bitrate_dmg(rate);
1332        if (rate->flags & RATE_INFO_FLAGS_EDMG)
1333                return cfg80211_calculate_bitrate_edmg(rate);
1334        if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1335                return cfg80211_calculate_bitrate_vht(rate);
1336        if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1337                return cfg80211_calculate_bitrate_he(rate);
1338
1339        return rate->legacy;
1340}
1341EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1342
1343int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1344                          enum ieee80211_p2p_attr_id attr,
1345                          u8 *buf, unsigned int bufsize)
1346{
1347        u8 *out = buf;
1348        u16 attr_remaining = 0;
1349        bool desired_attr = false;
1350        u16 desired_len = 0;
1351
1352        while (len > 0) {
1353                unsigned int iedatalen;
1354                unsigned int copy;
1355                const u8 *iedata;
1356
1357                if (len < 2)
1358                        return -EILSEQ;
1359                iedatalen = ies[1];
1360                if (iedatalen + 2 > len)
1361                        return -EILSEQ;
1362
1363                if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1364                        goto cont;
1365
1366                if (iedatalen < 4)
1367                        goto cont;
1368
1369                iedata = ies + 2;
1370
1371                /* check WFA OUI, P2P subtype */
1372                if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1373                    iedata[2] != 0x9a || iedata[3] != 0x09)
1374                        goto cont;
1375
1376                iedatalen -= 4;
1377                iedata += 4;
1378
1379                /* check attribute continuation into this IE */
1380                copy = min_t(unsigned int, attr_remaining, iedatalen);
1381                if (copy && desired_attr) {
1382                        desired_len += copy;
1383                        if (out) {
1384                                memcpy(out, iedata, min(bufsize, copy));
1385                                out += min(bufsize, copy);
1386                                bufsize -= min(bufsize, copy);
1387                        }
1388
1389
1390                        if (copy == attr_remaining)
1391                                return desired_len;
1392                }
1393
1394                attr_remaining -= copy;
1395                if (attr_remaining)
1396                        goto cont;
1397
1398                iedatalen -= copy;
1399                iedata += copy;
1400
1401                while (iedatalen > 0) {
1402                        u16 attr_len;
1403
1404                        /* P2P attribute ID & size must fit */
1405                        if (iedatalen < 3)
1406                                return -EILSEQ;
1407                        desired_attr = iedata[0] == attr;
1408                        attr_len = get_unaligned_le16(iedata + 1);
1409                        iedatalen -= 3;
1410                        iedata += 3;
1411
1412                        copy = min_t(unsigned int, attr_len, iedatalen);
1413
1414                        if (desired_attr) {
1415                                desired_len += copy;
1416                                if (out) {
1417                                        memcpy(out, iedata, min(bufsize, copy));
1418                                        out += min(bufsize, copy);
1419                                        bufsize -= min(bufsize, copy);
1420                                }
1421
1422                                if (copy == attr_len)
1423                                        return desired_len;
1424                        }
1425
1426                        iedata += copy;
1427                        iedatalen -= copy;
1428                        attr_remaining = attr_len - copy;
1429                }
1430
1431 cont:
1432                len -= ies[1] + 2;
1433                ies += ies[1] + 2;
1434        }
1435
1436        if (attr_remaining && desired_attr)
1437                return -EILSEQ;
1438
1439        return -ENOENT;
1440}
1441EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1442
1443static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1444{
1445        int i;
1446
1447        /* Make sure array values are legal */
1448        if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1449                return false;
1450
1451        i = 0;
1452        while (i < n_ids) {
1453                if (ids[i] == WLAN_EID_EXTENSION) {
1454                        if (id_ext && (ids[i + 1] == id))
1455                                return true;
1456
1457                        i += 2;
1458                        continue;
1459                }
1460
1461                if (ids[i] == id && !id_ext)
1462                        return true;
1463
1464                i++;
1465        }
1466        return false;
1467}
1468
1469static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1470{
1471        /* we assume a validly formed IEs buffer */
1472        u8 len = ies[pos + 1];
1473
1474        pos += 2 + len;
1475
1476        /* the IE itself must have 255 bytes for fragments to follow */
1477        if (len < 255)
1478                return pos;
1479
1480        while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1481                len = ies[pos + 1];
