linux/security/security.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/lsm_hooks.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <linux/string.h>
  29#include <linux/msg.h>
  30#include <net/flow.h>
  31
  32#define MAX_LSM_EVM_XATTR       2
  33
  34/* How many LSMs were built into the kernel? */
  35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  36
  37/*
  38 * These are descriptions of the reasons that can be passed to the
  39 * security_locked_down() LSM hook. Placing this array here allows
  40 * all security modules to use the same descriptions for auditing
  41 * purposes.
  42 */
  43const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
  44        [LOCKDOWN_NONE] = "none",
  45        [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  46        [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  47        [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  48        [LOCKDOWN_KEXEC] = "kexec of unsigned images",
  49        [LOCKDOWN_HIBERNATION] = "hibernation",
  50        [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  51        [LOCKDOWN_IOPORT] = "raw io port access",
  52        [LOCKDOWN_MSR] = "raw MSR access",
  53        [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  54        [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  55        [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  56        [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  57        [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  58        [LOCKDOWN_DEBUGFS] = "debugfs access",
  59        [LOCKDOWN_XMON_WR] = "xmon write access",
  60        [LOCKDOWN_INTEGRITY_MAX] = "integrity",
  61        [LOCKDOWN_KCORE] = "/proc/kcore access",
  62        [LOCKDOWN_KPROBES] = "use of kprobes",
  63        [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
  64        [LOCKDOWN_PERF] = "unsafe use of perf",
  65        [LOCKDOWN_TRACEFS] = "use of tracefs",
  66        [LOCKDOWN_XMON_RW] = "xmon read and write access",
  67        [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  68};
  69
  70struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  71static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  72
  73static struct kmem_cache *lsm_file_cache;
  74static struct kmem_cache *lsm_inode_cache;
  75
  76char *lsm_names;
  77static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  78
  79/* Boot-time LSM user choice */
  80static __initdata const char *chosen_lsm_order;
  81static __initdata const char *chosen_major_lsm;
  82
  83static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  84
  85/* Ordered list of LSMs to initialize. */
  86static __initdata struct lsm_info **ordered_lsms;
  87static __initdata struct lsm_info *exclusive;
  88
  89static __initdata bool debug;
  90#define init_debug(...)                                         \
  91        do {                                                    \
  92                if (debug)                                      \
  93                        pr_info(__VA_ARGS__);                   \
  94        } while (0)
  95
  96static bool __init is_enabled(struct lsm_info *lsm)
  97{
  98        if (!lsm->enabled)
  99                return false;
 100
 101        return *lsm->enabled;
 102}
 103
 104/* Mark an LSM's enabled flag. */
 105static int lsm_enabled_true __initdata = 1;
 106static int lsm_enabled_false __initdata = 0;
 107static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 108{
 109        /*
 110         * When an LSM hasn't configured an enable variable, we can use
 111         * a hard-coded location for storing the default enabled state.
 112         */
 113        if (!lsm->enabled) {
 114                if (enabled)
 115                        lsm->enabled = &lsm_enabled_true;
 116                else
 117                        lsm->enabled = &lsm_enabled_false;
 118        } else if (lsm->enabled == &lsm_enabled_true) {
 119                if (!enabled)
 120                        lsm->enabled = &lsm_enabled_false;
 121        } else if (lsm->enabled == &lsm_enabled_false) {
 122                if (enabled)
 123                        lsm->enabled = &lsm_enabled_true;
 124        } else {
 125                *lsm->enabled = enabled;
 126        }
 127}
 128
 129/* Is an LSM already listed in the ordered LSMs list? */
 130static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 131{
 132        struct lsm_info **check;
 133
 134        for (check = ordered_lsms; *check; check++)
 135                if (*check == lsm)
 136                        return true;
 137
 138        return false;
 139}
 140
 141/* Append an LSM to the list of ordered LSMs to initialize. */
 142static int last_lsm __initdata;
 143static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 144{
 145        /* Ignore duplicate selections. */
 146        if (exists_ordered_lsm(lsm))
 147                return;
 148
 149        if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 150                return;
 151
 152        /* Enable this LSM, if it is not already set. */
 153        if (!lsm->enabled)
 154                lsm->enabled = &lsm_enabled_true;
 155        ordered_lsms[last_lsm++] = lsm;
 156
 157        init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 158                   is_enabled(lsm) ? "en" : "dis");
 159}
 160
 161/* Is an LSM allowed to be initialized? */
 162static bool __init lsm_allowed(struct lsm_info *lsm)
 163{
 164        /* Skip if the LSM is disabled. */
 165        if (!is_enabled(lsm))
 166                return false;
 167
 168        /* Not allowed if another exclusive LSM already initialized. */
 169        if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 170                init_debug("exclusive disabled: %s\n", lsm->name);
 171                return false;
 172        }
 173
 174        return true;
 175}
 176
 177static void __init lsm_set_blob_size(int *need, int *lbs)
 178{
 179        int offset;
 180
 181        if (*need > 0) {
 182                offset = *lbs;
 183                *lbs += *need;
 184                *need = offset;
 185        }
 186}
 187
 188static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 189{
 190        if (!needed)
 191                return;
 192
 193        lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 194        lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 195        /*
 196         * The inode blob gets an rcu_head in addition to
 197         * what the modules might need.
 198         */
 199        if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 200                blob_sizes.lbs_inode = sizeof(struct rcu_head);
 201        lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 202        lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 203        lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 204        lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 205}
 206
 207/* Prepare LSM for initialization. */
 208static void __init prepare_lsm(struct lsm_info *lsm)
 209{
 210        int enabled = lsm_allowed(lsm);
 211
 212        /* Record enablement (to handle any following exclusive LSMs). */
 213        set_enabled(lsm, enabled);
 214
 215        /* If enabled, do pre-initialization work. */
 216        if (enabled) {
 217                if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 218                        exclusive = lsm;
 219                        init_debug("exclusive chosen: %s\n", lsm->name);
 220                }
 221
 222                lsm_set_blob_sizes(lsm->blobs);
 223        }
 224}
 225
 226/* Initialize a given LSM, if it is enabled. */
 227static void __init initialize_lsm(struct lsm_info *lsm)
 228{
 229        if (is_enabled(lsm)) {
 230                int ret;
 231
 232                init_debug("initializing %s\n", lsm->name);
 233                ret = lsm->init();
 234                WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 235        }
 236}
 237
 238/* Populate ordered LSMs list from comma-separated LSM name list. */
 239static void __init ordered_lsm_parse(const char *order, const char *origin)
 240{
 241        struct lsm_info *lsm;
 242        char *sep, *name, *next;
 243
 244        /* LSM_ORDER_FIRST is always first. */
 245        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 246                if (lsm->order == LSM_ORDER_FIRST)
 247                        append_ordered_lsm(lsm, "first");
 248        }
 249
 250        /* Process "security=", if given. */
 251        if (chosen_major_lsm) {
 252                struct lsm_info *major;
 253
 254                /*
 255                 * To match the original "security=" behavior, this
 256                 * explicitly does NOT fallback to another Legacy Major
 257                 * if the selected one was separately disabled: disable
 258                 * all non-matching Legacy Major LSMs.
