linux/tools/perf/bench/numa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
  12#include <subcmd/parse-options.h>
  13#include "../util/cloexec.h"
  14
  15#include "bench.h"
  16
  17#include <errno.h>
  18#include <sched.h>
  19#include <stdio.h>
  20#include <assert.h>
  21#include <malloc.h>
  22#include <signal.h>
  23#include <stdlib.h>
  24#include <string.h>
  25#include <unistd.h>
  26#include <sys/mman.h>
  27#include <sys/time.h>
  28#include <sys/resource.h>
  29#include <sys/wait.h>
  30#include <sys/prctl.h>
  31#include <sys/types.h>
  32#include <linux/kernel.h>
  33#include <linux/time64.h>
  34#include <linux/numa.h>
  35#include <linux/zalloc.h>
  36
  37#include <numa.h>
  38#include <numaif.h>
  39
  40#ifndef RUSAGE_THREAD
  41# define RUSAGE_THREAD 1
  42#endif
  43
  44/*
  45 * Regular printout to the terminal, supressed if -q is specified:
  46 */
  47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  48
  49/*
  50 * Debug printf:
  51 */
  52#undef dprintf
  53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  54
  55struct thread_data {
  56        int                     curr_cpu;
  57        cpu_set_t               bind_cpumask;
  58        int                     bind_node;
  59        u8                      *process_data;
  60        int                     process_nr;
  61        int                     thread_nr;
  62        int                     task_nr;
  63        unsigned int            loops_done;
  64        u64                     val;
  65        u64                     runtime_ns;
  66        u64                     system_time_ns;
  67        u64                     user_time_ns;
  68        double                  speed_gbs;
  69        pthread_mutex_t         *process_lock;
  70};
  71
  72/* Parameters set by options: */
  73
  74struct params {
  75        /* Startup synchronization: */
  76        bool                    serialize_startup;
  77
  78        /* Task hierarchy: */
  79        int                     nr_proc;
  80        int                     nr_threads;
  81
  82        /* Working set sizes: */
  83        const char              *mb_global_str;
  84        const char              *mb_proc_str;
  85        const char              *mb_proc_locked_str;
  86        const char              *mb_thread_str;
  87
  88        double                  mb_global;
  89        double                  mb_proc;
  90        double                  mb_proc_locked;
  91        double                  mb_thread;
  92
  93        /* Access patterns to the working set: */
  94        bool                    data_reads;
  95        bool                    data_writes;
  96        bool                    data_backwards;
  97        bool                    data_zero_memset;
  98        bool                    data_rand_walk;
  99        u32                     nr_loops;
 100        u32                     nr_secs;
 101        u32                     sleep_usecs;
 102
 103        /* Working set initialization: */
 104        bool                    init_zero;
 105        bool                    init_random;
 106        bool                    init_cpu0;
 107
 108        /* Misc options: */
 109        int                     show_details;
 110        int                     run_all;
 111        int                     thp;
 112
 113        long                    bytes_global;
 114        long                    bytes_process;
 115        long                    bytes_process_locked;
 116        long                    bytes_thread;
 117
 118        int                     nr_tasks;
 119        bool                    show_quiet;
 120
 121        bool                    show_convergence;
 122        bool                    measure_convergence;
 123
 124        int                     perturb_secs;
 125        int                     nr_cpus;
 126        int                     nr_nodes;
 127
 128        /* Affinity options -C and -N: */
 129        char                    *cpu_list_str;
 130        char                    *node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137        u8                      *data;
 138
 139        pthread_mutex_t         startup_mutex;
 140        int                     nr_tasks_started;
 141
 142        pthread_mutex_t         startup_done_mutex;
 143
 144        pthread_mutex_t         start_work_mutex;
 145        int                     nr_tasks_working;
 146
 147        pthread_mutex_t         stop_work_mutex;
 148        u64                     bytes_done;
 149
 150        struct thread_data      *threads;
 151
 152        /* Convergence latency measurement: */
 153        bool                    all_converged;
 154        bool                    stop_work;
 155
 156        int                     print_once;
 157
 158        struct params           p;
 159};
 160
 161static struct global_info       *g = NULL;
 162
 163static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 164static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 165
 166struct params p0;
 167
 168static const struct option options[] = {
 169        OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
 170        OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
 171
 172        OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
 173        OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
 174        OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 175        OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
 176
 177        OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
 178        OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
 179        OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
 180
 181        OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
 182        OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
 183        OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
 184        OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 185        OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
 186
 187
 188        OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
 189        OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
 190        OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
 191        OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
 192
 193        OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
 194        OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
 195        OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 196        OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 197                    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 198        OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
 199        OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
 200        OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 201
 202        /* Special option string parsing callbacks: */
 203        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 204                        "bind the first N tasks to these specific cpus (the rest is unbound)",
 205                        parse_cpus_opt),
 206        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 207                        "bind the first N tasks to these specific memory nodes (the rest is unbound)",
 208                        parse_nodes_opt),
 209        OPT_END()
 210};
 211
 212static const char * const bench_numa_usage[] = {
 213        "perf bench numa <options>",
 214        NULL
 215};
 216
 217static const char * const numa_usage[] = {
 218        "perf bench numa mem [<options>]",
 219        NULL
 220};
 221
 222/*
 223 * To get number of numa nodes present.