1482                pos += 2 + len;
1483        }
1484
1485        return pos;
1486}
1487
1488size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1489                              const u8 *ids, int n_ids,
1490                              const u8 *after_ric, int n_after_ric,
1491                              size_t offset)
1492{
1493        size_t pos = offset;
1494
1495        while (pos < ielen) {
1496                u8 ext = 0;
1497
1498                if (ies[pos] == WLAN_EID_EXTENSION)
1499                        ext = 2;
1500                if ((pos + ext) >= ielen)
1501                        break;
1502
1503                if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1504                                          ies[pos] == WLAN_EID_EXTENSION))
1505                        break;
1506
1507                if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1508                        pos = skip_ie(ies, ielen, pos);
1509
1510                        while (pos < ielen) {
1511                                if (ies[pos] == WLAN_EID_EXTENSION)
1512                                        ext = 2;
1513                                else
1514                                        ext = 0;
1515
1516                                if ((pos + ext) >= ielen)
1517                                        break;
1518
1519                                if (!ieee80211_id_in_list(after_ric,
1520                                                          n_after_ric,
1521                                                          ies[pos + ext],
1522                                                          ext == 2))
1523                                        pos = skip_ie(ies, ielen, pos);
1524                                else
1525                                        break;
1526                        }
1527                } else {
1528                        pos = skip_ie(ies, ielen, pos);
1529                }
1530        }
1531
1532        return pos;
1533}
1534EXPORT_SYMBOL(ieee80211_ie_split_ric);
1535
1536bool ieee80211_operating_class_to_band(u8 operating_class,
1537                                       enum nl80211_band *band)
1538{
1539        switch (operating_class) {
1540        case 112:
1541        case 115 ... 127:
1542        case 128 ... 130:
1543                *band = NL80211_BAND_5GHZ;
1544                return true;
1545        case 131 ... 135:
1546                *band = NL80211_BAND_6GHZ;
1547                return true;
1548        case 81:
1549        case 82:
1550        case 83:
1551        case 84:
1552                *band = NL80211_BAND_2GHZ;
1553                return true;
1554        case 180:
1555                *band = NL80211_BAND_60GHZ;
1556                return true;
1557        }
1558
1559        return false;
1560}
1561EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1562
1563bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1564                                          u8 *op_class)
1565{
1566        u8 vht_opclass;
1567        u32 freq = chandef->center_freq1;
1568
1569        if (freq >= 2412 && freq <= 2472) {
1570                if (chandef->width > NL80211_CHAN_WIDTH_40)
1571                        return false;
1572
1573                /* 2.407 GHz, channels 1..13 */
1574                if (chandef->width == NL80211_CHAN_WIDTH_40) {
1575                        if (freq > chandef->chan->center_freq)
1576                                *op_class = 83; /* HT40+ */
1577                        else
1578                                *op_class = 84; /* HT40- */
1579                } else {
1580                        *op_class = 81;
1581                }
1582
1583                return true;
1584        }
1585
1586        if (freq == 2484) {
1587                /* channel 14 is only for IEEE 802.11b */
1588                if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1589                        return false;
1590
1591                *op_class = 82; /* channel 14 */
1592                return true;
1593        }
1594
1595        switch (chandef->width) {
1596        case NL80211_CHAN_WIDTH_80:
1597                vht_opclass = 128;
1598                break;
1599        case NL80211_CHAN_WIDTH_160:
1600                vht_opclass = 129;
1601                break;
1602        case NL80211_CHAN_WIDTH_80P80:
1603                vht_opclass = 130;
1604                break;
1605        case NL80211_CHAN_WIDTH_10:
1606        case NL80211_CHAN_WIDTH_5:
1607                return false; /* unsupported for now */
1608        default:
1609                vht_opclass = 0;
1610                break;
1611        }
1612
1613        /* 5 GHz, channels 36..48 */
1614        if (freq >= 5180 && freq <= 5240) {
1615                if (vht_opclass) {
1616                        *op_class = vht_opclass;
1617                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1618                        if (freq > chandef->chan->center_freq)
1619                                *op_class = 116;
1620                        else
1621                                *op_class = 117;
1622                } else {
1623                        *op_class = 115;
1624                }
1625
1626                return true;
1627        }
1628
1629        /* 5 GHz, channels 52..64 */
1630        if (freq >= 5260 && freq <= 5320) {
