linux/tools/lib/bpf/btf_dump.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2
   3/*
   4 * BTF-to-C type converter.
   5 *
   6 * Copyright (c) 2019 Facebook
   7 */
   8
   9#include <stdbool.h>
  10#include <stddef.h>
  11#include <stdlib.h>
  12#include <string.h>
  13#include <errno.h>
  14#include <linux/err.h>
  15#include <linux/btf.h>
  16#include <linux/kernel.h>
  17#include "btf.h"
  18#include "hashmap.h"
  19#include "libbpf.h"
  20#include "libbpf_internal.h"
  21
  22/* make sure libbpf doesn't use kernel-only integer typedefs */
  23#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
  24
  25static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
  26static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
  27
  28static const char *pfx(int lvl)
  29{
  30        return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
  31}
  32
  33enum btf_dump_type_order_state {
  34        NOT_ORDERED,
  35        ORDERING,
  36        ORDERED,
  37};
  38
  39enum btf_dump_type_emit_state {
  40        NOT_EMITTED,
  41        EMITTING,
  42        EMITTED,
  43};
  44
  45/* per-type auxiliary state */
  46struct btf_dump_type_aux_state {
  47        /* topological sorting state */
  48        enum btf_dump_type_order_state order_state: 2;
  49        /* emitting state used to determine the need for forward declaration */
  50        enum btf_dump_type_emit_state emit_state: 2;
  51        /* whether forward declaration was already emitted */
  52        __u8 fwd_emitted: 1;
  53        /* whether unique non-duplicate name was already assigned */
  54        __u8 name_resolved: 1;
  55        /* whether type is referenced from any other type */
  56        __u8 referenced: 1;
  57};
  58
  59struct btf_dump {
  60        const struct btf *btf;
  61        const struct btf_ext *btf_ext;
  62        btf_dump_printf_fn_t printf_fn;
  63        struct btf_dump_opts opts;
  64        int ptr_sz;
  65        bool strip_mods;
  66
  67        /* per-type auxiliary state */
  68        struct btf_dump_type_aux_state *type_states;
  69        /* per-type optional cached unique name, must be freed, if present */
  70        const char **cached_names;
  71
  72        /* topo-sorted list of dependent type definitions */
  73        __u32 *emit_queue;
  74        int emit_queue_cap;
  75        int emit_queue_cnt;
  76
  77        /*
  78         * stack of type declarations (e.g., chain of modifiers, arrays,
  79         * funcs, etc)
  80         */
  81        __u32 *decl_stack;
  82        int decl_stack_cap;
  83        int decl_stack_cnt;
  84
  85        /* maps struct/union/enum name to a number of name occurrences */
  86        struct hashmap *type_names;
  87        /*
  88         * maps typedef identifiers and enum value names to a number of such
  89         * name occurrences
  90         */
  91        struct hashmap *ident_names;
  92};
  93
  94static size_t str_hash_fn(const void *key, void *ctx)
  95{
  96        const char *s = key;
  97        size_t h = 0;
  98
  99        while (*s) {
 100                h = h * 31 + *s;
 101                s++;
 102        }
 103        return h;
 104}
 105
 106static bool str_equal_fn(const void *a, const void *b, void *ctx)
 107{
 108        return strcmp(a, b) == 0;
 109}
 110
 111static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
 112{
 113        return btf__name_by_offset(d->btf, name_off);
 114}
 115
 116static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
 117{
 118        va_list args;
 119
 120        va_start(args, fmt);
 121        d->printf_fn(d->opts.ctx, fmt, args);
 122        va_end(args);
 123}
 124
 125static int btf_dump_mark_referenced(struct btf_dump *d);
 126
 127struct btf_dump *btf_dump__new(const struct btf *btf,
 128                               const struct btf_ext *btf_ext,
 129                               const struct btf_dump_opts *opts,
 130                               btf_dump_printf_fn_t printf_fn)
 131{
 132        struct btf_dump *d;
 133        int err;
 134
 135        d = calloc(1, sizeof(struct btf_dump));
 136        if (!d)
 137                return ERR_PTR(-ENOMEM);
 138
 139        d->btf = btf;
 140        d->btf_ext = btf_ext;
 141        d->printf_fn = printf_fn;
 142        d->opts.ctx = opts ? opts->ctx : NULL;
 143        d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
 144
 145        d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 146        if (IS_ERR(d->type_names)) {
 147                err = PTR_ERR(d->type_names);
 148                d->type_names = NULL;
 149                goto err;
 150        }
 151        d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 152        if (IS_ERR(d->ident_names)) {
 153                err = PTR_ERR(d->ident_names);
 154                d->ident_names = NULL;
 155                goto err;
 156        }
 157        d->type_states = calloc(1 + btf__get_nr_types(d->btf),
 158                                sizeof(d->type_states[0]));
 159        if (!d->type_states) {
 160                err = -ENOMEM;
 161                goto err;
 162        }
 163        d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
 164                                 sizeof(d->cached_names[0]));
 165        if (!d->cached_names) {
 166                err = -ENOMEM;
 167                goto err;
 168        }
 169
 170        /* VOID is special */
 171        d->type_states[0].order_state = ORDERED;
 172        d->type_states[0].emit_state = EMITTED;
 173
 174        /* eagerly determine referenced types for anon enums */
 175        err = btf_dump_mark_referenced(d);
 176        if (err)
 177                goto err;
 178
 179        return d;
 180err:
 181        btf_dump__free(d);
 182        return ERR_PTR(err);
 183}
 184
 185void btf_dump__free(struct btf_dump *d)
 186{
 187        int i, cnt;
 188
 189        if (IS_ERR_OR_NULL(d))
 190                return;
 191
 192        free(d->type_states);
 193        if (d->cached_names) {
 194                /* any set cached name is owned by us and should be freed */
 195                for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
 196                        if (d->cached_names[i])
 197                                free((void *)d->cached_names[i]);
 198                }
 199        }
 200        free(d->cached_names);
 201        free(d->emit_queue);
 202        free(d->decl_stack);
 203        hashmap__free(d->type_names);
 204        hashmap__free(d->ident_names);
 205
 206        free(d);
 207}
 208
 209static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
 210static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
 211
 212/*
 213 * Dump BTF type in a compilable C syntax, including all the necessary
 214 * dependent types, necessary for compilation. If some of the dependent types
 215 * were already emitted as part of previous btf_dump__dump_type() invocation
 216 * for another type, they won't be emitted again. This API allows callers to
 217 * filter out BTF types according to user-defined criterias and emitted only
 218 * minimal subset of types, necessary to compile everything. Full struct/union
 219 * definitions will still be emitted, even if the only usage is through
 220 * pointer and could be satisfied with just a forward declaration.