 224 */
 225static int nr_numa_nodes(void)
 226{
 227        int i, nr_nodes = 0;
 228
 229        for (i = 0; i < g->p.nr_nodes; i++) {
 230                if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 231                        nr_nodes++;
 232        }
 233
 234        return nr_nodes;
 235}
 236
 237/*
 238 * To check if given numa node is present.
 239 */
 240static int is_node_present(int node)
 241{
 242        return numa_bitmask_isbitset(numa_nodes_ptr, node);
 243}
 244
 245/*
 246 * To check given numa node has cpus.
 247 */
 248static bool node_has_cpus(int node)
 249{
 250        struct bitmask *cpumask = numa_allocate_cpumask();
 251        bool ret = false; /* fall back to nocpus */
 252        int cpu;
 253
 254        BUG_ON(!cpumask);
 255        if (!numa_node_to_cpus(node, cpumask)) {
 256                for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 257                        if (numa_bitmask_isbitset(cpumask, cpu)) {
 258                                ret = true;
 259                                break;
 260                        }
 261                }
 262        }
 263        numa_free_cpumask(cpumask);
 264
 265        return ret;
 266}
 267
 268static cpu_set_t bind_to_cpu(int target_cpu)
 269{
 270        cpu_set_t orig_mask, mask;
 271        int ret;
 272
 273        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 274        BUG_ON(ret);
 275
 276        CPU_ZERO(&mask);
 277
 278        if (target_cpu == -1) {
 279                int cpu;
 280
 281                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 282                        CPU_SET(cpu, &mask);
 283        } else {
 284                BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 285                CPU_SET(target_cpu, &mask);
 286        }
 287
 288        ret = sched_setaffinity(0, sizeof(mask), &mask);
 289        BUG_ON(ret);
 290
 291        return orig_mask;
 292}
 293
 294static cpu_set_t bind_to_node(int target_node)
 295{
 296        cpu_set_t orig_mask, mask;
 297        int cpu;
 298        int ret;
 299
 300        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 301        BUG_ON(ret);
 302
 303        CPU_ZERO(&mask);
 304
 305        if (target_node == NUMA_NO_NODE) {
 306                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 307                        CPU_SET(cpu, &mask);
 308        } else {
 309                struct bitmask *cpumask = numa_allocate_cpumask();
 310
 311                BUG_ON(!cpumask);
 312                if (!numa_node_to_cpus(target_node, cpumask)) {
 313                        for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 314                                if (numa_bitmask_isbitset(cpumask, cpu))
 315                                        CPU_SET(cpu, &mask);
 316                        }
 317                }
 318                numa_free_cpumask(cpumask);
 319        }
 320
 321        ret = sched_setaffinity(0, sizeof(mask), &mask);
 322        BUG_ON(ret);
 323
 324        return orig_mask;
 325}
 326
 327static void bind_to_cpumask(cpu_set_t mask)
 328{
 329        int ret;
 330
 331        ret = sched_setaffinity(0, sizeof(mask), &mask);
 332        BUG_ON(ret);
 333}
 334
 335static void mempol_restore(void)
 336{
 337        int ret;
 338
 339        ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 340
 341        BUG_ON(ret);
 342}
 343
 344static void bind_to_memnode(int node)
 345{
 346        unsigned long nodemask;
 347        int ret;
 348
 349        if (node == NUMA_NO_NODE)
 350                return;
 351
 352        BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 353        nodemask = 1L << node;
 354
 355        ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 356        dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 357
 358        BUG_ON(ret);
 359}
 360
 361#define HPSIZE (2*1024*1024)
 362
 363#define set_taskname(fmt...)                            \
 364do {                                                    \
 365        char name[20];                                  \
 366                                                        \
 367        snprintf(name, 20, fmt);                        \
 368        prctl(PR_SET_NAME, name);                       \
 369} while (0)
 370
 371static u8 *alloc_data(ssize_t bytes0, int map_flags,
 372                      int init_zero, int init_cpu0, int thp, int init_random)
 373{
 374        cpu_set_t orig_mask;
 375        ssize_t bytes;
 376        u8 *buf;
 377        int ret;
 378
 379        if (!bytes0)
 380                return NULL;
 381
 382        /* Allocate and initialize all memory on CPU#0: */
 383        if (init_cpu0) {
 384                int node = numa_node_of_cpu(0);
 385
 386                orig_mask = bind_to_node(node);
 387                bind_to_memnode(node);
 388        }
 389
 390        bytes = bytes0 + HPSIZE;
 391