 259                 */
 260                for (major = __start_lsm_info; major < __end_lsm_info;
 261                     major++) {
 262                        if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 263                            strcmp(major->name, chosen_major_lsm) != 0) {
 264                                set_enabled(major, false);
 265                                init_debug("security=%s disabled: %s\n",
 266                                           chosen_major_lsm, major->name);
 267                        }
 268                }
 269        }
 270
 271        sep = kstrdup(order, GFP_KERNEL);
 272        next = sep;
 273        /* Walk the list, looking for matching LSMs. */
 274        while ((name = strsep(&next, ",")) != NULL) {
 275                bool found = false;
 276
 277                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 278                        if (lsm->order == LSM_ORDER_MUTABLE &&
 279                            strcmp(lsm->name, name) == 0) {
 280                                append_ordered_lsm(lsm, origin);
 281                                found = true;
 282                        }
 283                }
 284
 285                if (!found)
 286                        init_debug("%s ignored: %s\n", origin, name);
 287        }
 288
 289        /* Process "security=", if given. */
 290        if (chosen_major_lsm) {
 291                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 292                        if (exists_ordered_lsm(lsm))
 293                                continue;
 294                        if (strcmp(lsm->name, chosen_major_lsm) == 0)
 295                                append_ordered_lsm(lsm, "security=");
 296                }
 297        }
 298
 299        /* Disable all LSMs not in the ordered list. */
 300        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 301                if (exists_ordered_lsm(lsm))
 302                        continue;
 303                set_enabled(lsm, false);
 304                init_debug("%s disabled: %s\n", origin, lsm->name);
 305        }
 306
 307        kfree(sep);
 308}
 309
 310static void __init lsm_early_cred(struct cred *cred);
 311static void __init lsm_early_task(struct task_struct *task);
 312
 313static int lsm_append(const char *new, char **result);
 314
 315static void __init ordered_lsm_init(void)
 316{
 317        struct lsm_info **lsm;
 318
 319        ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 320                                GFP_KERNEL);
 321
 322        if (chosen_lsm_order) {
 323                if (chosen_major_lsm) {
 324                        pr_info("security= is ignored because it is superseded by lsm=\n");
 325                        chosen_major_lsm = NULL;
 326                }
 327                ordered_lsm_parse(chosen_lsm_order, "cmdline");
 328        } else
 329                ordered_lsm_parse(builtin_lsm_order, "builtin");
 330
 331        for (lsm = ordered_lsms; *lsm; lsm++)
 332                prepare_lsm(*lsm);
 333
 334        init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
 335        init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
 336        init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
 337        init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
 338        init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
 339        init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
 340
 341        /*
 342         * Create any kmem_caches needed for blobs
 343         */
 344        if (blob_sizes.lbs_file)
 345                lsm_file_cache = kmem_cache_create("lsm_file_cache",
 346                                                   blob_sizes.lbs_file, 0,
 347                                                   SLAB_PANIC, NULL);
 348        if (blob_sizes.lbs_inode)
 349                lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 350                                                    blob_sizes.lbs_inode, 0,
 351                                                    SLAB_PANIC, NULL);
 352
 353        lsm_early_cred((struct cred *) current->cred);
 354        lsm_early_task(current);
 355        for (lsm = ordered_lsms; *lsm; lsm++)
 356                initialize_lsm(*lsm);
 357
 358        kfree(ordered_lsms);
 359}
 360
 361int __init early_security_init(void)
 362{
 363        int i;
 364        struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 365        struct lsm_info *lsm;
 366
 367        for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 368             i++)
 369                INIT_HLIST_HEAD(&list[i]);
 370
 371        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 372                if (!lsm->enabled)
 373                        lsm->enabled = &lsm_enabled_true;
 374                prepare_lsm(lsm);
 375                initialize_lsm(lsm);
 376        }
 377
 378        return 0;
 379}
 380
 381/**
 382 * security_init - initializes the security framework
 383 *
 384 * This should be called early in the kernel initialization sequence.
 385 */
 386int __init security_init(void)
 387{
 388        struct lsm_info *lsm;
 389
 390        pr_info("Security Framework initializing\n");
 391
 392        /*
 393         * Append the names of the early LSM modules now that kmalloc() is
 394         * available
 395         */
 396        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 397                if (lsm->enabled)
 398                        lsm_append(lsm->name, &lsm_names);
 399        }
 400
 401        /* Load LSMs in specified order. */
 402        ordered_lsm_init();
 403
 404        return 0;
 405}
 406
 407/* Save user chosen LSM */
 408static int __init choose_major_lsm(char *str)
 409{
 410        chosen_major_lsm = str;
 411        return 1;
 412}
 413__setup("security=", choose_major_lsm);
 414
 415/* Explicitly choose LSM initialization order. */
 416static int __init choose_lsm_order(char *str)
 417{
 418        chosen_lsm_order = str;
 419        return 1;
 420}
 421__setup("lsm=", choose_lsm_order);
 422
 423/* Enable LSM order debugging. */
 424static int __init enable_debug(char *str)
 425{
 426        debug = true;
 427        return 1;
 428}
 429__setup("lsm.debug", enable_debug);
 430
 431static bool match_last_lsm(const char *list, const char *lsm)
 432{
 433        const char *last;
 434
 435        if (WARN_ON(!list || !lsm))
 436                return false;
 437        last = strrchr(list, ',');
 438        if (last)
 439                /* Pass the comma, strcmp() will check for '\0' */
 440                last++;
 441        else
 442                last = list;
 443        return !strcmp(last, lsm);
 444}
 445
 446static int lsm_append(const char *new, char **result)
 447{
 448        char *cp;
 449
 450        if (*result == NULL) {
 451                *result = kstrdup(new, GFP_KERNEL);
 452                if (*result == NULL)
 453                        return -ENOMEM;
 454        } else {
 455                /* Check if it is the last registered name */
 456                if (match_last_lsm(*result, new))
 457                        return 0;
 458                cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 459                if (cp == NULL)
 460                        return -ENOMEM;
 461                kfree(*result);
 462                *result = cp;
 463        }
 464        return 0;
 465}
 466
 467/**
 468 * security_add_hooks - Add a modules hooks to the hook lists.
 469 * @hooks: the hooks to add
 470 * @count: the number of hooks to add
 471 * @lsm: the name of the security module
 472 *
 473 * Each LSM has to register its hooks with the infrastructure.
 474 */
 475void __init security_add_hooks(struct security_hook_list *hooks, int count,
 476                                char *lsm)
 477{
 478        int i;
 479
 480        for (i = 0; i < count; i++) {
 481                hooks[i].lsm = lsm;
 482                hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 483        }
 484
 485        /*
 486         * Don't try to append during early_security_init(), we'll come back
 487         * and fix this up afterwards.
 488         */
 489        if (slab_is_available()) {
 490                if (lsm_append(lsm, &lsm_names) < 0)
 491                        panic("%s - Cannot get early memory.\n", __func__);
 492        }
 493}
 494
 495int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 496{
 497        return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 498                                            event, data);
 499}
 500EXPORT_SYMBOL(call_blocking_lsm_notifier);
 501
 502int register_blocking_lsm_notifier(struct notifier_block *nb)
 503{
 504        return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 505                                                nb);
 506}
 507EXPORT_SYMBOL(register_blocking_lsm_notifier);
 508
 509int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 510{
 511        return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 512                                                  nb);
 513}
 514EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 515
 516/**
 517 * lsm_cred_alloc - allocate a composite cred blob
 518 * @cred: the cred that needs a blob
 519 * @gfp: allocation type
 520 *
 521 * Allocate the cred blob for all the modules
 522 *
 523 * Returns 0, or -ENOMEM if memory can't be allocated.
 524 */
 525static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 526{
 527        if (blob_sizes.lbs_cred == 0) {
 528                cred->security = NULL;
 529                return 0;
 530        }
 531
 532        cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 533        if (cred->security == NULL)
 534                return -ENOMEM;
 535        return 0;
 536}
 537
 538/**
 539 * lsm_early_cred - during initialization allocate a composite cred blob
 540 * @cred: the cred that needs a blob
 541 *
 542 * Allocate the cred blob for all the modules
 543 */
 544static void __init lsm_early_cred(struct cred *cred)
 545{
 546        int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 547
 548        if (rc)
 549                panic("%s: Early cred alloc failed.\n", __func__);
 550}
 551
 552/**
 553 * lsm_file_alloc - allocate a composite file blob
 554 * @file: the file that needs a blob
 555 *
 556 * Allocate the file blob for all the modules
 557 *
 558 * Returns 0, or -ENOMEM if memory can't be allocated.
 559 */
 560static int lsm_file_alloc(struct file *file)
 561{
 562        if (!lsm_file_cache) {
 563                file->f_security = NULL;
 564                return 0;
 565        }
 566
 567        file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 568        if (file->f_security == NULL)
 569                return -ENOMEM;
 570        return 0;
 571}
 572
 573/**
 574 * lsm_inode_alloc - allocate a composite inode blob
 575 * @inode: the inode that needs a blob
 576 *
 577 * Allocate the inode blob for all the modules
 578 *
 579 * Returns 0, or -ENOMEM if memory can't be allocated.
 580 */
 581int lsm_inode_alloc(struct inode *inode)
 582{
 583        if (!lsm_inode_cache) {
 584                inode->i_security = NULL;
 585                return 0;
 586        }
 587
 588        inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 589        if (inode->i_security == NULL)
 590                return -ENOMEM;
 591        return 0;
 592}
 593
 594/**
 595 * lsm_task_alloc - allocate a composite task blob
 596 * @task: the task that needs a blob
 597 *
 598 * Allocate the task blob for all the modules
 599 *
 600 * Returns 0, or -ENOMEM if memory can't be allocated.
 601 */
 602static int lsm_task_alloc(struct task_struct *task)
 603{
 604        if (blob_sizes.lbs_task == 0) {
 605                task->security = NULL;
 606                return 0;
 607        }
 608
 609        task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 610        if (task->security == NULL)
 611                return -ENOMEM;
 612        return 0;
 613}
 614
 615/**
 616 * lsm_ipc_alloc - allocate a composite ipc blob
 617 * @kip: the ipc that needs a blob
 618 *
 619 * Allocate the ipc blob for all the modules
 620 *
 621 * Returns 0, or -ENOMEM if memory can't be allocated.