 221 *
 222 * Dumping is done in two high-level passes:
 223 *   1. Topologically sort type definitions to satisfy C rules of compilation.
 224 *   2. Emit type definitions in C syntax.
 225 *
 226 * Returns 0 on success; <0, otherwise.
 227 */
 228int btf_dump__dump_type(struct btf_dump *d, __u32 id)
 229{
 230        int err, i;
 231
 232        if (id > btf__get_nr_types(d->btf))
 233                return -EINVAL;
 234
 235        d->emit_queue_cnt = 0;
 236        err = btf_dump_order_type(d, id, false);
 237        if (err < 0)
 238                return err;
 239
 240        for (i = 0; i < d->emit_queue_cnt; i++)
 241                btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
 242
 243        return 0;
 244}
 245
 246/*
 247 * Mark all types that are referenced from any other type. This is used to
 248 * determine top-level anonymous enums that need to be emitted as an
 249 * independent type declarations.
 250 * Anonymous enums come in two flavors: either embedded in a struct's field
 251 * definition, in which case they have to be declared inline as part of field
 252 * type declaration; or as a top-level anonymous enum, typically used for
 253 * declaring global constants. It's impossible to distinguish between two
 254 * without knowning whether given enum type was referenced from other type:
 255 * top-level anonymous enum won't be referenced by anything, while embedded
 256 * one will.
 257 */
 258static int btf_dump_mark_referenced(struct btf_dump *d)
 259{
 260        int i, j, n = btf__get_nr_types(d->btf);
 261        const struct btf_type *t;
 262        __u16 vlen;
 263
 264        for (i = 1; i <= n; i++) {
 265                t = btf__type_by_id(d->btf, i);
 266                vlen = btf_vlen(t);
 267
 268                switch (btf_kind(t)) {
 269                case BTF_KIND_INT:
 270                case BTF_KIND_ENUM:
 271                case BTF_KIND_FWD:
 272                        break;
 273
 274                case BTF_KIND_VOLATILE:
 275                case BTF_KIND_CONST:
 276                case BTF_KIND_RESTRICT:
 277                case BTF_KIND_PTR:
 278                case BTF_KIND_TYPEDEF:
 279                case BTF_KIND_FUNC:
 280                case BTF_KIND_VAR:
 281                        d->type_states[t->type].referenced = 1;
 282                        break;
 283
 284                case BTF_KIND_ARRAY: {
 285                        const struct btf_array *a = btf_array(t);
 286
 287                        d->type_states[a->index_type].referenced = 1;
 288                        d->type_states[a->type].referenced = 1;
 289                        break;
 290                }
 291                case BTF_KIND_STRUCT:
 292                case BTF_KIND_UNION: {
 293                        const struct btf_member *m = btf_members(t);
 294
 295                        for (j = 0; j < vlen; j++, m++)
 296                                d->type_states[m->type].referenced = 1;
 297                        break;
 298                }
 299                case BTF_KIND_FUNC_PROTO: {
 300                        const struct btf_param *p = btf_params(t);
 301
 302                        for (j = 0; j < vlen; j++, p++)
 303                                d->type_states[p->type].referenced = 1;
 304                        break;
 305                }
 306                case BTF_KIND_DATASEC: {
 307                        const struct btf_var_secinfo *v = btf_var_secinfos(t);
 308
 309                        for (j = 0; j < vlen; j++, v++)
 310                                d->type_states[v->type].referenced = 1;
 311                        break;
 312                }
 313                default:
 314                        return -EINVAL;
 315                }
 316        }
 317        return 0;
 318}
 319static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
 320{
 321        __u32 *new_queue;
 322        size_t new_cap;
 323
 324        if (d->emit_queue_cnt >= d->emit_queue_cap) {
 325                new_cap = max(16, d->emit_queue_cap * 3 / 2);
 326                new_queue = realloc(d->emit_queue,
 327                                    new_cap * sizeof(new_queue[0]));
 328                if (!new_queue)
 329                        return -ENOMEM;
 330                d->emit_queue = new_queue;
 331                d->emit_queue_cap = new_cap;
 332        }
 333
 334        d->emit_queue[d->emit_queue_cnt++] = id;
 335        return 0;
 336}
 337
 338/*
 339 * Determine order of emitting dependent types and specified type to satisfy
 340 * C compilation rules.  This is done through topological sorting with an
 341 * additional complication which comes from C rules. The main idea for C is
 342 * that if some type is "embedded" into a struct/union, it's size needs to be
 343 * known at the time of definition of containing type. E.g., for:
 344 *
 345 *      struct A {};
 346 *      struct B { struct A x; }
 347 *
 348 * struct A *HAS* to be defined before struct B, because it's "embedded",
 349 * i.e., it is part of struct B layout. But in the following case:
 350 *
 351 *      struct A;
 352 *      struct B { struct A *x; }
 353 *      struct A {};
 354 *
 355 * it's enough to just have a forward declaration of struct A at the time of
 356 * struct B definition, as struct B has a pointer to struct A, so the size of
 357 * field x is known without knowing struct A size: it's sizeof(void *).
 358 *
 359 * Unfortunately, there are some trickier cases we need to handle, e.g.:
 360 *
 361 *      struct A {}; // if this was forward-declaration: compilation error
 362 *      struct B {
 363 *              struct { // anonymous struct
 364 *                      struct A y;
 365 *              } *x;
 366 *      };
 367 *
 368 * In this case, struct B's field x is a pointer, so it's size is known
 369 * regardless of the size of (anonymous) struct it points to. But because this
 370 * struct is anonymous and thus defined inline inside struct B, *and* it
 371 * embeds struct A, compiler requires full definition of struct A to be known
 372 * before struct B can be defined. This creates a transitive dependency
 373 * between struct A and struct B. If struct A was forward-declared before
 374 * struct B definition and fully defined after struct B definition, that would
 375 * trigger compilation error.