1631                if (vht_opclass) {
1632                        *op_class = vht_opclass;
1633                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1634                        if (freq > chandef->chan->center_freq)
1635                                *op_class = 119;
1636                        else
1637                                *op_class = 120;
1638                } else {
1639                        *op_class = 118;
1640                }
1641
1642                return true;
1643        }
1644
1645        /* 5 GHz, channels 100..144 */
1646        if (freq >= 5500 && freq <= 5720) {
1647                if (vht_opclass) {
1648                        *op_class = vht_opclass;
1649                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650                        if (freq > chandef->chan->center_freq)
1651                                *op_class = 122;
1652                        else
1653                                *op_class = 123;
1654                } else {
1655                        *op_class = 121;
1656                }
1657
1658                return true;
1659        }
1660
1661        /* 5 GHz, channels 149..169 */
1662        if (freq >= 5745 && freq <= 5845) {
1663                if (vht_opclass) {
1664                        *op_class = vht_opclass;
1665                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666                        if (freq > chandef->chan->center_freq)
1667                                *op_class = 126;
1668                        else
1669                                *op_class = 127;
1670                } else if (freq <= 5805) {
1671                        *op_class = 124;
1672                } else {
1673                        *op_class = 125;
1674                }
1675
1676                return true;
1677        }
1678
1679        /* 56.16 GHz, channel 1..4 */
1680        if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1681                if (chandef->width >= NL80211_CHAN_WIDTH_40)
1682                        return false;
1683
1684                *op_class = 180;
1685                return true;
1686        }
1687
1688        /* not supported yet */
1689        return false;
1690}
1691EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1692
1693static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1694                                       u32 *beacon_int_gcd,
1695                                       bool *beacon_int_different)
1696{
1697        struct wireless_dev *wdev;
1698
1699        *beacon_int_gcd = 0;
1700        *beacon_int_different = false;
1701
1702        list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1703                if (!wdev->beacon_interval)
1704                        continue;
1705
1706                if (!*beacon_int_gcd) {
1707                        *beacon_int_gcd = wdev->beacon_interval;
1708                        continue;
1709                }
1710
1711                if (wdev->beacon_interval == *beacon_int_gcd)
1712                        continue;
1713
1714                *beacon_int_different = true;
1715                *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1716        }
1717
1718        if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1719                if (*beacon_int_gcd)
1720                        *beacon_int_different = true;
1721                *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1722        }
1723}
1724
1725int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1726                                 enum nl80211_iftype iftype, u32 beacon_int)
1727{
1728        /*
1729         * This is just a basic pre-condition check; if interface combinations
1730         * are possible the driver must already be checking those with a call
1731         * to cfg80211_check_combinations(), in which case we'll validate more
1732         * through the cfg80211_calculate_bi_data() call and code in
1733         * cfg80211_iter_combinations().
1734         */
1735
1736        if (beacon_int < 10 || beacon_int > 10000)
1737                return -EINVAL;
1738
1739        return 0;
1740}
1741
1742int cfg80211_iter_combinations(struct wiphy *wiphy,
1743                               struct iface_combination_params *params,
1744                               void (*iter)(const struct ieee80211_iface_combination *c,
1745                                            void *data),
1746                               void *data)
1747{
1748        const struct ieee80211_regdomain *regdom;
1749        enum nl80211_dfs_regions region = 0;
1750        int i, j, iftype;
1751        int num_interfaces = 0;
1752        u32 used_iftypes = 0;
1753        u32 beacon_int_gcd;
1754        bool beacon_int_different;
1755
1756        /*
1757         * This is a bit strange, since the iteration used to rely only on
1758         * the data given by the driver, but here it now relies on context,
1759         * in form of the currently operating interfaces.
1760         * This is OK for all current users, and saves us from having to
1761         * push the GCD calculations into all the drivers.
1762         * In the future, this should probably rely more on data that's in
1763         * cfg80211 already - the only thing not would appear to be any new
1764         * interfaces (while being brought up) and channel/radar data.