 392        buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 393        BUG_ON(buf == (void *)-1);
 394
 395        if (map_flags == MAP_PRIVATE) {
 396                if (thp > 0) {
 397                        ret = madvise(buf, bytes, MADV_HUGEPAGE);
 398                        if (ret && !g->print_once) {
 399                                g->print_once = 1;
 400                                printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 401                        }
 402                }
 403                if (thp < 0) {
 404                        ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 405                        if (ret && !g->print_once) {
 406                                g->print_once = 1;
 407                                printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 408                        }
 409                }
 410        }
 411
 412        if (init_zero) {
 413                bzero(buf, bytes);
 414        } else {
 415                /* Initialize random contents, different in each word: */
 416                if (init_random) {
 417                        u64 *wbuf = (void *)buf;
 418                        long off = rand();
 419                        long i;
 420
 421                        for (i = 0; i < bytes/8; i++)
 422                                wbuf[i] = i + off;
 423                }
 424        }
 425
 426        /* Align to 2MB boundary: */
 427        buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 428
 429        /* Restore affinity: */
 430        if (init_cpu0) {
 431                bind_to_cpumask(orig_mask);
 432                mempol_restore();
 433        }
 434
 435        return buf;
 436}
 437
 438static void free_data(void *data, ssize_t bytes)
 439{
 440        int ret;
 441
 442        if (!data)
 443                return;
 444
 445        ret = munmap(data, bytes);
 446        BUG_ON(ret);
 447}
 448
 449/*
 450 * Create a shared memory buffer that can be shared between processes, zeroed:
 451 */
 452static void * zalloc_shared_data(ssize_t bytes)
 453{
 454        return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 455}
 456
 457/*
 458 * Create a shared memory buffer that can be shared between processes:
 459 */
 460static void * setup_shared_data(ssize_t bytes)
 461{
 462        return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 463}
 464
 465/*
 466 * Allocate process-local memory - this will either be shared between
 467 * threads of this process, or only be accessed by this thread:
 468 */
 469static void * setup_private_data(ssize_t bytes)
 470{
 471        return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 472}
 473
 474/*
 475 * Return a process-shared (global) mutex:
 476 */
 477static void init_global_mutex(pthread_mutex_t *mutex)
 478{
 479        pthread_mutexattr_t attr;
 480
 481        pthread_mutexattr_init(&attr);
 482        pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 483        pthread_mutex_init(mutex, &attr);
 484}
 485
 486static int parse_cpu_list(const char *arg)
 487{
 488        p0.cpu_list_str = strdup(arg);
 489
 490        dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 491
 492        return 0;
 493}
 494
 495static int parse_setup_cpu_list(void)
 496{
 497        struct thread_data *td;
 498        char *str0, *str;
 499        int t;
 500
 501        if (!g->p.cpu_list_str)
 502                return 0;
 503
 504        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 505
 506        str0 = str = strdup(g->p.cpu_list_str);
 507        t = 0;
 508
 509        BUG_ON(!str);
 510
 511        tprintf("# binding tasks to CPUs:\n");
 512        tprintf("#  ");
 513
 514        while (true) {
 515                int bind_cpu, bind_cpu_0, bind_cpu_1;
 516                char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 517                int bind_len;
 518                int step;
 519                int mul;
 520
 521                tok = strsep(&str, ",");
 522                if (!tok)
 523                        break;
 524
 525                tok_end = strstr(tok, "-");
 526
 527                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 528                if (!tok_end) {
 529                        /* Single CPU specified: */
 530                        bind_cpu_0 = bind_cpu_1 = atol(tok);
 531                } else {
 532                        /* CPU range specified (for example: "5-11"): */
 533                        bind_cpu_0 = atol(tok);
 534                        bind_cpu_1 = atol(tok_end + 1);
 535                }
 536
 537                step = 1;
 538                tok_step = strstr(tok, "#");
 539                if (tok_step) {
 540                        step = atol(tok_step + 1);
 541                        BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 542                }
 543
 544                /*
 545                 * Mask length.