 376 *
 377 * All this means that while we are doing topological sorting on BTF type
 378 * graph, we need to determine relationships between different types (graph
 379 * nodes):
 380 *   - weak link (relationship) between X and Y, if Y *CAN* be
 381 *   forward-declared at the point of X definition;
 382 *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
 383 *
 384 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
 385 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
 386 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
 387 * Weak/strong relationship is determined recursively during DFS traversal and
 388 * is returned as a result from btf_dump_order_type().
 389 *
 390 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
 391 * but it is not guaranteeing that no extraneous forward declarations will be
 392 * emitted.
 393 *
 394 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
 395 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
 396 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
 397 * entire graph path, so depending where from one came to that BTF type, it
 398 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
 399 * once they are processed, there is no need to do it again, so they are
 400 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
 401 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
 402 * in any case, once those are processed, no need to do it again, as the
 403 * result won't change.
 404 *
 405 * Returns:
 406 *   - 1, if type is part of strong link (so there is strong topological
 407 *   ordering requirements);
 408 *   - 0, if type is part of weak link (so can be satisfied through forward
 409 *   declaration);
 410 *   - <0, on error (e.g., unsatisfiable type loop detected).
 411 */
 412static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
 413{
 414        /*
 415         * Order state is used to detect strong link cycles, but only for BTF
 416         * kinds that are or could be an independent definition (i.e.,
 417         * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
 418         * func_protos, modifiers are just means to get to these definitions.
 419         * Int/void don't need definitions, they are assumed to be always
 420         * properly defined.  We also ignore datasec, var, and funcs for now.
 421         * So for all non-defining kinds, we never even set ordering state,
 422         * for defining kinds we set ORDERING and subsequently ORDERED if it
 423         * forms a strong link.
 424         */
 425        struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 426        const struct btf_type *t;
 427        __u16 vlen;
 428        int err, i;
 429
 430        /* return true, letting typedefs know that it's ok to be emitted */
 431        if (tstate->order_state == ORDERED)
 432                return 1;
 433
 434        t = btf__type_by_id(d->btf, id);
 435
 436        if (tstate->order_state == ORDERING) {
 437                /* type loop, but resolvable through fwd declaration */
 438                if (btf_is_composite(t) && through_ptr && t->name_off != 0)
 439                        return 0;
 440                pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
 441                return -ELOOP;
 442        }
 443
 444        switch (btf_kind(t)) {
 445        case BTF_KIND_INT:
 446                tstate->order_state = ORDERED;
 447                return 0;
 448
 449        case BTF_KIND_PTR:
 450                err = btf_dump_order_type(d, t->type, true);
 451                tstate->order_state = ORDERED;
 452                return err;
 453
 454        case BTF_KIND_ARRAY:
 455                return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
 456
 457        case BTF_KIND_STRUCT:
 458        case BTF_KIND_UNION: {
 459                const struct btf_member *m = btf_members(t);
 460                /*
 461                 * struct/union is part of strong link, only if it's embedded
 462                 * (so no ptr in a path) or it's anonymous (so has to be
 463                 * defined inline, even if declared through ptr)
 464                 */
 465                if (through_ptr && t->name_off != 0)
 466                        return 0;
 467
 468                tstate->order_state = ORDERING;
 469
 470                vlen = btf_vlen(t);
 471                for (i = 0; i < vlen; i++, m++) {
 472                        err = btf_dump_order_type(d, m->type, false);
 473                        if (err < 0)
 474                                return err;
 475                }
 476
 477                if (t->name_off != 0) {
 478                        err = btf_dump_add_emit_queue_id(d, id);
 479                        if (err < 0)
 480                                return err;
 481                }
 482
 483                tstate->order_state = ORDERED;
 484                return 1;
 485        }
 486        case BTF_KIND_ENUM:
 487        case BTF_KIND_FWD:
 488                /*
 489                 * non-anonymous or non-referenced enums are top-level
 490                 * declarations and should be emitted. Same logic can be
 491                 * applied to FWDs, it won't hurt anyways.
 492                 */
 493                if (t->name_off != 0 || !tstate->referenced) {
 494                        err = btf_dump_add_emit_queue_id(d, id);
 495                        if (err)
 496                                return err;
 497                }
 498                tstate->order_state = ORDERED;
 499                return 1;
 500
 501        case BTF_KIND_TYPEDEF: {
 502                int is_strong;
 503
 504                is_strong = btf_dump_order_type(d, t->type, through_ptr);
 505                if (is_strong < 0)
 506                        return is_strong;
 507
 508                /* typedef is similar to struct/union w.r.t. fwd-decls */
 509                if (through_ptr && !is_strong)
 510                        return 0;
 511
 512                /* typedef is always a named definition */
 513                err = btf_dump_add_emit_queue_id(d, id);
 514                if (err)
 515                        return err;
 516
 517                d->type_states[id].order_state = ORDERED;
 518                return 1;
 519        }
 520        case BTF_KIND_VOLATILE:
 521        case BTF_KIND_CONST:
 522        case BTF_KIND_RESTRICT:
 523                return btf_dump_order_type(d, t->type, through_ptr);
 524
 525        case BTF_KIND_FUNC_PROTO: {
 526                const struct btf_param *p = btf_params(t);
 527                bool is_strong;
 528
 529                err = btf_dump_order_type(d, t->type, through_ptr);
 530                if (err < 0)
 531                        return err;
 532                is_strong = err > 0;
 533
 534                vlen = btf_vlen(t);
 535                for (i = 0; i < vlen; i++, p++) {
 536                        err = btf_dump_order_type(d, p->type, through_ptr);
 537                        if (err < 0)
 538                                return err;
 539                        if (err > 0)
 540                                is_strong = true;
 541                }
 542                return is_strong;
 543        }
 544        case BTF_KIND_FUNC:
 545        case BTF_KIND_VAR:
 546        case BTF_KIND_DATASEC:
 547                d->type_states[id].order_state = ORDERED;
 548                return 0;
 549
 550        default:
 551                return -EINVAL;
 552        }
 553}
 554
 555static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
 556                                          const struct btf_type *t);
 557
 558static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 559                                     const struct btf_type *t);
 560static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
 561                                     const struct btf_type *t, int lvl);
 562
 563static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 564                                   const struct btf_type *t);
 565static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 566                                   const struct btf_type *t, int lvl);
 567
 568static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 569                                  const struct btf_type *t);
 570
 571static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 572                                      const struct btf_type *t, int lvl);
 573
 574/* a local view into a shared stack */
 575struct id_stack {
 576        const __u32 *ids;
 577        int cnt;
 578};
 579
 580static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 581                                    const char *fname, int lvl);
 582static void btf_dump_emit_type_chain(struct btf_dump *d,
 583                                     struct id_stack *decl_stack,
 584                                     const char *fname, int lvl);
 585
 586static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
 587static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
 588static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
 589                                 const char *orig_name);
 590
 591static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
 592{
 593        const struct btf_type *t = btf__type_by_id(d->btf, id);
 594
 595        /* __builtin_va_list is a compiler built-in, which causes compilation
 596         * errors, when compiling w/ different compiler, then used to compile
 597         * original code (e.g., GCC to compile kernel, Clang to use generated
 598         * C header from BTF). As it is built-in, it should be already defined
 599         * properly internally in compiler.