1765         */
1766        cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1767                                   &beacon_int_gcd, &beacon_int_different);
1768
1769        if (params->radar_detect) {
1770                rcu_read_lock();
1771                regdom = rcu_dereference(cfg80211_regdomain);
1772                if (regdom)
1773                        region = regdom->dfs_region;
1774                rcu_read_unlock();
1775        }
1776
1777        for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1778                num_interfaces += params->iftype_num[iftype];
1779                if (params->iftype_num[iftype] > 0 &&
1780                    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1781                        used_iftypes |= BIT(iftype);
1782        }
1783
1784        for (i = 0; i < wiphy->n_iface_combinations; i++) {
1785                const struct ieee80211_iface_combination *c;
1786                struct ieee80211_iface_limit *limits;
1787                u32 all_iftypes = 0;
1788
1789                c = &wiphy->iface_combinations[i];
1790
1791                if (num_interfaces > c->max_interfaces)
1792                        continue;
1793                if (params->num_different_channels > c->num_different_channels)
1794                        continue;
1795
1796                limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1797                                 GFP_KERNEL);
1798                if (!limits)
1799                        return -ENOMEM;
1800
1801                for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1802                        if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1803                                continue;
1804                        for (j = 0; j < c->n_limits; j++) {
1805                                all_iftypes |= limits[j].types;
1806                                if (!(limits[j].types & BIT(iftype)))
1807                                        continue;
1808                                if (limits[j].max < params->iftype_num[iftype])
1809                                        goto cont;
1810                                limits[j].max -= params->iftype_num[iftype];
1811                        }
1812                }
1813
1814                if (params->radar_detect !=
1815                        (c->radar_detect_widths & params->radar_detect))
1816                        goto cont;
1817
1818                if (params->radar_detect && c->radar_detect_regions &&
1819                    !(c->radar_detect_regions & BIT(region)))
1820                        goto cont;
1821
1822                /* Finally check that all iftypes that we're currently
1823                 * using are actually part of this combination. If they
1824                 * aren't then we can't use this combination and have
1825                 * to continue to the next.
1826                 */
1827                if ((all_iftypes & used_iftypes) != used_iftypes)
1828                        goto cont;
1829
1830                if (beacon_int_gcd) {
1831                        if (c->beacon_int_min_gcd &&
1832                            beacon_int_gcd < c->beacon_int_min_gcd)
1833                                goto cont;
1834                        if (!c->beacon_int_min_gcd && beacon_int_different)
1835                                goto cont;
1836                }
1837
1838                /* This combination covered all interface types and
1839                 * supported the requested numbers, so we're good.
1840                 */
1841
1842                (*iter)(c, data);
1843 cont:
1844                kfree(limits);
1845        }
1846
1847        return 0;
1848}
1849EXPORT_SYMBOL(cfg80211_iter_combinations);
1850
1851static void
1852cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1853                          void *data)
1854{
1855        int *num = data;
1856        (*num)++;
1857}
1858
1859int cfg80211_check_combinations(struct wiphy *wiphy,
1860                                struct iface_combination_params *params)
1861{
1862        int err, num = 0;
1863
1864        err = cfg80211_iter_combinations(wiphy, params,
1865                                         cfg80211_iter_sum_ifcombs, &num);
1866        if (err)
1867                return err;
1868        if (num == 0)
1869                return -EBUSY;
1870
1871        return 0;
1872}
1873EXPORT_SYMBOL(cfg80211_check_combinations);
1874
1875int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1876                           const u8 *rates, unsigned int n_rates,
1877                           u32 *mask)
1878{
1879        int i, j;
1880
1881        if (!sband)
1882                return -EINVAL;
1883
1884        if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1885                return -EINVAL;
1886
1887        *mask = 0;
1888
1889        for (i = 0; i < n_rates; i++) {
1890                int rate = (rates[i] & 0x7f) * 5;
1891                bool found = false;