 622 */
 623static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 624{
 625        if (blob_sizes.lbs_ipc == 0) {
 626                kip->security = NULL;
 627                return 0;
 628        }
 629
 630        kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 631        if (kip->security == NULL)
 632                return -ENOMEM;
 633        return 0;
 634}
 635
 636/**
 637 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 638 * @mp: the msg_msg that needs a blob
 639 *
 640 * Allocate the ipc blob for all the modules
 641 *
 642 * Returns 0, or -ENOMEM if memory can't be allocated.
 643 */
 644static int lsm_msg_msg_alloc(struct msg_msg *mp)
 645{
 646        if (blob_sizes.lbs_msg_msg == 0) {
 647                mp->security = NULL;
 648                return 0;
 649        }
 650
 651        mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 652        if (mp->security == NULL)
 653                return -ENOMEM;
 654        return 0;
 655}
 656
 657/**
 658 * lsm_early_task - during initialization allocate a composite task blob
 659 * @task: the task that needs a blob
 660 *
 661 * Allocate the task blob for all the modules
 662 */
 663static void __init lsm_early_task(struct task_struct *task)
 664{
 665        int rc = lsm_task_alloc(task);
 666
 667        if (rc)
 668                panic("%s: Early task alloc failed.\n", __func__);
 669}
 670
 671/*
 672 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 673 * can be accessed with:
 674 *
 675 *      LSM_RET_DEFAULT(<hook_name>)
 676 *
 677 * The macros below define static constants for the default value of each
 678 * LSM hook.
 679 */
 680#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 681#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 682#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 683        static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
 684#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 685        DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 686
 687#include <linux/lsm_hook_defs.h>
 688#undef LSM_HOOK
 689
 690/*
 691 * Hook list operation macros.
 692 *
 693 * call_void_hook:
 694 *      This is a hook that does not return a value.
 695 *
 696 * call_int_hook:
 697 *      This is a hook that returns a value.
 698 */
 699
 700#define call_void_hook(FUNC, ...)                               \
 701        do {                                                    \
 702                struct security_hook_list *P;                   \
 703                                                                \
 704                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 705                        P->hook.FUNC(__VA_ARGS__);              \
 706        } while (0)
 707
 708#define call_int_hook(FUNC, IRC, ...) ({                        \
 709        int RC = IRC;                                           \
 710        do {                                                    \
 711                struct security_hook_list *P;                   \
 712                                                                \
 713                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 714                        RC = P->hook.FUNC(__VA_ARGS__);         \
 715                        if (RC != 0)                            \
 716                                break;                          \
 717                }                                               \
 718        } while (0);                                            \
 719        RC;                                                     \
 720})
 721
 722/* Security operations */
 723
 724int security_binder_set_context_mgr(struct task_struct *mgr)
 725{
 726        return call_int_hook(binder_set_context_mgr, 0, mgr);
 727}
 728
 729int security_binder_transaction(struct task_struct *from,
 730                                struct task_struct *to)
 731{
 732        return call_int_hook(binder_transaction, 0, from, to);
 733}
 734
 735int security_binder_transfer_binder(struct task_struct *from,
 736                                    struct task_struct *to)
 737{
 738        return call_int_hook(binder_transfer_binder, 0, from, to);
 739}
 740
 741int security_binder_transfer_file(struct task_struct *from,
 742                                  struct task_struct *to, struct file *file)
 743{
 744        return call_int_hook(binder_transfer_file, 0, from, to, file);
 745}
 746
 747int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 748{
 749        return call_int_hook(ptrace_access_check, 0, child, mode);
 750}
 751
 752int security_ptrace_traceme(struct task_struct *parent)
 753{
 754        return call_int_hook(ptrace_traceme, 0, parent);
 755}
 756
 757int security_capget(struct task_struct *target,
 758                     kernel_cap_t *effective,
 759                     kernel_cap_t *inheritable,
 760                     kernel_cap_t *permitted)
 761{
 762        return call_int_hook(capget, 0, target,
 763                                effective, inheritable, permitted);
 764}
 765
 766int security_capset(struct cred *new, const struct cred *old,
 767                    const kernel_cap_t *effective,
 768                    const kernel_cap_t *inheritable,
 769                    const kernel_cap_t *permitted)
 770{
 771        return call_int_hook(capset, 0, new, old,
 772                                effective, inheritable, permitted);
 773}
 774
 775int security_capable(const struct cred *cred,
 776                     struct user_namespace *ns,
 777                     int cap,
 778                     unsigned int opts)
 779{
 780        return call_int_hook(capable, 0, cred, ns, cap, opts);
 781}
 782
 783int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 784{
 785        return call_int_hook(quotactl, 0, cmds, type, id, sb);
 786}
 787
 788int security_quota_on(struct dentry *dentry)
 789{
 790        return call_int_hook(quota_on, 0, dentry);
 791}
 792
 793int security_syslog(int type)
 794{
 795        return call_int_hook(syslog, 0, type);
 796}
 797
 798int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 799{
 800        return call_int_hook(settime, 0, ts, tz);
 801}
 802
 803int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 804{
 805        struct security_hook_list *hp;
 806        int cap_sys_admin = 1;
 807        int rc;
 808
 809        /*
 810         * The module will respond with a positive value if
 811         * it thinks the __vm_enough_memory() call should be
 812         * made with the cap_sys_admin set. If all of the modules
 813         * agree that it should be set it will. If any module
 814         * thinks it should not be set it won't.
 815         */
 816        hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 817                rc = hp->hook.vm_enough_memory(mm, pages);
 818                if (rc <= 0) {
 819                        cap_sys_admin = 0;
 820                        break;
 821                }
 822        }
 823        return __vm_enough_memory(mm, pages, cap_sys_admin);
 824}
 825
 826int security_bprm_creds_for_exec(struct linux_binprm *bprm)
 827{
 828        return call_int_hook(bprm_creds_for_exec, 0, bprm);
 829}
 830
 831int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
 832{
 833        return call_int_hook(bprm_creds_from_file, 0, bprm, file);
 834}
 835
 836int security_bprm_check(struct linux_binprm *bprm)
 837{
 838        int ret;
 839
 840        ret = call_int_hook(bprm_check_security, 0, bprm);
 841        if (ret)
 842                return ret;
 843        return ima_bprm_check(bprm);
 844}
 845
 846void security_bprm_committing_creds(struct linux_binprm *bprm)
 847{
 848        call_void_hook(bprm_committing_creds, bprm);
 849}
 850
 851void security_bprm_committed_creds(struct linux_binprm *bprm)
 852{
 853        call_void_hook(bprm_committed_creds, bprm);
 854}
 855
 856int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 857{
 858        return call_int_hook(fs_context_dup, 0, fc, src_fc);
 859}
 860
 861int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 862{
 863        return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 864}
 865
 866int security_sb_alloc(struct super_block *sb)
 867{
 868        return call_int_hook(sb_alloc_security, 0, sb);
 869}
 870
 871void security_sb_free(struct super_block *sb)
 872{
 873        call_void_hook(sb_free_security, sb);
 874}
 875
 876void security_free_mnt_opts(void **mnt_opts)
 877{
 878        if (!*mnt_opts)
 879                return;
 880        call_void_hook(sb_free_mnt_opts, *mnt_opts);
 881        *mnt_opts = NULL;
 882}
 883EXPORT_SYMBOL(security_free_mnt_opts);
 884
 885int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 886{
 887        return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 888}
 889EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 890
 891int security_sb_remount(struct super_block *sb,
 892                        void *mnt_opts)
 893{
 894        return call_int_hook(sb_remount, 0, sb, mnt_opts);
 895}
 896EXPORT_SYMBOL(security_sb_remount);
 897
 898int security_sb_kern_mount(struct super_block *sb)
 899{
 900        return call_int_hook(sb_kern_mount, 0, sb);
 901}
 902
 903int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 904{
 905        return call_int_hook(sb_show_options, 0, m, sb);
 906}
 907
 908int security_sb_statfs(struct dentry *dentry)
 909{
 910        return call_int_hook(sb_statfs, 0, dentry);
 911}
 912
 913int security_sb_mount(const char *dev_name, const struct path *path,
 914                       const char *type, unsigned long flags, void *data)
 915{
 916        return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 917}
 918
 919int security_sb_umount(struct vfsmount *mnt, int flags)
 920{
 921        return call_int_hook(sb_umount, 0, mnt, flags);
 922}
 923
 924int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 925{
 926        return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 927}
 928
 929int security_sb_set_mnt_opts(struct super_block *sb,
 930                                void *mnt_opts,
 931                                unsigned long kern_flags,
 932                                unsigned long *set_kern_flags)
 933{
 934        return call_int_hook(sb_set_mnt_opts,
 935                                mnt_opts ? -EOPNOTSUPP : 0, sb,
 936                                mnt_opts, kern_flags, set_kern_flags);
 937}
 938EXPORT_SYMBOL(security_sb_set_mnt_opts);
 939
 940int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 941                                struct super_block *newsb,
 942                                unsigned long kern_flags,
 943                                unsigned long *set_kern_flags)
 944{
 945        return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 946                                kern_flags, set_kern_flags);
 947}
 948EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 949
 950int security_add_mnt_opt(const char *option, const char *val, int len,
 951                         void **mnt_opts)
 952{
 953        return call_int_hook(sb_add_mnt_opt, -EINVAL,
 954                                        option, val, len, mnt_opts);
 955}
 956EXPORT_SYMBOL(security_add_mnt_opt);
 957
 958int security_move_mount(const struct path *from_path, const struct path *to_path)
 959{
 960        return call_int_hook(move_mount, 0, from_path, to_path);
 961}
 962
 963int security_path_notify(const struct path *path, u64 mask,
 964                                unsigned int obj_type)
 965{
 966        return call_int_hook(path_notify, 0, path, mask, obj_type);
 967}
 968
 969int security_inode_alloc(struct inode *inode)
 970{
 971        int rc = lsm_inode_alloc(inode);
 972
 973        if (unlikely(rc))
 974                return rc;
 975        rc = call_int_hook(inode_alloc_security, 0, inode);
 976        if (unlikely(rc))
 977                security_inode_free(inode);
 978        return rc;
 979}
 980
 981static void inode_free_by_rcu(struct rcu_head *head)
 982{
 983        /*
 984         * The rcu head is at the start of the inode blob
 985         */
 986        kmem_cache_free(lsm_inode_cache, head);
 987}
 988
 989void security_inode_free(struct inode *inode)
 990{
 991        integrity_inode_free(inode);
 992        call_void_hook(inode_free_security, inode);
 993        /*
 994         * The inode may still be referenced in a path walk and
 995         * a call to security_inode_permission() can be made
 996         * after inode_free_security() is called. Ideally, the VFS
 997         * wouldn't do this, but fixing that is a much harder
 998         * job. For now, simply free the i_security via RCU, and
 999         * leave the current inode->i_security pointer intact.