 600         */
 601        if (t->name_off == 0)
 602                return false;
 603        return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
 604}
 605
 606/*
 607 * Emit C-syntax definitions of types from chains of BTF types.
 608 *
 609 * High-level handling of determining necessary forward declarations are handled
 610 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
 611 * declarations/definitions in C syntax  are handled by a combo of
 612 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
 613 * corresponding btf_dump_emit_*_{def,fwd}() functions.
 614 *
 615 * We also keep track of "containing struct/union type ID" to determine when
 616 * we reference it from inside and thus can avoid emitting unnecessary forward
 617 * declaration.
 618 *
 619 * This algorithm is designed in such a way, that even if some error occurs
 620 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
 621 * that doesn't comply to C rules completely), algorithm will try to proceed
 622 * and produce as much meaningful output as possible.
 623 */
 624static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
 625{
 626        struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 627        bool top_level_def = cont_id == 0;
 628        const struct btf_type *t;
 629        __u16 kind;
 630
 631        if (tstate->emit_state == EMITTED)
 632                return;
 633
 634        t = btf__type_by_id(d->btf, id);
 635        kind = btf_kind(t);
 636
 637        if (tstate->emit_state == EMITTING) {
 638                if (tstate->fwd_emitted)
 639                        return;
 640
 641                switch (kind) {
 642                case BTF_KIND_STRUCT:
 643                case BTF_KIND_UNION:
 644                        /*
 645                         * if we are referencing a struct/union that we are
 646                         * part of - then no need for fwd declaration
 647                         */
 648                        if (id == cont_id)
 649                                return;
 650                        if (t->name_off == 0) {
 651                                pr_warn("anonymous struct/union loop, id:[%u]\n",
 652                                        id);
 653                                return;
 654                        }
 655                        btf_dump_emit_struct_fwd(d, id, t);
 656                        btf_dump_printf(d, ";\n\n");
 657                        tstate->fwd_emitted = 1;
 658                        break;
 659                case BTF_KIND_TYPEDEF:
 660                        /*
 661                         * for typedef fwd_emitted means typedef definition
 662                         * was emitted, but it can be used only for "weak"
 663                         * references through pointer only, not for embedding
 664                         */
 665                        if (!btf_dump_is_blacklisted(d, id)) {
 666                                btf_dump_emit_typedef_def(d, id, t, 0);
 667                                btf_dump_printf(d, ";\n\n");
 668                        }
 669                        tstate->fwd_emitted = 1;
 670                        break;
 671                default:
 672                        break;
 673                }
 674
 675                return;
 676        }
 677
 678        switch (kind) {
 679        case BTF_KIND_INT:
 680                /* Emit type alias definitions if necessary */
 681                btf_dump_emit_missing_aliases(d, id, t);
 682
 683                tstate->emit_state = EMITTED;
 684                break;
 685        case BTF_KIND_ENUM:
 686                if (top_level_def) {
 687                        btf_dump_emit_enum_def(d, id, t, 0);
 688                        btf_dump_printf(d, ";\n\n");
 689                }
 690                tstate->emit_state = EMITTED;
 691                break;
 692        case BTF_KIND_PTR:
 693        case BTF_KIND_VOLATILE:
 694        case BTF_KIND_CONST:
 695        case BTF_KIND_RESTRICT:
 696                btf_dump_emit_type(d, t->type, cont_id);
 697                break;
 698        case BTF_KIND_ARRAY:
 699                btf_dump_emit_type(d, btf_array(t)->type, cont_id);
 700                break;
 701        case BTF_KIND_FWD:
 702                btf_dump_emit_fwd_def(d, id, t);
 703                btf_dump_printf(d, ";\n\n");
 704                tstate->emit_state = EMITTED;
 705                break;
 706        case BTF_KIND_TYPEDEF:
 707                tstate->emit_state = EMITTING;
 708                btf_dump_emit_type(d, t->type, id);
 709                /*
 710                 * typedef can server as both definition and forward
 711                 * declaration; at this stage someone depends on
 712                 * typedef as a forward declaration (refers to it
 713                 * through pointer), so unless we already did it,
 714                 * emit typedef as a forward declaration
 715                 */
 716                if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
 717                        btf_dump_emit_typedef_def(d, id, t, 0);
 718                        btf_dump_printf(d, ";\n\n");
 719                }
 720                tstate->emit_state = EMITTED;
 721                break;
 722        case BTF_KIND_STRUCT:
 723        case BTF_KIND_UNION:
 724                tstate->emit_state = EMITTING;
 725                /* if it's a top-level struct/union definition or struct/union
 726                 * is anonymous, then in C we'll be emitting all fields and
 727                 * their types (as opposed to just `struct X`), so we need to
 728                 * make sure that all types, referenced from struct/union
 729                 * members have necessary forward-declarations, where
 730                 * applicable
 731                 */
 732                if (top_level_def || t->name_off == 0) {
 733                        const struct btf_member *m = btf_members(t);
 734                        __u16 vlen = btf_vlen(t);
 735                        int i, new_cont_id;
 736
 737                        new_cont_id = t->name_off == 0 ? cont_id : id;
 738                        for (i = 0; i < vlen; i++, m++)
 739                                btf_dump_emit_type(d, m->type, new_cont_id);
 740                } else if (!tstate->fwd_emitted && id != cont_id) {
 741                        btf_dump_emit_struct_fwd(d, id, t);