 546                 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 547                 * where the _4 means the next 4 CPUs are allowed.
 548                 */
 549                bind_len = 1;
 550                tok_len = strstr(tok, "_");
 551                if (tok_len) {
 552                        bind_len = atol(tok_len + 1);
 553                        BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 554                }
 555
 556                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 557                mul = 1;
 558                tok_mul = strstr(tok, "x");
 559                if (tok_mul) {
 560                        mul = atol(tok_mul + 1);
 561                        BUG_ON(mul <= 0);
 562                }
 563
 564                dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 565
 566                if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 567                        printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 568                        return -1;
 569                }
 570
 571                BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 572                BUG_ON(bind_cpu_0 > bind_cpu_1);
 573
 574                for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 575                        int i;
 576
 577                        for (i = 0; i < mul; i++) {
 578                                int cpu;
 579
 580                                if (t >= g->p.nr_tasks) {
 581                                        printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 582                                        goto out;
 583                                }
 584                                td = g->threads + t;
 585
 586                                if (t)
 587                                        tprintf(",");
 588                                if (bind_len > 1) {
 589                                        tprintf("%2d/%d", bind_cpu, bind_len);
 590                                } else {
 591                                        tprintf("%2d", bind_cpu);
 592                                }
 593
 594                                CPU_ZERO(&td->bind_cpumask);
 595                                for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 596                                        BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 597                                        CPU_SET(cpu, &td->bind_cpumask);
 598                                }
 599                                t++;
 600                        }
 601                }
 602        }
 603out:
 604
 605        tprintf("\n");
 606
 607        if (t < g->p.nr_tasks)
 608                printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 609
 610        free(str0);
 611        return 0;
 612}
 613
 614static int parse_cpus_opt(const struct option *opt __maybe_unused,
 615                          const char *arg, int unset __maybe_unused)
 616{
 617        if (!arg)
 618                return -1;
 619
 620        return parse_cpu_list(arg);
 621}
 622
 623static int parse_node_list(const char *arg)
 624{
 625        p0.node_list_str = strdup(arg);
 626
 627        dprintf("got NODE list: {%s}\n", p0.node_list_str);
 628
 629        return 0;
 630}
 631
 632static int parse_setup_node_list(void)
 633{
 634        struct thread_data *td;
 635        char *str0, *str;
 636        int t;
 637
 638        if (!g->p.node_list_str)
 639                return 0;
 640
 641        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 642
 643        str0 = str = strdup(g->p.node_list_str);
 644        t = 0;
 645
 646        BUG_ON(!str);
 647
 648        tprintf("# binding tasks to NODEs:\n");
 649        tprintf("# ");
 650
 651        while (true) {
 652                int bind_node, bind_node_0, bind_node_1;
 653                char *tok, *tok_end, *tok_step, *tok_mul;
 654                int step;
 655                int mul;
 656
 657                tok = strsep(&str, ",");
 658                if (!tok)
 659                        break;
 660
 661                tok_end = strstr(tok, "-");
 662
 663                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 664                if (!tok_end) {
 665                        /* Single NODE specified: */
 666                        bind_node_0 = bind_node_1 = atol(tok);
 667                } else {
 668                        /* NODE range specified (for example: "5-11"): */
 669                        bind_node_0 = atol(tok);
 670                        bind_node_1 = atol(tok_end + 1);
 671                }
 672
 673                step = 1;
 674                tok_step = strstr(tok, "#");
 675                if (tok_step) {
 676                        step = atol(tok_step + 1);
 677                        BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 678                }
 679
 680                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 681                mul = 1;
 682                tok_mul = strstr(tok, "x");
 683                if (tok_mul) {
 684                        mul = atol(tok_mul + 1);
 685                        BUG_ON(mul <= 0);
 686                }
 687
 688                dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 689
 690                if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 691                        printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 692                        return -1;
 693                }
 694
 695                BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 696                BUG_ON(bind_node_0 > bind_node_1);