1000         * The inode will be freed after the RCU grace period too.
1001         */
1002        if (inode->i_security)
1003                call_rcu((struct rcu_head *)inode->i_security,
1004                                inode_free_by_rcu);
1005}
1006
1007int security_dentry_init_security(struct dentry *dentry, int mode,
1008                                        const struct qstr *name, void **ctx,
1009                                        u32 *ctxlen)
1010{
1011        return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1012                                name, ctx, ctxlen);
1013}
1014EXPORT_SYMBOL(security_dentry_init_security);
1015
1016int security_dentry_create_files_as(struct dentry *dentry, int mode,
1017                                    struct qstr *name,
1018                                    const struct cred *old, struct cred *new)
1019{
1020        return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1021                                name, old, new);
1022}
1023EXPORT_SYMBOL(security_dentry_create_files_as);
1024
1025int security_inode_init_security(struct inode *inode, struct inode *dir,
1026                                 const struct qstr *qstr,
1027                                 const initxattrs initxattrs, void *fs_data)
1028{
1029        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1030        struct xattr *lsm_xattr, *evm_xattr, *xattr;
1031        int ret;
1032
1033        if (unlikely(IS_PRIVATE(inode)))
1034                return 0;
1035
1036        if (!initxattrs)
1037                return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1038                                     dir, qstr, NULL, NULL, NULL);
1039        memset(new_xattrs, 0, sizeof(new_xattrs));
1040        lsm_xattr = new_xattrs;
1041        ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1042                                                &lsm_xattr->name,
1043                                                &lsm_xattr->value,
1044                                                &lsm_xattr->value_len);
1045        if (ret)
1046                goto out;
1047
1048        evm_xattr = lsm_xattr + 1;
1049        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1050        if (ret)
1051                goto out;
1052        ret = initxattrs(inode, new_xattrs, fs_data);
1053out:
1054        for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1055                kfree(xattr->value);
1056        return (ret == -EOPNOTSUPP) ? 0 : ret;
1057}
1058EXPORT_SYMBOL(security_inode_init_security);
1059
1060int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1061                                     const struct qstr *qstr, const char **name,
1062                                     void **value, size_t *len)
1063{
1064        if (unlikely(IS_PRIVATE(inode)))
1065                return -EOPNOTSUPP;
1066        return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1067                             qstr, name, value, len);
1068}
1069EXPORT_SYMBOL(security_old_inode_init_security);
1070
1071#ifdef CONFIG_SECURITY_PATH
1072int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1073                        unsigned int dev)
1074{
1075        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1076                return 0;
1077        return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1078}
1079EXPORT_SYMBOL(security_path_mknod);
1080
1081int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1082{
1083        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1084                return 0;
1085        return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1086}
1087EXPORT_SYMBOL(security_path_mkdir);
1088
1089int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1090{
1091        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1092                return 0;
1093        return call_int_hook(path_rmdir, 0, dir, dentry);
1094}
1095
1096int security_path_unlink(const struct path *dir, struct dentry *dentry)
1097{
1098        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1099                return 0;
1100        return call_int_hook(path_unlink, 0, dir, dentry);
1101}
1102EXPORT_SYMBOL(security_path_unlink);
1103
1104int security_path_symlink(const struct path *dir, struct dentry *dentry,
1105                          const char *old_name)
1106{
1107        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1108                return 0;
1109        return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1110}
1111
1112int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1113                       struct dentry *new_dentry)
1114{
1115        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1116                return 0;
1117        return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1118}
1119
1120int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1121                         const struct path *new_dir, struct dentry *new_dentry,
1122                         unsigned int flags)
1123{
1124        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1125                     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1126                return 0;
1127
1128        if (flags & RENAME_EXCHANGE) {
1129                int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1130                                        old_dir, old_dentry);
1131                if (err)
1132                        return err;
1133        }
1134
1135        return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1136                                new_dentry);
1137}
1138EXPORT_SYMBOL(security_path_rename);
1139
1140int security_path_truncate(const struct path *path)
1141{
1142        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1143                return 0;
1144        return call_int_hook(path_truncate, 0, path);
1145}
1146
1147int security_path_chmod(const struct path *path, umode_t mode)
1148{
1149        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1150                return 0;
1151        return call_int_hook(path_chmod, 0, path, mode);
1152}
1153
1154int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1155{
1156        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1157                return 0;
1158        return call_int_hook(path_chown, 0, path, uid, gid);
1159}
1160
1161int security_path_chroot(const struct path *path)
1162{
1163        return call_int_hook(path_chroot, 0, path);
1164}
1165#endif
1166
1167int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1168{
1169        if (unlikely(IS_PRIVATE(dir)))
1170                return 0;
1171        return call_int_hook(inode_create, 0, dir, dentry, mode);
1172}
1173EXPORT_SYMBOL_GPL(security_inode_create);
1174
1175int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1176                         struct dentry *new_dentry)
1177{
1178        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1179                return 0;
1180        return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1181}
1182
1183int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1184{
1185        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186                return 0;
1187        return call_int_hook(inode_unlink, 0, dir, dentry);
1188}
1189
1190int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1191                            const char *old_name)
1192{
1193        if (unlikely(IS_PRIVATE(dir)))
1194                return 0;
1195        return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1196}
1197
1198int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1199{
1200        if (unlikely(IS_PRIVATE(dir)))
1201                return 0;
1202        return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1203}
1204EXPORT_SYMBOL_GPL(security_inode_mkdir);
1205
1206int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1207{
1208        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209                return 0;
1210        return call_int_hook(inode_rmdir, 0, dir, dentry);
1211}
1212
1213int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1214{
1215        if (unlikely(IS_PRIVATE(dir)))
1216                return 0;
1217        return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1218}
1219
1220int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1221                           struct inode *new_dir, struct dentry *new_dentry,
1222                           unsigned int flags)
1223{
1224        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1225            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1226                return 0;
1227
1228        if (flags & RENAME_EXCHANGE) {
1229                int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1230                                                     old_dir, old_dentry);
1231                if (err)
1232                        return err;
1233        }
1234
1235        return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1236                                           new_dir, new_dentry);
1237}
1238
1239int security_inode_readlink(struct dentry *dentry)
1240{
1241        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242                return 0;
1243        return call_int_hook(inode_readlink, 0, dentry);
1244}
1245
1246int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1247                               bool rcu)
1248{
1249        if (unlikely(IS_PRIVATE(inode)))
1250                return 0;
1251        return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1252}
1253
1254int security_inode_permission(struct inode *inode, int mask)
1255{
1256        if (unlikely(IS_PRIVATE(inode)))
1257                return 0;
1258        return call_int_hook(inode_permission, 0, inode, mask);
1259}
1260
1261int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1262{
1263        int ret;
1264
1265        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1266                return 0;
1267        ret = call_int_hook(inode_setattr, 0, dentry, attr);
1268        if (ret)
1269                return ret;
1270        return evm_inode_setattr(dentry, attr);
1271}
1272EXPORT_SYMBOL_GPL(security_inode_setattr);
1273
1274int security_inode_getattr(const struct path *path)
1275{
1276        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1277                return 0;
1278        return call_int_hook(inode_getattr, 0, path);
1279}
1280
1281int security_inode_setxattr(struct dentry *dentry, const char *name,
1282                            const void *value, size_t size, int flags)
1283{
1284        int ret;
1285
1286        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1287                return 0;
1288        /*
1289         * SELinux and Smack integrate the cap call,
1290         * so assume that all LSMs supplying this call do so.