 742                        btf_dump_printf(d, ";\n\n");
 743                        tstate->fwd_emitted = 1;
 744                }
 745
 746                if (top_level_def) {
 747                        btf_dump_emit_struct_def(d, id, t, 0);
 748                        btf_dump_printf(d, ";\n\n");
 749                        tstate->emit_state = EMITTED;
 750                } else {
 751                        tstate->emit_state = NOT_EMITTED;
 752                }
 753                break;
 754        case BTF_KIND_FUNC_PROTO: {
 755                const struct btf_param *p = btf_params(t);
 756                __u16 vlen = btf_vlen(t);
 757                int i;
 758
 759                btf_dump_emit_type(d, t->type, cont_id);
 760                for (i = 0; i < vlen; i++, p++)
 761                        btf_dump_emit_type(d, p->type, cont_id);
 762
 763                break;
 764        }
 765        default:
 766                break;
 767        }
 768}
 769
 770static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
 771                                 const struct btf_type *t)
 772{
 773        const struct btf_member *m;
 774        int align, i, bit_sz;
 775        __u16 vlen;
 776
 777        align = btf__align_of(btf, id);
 778        /* size of a non-packed struct has to be a multiple of its alignment*/
 779        if (align && t->size % align)
 780                return true;
 781
 782        m = btf_members(t);
 783        vlen = btf_vlen(t);
 784        /* all non-bitfield fields have to be naturally aligned */
 785        for (i = 0; i < vlen; i++, m++) {
 786                align = btf__align_of(btf, m->type);
 787                bit_sz = btf_member_bitfield_size(t, i);
 788                if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
 789                        return true;
 790        }
 791
 792        /*
 793         * if original struct was marked as packed, but its layout is
 794         * naturally aligned, we'll detect that it's not packed
 795         */
 796        return false;
 797}
 798
 799static int chip_away_bits(int total, int at_most)
 800{
 801        return total % at_most ? : at_most;
 802}
 803
 804static void btf_dump_emit_bit_padding(const struct btf_dump *d,
 805                                      int cur_off, int m_off, int m_bit_sz,
 806                                      int align, int lvl)
 807{
 808        int off_diff = m_off - cur_off;
 809        int ptr_bits = d->ptr_sz * 8;
 810
 811        if (off_diff <= 0)
 812                /* no gap */
 813                return;
 814        if (m_bit_sz == 0 && off_diff < align * 8)
 815                /* natural padding will take care of a gap */
 816                return;
 817
 818        while (off_diff > 0) {
 819                const char *pad_type;
 820                int pad_bits;
 821
 822                if (ptr_bits > 32 && off_diff > 32) {
 823                        pad_type = "long";
 824                        pad_bits = chip_away_bits(off_diff, ptr_bits);
 825                } else if (off_diff > 16) {
 826                        pad_type = "int";
 827                        pad_bits = chip_away_bits(off_diff, 32);
 828                } else if (off_diff > 8) {
 829                        pad_type = "short";
 830                        pad_bits = chip_away_bits(off_diff, 16);
 831                } else {
 832                        pad_type = "char";
 833                        pad_bits = chip_away_bits(off_diff, 8);
 834                }
 835                btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
 836                off_diff -= pad_bits;
 837        }
 838}
 839
 840static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 841                                     const struct btf_type *t)
 842{
 843        btf_dump_printf(d, "%s %s",
 844                        btf_is_struct(t) ? "struct" : "union",
 845                        btf_dump_type_name(d, id));
 846}
 847
 848static void btf_dump_emit_struct_def(struct btf_dump *d,
 849                                     __u32 id,
 850                                     const struct btf_type *t,
 851                                     int lvl)
 852{
 853        const struct btf_member *m = btf_members(t);
 854        bool is_struct = btf_is_struct(t);
 855        int align, i, packed, off = 0;
 856        __u16 vlen = btf_vlen(t);
 857
 858        packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
 859
 860        btf_dump_printf(d, "%s%s%s {",
 861                        is_struct ? "struct" : "union",
 862                        t->name_off ? " " : "",
 863                        btf_dump_type_name(d, id));
 864
 865        for (i = 0; i < vlen; i++, m++) {
 866                const char *fname;
 867                int m_off, m_sz;
 868
 869                fname = btf_name_of(d, m->name_off);
 870                m_sz = btf_member_bitfield_size(t, i);
 871                m_off = btf_member_bit_offset(t, i);
 872                align = packed ? 1 : btf__align_of(d->btf, m->type);
 873
 874                btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
 875                btf_dump_printf(d, "\n%s", pfx(lvl + 1));
 876                btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
 877
 878                if (m_sz) {
 879                        btf_dump_printf(d, ": %d", m_sz);
 880                        off = m_off + m_sz;
 881                } else {
 882                        m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
 883                        off = m_off + m_sz * 8;
 884                }
 885                btf_dump_printf(d, ";");
 886        }
 887
 888        /* pad at the end, if necessary */
 889        if (is_struct) {
 890                align = packed ? 1 : btf__align_of(d->btf, id);
 891                btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
 892                                          lvl + 1);
 893        }
 894
 895        if (vlen)
 896                btf_dump_printf(d, "\n");
 897        btf_dump_printf(d, "%s}", pfx(lvl));
 898        if (packed)
 899                btf_dump_printf(d, " __attribute__((packed))");
 900}
 901
 902static const char *missing_base_types[][2] = {
 903        /*
 904         * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
 905         * SIMD intrinsics. Alias them to standard base types.