1892
1893                for (j = 0; j < sband->n_bitrates; j++) {
1894                        if (sband->bitrates[j].bitrate == rate) {
1895                                found = true;
1896                                *mask |= BIT(j);
1897                                break;
1898                        }
1899                }
1900                if (!found)
1901                        return -EINVAL;
1902        }
1903
1904        /*
1905         * mask must have at least one bit set here since we
1906         * didn't accept a 0-length rates array nor allowed
1907         * entries in the array that didn't exist
1908         */
1909
1910        return 0;
1911}
1912
1913unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1914{
1915        enum nl80211_band band;
1916        unsigned int n_channels = 0;
1917
1918        for (band = 0; band < NUM_NL80211_BANDS; band++)
1919                if (wiphy->bands[band])
1920                        n_channels += wiphy->bands[band]->n_channels;
1921
1922        return n_channels;
1923}
1924EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1925
1926int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1927                         struct station_info *sinfo)
1928{
1929        struct cfg80211_registered_device *rdev;
1930        struct wireless_dev *wdev;
1931
1932        wdev = dev->ieee80211_ptr;
1933        if (!wdev)
1934                return -EOPNOTSUPP;
1935
1936        rdev = wiphy_to_rdev(wdev->wiphy);
1937        if (!rdev->ops->get_station)
1938                return -EOPNOTSUPP;
1939
1940        memset(sinfo, 0, sizeof(*sinfo));
1941
1942        return rdev_get_station(rdev, dev, mac_addr, sinfo);
1943}
1944EXPORT_SYMBOL(cfg80211_get_station);
1945
1946void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1947{
1948        int i;
1949
1950        if (!f)
1951                return;
1952
1953        kfree(f->serv_spec_info);
1954        kfree(f->srf_bf);
1955        kfree(f->srf_macs);
1956        for (i = 0; i < f->num_rx_filters; i++)
1957                kfree(f->rx_filters[i].filter);
1958
1959        for (i = 0; i < f->num_tx_filters; i++)
1960                kfree(f->tx_filters[i].filter);
1961
1962        kfree(f->rx_filters);
1963        kfree(f->tx_filters);
1964        kfree(f);
1965}
1966EXPORT_SYMBOL(cfg80211_free_nan_func);
1967
1968bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1969                                u32 center_freq_khz, u32 bw_khz)
1970{
1971        u32 start_freq_khz, end_freq_khz;
1972
1973        start_freq_khz = center_freq_khz - (bw_khz / 2);
1974        end_freq_khz = center_freq_khz + (bw_khz / 2);
1975
1976        if (start_freq_khz >= freq_range->start_freq_khz &&
1977            end_freq_khz <= freq_range->end_freq_khz)
1978                return true;
1979
1980        return false;
1981}
1982
1983int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1984{
1985        sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1986                                sizeof(*(sinfo->pertid)),
1987                                gfp);
1988        if (!sinfo->pertid)
1989                return -ENOMEM;
1990
1991        return 0;
1992}
1993EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1994
1995/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1996/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1997const unsigned char rfc1042_header[] __aligned(2) =
1998        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1999EXPORT_SYMBOL(rfc1042_header);
2000
2001/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2002const unsigned char bridge_tunnel_header[] __aligned(2) =
2003        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2004EXPORT_SYMBOL(bridge_tunnel_header);
2005
2006/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2007struct iapp_layer2_update {
2008        u8 da[ETH_ALEN];        /* broadcast */
2009        u8 sa[ETH_ALEN];        /* STA addr */
2010        __be16 len;             /* 6 */
2011        u8 dsap;                /* 0 */
2012        u8 ssap;                /* 0 */
2013        u8 control;
2014        u8 xid_info[3];
2015} __packed;
2016
2017void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2018{
2019        struct iapp_layer2_update *msg;
2020        struct sk_buff *skb;
2021
2022        /* Send Level 2 Update Frame to update forwarding tables in layer 2
2023         * bridge devices */
2024
2025        skb = dev_alloc_skb(sizeof(*msg));
2026        if (!skb)
2027                return;
2028        msg = skb_put(skb, sizeof(*msg));
2029
2030        /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2031         * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2032
2033        eth_broadcast_addr(msg->da);
2034        ether_addr_copy(msg->sa, addr);
2035        msg->len = htons(6);
2036        msg->dsap = 0;
2037        msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2038        msg->control = 0xaf;    /* XID response lsb.1111F101.