1291         */
1292        ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1293                                flags);
1294
1295        if (ret == 1)
1296                ret = cap_inode_setxattr(dentry, name, value, size, flags);
1297        if (ret)
1298                return ret;
1299        ret = ima_inode_setxattr(dentry, name, value, size);
1300        if (ret)
1301                return ret;
1302        return evm_inode_setxattr(dentry, name, value, size);
1303}
1304
1305void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1306                                  const void *value, size_t size, int flags)
1307{
1308        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1309                return;
1310        call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1311        evm_inode_post_setxattr(dentry, name, value, size);
1312}
1313
1314int security_inode_getxattr(struct dentry *dentry, const char *name)
1315{
1316        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1317                return 0;
1318        return call_int_hook(inode_getxattr, 0, dentry, name);
1319}
1320
1321int security_inode_listxattr(struct dentry *dentry)
1322{
1323        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1324                return 0;
1325        return call_int_hook(inode_listxattr, 0, dentry);
1326}
1327
1328int security_inode_removexattr(struct dentry *dentry, const char *name)
1329{
1330        int ret;
1331
1332        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1333                return 0;
1334        /*
1335         * SELinux and Smack integrate the cap call,
1336         * so assume that all LSMs supplying this call do so.
1337         */
1338        ret = call_int_hook(inode_removexattr, 1, dentry, name);
1339        if (ret == 1)
1340                ret = cap_inode_removexattr(dentry, name);
1341        if (ret)
1342                return ret;
1343        ret = ima_inode_removexattr(dentry, name);
1344        if (ret)
1345                return ret;
1346        return evm_inode_removexattr(dentry, name);
1347}
1348
1349int security_inode_need_killpriv(struct dentry *dentry)
1350{
1351        return call_int_hook(inode_need_killpriv, 0, dentry);
1352}
1353
1354int security_inode_killpriv(struct dentry *dentry)
1355{
1356        return call_int_hook(inode_killpriv, 0, dentry);
1357}
1358
1359int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1360{
1361        struct security_hook_list *hp;
1362        int rc;
1363
1364        if (unlikely(IS_PRIVATE(inode)))
1365                return LSM_RET_DEFAULT(inode_getsecurity);
1366        /*
1367         * Only one module will provide an attribute with a given name.
1368         */
1369        hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1370                rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1371                if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1372                        return rc;
1373        }
1374        return LSM_RET_DEFAULT(inode_getsecurity);
1375}
1376
1377int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1378{
1379        struct security_hook_list *hp;
1380        int rc;
1381
1382        if (unlikely(IS_PRIVATE(inode)))
1383                return LSM_RET_DEFAULT(inode_setsecurity);
1384        /*
1385         * Only one module will provide an attribute with a given name.
1386         */
1387        hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1388                rc = hp->hook.inode_setsecurity(inode, name, value, size,
1389                                                                flags);
1390                if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1391                        return rc;
1392        }
1393        return LSM_RET_DEFAULT(inode_setsecurity);
1394}
1395
1396int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1397{
1398        if (unlikely(IS_PRIVATE(inode)))
1399                return 0;
1400        return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1401}
1402EXPORT_SYMBOL(security_inode_listsecurity);
1403
1404void security_inode_getsecid(struct inode *inode, u32 *secid)
1405{
1406        call_void_hook(inode_getsecid, inode, secid);
1407}
1408
1409int security_inode_copy_up(struct dentry *src, struct cred **new)
1410{
1411        return call_int_hook(inode_copy_up, 0, src, new);
1412}
1413EXPORT_SYMBOL(security_inode_copy_up);
1414
1415int security_inode_copy_up_xattr(const char *name)
1416{
1417        struct security_hook_list *hp;
1418        int rc;
1419
1420        /*
1421         * The implementation can return 0 (accept the xattr), 1 (discard the
1422         * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1423         * any other error code incase of an error.
1424         */
1425        hlist_for_each_entry(hp,
1426                &security_hook_heads.inode_copy_up_xattr, list) {
1427                rc = hp->hook.inode_copy_up_xattr(name);
1428                if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1429                        return rc;
1430        }
1431
1432        return LSM_RET_DEFAULT(inode_copy_up_xattr);
1433}
1434EXPORT_SYMBOL(security_inode_copy_up_xattr);
1435
1436int security_kernfs_init_security(struct kernfs_node *kn_dir,
1437                                  struct kernfs_node *kn)
1438{
1439        return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1440}
1441
1442int security_file_permission(struct file *file, int mask)
1443{
1444        int ret;
1445
1446        ret = call_int_hook(file_permission, 0, file, mask);
1447        if (ret)
1448                return ret;
1449
1450        return fsnotify_perm(file, mask);
1451}
1452
1453int security_file_alloc(struct file *file)
1454{
1455        int rc = lsm_file_alloc(file);
1456
1457        if (rc)
1458                return rc;
1459        rc = call_int_hook(file_alloc_security, 0, file);
1460        if (unlikely(rc))
1461                security_file_free(file);
1462        return rc;
1463}
1464
1465void security_file_free(struct file *file)
1466{
1467        void *blob;
1468
1469        call_void_hook(file_free_security, file);
1470
1471        blob = file->f_security;
1472        if (blob) {
1473                file->f_security = NULL;
1474                kmem_cache_free(lsm_file_cache, blob);
1475        }
1476}
1477
1478int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1479{
1480        return call_int_hook(file_ioctl, 0, file, cmd, arg);
1481}
1482EXPORT_SYMBOL_GPL(security_file_ioctl);
1483
1484static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1485{
1486        /*
1487         * Does we have PROT_READ and does the application expect
1488         * it to imply PROT_EXEC?  If not, nothing to talk about...
1489         */
1490        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1491                return prot;
1492        if (!(current->personality & READ_IMPLIES_EXEC))
1493                return prot;
1494        /*
1495         * if that's an anonymous mapping, let it.
1496         */
1497        if (!file)
1498                return prot | PROT_EXEC;
1499        /*
1500         * ditto if it's not on noexec mount, except that on !MMU we need
1501         * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1502         */
1503        if (!path_noexec(&file->f_path)) {
1504#ifndef CONFIG_MMU
1505                if (file->f_op->mmap_capabilities) {
1506                        unsigned caps = file->f_op->mmap_capabilities(file);
1507                        if (!(caps & NOMMU_MAP_EXEC))
1508                                return prot;
1509                }
1510#endif
1511                return prot | PROT_EXEC;
1512        }
1513        /* anything on noexec mount won't get PROT_EXEC */
1514        return prot;
1515}
1516
1517int security_mmap_file(struct file *file, unsigned long prot,
1518                        unsigned long flags)
1519{
1520        int ret;
1521        ret = call_int_hook(mmap_file, 0, file, prot,
1522                                        mmap_prot(file, prot), flags);
1523        if (ret)
1524                return ret;
1525        return ima_file_mmap(file, prot);
1526}
1527
1528int security_mmap_addr(unsigned long addr)
1529{
1530        return call_int_hook(mmap_addr, 0, addr);
1531}
1532
1533int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1534                            unsigned long prot)
1535{
1536        int ret;
1537
1538        ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1539        if (ret)
1540                return ret;
1541        return ima_file_mprotect(vma, prot);
1542}
1543
1544int security_file_lock(struct file *file, unsigned int cmd)
1545{
1546        return call_int_hook(file_lock, 0, file, cmd);
1547}
1548
1549int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1550{
1551        return call_int_hook(file_fcntl, 0, file, cmd, arg);
1552}
1553
1554void security_file_set_fowner(struct file *file)
1555{
1556        call_void_hook(file_set_fowner, file);
1557}
1558
1559int security_file_send_sigiotask(struct task_struct *tsk,
1560                                  struct fown_struct *fown, int sig)
1561{
1562        return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1563}
1564
1565int security_file_receive(struct file *file)
1566{
1567        return call_int_hook(file_receive, 0, file);
1568}
1569
1570int security_file_open(struct file *file)
1571{
1572        int ret;
1573
1574        ret = call_int_hook(file_open, 0, file);
1575        if (ret)
1576                return ret;
1577
1578        return fsnotify_perm(file, MAY_OPEN);
1579}
1580
1581int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1582{
1583        int rc = lsm_task_alloc(task);
1584
1585        if (rc)
1586                return rc;
1587        rc = call_int_hook(task_alloc, 0, task, clone_flags);
1588        if (unlikely(rc))
1589                security_task_free(task);
1590        return rc;
1591}
1592
1593void security_task_free(struct task_struct *task)
1594{
1595        call_void_hook(task_free, task);
1596
1597        kfree(task->security);
1598        task->security = NULL;
1599}
1600
1601int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1602{
1603        int rc = lsm_cred_alloc(cred, gfp);
1604
1605        if (rc)
1606                return rc;
1607
1608        rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1609        if (unlikely(rc))
1610                security_cred_free(cred);
1611        return rc;
1612}
1613
1614void security_cred_free(struct cred *cred)
1615{
1616        /*
1617         * There is a failure case in prepare_creds() that
1618         * may result in a call here with ->security being NULL.