 906         */
 907        { "__Poly8_t",          "unsigned char" },
 908        { "__Poly16_t",         "unsigned short" },
 909        { "__Poly64_t",         "unsigned long long" },
 910        { "__Poly128_t",        "unsigned __int128" },
 911};
 912
 913static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
 914                                          const struct btf_type *t)
 915{
 916        const char *name = btf_dump_type_name(d, id);
 917        int i;
 918
 919        for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
 920                if (strcmp(name, missing_base_types[i][0]) == 0) {
 921                        btf_dump_printf(d, "typedef %s %s;\n\n",
 922                                        missing_base_types[i][1], name);
 923                        break;
 924                }
 925        }
 926}
 927
 928static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 929                                   const struct btf_type *t)
 930{
 931        btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
 932}
 933
 934static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 935                                   const struct btf_type *t,
 936                                   int lvl)
 937{
 938        const struct btf_enum *v = btf_enum(t);
 939        __u16 vlen = btf_vlen(t);
 940        const char *name;
 941        size_t dup_cnt;
 942        int i;
 943
 944        btf_dump_printf(d, "enum%s%s",
 945                        t->name_off ? " " : "",
 946                        btf_dump_type_name(d, id));
 947
 948        if (vlen) {
 949                btf_dump_printf(d, " {");
 950                for (i = 0; i < vlen; i++, v++) {
 951                        name = btf_name_of(d, v->name_off);
 952                        /* enumerators share namespace with typedef idents */
 953                        dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
 954                        if (dup_cnt > 1) {
 955                                btf_dump_printf(d, "\n%s%s___%zu = %u,",
 956                                                pfx(lvl + 1), name, dup_cnt,
 957                                                (__u32)v->val);
 958                        } else {
 959                                btf_dump_printf(d, "\n%s%s = %u,",
 960                                                pfx(lvl + 1), name,
 961                                                (__u32)v->val);
 962                        }
 963                }
 964                btf_dump_printf(d, "\n%s}", pfx(lvl));
 965        }
 966}
 967
 968static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 969                                  const struct btf_type *t)
 970{
 971        const char *name = btf_dump_type_name(d, id);
 972
 973        if (btf_kflag(t))
 974                btf_dump_printf(d, "union %s", name);
 975        else
 976                btf_dump_printf(d, "struct %s", name);
 977}
 978
 979static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 980                                     const struct btf_type *t, int lvl)
 981{
 982        const char *name = btf_dump_ident_name(d, id);
 983
 984        /*
 985         * Old GCC versions are emitting invalid typedef for __gnuc_va_list
 986         * pointing to VOID. This generates warnings from btf_dump() and
 987         * results in uncompilable header file, so we are fixing it up here
 988         * with valid typedef into __builtin_va_list.
 989         */
 990        if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
 991                btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
 992                return;
 993        }
 994
 995        btf_dump_printf(d, "typedef ");
 996        btf_dump_emit_type_decl(d, t->type, name, lvl);
 997}
 998
 999static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1000{
1001        __u32 *new_stack;
1002        size_t new_cap;
1003
1004        if (d->decl_stack_cnt >= d->decl_stack_cap) {
1005                new_cap = max(16, d->decl_stack_cap * 3 / 2);
1006                new_stack = realloc(d->decl_stack,
1007                                    new_cap * sizeof(new_stack[0]));
1008                if (!new_stack)
1009                        return -ENOMEM;
1010                d->decl_stack = new_stack;
1011                d->decl_stack_cap = new_cap;
1012        }
1013
1014        d->decl_stack[d->decl_stack_cnt++] = id;
1015
1016        return 0;
1017}
1018
1019/*
1020 * Emit type declaration (e.g., field type declaration in a struct or argument
1021 * declaration in function prototype) in correct C syntax.
1022 *
1023 * For most types it's trivial, but there are few quirky type declaration
1024 * cases worth mentioning:
1025 *   - function prototypes (especially nesting of function prototypes);
1026 *   - arrays;
1027 *   - const/volatile/restrict for pointers vs other types.
1028 *
1029 * For a good discussion of *PARSING* C syntax (as a human), see
1030 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1031 * Ch.3 "Unscrambling Declarations in C".
1032 *
1033 * It won't help with BTF to C conversion much, though, as it's an opposite
1034 * problem. So we came up with this algorithm in reverse to van der Linden's
1035 * parsing algorithm. It goes from structured BTF representation of type
1036 * declaration to a valid compilable C syntax.
1037 *
1038 * For instance, consider this C typedef:
1039 *      typedef const int * const * arr[10] arr_t;
1040 * It will be represented in BTF with this chain of BTF types:
1041 *      [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1042 *
1043 * Notice how [const] modifier always goes before type it modifies in BTF type
1044 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1045 * the right of pointers, but to the left of other types. There are also other
1046 * quirks, like function pointers, arrays of them, functions returning other
1047 * functions, etc.
1048 *
1049 * We handle that by pushing all the types to a stack, until we hit "terminal"
1050 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1051 * top of a stack, modifiers are handled differently. Array/function pointers
1052 * have also wildly different syntax and how nesting of them are done. See
1053 * code for authoritative definition.
1054 *
1055 * To avoid allocating new stack for each independent chain of BTF types, we
1056 * share one bigger stack, with each chain working only on its own local view
1057 * of a stack frame. Some care is required to "pop" stack frames after
1058 * processing type declaration chain.