 697
 698                for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 699                        int i;
 700
 701                        for (i = 0; i < mul; i++) {
 702                                if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 703                                        printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 704                                        goto out;
 705                                }
 706                                td = g->threads + t;
 707
 708                                if (!t)
 709                                        tprintf(" %2d", bind_node);
 710                                else
 711                                        tprintf(",%2d", bind_node);
 712
 713                                td->bind_node = bind_node;
 714                                t++;
 715                        }
 716                }
 717        }
 718out:
 719
 720        tprintf("\n");
 721
 722        if (t < g->p.nr_tasks)
 723                printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 724
 725        free(str0);
 726        return 0;
 727}
 728
 729static int parse_nodes_opt(const struct option *opt __maybe_unused,
 730                          const char *arg, int unset __maybe_unused)
 731{
 732        if (!arg)
 733                return -1;
 734
 735        return parse_node_list(arg);
 736}
 737
 738#define BIT(x) (1ul << x)
 739
 740static inline uint32_t lfsr_32(uint32_t lfsr)
 741{
 742        const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 743        return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 744}
 745
 746/*
 747 * Make sure there's real data dependency to RAM (when read
 748 * accesses are enabled), so the compiler, the CPU and the
 749 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 750 * accesses:
 751 */
 752static inline u64 access_data(u64 *data, u64 val)
 753{
 754        if (g->p.data_reads)
 755                val += *data;
 756        if (g->p.data_writes)
 757                *data = val + 1;
 758        return val;
 759}
 760
 761/*
 762 * The worker process does two types of work, a forwards going
 763 * loop and a backwards going loop.
 764 *
 765 * We do this so that on multiprocessor systems we do not create
 766 * a 'train' of processing, with highly synchronized processes,
 767 * skewing the whole benchmark.
 768 */
 769static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 770{
 771        long words = bytes/sizeof(u64);
 772        u64 *data = (void *)__data;
 773        long chunk_0, chunk_1;
 774        u64 *d0, *d, *d1;
 775        long off;
 776        long i;
 777
 778        BUG_ON(!data && words);
 779        BUG_ON(data && !words);
 780
 781        if (!data)
 782                return val;
 783
 784        /* Very simple memset() work variant: */
 785        if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 786                bzero(data, bytes);
 787                return val;
 788        }
 789
 790        /* Spread out by PID/TID nr and by loop nr: */
 791        chunk_0 = words/nr_max;
 792        chunk_1 = words/g->p.nr_loops;
 793        off = nr*chunk_0 + loop*chunk_1;
 794
 795        while (off >= words)
 796                off -= words;
 797
 798        if (g->p.data_rand_walk) {
 799                u32 lfsr = nr + loop + val;
 800                int j;
 801
 802                for (i = 0; i < words/1024; i++) {
 803                        long start, end;
 804
 805                        lfsr = lfsr_32(lfsr);
 806
 807                        start = lfsr % words;
 808                        end = min(start + 1024, words-1);
 809
 810                        if (g->p.data_zero_memset) {
 811                                bzero(data + start, (end-start) * sizeof(u64));
 812                        } else {
 813                                for (j = start; j < end; j++)
 814                                        val = access_data(data + j, val);
 815                        }
 816                }
 817        } else if (!g->p.data_backwards || (nr + loop) & 1) {
 818                /* Process data forwards: */
 819
 820                d0 = data + off;
 821                d  = data + off + 1;
 822                d1 = data + words;
 823
 824                for (;;) {
 825                        if (unlikely(d >= d1))
 826                                d = data;
 827                        if (unlikely(d == d0))
 828                                break;
 829
 830                        val = access_data(d, val);
 831
 832                        d++;
 833                }
 834        } else {
 835                /* Process data backwards: */
 836
 837                d0 = data + off;
 838                d  = data + off - 1;
 839                d1 = data + words;
 840
 841                for (;;) {
 842                        if (unlikely(d < data))
 843                                d = data + words-1;
 844                        if (unlikely(d == d0))
 845                                break;
 846
 847                        val = access_data(d, val);
 848
 849                        d--;
 850                }
 851        }
 852
 853        return val;
 854}
 855
 856static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 857{
 858        unsigned int cpu;
 859
 860        cpu = sched_getcpu();
 861
 862        g->threads[task_nr].curr_cpu = cpu;
 863        prctl(0, bytes_worked);
 864}
 865
 866#define MAX_NR_NODES    64
 867
 868/*
 869 * Count the number of nodes a process's threads
 870 * are spread out on.