1619         */
1620        if (unlikely(cred->security == NULL))
1621                return;
1622
1623        call_void_hook(cred_free, cred);
1624
1625        kfree(cred->security);
1626        cred->security = NULL;
1627}
1628
1629int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1630{
1631        int rc = lsm_cred_alloc(new, gfp);
1632
1633        if (rc)
1634                return rc;
1635
1636        rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1637        if (unlikely(rc))
1638                security_cred_free(new);
1639        return rc;
1640}
1641
1642void security_transfer_creds(struct cred *new, const struct cred *old)
1643{
1644        call_void_hook(cred_transfer, new, old);
1645}
1646
1647void security_cred_getsecid(const struct cred *c, u32 *secid)
1648{
1649        *secid = 0;
1650        call_void_hook(cred_getsecid, c, secid);
1651}
1652EXPORT_SYMBOL(security_cred_getsecid);
1653
1654int security_kernel_act_as(struct cred *new, u32 secid)
1655{
1656        return call_int_hook(kernel_act_as, 0, new, secid);
1657}
1658
1659int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1660{
1661        return call_int_hook(kernel_create_files_as, 0, new, inode);
1662}
1663
1664int security_kernel_module_request(char *kmod_name)
1665{
1666        int ret;
1667
1668        ret = call_int_hook(kernel_module_request, 0, kmod_name);
1669        if (ret)
1670                return ret;
1671        return integrity_kernel_module_request(kmod_name);
1672}
1673
1674int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1675{
1676        int ret;
1677
1678        ret = call_int_hook(kernel_read_file, 0, file, id);
1679        if (ret)
1680                return ret;
1681        return ima_read_file(file, id);
1682}
1683EXPORT_SYMBOL_GPL(security_kernel_read_file);
1684
1685int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1686                                   enum kernel_read_file_id id)
1687{
1688        int ret;
1689
1690        ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1691        if (ret)
1692                return ret;
1693        return ima_post_read_file(file, buf, size, id);
1694}
1695EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1696
1697int security_kernel_load_data(enum kernel_load_data_id id)
1698{
1699        int ret;
1700
1701        ret = call_int_hook(kernel_load_data, 0, id);
1702        if (ret)
1703                return ret;
1704        return ima_load_data(id);
1705}
1706EXPORT_SYMBOL_GPL(security_kernel_load_data);
1707
1708int security_task_fix_setuid(struct cred *new, const struct cred *old,
1709                             int flags)
1710{
1711        return call_int_hook(task_fix_setuid, 0, new, old, flags);
1712}
1713
1714int security_task_fix_setgid(struct cred *new, const struct cred *old,
1715                                 int flags)
1716{
1717        return call_int_hook(task_fix_setgid, 0, new, old, flags);
1718}
1719
1720int security_task_setpgid(struct task_struct *p, pid_t pgid)
1721{
1722        return call_int_hook(task_setpgid, 0, p, pgid);
1723}
1724
1725int security_task_getpgid(struct task_struct *p)
1726{
1727        return call_int_hook(task_getpgid, 0, p);
1728}
1729
1730int security_task_getsid(struct task_struct *p)
1731{
1732        return call_int_hook(task_getsid, 0, p);
1733}
1734
1735void security_task_getsecid(struct task_struct *p, u32 *secid)
1736{
1737        *secid = 0;
1738        call_void_hook(task_getsecid, p, secid);
1739}
1740EXPORT_SYMBOL(security_task_getsecid);
1741
1742int security_task_setnice(struct task_struct *p, int nice)
1743{
1744        return call_int_hook(task_setnice, 0, p, nice);
1745}
1746
1747int security_task_setioprio(struct task_struct *p, int ioprio)
1748{
1749        return call_int_hook(task_setioprio, 0, p, ioprio);
1750}
1751
1752int security_task_getioprio(struct task_struct *p)
1753{
1754        return call_int_hook(task_getioprio, 0, p);
1755}
1756
1757int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1758                          unsigned int flags)
1759{
1760        return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1761}
1762
1763int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1764                struct rlimit *new_rlim)
1765{
1766        return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1767}
1768
1769int security_task_setscheduler(struct task_struct *p)
1770{
1771        return call_int_hook(task_setscheduler, 0, p);
1772}
1773
1774int security_task_getscheduler(struct task_struct *p)
1775{
1776        return call_int_hook(task_getscheduler, 0, p);
1777}
1778
1779int security_task_movememory(struct task_struct *p)
1780{
1781        return call_int_hook(task_movememory, 0, p);
1782}
1783
1784int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1785                        int sig, const struct cred *cred)
1786{
1787        return call_int_hook(task_kill, 0, p, info, sig, cred);
1788}
1789
1790int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1791                         unsigned long arg4, unsigned long arg5)
1792{
1793        int thisrc;
1794        int rc = LSM_RET_DEFAULT(task_prctl);
1795        struct security_hook_list *hp;
1796
1797        hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1798                thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1799                if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1800                        rc = thisrc;
1801                        if (thisrc != 0)
1802                                break;
1803                }
1804        }
1805        return rc;
1806}
1807
1808void security_task_to_inode(struct task_struct *p, struct inode *inode)
1809{
1810        call_void_hook(task_to_inode, p, inode);
1811}
1812
1813int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1814{
1815        return call_int_hook(ipc_permission, 0, ipcp, flag);
1816}
1817
1818void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1819{
1820        *secid = 0;
1821        call_void_hook(ipc_getsecid, ipcp, secid);
1822}
1823
1824int security_msg_msg_alloc(struct msg_msg *msg)
1825{
1826        int rc = lsm_msg_msg_alloc(msg);
1827
1828        if (unlikely(rc))
1829                return rc;
1830        rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1831        if (unlikely(rc))
1832                security_msg_msg_free(msg);
1833        return rc;
1834}
1835
1836void security_msg_msg_free(struct msg_msg *msg)
1837{
1838        call_void_hook(msg_msg_free_security, msg);
1839        kfree(msg->security);
1840        msg->security = NULL;
1841}
1842
1843int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1844{
1845        int rc = lsm_ipc_alloc(msq);
1846
1847        if (unlikely(rc))
1848                return rc;
1849        rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1850        if (unlikely(rc))
1851                security_msg_queue_free(msq);
1852        return rc;
1853}
1854
1855void security_msg_queue_free(struct kern_ipc_perm *msq)
1856{
1857        call_void_hook(msg_queue_free_security, msq);
1858        kfree(msq->security);
1859        msq->security = NULL;
1860}
1861
1862int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1863{
1864        return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1865}
1866
1867int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1868{
1869        return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1870}
1871
1872int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1873                               struct msg_msg *msg, int msqflg)
1874{
1875        return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1876}
1877
1878int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1879                               struct task_struct *target, long type, int mode)
1880{
1881        return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1882}
1883
1884int security_shm_alloc(struct kern_ipc_perm *shp)
1885{
1886        int rc = lsm_ipc_alloc(shp);
1887
1888        if (unlikely(rc))
1889                return rc;
1890        rc = call_int_hook(shm_alloc_security, 0, shp);
1891        if (unlikely(rc))
1892                security_shm_free(shp);
1893        return rc;
1894}
1895
1896void security_shm_free(struct kern_ipc_perm *shp)
1897{
1898        call_void_hook(shm_free_security, shp);
1899        kfree(shp->security);
1900        shp->security = NULL;
1901}
1902
1903int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1904{
1905        return call_int_hook(shm_associate, 0, shp, shmflg);
1906}
1907
1908int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1909{
1910        return call_int_hook(shm_shmctl, 0, shp, cmd);
1911}
1912
1913int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1914{
1915        return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1916}
1917
1918int security_sem_alloc(struct kern_ipc_perm *sma)
1919{
1920        int rc = lsm_ipc_alloc(sma);
1921
1922        if (unlikely(rc))
1923                return rc;
1924        rc = call_int_hook(sem_alloc_security, 0, sma);
1925        if (unlikely(rc))
1926                security_sem_free(sma);
1927        return rc;
1928}
1929
1930void security_sem_free(struct kern_ipc_perm *sma)
1931{
1932        call_void_hook(sem_free_security, sma);
1933        kfree(sma->security);
1934        sma->security = NULL;
1935}
1936
1937int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1938{
1939        return call_int_hook(sem_associate, 0, sma, semflg);
1940}
1941
1942int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1943{
1944        return call_int_hook(sem_semctl, 0, sma, cmd);
1945}
1946
1947int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1948                        unsigned nsops, int alter)
1949{
1950        return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1951}
1952
1953void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1954{
1955        if (unlikely(inode && IS_PRIVATE(inode)))
1956                return;
1957        call_void_hook(d_instantiate, dentry, inode);
1958}
1959EXPORT_SYMBOL(security_d_instantiate);
1960
1961int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1962                                char **value)
1963{
1964        struct security_hook_list *hp;
1965
1966        hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1967                if (lsm != NULL && strcmp(lsm, hp->lsm))
1968                        continue;
1969                return hp->hook.getprocattr(p, name, value);
1970        }
1971        return LSM_RET_DEFAULT(getprocattr);
1972}
1973
1974int security_setprocattr(const char *lsm, const char *name, void *value,
1975                         size_t size)
1976{
1977        struct security_hook_list *hp;
1978
1979        hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1980                if (lsm != NULL && strcmp(lsm, hp->lsm))
1981                        continue;
1982                return hp->hook.setprocattr(name, value, size);
1983        }
1984        return LSM_RET_DEFAULT(setprocattr);
1985}
1986
1987int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1988{
1989        return call_int_hook(netlink_send, 0, sk, skb);
1990}
1991
1992int security_ismaclabel(const char *name)
1993{
1994        return call_int_hook(ismaclabel, 0, name);
1995}
1996EXPORT_SYMBOL(security_ismaclabel);
1997
1998int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1999{
2000        struct security_hook_list *hp;
2001        int rc;
2002
2003        /*
2004         * Currently, only one LSM can implement secid_to_secctx (i.e this
2005         * LSM hook is not "stackable").