1059 */
1060int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1061                             const struct btf_dump_emit_type_decl_opts *opts)
1062{
1063        const char *fname;
1064        int lvl;
1065
1066        if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1067                return -EINVAL;
1068
1069        fname = OPTS_GET(opts, field_name, "");
1070        lvl = OPTS_GET(opts, indent_level, 0);
1071        d->strip_mods = OPTS_GET(opts, strip_mods, false);
1072        btf_dump_emit_type_decl(d, id, fname, lvl);
1073        d->strip_mods = false;
1074        return 0;
1075}
1076
1077static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1078                                    const char *fname, int lvl)
1079{
1080        struct id_stack decl_stack;
1081        const struct btf_type *t;
1082        int err, stack_start;
1083
1084        stack_start = d->decl_stack_cnt;
1085        for (;;) {
1086                t = btf__type_by_id(d->btf, id);
1087                if (d->strip_mods && btf_is_mod(t))
1088                        goto skip_mod;
1089
1090                err = btf_dump_push_decl_stack_id(d, id);
1091                if (err < 0) {
1092                        /*
1093                         * if we don't have enough memory for entire type decl
1094                         * chain, restore stack, emit warning, and try to
1095                         * proceed nevertheless
1096                         */
1097                        pr_warn("not enough memory for decl stack:%d", err);
1098                        d->decl_stack_cnt = stack_start;
1099                        return;
1100                }
1101skip_mod:
1102                /* VOID */
1103                if (id == 0)
1104                        break;
1105
1106                switch (btf_kind(t)) {
1107                case BTF_KIND_PTR:
1108                case BTF_KIND_VOLATILE:
1109                case BTF_KIND_CONST:
1110                case BTF_KIND_RESTRICT:
1111                case BTF_KIND_FUNC_PROTO:
1112                        id = t->type;
1113                        break;
1114                case BTF_KIND_ARRAY:
1115                        id = btf_array(t)->type;
1116                        break;
1117                case BTF_KIND_INT:
1118                case BTF_KIND_ENUM:
1119                case BTF_KIND_FWD:
1120                case BTF_KIND_STRUCT:
1121                case BTF_KIND_UNION:
1122                case BTF_KIND_TYPEDEF:
1123                        goto done;
1124                default:
1125                        pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1126                                btf_kind(t), id);
1127                        goto done;
1128                }
1129        }
1130done:
1131        /*
1132         * We might be inside a chain of declarations (e.g., array of function
1133         * pointers returning anonymous (so inlined) structs, having another
1134         * array field). Each of those needs its own "stack frame" to handle
1135         * emitting of declarations. Those stack frames are non-overlapping
1136         * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1137         * handle this set of nested stacks, we create a view corresponding to
1138         * our own "stack frame" and work with it as an independent stack.
1139         * We'll need to clean up after emit_type_chain() returns, though.
1140         */
1141        decl_stack.ids = d->decl_stack + stack_start;
1142        decl_stack.cnt = d->decl_stack_cnt - stack_start;
1143        btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1144        /*
1145         * emit_type_chain() guarantees that it will pop its entire decl_stack
1146         * frame before returning. But it works with a read-only view into
1147         * decl_stack, so it doesn't actually pop anything from the
1148         * perspective of shared btf_dump->decl_stack, per se. We need to
1149         * reset decl_stack state to how it was before us to avoid it growing
1150         * all the time.
1151         */
1152        d->decl_stack_cnt = stack_start;
1153}
1154
1155static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1156{
1157        const struct btf_type *t;
1158        __u32 id;
1159
1160        while (decl_stack->cnt) {
1161                id = decl_stack->ids[decl_stack->cnt - 1];
1162                t = btf__type_by_id(d->btf, id);
1163
1164                switch (btf_kind(t)) {
1165                case BTF_KIND_VOLATILE:
1166                        btf_dump_printf(d, "volatile ");
1167                        break;
1168                case BTF_KIND_CONST:
1169                        btf_dump_printf(d, "const ");
1170                        break;
1171                case BTF_KIND_RESTRICT:
1172                        btf_dump_printf(d, "restrict ");
1173                        break;
1174                default:
1175                        return;
1176                }
1177                decl_stack->cnt--;
1178        }
1179}
1180
1181static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1182{
1183        const struct btf_type *t;
1184        __u32 id;
1185
1186        while (decl_stack->cnt) {
1187                id = decl_stack->ids[decl_stack->cnt - 1];
1188                t = btf__type_by_id(d->btf, id);
1189                if (!btf_is_mod(t))
1190                        return;
1191                decl_stack->cnt--;
1192        }
1193}
1194
1195static void btf_dump_emit_name(const struct btf_dump *d,
1196                               const char *name, bool last_was_ptr)
1197{
1198        bool separate = name[0] && !last_was_ptr;
1199
1200        btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1201}
1202
1203static void btf_dump_emit_type_chain(struct btf_dump *d,
1204                                     struct id_stack *decls,
1205                                     const char *fname, int lvl)
1206{
1207        /*
1208         * last_was_ptr is used to determine if we need to separate pointer
1209         * asterisk (*) from previous part of type signature with space, so
1210         * that we get `int ***`, instead of `int * * *`. We default to true
1211         * for cases where we have single pointer in a chain. E.g., in ptr ->
1212         * func_proto case. func_proto will start a new emit_type_chain call
1213         * with just ptr, which should be emitted as (*) or (*<fname>), so we
1214         * don't want to prepend space for that last pointer.
1215         */
1216        bool last_was_ptr = true;
1217        const struct btf_type *t;
1218        const char *name;
1219        __u16 kind;
1220        __u32 id;
1221
1222        while (decls->cnt) {
1223                id = decls->ids[--decls->cnt];
1224                if (id == 0) {
1225                        /* VOID is a special snowflake */
1226                        btf_dump_emit_mods(d, decls);
1227                        btf_dump_printf(d, "void");
1228                        last_was_ptr = false;
1229                        continue;
1230                }
1231
1232                t = btf__type_by_id(d->btf, id);
1233                kind = btf_kind(t);
1234
1235                switch (kind) {
1236                case BTF_KIND_INT:
1237                        btf_dump_emit_mods(d, decls);
1238                        name = btf_name_of(d, t->name_off);
1239                        btf_dump_printf(d, "%s", name);
1240                        break;
1241                case BTF_KIND_STRUCT:
1242                case BTF_KIND_UNION:
1243                        btf_dump_emit_mods(d, decls);
1244                        /* inline anonymous struct/union */
1245                        if (t->name_off == 0)
1246                                btf_dump_emit_struct_def(d, id, t, lvl);
1247                        else
1248                                btf_dump_emit_struct_fwd(d, id, t);
1249                        break;
1250                case BTF_KIND_ENUM:
1251                        btf_dump_emit_mods(d, decls);
1252                        /* inline anonymous enum */
1253                        if (t->name_off == 0)
1254                                btf_dump_emit_enum_def(d, id, t, lvl);
1255                        else
1256                                btf_dump_emit_enum_fwd(d, id, t);
1257                        break;
1258                case BTF_KIND_FWD:
1259                        btf_dump_emit_mods(d, decls);
1260                        btf_dump_emit_fwd_def(d, id, t);
1261                        break;
1262                case BTF_KIND_TYPEDEF:
1263                        btf_dump_emit_mods(d, decls);
1264                        btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1265                        break;
1266                case BTF_KIND_PTR:
1267                        btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1268                        break;
1269                case BTF_KIND_VOLATILE:
1270                        btf_dump_printf(d, " volatile");
1271                        break;
1272                case BTF_KIND_CONST:
1273                        btf_dump_printf(d, " const");
1274                        break;
1275                case BTF_KIND_RESTRICT:
1276                        btf_dump_printf(d, " restrict");
1277                        break;
1278                case BTF_KIND_ARRAY: {
1279                        const struct btf_array *a = btf_array(t);
1280                        const struct btf_type *next_t;
1281                        __u32 next_id;
1282                        bool multidim;
1283                        /*
1284                         * GCC has a bug
1285                         * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1286                         * which causes it to emit extra const/volatile
1287                         * modifiers for an array, if array's element type has
1288                         * const/volatile modifiers. Clang doesn't do that.