 871 *
 872 * A count of 1 means that the process is compressed
 873 * to a single node. A count of g->p.nr_nodes means it's
 874 * spread out on the whole system.
 875 */
 876static int count_process_nodes(int process_nr)
 877{
 878        char node_present[MAX_NR_NODES] = { 0, };
 879        int nodes;
 880        int n, t;
 881
 882        for (t = 0; t < g->p.nr_threads; t++) {
 883                struct thread_data *td;
 884                int task_nr;
 885                int node;
 886
 887                task_nr = process_nr*g->p.nr_threads + t;
 888                td = g->threads + task_nr;
 889
 890                node = numa_node_of_cpu(td->curr_cpu);
 891                if (node < 0) /* curr_cpu was likely still -1 */
 892                        return 0;
 893
 894                node_present[node] = 1;
 895        }
 896
 897        nodes = 0;
 898
 899        for (n = 0; n < MAX_NR_NODES; n++)
 900                nodes += node_present[n];
 901
 902        return nodes;
 903}
 904
 905/*
 906 * Count the number of distinct process-threads a node contains.
 907 *
 908 * A count of 1 means that the node contains only a single
 909 * process. If all nodes on the system contain at most one
 910 * process then we are well-converged.
 911 */
 912static int count_node_processes(int node)
 913{
 914        int processes = 0;
 915        int t, p;
 916
 917        for (p = 0; p < g->p.nr_proc; p++) {
 918                for (t = 0; t < g->p.nr_threads; t++) {
 919                        struct thread_data *td;
 920                        int task_nr;
 921                        int n;
 922
 923                        task_nr = p*g->p.nr_threads + t;
 924                        td = g->threads + task_nr;
 925
 926                        n = numa_node_of_cpu(td->curr_cpu);
 927                        if (n == node) {
 928                                processes++;
 929                                break;
 930                        }
 931                }
 932        }
 933
 934        return processes;
 935}
 936
 937static void calc_convergence_compression(int *strong)
 938{
 939        unsigned int nodes_min, nodes_max;
 940        int p;
 941
 942        nodes_min = -1;
 943        nodes_max =  0;
 944
 945        for (p = 0; p < g->p.nr_proc; p++) {
 946                unsigned int nodes = count_process_nodes(p);
 947
 948                if (!nodes) {
 949                        *strong = 0;
 950                        return;
 951                }
 952
 953                nodes_min = min(nodes, nodes_min);
 954                nodes_max = max(nodes, nodes_max);
 955        }
 956
 957        /* Strong convergence: all threads compress on a single node: */
 958        if (nodes_min == 1 && nodes_max == 1) {
 959                *strong = 1;
 960        } else {
 961                *strong = 0;
 962                tprintf(" {%d-%d}", nodes_min, nodes_max);
 963        }
 964}
 965
 966static void calc_convergence(double runtime_ns_max, double *convergence)
 967{
 968        unsigned int loops_done_min, loops_done_max;
 969        int process_groups;
 970        int nodes[MAX_NR_NODES];
 971        int distance;
 972        int nr_min;
 973        int nr_max;
 974        int strong;
 975        int sum;
 976        int nr;
 977        int node;
 978        int cpu;
 979        int t;
 980
 981        if (!g->p.show_convergence && !g->p.measure_convergence)
 982                return;
 983
 984        for (node = 0; node < g->p.nr_nodes; node++)
 985                nodes[node] = 0;
 986
 987        loops_done_min = -1;
 988        loops_done_max = 0;
 989
 990        for (t = 0; t < g->p.nr_tasks; t++) {
 991                struct thread_data *td = g->threads + t;
 992                unsigned int loops_done;
 993
 994                cpu = td->curr_cpu;
 995
 996                /* Not all threads have written it yet: */
 997                if (cpu < 0)
 998                        continue;
 999
1000                node = numa_node_of_cpu(cpu);
1001
1002                nodes[node]++;
1003
1004                loops_done = td->loops_done;
1005                loops_done_min = min(loops_done, loops_done_min);
1006                loops_done_max = max(loops_done, loops_done_max);