2006         */
2007        hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2008                rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2009                if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2010                        return rc;
2011        }
2012
2013        return LSM_RET_DEFAULT(secid_to_secctx);
2014}
2015EXPORT_SYMBOL(security_secid_to_secctx);
2016
2017int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2018{
2019        *secid = 0;
2020        return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2021}
2022EXPORT_SYMBOL(security_secctx_to_secid);
2023
2024void security_release_secctx(char *secdata, u32 seclen)
2025{
2026        call_void_hook(release_secctx, secdata, seclen);
2027}
2028EXPORT_SYMBOL(security_release_secctx);
2029
2030void security_inode_invalidate_secctx(struct inode *inode)
2031{
2032        call_void_hook(inode_invalidate_secctx, inode);
2033}
2034EXPORT_SYMBOL(security_inode_invalidate_secctx);
2035
2036int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2037{
2038        return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2039}
2040EXPORT_SYMBOL(security_inode_notifysecctx);
2041
2042int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2043{
2044        return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2045}
2046EXPORT_SYMBOL(security_inode_setsecctx);
2047
2048int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2049{
2050        return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2051}
2052EXPORT_SYMBOL(security_inode_getsecctx);
2053
2054#ifdef CONFIG_WATCH_QUEUE
2055int security_post_notification(const struct cred *w_cred,
2056                               const struct cred *cred,
2057                               struct watch_notification *n)
2058{
2059        return call_int_hook(post_notification, 0, w_cred, cred, n);
2060}
2061#endif /* CONFIG_WATCH_QUEUE */
2062
2063#ifdef CONFIG_KEY_NOTIFICATIONS
2064int security_watch_key(struct key *key)
2065{
2066        return call_int_hook(watch_key, 0, key);
2067}
2068#endif
2069
2070#ifdef CONFIG_SECURITY_NETWORK
2071
2072int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2073{
2074        return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2075}
2076EXPORT_SYMBOL(security_unix_stream_connect);
2077
2078int security_unix_may_send(struct socket *sock,  struct socket *other)
2079{
2080        return call_int_hook(unix_may_send, 0, sock, other);
2081}
2082EXPORT_SYMBOL(security_unix_may_send);
2083
2084int security_socket_create(int family, int type, int protocol, int kern)
2085{
2086        return call_int_hook(socket_create, 0, family, type, protocol, kern);
2087}
2088
2089int security_socket_post_create(struct socket *sock, int family,
2090                                int type, int protocol, int kern)
2091{
2092        return call_int_hook(socket_post_create, 0, sock, family, type,
2093                                                protocol, kern);
2094}
2095
2096int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2097{
2098        return call_int_hook(socket_socketpair, 0, socka, sockb);
2099}
2100EXPORT_SYMBOL(security_socket_socketpair);
2101
2102int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2103{
2104        return call_int_hook(socket_bind, 0, sock, address, addrlen);
2105}
2106
2107int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2108{
2109        return call_int_hook(socket_connect, 0, sock, address, addrlen);
2110}
2111
2112int security_socket_listen(struct socket *sock, int backlog)
2113{
2114        return call_int_hook(socket_listen, 0, sock, backlog);
2115}
2116
2117int security_socket_accept(struct socket *sock, struct socket *newsock)
2118{
2119        return call_int_hook(socket_accept, 0, sock, newsock);
2120}
2121
2122int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2123{
2124        return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2125}
2126
2127int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2128                            int size, int flags)
2129{
2130        return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2131}
2132
2133int security_socket_getsockname(struct socket *sock)
2134{
2135        return call_int_hook(socket_getsockname, 0, sock);
2136}
2137
2138int security_socket_getpeername(struct socket *sock)
2139{
2140        return call_int_hook(socket_getpeername, 0, sock);
2141}
2142
2143int security_socket_getsockopt(struct socket *sock, int level, int optname)
2144{
2145        return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2146}
2147
2148int security_socket_setsockopt(struct socket *sock, int level, int optname)
2149{
2150        return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2151}
2152
2153int security_socket_shutdown(struct socket *sock, int how)
2154{
2155        return call_int_hook(socket_shutdown, 0, sock, how);
2156}
2157
2158int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2159{
2160        return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2161}
2162EXPORT_SYMBOL(security_sock_rcv_skb);
2163
2164int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2165                                      int __user *optlen, unsigned len)
2166{
2167        return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2168                                optval, optlen, len);
2169}
2170
2171int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2172{
2173        return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2174                             skb, secid);
2175}
2176EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2177
2178int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2179{
2180        return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2181}
2182
2183void security_sk_free(struct sock *sk)
2184{
2185        call_void_hook(sk_free_security, sk);
2186}
2187
2188void security_sk_clone(const struct sock *sk, struct sock *newsk)
2189{
2190        call_void_hook(sk_clone_security, sk, newsk);
2191}
2192EXPORT_SYMBOL(security_sk_clone);
2193
2194void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2195{
2196        call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2197}
2198EXPORT_SYMBOL(security_sk_classify_flow);
2199
2200void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2201{
2202        call_void_hook(req_classify_flow, req, fl);
2203}
2204EXPORT_SYMBOL(security_req_classify_flow);
2205
2206void security_sock_graft(struct sock *sk, struct socket *parent)
2207{
2208        call_void_hook(sock_graft, sk, parent);
2209}
2210EXPORT_SYMBOL(security_sock_graft);
2211
2212int security_inet_conn_request(struct sock *sk,
2213                        struct sk_buff *skb, struct request_sock *req)
2214{
2215        return call_int_hook(inet_conn_request, 0, sk, skb, req);
2216}
2217EXPORT_SYMBOL(security_inet_conn_request);
2218
2219void security_inet_csk_clone(struct sock *newsk,
2220                        const struct request_sock *req)
2221{
2222        call_void_hook(inet_csk_clone, newsk, req);
2223}
2224
2225void security_inet_conn_established(struct sock *sk,
2226                        struct sk_buff *skb)
2227{
2228        call_void_hook(inet_conn_established, sk, skb);
2229}
2230EXPORT_SYMBOL(security_inet_conn_established);
2231
2232int security_secmark_relabel_packet(u32 secid)
2233{
2234        return call_int_hook(secmark_relabel_packet, 0, secid);
2235}
2236EXPORT_SYMBOL(security_secmark_relabel_packet);
2237
2238void security_secmark_refcount_inc(void)
2239{
2240        call_void_hook(secmark_refcount_inc);
2241}
2242EXPORT_SYMBOL(security_secmark_refcount_inc);
2243
2244void security_secmark_refcount_dec(void)
2245{
2246        call_void_hook(secmark_refcount_dec);
2247}
2248EXPORT_SYMBOL(security_secmark_refcount_dec);
2249
2250int security_tun_dev_alloc_security(void **security)
2251{
2252        return call_int_hook(tun_dev_alloc_security, 0, security);
2253}
2254EXPORT_SYMBOL(security_tun_dev_alloc_security);
2255
2256void security_tun_dev_free_security(void *security)
2257{
2258        call_void_hook(tun_dev_free_security, security);
2259}
2260EXPORT_SYMBOL(security_tun_dev_free_security);
2261
2262int security_tun_dev_create(void)
2263{
2264        return call_int_hook(tun_dev_create, 0);
2265}
2266EXPORT_SYMBOL(security_tun_dev_create);
2267
2268int security_tun_dev_attach_queue(void *security)
2269{
2270        return call_int_hook(tun_dev_attach_queue, 0, security);
2271}
2272EXPORT_SYMBOL(security_tun_dev_attach_queue);
2273