1289                         * In general, it doesn't seem very meaningful to have
1290                         * a const/volatile modifier for array, so we are
1291                         * going to silently skip them here.
1292                         */
1293                        btf_dump_drop_mods(d, decls);
1294
1295                        if (decls->cnt == 0) {
1296                                btf_dump_emit_name(d, fname, last_was_ptr);
1297                                btf_dump_printf(d, "[%u]", a->nelems);
1298                                return;
1299                        }
1300
1301                        next_id = decls->ids[decls->cnt - 1];
1302                        next_t = btf__type_by_id(d->btf, next_id);
1303                        multidim = btf_is_array(next_t);
1304                        /* we need space if we have named non-pointer */
1305                        if (fname[0] && !last_was_ptr)
1306                                btf_dump_printf(d, " ");
1307                        /* no parentheses for multi-dimensional array */
1308                        if (!multidim)
1309                                btf_dump_printf(d, "(");
1310                        btf_dump_emit_type_chain(d, decls, fname, lvl);
1311                        if (!multidim)
1312                                btf_dump_printf(d, ")");
1313                        btf_dump_printf(d, "[%u]", a->nelems);
1314                        return;
1315                }
1316                case BTF_KIND_FUNC_PROTO: {
1317                        const struct btf_param *p = btf_params(t);
1318                        __u16 vlen = btf_vlen(t);
1319                        int i;
1320
1321                        /*
1322                         * GCC emits extra volatile qualifier for
1323                         * __attribute__((noreturn)) function pointers. Clang
1324                         * doesn't do it. It's a GCC quirk for backwards
1325                         * compatibility with code written for GCC <2.5. So,
1326                         * similarly to extra qualifiers for array, just drop
1327                         * them, instead of handling them.
1328                         */
1329                        btf_dump_drop_mods(d, decls);
1330                        if (decls->cnt) {
1331                                btf_dump_printf(d, " (");
1332                                btf_dump_emit_type_chain(d, decls, fname, lvl);
1333                                btf_dump_printf(d, ")");
1334                        } else {
1335                                btf_dump_emit_name(d, fname, last_was_ptr);
1336                        }
1337                        btf_dump_printf(d, "(");
1338                        /*
1339                         * Clang for BPF target generates func_proto with no
1340                         * args as a func_proto with a single void arg (e.g.,
1341                         * `int (*f)(void)` vs just `int (*f)()`). We are
1342                         * going to pretend there are no args for such case.
1343                         */
1344                        if (vlen == 1 && p->type == 0) {
1345                                btf_dump_printf(d, ")");
1346                                return;
1347                        }
1348
1349                        for (i = 0; i < vlen; i++, p++) {
1350                                if (i > 0)
1351                                        btf_dump_printf(d, ", ");
1352
1353                                /* last arg of type void is vararg */
1354                                if (i == vlen - 1 && p->type == 0) {
1355                                        btf_dump_printf(d, "...");
1356                                        break;
1357                                }
1358
1359                                name = btf_name_of(d, p->name_off);
1360                                btf_dump_emit_type_decl(d, p->type, name, lvl);
1361                        }
1362
1363                        btf_dump_printf(d, ")");
1364                        return;
1365                }
1366                default:
1367                        pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1368                                kind, id);
1369                        return;
1370                }
1371
1372                last_was_ptr = kind == BTF_KIND_PTR;
1373        }
1374
1375        btf_dump_emit_name(d, fname, last_was_ptr);
1376}
1377
1378/* return number of duplicates (occurrences) of a given name */
1379static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1380                                 const char *orig_name)
1381{
1382        size_t dup_cnt = 0;
1383
1384        hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1385        dup_cnt++;
1386        hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1387
1388        return dup_cnt;
1389}
1390
1391static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1392                                         struct hashmap *name_map)
1393{
1394        struct btf_dump_type_aux_state *s = &d->type_states[id];
1395        const struct btf_type *t = btf__type_by_id(d->btf, id);
1396        const char *orig_name = btf_name_of(d, t->name_off);
1397        const char **cached_name = &d->cached_names[id];
1398        size_t dup_cnt;
1399
1400        if (t->name_off == 0)
1401                return "";
1402
1403        if (s->name_resolved)
1404                return *cached_name ? *cached_name : orig_name;
1405
1406        dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1407        if (dup_cnt > 1) {
1408                const size_t max_len = 256;
1409                char new_name[max_len];
1410
1411                snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1412                *cached_name = strdup(new_name);
1413        }
1414
1415        s->name_resolved = 1;
1416        return *cached_name ? *cached_name : orig_name;
1417}
1418
1419static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1420{
1421        return btf_dump_resolve_name(d, id, d->type_names);
1422}
1423
1424static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1425{
1426        return btf_dump_resolve_name(d, id, d->ident_names);
1427}
1428