2039                                 * F=0 (no poll command; unsolicited frame) */
2040        msg->xid_info[0] = 0x81;        /* XID format identifier */
2041        msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2042        msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2043
2044        skb->dev = dev;
2045        skb->protocol = eth_type_trans(skb, dev);
2046        memset(skb->cb, 0, sizeof(skb->cb));
2047        netif_rx_ni(skb);
2048}
2049EXPORT_SYMBOL(cfg80211_send_layer2_update);
2050
2051int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2052                              enum ieee80211_vht_chanwidth bw,
2053                              int mcs, bool ext_nss_bw_capable,
2054                              unsigned int max_vht_nss)
2055{
2056        u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2057        int ext_nss_bw;
2058        int supp_width;
2059        int i, mcs_encoding;
2060
2061        if (map == 0xffff)
2062                return 0;
2063
2064        if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2065                return 0;
2066        if (mcs <= 7)
2067                mcs_encoding = 0;
2068        else if (mcs == 8)
2069                mcs_encoding = 1;
2070        else
2071                mcs_encoding = 2;
2072
2073        if (!max_vht_nss) {
2074                /* find max_vht_nss for the given MCS */
2075                for (i = 7; i >= 0; i--) {
2076                        int supp = (map >> (2 * i)) & 3;
2077
2078                        if (supp == 3)
2079                                continue;
2080
2081                        if (supp >= mcs_encoding) {
2082                                max_vht_nss = i + 1;
2083                                break;
2084                        }
2085                }
2086        }
2087
2088        if (!(cap->supp_mcs.tx_mcs_map &
2089                        cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2090                return max_vht_nss;
2091
2092        ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2093                                   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2094        supp_width = le32_get_bits(cap->vht_cap_info,
2095                                   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2096
2097        /* if not capable, treat ext_nss_bw as 0 */
2098        if (!ext_nss_bw_capable)
2099                ext_nss_bw = 0;
2100
2101        /* This is invalid */
2102        if (supp_width == 3)
2103                return 0;
2104
2105        /* This is an invalid combination so pretend nothing is supported */
2106        if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2107                return 0;
2108
2109        /*
2110         * Cover all the special cases according to IEEE 802.11-2016
2111         * Table 9-250. All other cases are either factor of 1 or not
2112         * valid/supported.
2113         */
2114        switch (bw) {
2115        case IEEE80211_VHT_CHANWIDTH_USE_HT:
2116        case IEEE80211_VHT_CHANWIDTH_80MHZ:
2117                if ((supp_width == 1 || supp_width == 2) &&
2118                    ext_nss_bw == 3)
2119                        return 2 * max_vht_nss;
2120                break;
2121        case IEEE80211_VHT_CHANWIDTH_160MHZ:
2122                if (supp_width == 0 &&
2123                    (ext_nss_bw == 1 || ext_nss_bw == 2))
2124                        return max_vht_nss / 2;
2125                if (supp_width == 0 &&
2126                    ext_nss_bw == 3)
2127                        return (3 * max_vht_nss) / 4;
2128                if (supp_width == 1 &&
2129                    ext_nss_bw == 3)
2130                        return 2 * max_vht_nss;
2131                break;
2132        case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2133                if (supp_width == 0 && ext_nss_bw == 1)
2134                        return 0; /* not possible */
2135                if (supp_width == 0 &&
2136                    ext_nss_bw == 2)
2137                        return max_vht_nss / 2;
2138                if (supp_width == 0 &&
2139                    ext_nss_bw == 3)
2140                        return (3 * max_vht_nss) / 4;
2141                if (supp_width == 1 &&
2142                    ext_nss_bw == 0)
2143                        return 0; /* not possible */
2144                if (supp_width == 1 &&
2145                    ext_nss_bw == 1)
2146                        return max_vht_nss / 2;
2147                if (supp_width == 1 &&
2148                    ext_nss_bw == 2)
2149                        return (3 * max_vht_nss) / 4;
2150                break;
2151        }
2152
2153        /* not covered or invalid combination received */
2154        return max_vht_nss;
2155}
2156EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2157
2158bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2159                             bool is_4addr, u8 check_swif)
2160
2161{
2162        bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2163
2164        switch (check_swif) {
2165        case 0:
2166                if (is_vlan && is_4addr)
2167                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2168                return wiphy->interface_modes & BIT(iftype);
2169        case 1:
2170                if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2171                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2172                return wiphy->software_iftypes & BIT(iftype);
2173        default:
2174                break;
2175        }
2176
2177        return false;
2178}
2179EXPORT_SYMBOL(cfg80211_iftype_allowed);
2180