2274int security_tun_dev_attach(struct sock *sk, void *security)
2275{
2276        return call_int_hook(tun_dev_attach, 0, sk, security);
2277}
2278EXPORT_SYMBOL(security_tun_dev_attach);
2279
2280int security_tun_dev_open(void *security)
2281{
2282        return call_int_hook(tun_dev_open, 0, security);
2283}
2284EXPORT_SYMBOL(security_tun_dev_open);
2285
2286int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2287{
2288        return call_int_hook(sctp_assoc_request, 0, ep, skb);
2289}
2290EXPORT_SYMBOL(security_sctp_assoc_request);
2291
2292int security_sctp_bind_connect(struct sock *sk, int optname,
2293                               struct sockaddr *address, int addrlen)
2294{
2295        return call_int_hook(sctp_bind_connect, 0, sk, optname,
2296                             address, addrlen);
2297}
2298EXPORT_SYMBOL(security_sctp_bind_connect);
2299
2300void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2301                            struct sock *newsk)
2302{
2303        call_void_hook(sctp_sk_clone, ep, sk, newsk);
2304}
2305EXPORT_SYMBOL(security_sctp_sk_clone);
2306
2307#endif  /* CONFIG_SECURITY_NETWORK */
2308
2309#ifdef CONFIG_SECURITY_INFINIBAND
2310
2311int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2312{
2313        return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2314}
2315EXPORT_SYMBOL(security_ib_pkey_access);
2316
2317int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2318{
2319        return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2320}
2321EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2322
2323int security_ib_alloc_security(void **sec)
2324{
2325        return call_int_hook(ib_alloc_security, 0, sec);
2326}
2327EXPORT_SYMBOL(security_ib_alloc_security);
2328
2329void security_ib_free_security(void *sec)
2330{
2331        call_void_hook(ib_free_security, sec);
2332}
2333EXPORT_SYMBOL(security_ib_free_security);
2334#endif  /* CONFIG_SECURITY_INFINIBAND */
2335
2336#ifdef CONFIG_SECURITY_NETWORK_XFRM
2337
2338int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2339                               struct xfrm_user_sec_ctx *sec_ctx,
2340                               gfp_t gfp)
2341{
2342        return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2343}
2344EXPORT_SYMBOL(security_xfrm_policy_alloc);
2345
2346int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2347                              struct xfrm_sec_ctx **new_ctxp)
2348{
2349        return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2350}
2351
2352void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2353{
2354        call_void_hook(xfrm_policy_free_security, ctx);
2355}
2356EXPORT_SYMBOL(security_xfrm_policy_free);
2357
2358int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2359{
2360        return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2361}
2362
2363int security_xfrm_state_alloc(struct xfrm_state *x,
2364                              struct xfrm_user_sec_ctx *sec_ctx)
2365{
2366        return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2367}
2368EXPORT_SYMBOL(security_xfrm_state_alloc);
2369
2370int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2371                                      struct xfrm_sec_ctx *polsec, u32 secid)
2372{
2373        return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2374}
2375
2376int security_xfrm_state_delete(struct xfrm_state *x)
2377{
2378        return call_int_hook(xfrm_state_delete_security, 0, x);
2379}
2380EXPORT_SYMBOL(security_xfrm_state_delete);
2381
2382void security_xfrm_state_free(struct xfrm_state *x)
2383{
2384        call_void_hook(xfrm_state_free_security, x);
2385}
2386
2387int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2388{
2389        return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2390}
2391
2392int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2393                                       struct xfrm_policy *xp,
2394                                       const struct flowi *fl)
2395{
2396        struct security_hook_list *hp;
2397        int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2398
2399        /*
2400         * Since this function is expected to return 0 or 1, the judgment
2401         * becomes difficult if multiple LSMs supply this call. Fortunately,
2402         * we can use the first LSM's judgment because currently only SELinux
2403         * supplies this call.
2404         *
2405         * For speed optimization, we explicitly break the loop rather than
2406         * using the macro
2407         */
2408        hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2409                                list) {
2410                rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2411                break;
2412        }
2413        return rc;
2414}
2415
2416int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2417{
2418        return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2419}
2420
2421void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2422{
2423        int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2424                                0);
2425
2426        BUG_ON(rc);
2427}
2428EXPORT_SYMBOL(security_skb_classify_flow);
2429
2430#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2431
2432#ifdef CONFIG_KEYS
2433
2434int security_key_alloc(struct key *key, const struct cred *cred,
2435                       unsigned long flags)
2436{
2437        return call_int_hook(key_alloc, 0, key, cred, flags);
2438}
2439
2440void security_key_free(struct key *key)
2441{
2442        call_void_hook(key_free, key);
2443}
2444
2445int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2446                            enum key_need_perm need_perm)
2447{
2448        return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2449}
2450
2451int security_key_getsecurity(struct key *key, char **_buffer)
2452{
2453        *_buffer = NULL;
2454        return call_int_hook(key_getsecurity, 0, key, _buffer);
2455}
2456
2457#endif  /* CONFIG_KEYS */
2458
2459#ifdef CONFIG_AUDIT
2460
2461int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2462{
2463        return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2464}
2465
2466int security_audit_rule_known(struct audit_krule *krule)
2467{
2468        return call_int_hook(audit_rule_known, 0, krule);
2469}
2470
2471void security_audit_rule_free(void *lsmrule)
2472{
2473        call_void_hook(audit_rule_free, lsmrule);
2474}
2475
2476int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2477{
2478        return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2479}
2480#endif /* CONFIG_AUDIT */
2481
2482#ifdef CONFIG_BPF_SYSCALL
2483int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2484{
2485        return call_int_hook(bpf, 0, cmd, attr, size);
2486}
2487int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2488{
2489        return call_int_hook(bpf_map, 0, map, fmode);
2490}
2491int security_bpf_prog(struct bpf_prog *prog)
2492{
2493        return call_int_hook(bpf_prog, 0, prog);
2494}
2495int security_bpf_map_alloc(struct bpf_map *map)
2496{
2497        return call_int_hook(bpf_map_alloc_security, 0, map);
2498}
2499int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2500{
2501        return call_int_hook(bpf_prog_alloc_security, 0, aux);
2502}
2503void security_bpf_map_free(struct bpf_map *map)
2504{
2505        call_void_hook(bpf_map_free_security, map);
2506}
2507void security_bpf_prog_free(struct bpf_prog_aux *aux)
2508{
2509        call_void_hook(bpf_prog_free_security, aux);
2510}
2511#endif /* CONFIG_BPF_SYSCALL */
2512
2513int security_locked_down(enum lockdown_reason what)
2514{
2515        return call_int_hook(locked_down, 0, what);
2516}
2517EXPORT_SYMBOL(security_locked_down);
2518
2519#ifdef CONFIG_PERF_EVENTS
2520int security_perf_event_open(struct perf_event_attr *attr, int type)
2521{
2522        return call_int_hook(perf_event_open, 0, attr, type);
2523}
2524
2525int security_perf_event_alloc(struct perf_event *event)
2526{
2527        return call_int_hook(perf_event_alloc, 0, event);
2528}
2529
2530void security_perf_event_free(struct perf_event *event)
2531{
2532        call_void_hook(perf_event_free, event);
2533}
2534
2535int security_perf_event_read(struct perf_event *event)
2536{
2537        return call_int_hook(perf_event_read, 0, event);
2538}
2539
2540int security_perf_event_write(struct perf_event *event)
2541{
2542        return call_int_hook(perf_event_write, 0, event);
2543}
2544#endif /* CONFIG_PERF_EVENTS */
2545