1007        }
1008
1009        nr_max = 0;
1010        nr_min = g->p.nr_tasks;
1011        sum = 0;
1012
1013        for (node = 0; node < g->p.nr_nodes; node++) {
1014                if (!is_node_present(node))
1015                        continue;
1016                nr = nodes[node];
1017                nr_min = min(nr, nr_min);
1018                nr_max = max(nr, nr_max);
1019                sum += nr;
1020        }
1021        BUG_ON(nr_min > nr_max);
1022
1023        BUG_ON(sum > g->p.nr_tasks);
1024
1025        if (0 && (sum < g->p.nr_tasks))
1026                return;
1027
1028        /*
1029         * Count the number of distinct process groups present
1030         * on nodes - when we are converged this will decrease
1031         * to g->p.nr_proc:
1032         */
1033        process_groups = 0;
1034
1035        for (node = 0; node < g->p.nr_nodes; node++) {
1036                int processes;
1037
1038                if (!is_node_present(node))
1039                        continue;
1040                processes = count_node_processes(node);
1041                nr = nodes[node];
1042                tprintf(" %2d/%-2d", nr, processes);
1043
1044                process_groups += processes;
1045        }
1046
1047        distance = nr_max - nr_min;
1048
1049        tprintf(" [%2d/%-2d]", distance, process_groups);
1050
1051        tprintf(" l:%3d-%-3d (%3d)",
1052                loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1053
1054        if (loops_done_min && loops_done_max) {
1055                double skew = 1.0 - (double)loops_done_min/loops_done_max;
1056
1057                tprintf(" [%4.1f%%]", skew * 100.0);
1058        }
1059
1060        calc_convergence_compression(&strong);
1061
1062        if (strong && process_groups == g->p.nr_proc) {
1063                if (!*convergence) {
1064                        *convergence = runtime_ns_max;
1065                        tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1066                        if (g->p.measure_convergence) {
1067                                g->all_converged = true;
1068                                g->stop_work = true;
1069                        }
1070                }
1071        } else {
1072                if (*convergence) {
1073                        tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1074                        *convergence = 0;
1075                }
1076                tprintf("\n");
1077        }
1078}
1079
1080static void show_summary(double runtime_ns_max, int l, double *convergence)
1081{
1082        tprintf("\r #  %5.1f%%  [%.1f mins]",
1083                (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1084
1085        calc_convergence(runtime_ns_max, convergence);
1086
1087        if (g->p.show_details >= 0)
1088                fflush(stdout);
1089}
1090
1091static void *worker_thread(void *__tdata)
1092{
1093        struct thread_data *td = __tdata;
1094        struct timeval start0, start, stop, diff;
1095        int process_nr = td->process_nr;
1096        int thread_nr = td->thread_nr;
1097        unsigned long last_perturbance;
1098        int task_nr = td->task_nr;
1099        int details = g->p.show_details;
1100        int first_task, last_task;
1101        double convergence = 0;
1102        u64 val = td->val;
1103        double runtime_ns_max;
1104        u8 *global_data;
1105        u8 *process_data;
1106        u8 *thread_data;
1107        u64 bytes_done, secs;
1108        long work_done;
1109        u32 l;
1110        struct rusage rusage;
1111
1112        bind_to_cpumask(td->bind_cpumask);
1113        bind_to_memnode(td->bind_node);
1114
1115        set_taskname("thread %d/%d", process_nr, thread_nr);
1116
1117        global_data = g->data;
1118        process_data = td->process_data;
1119        thread_data = setup_private_data(g->p.bytes_thread);
1120
1121        bytes_done = 0;
1122
1123        last_task = 0;
1124        if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1125                last_task = 1;
1126
1127        first_task = 0;
1128        if (process_nr == 0 && thread_nr == 0)
1129                first_task = 1;
1130
1131        if (details >= 2) {
1132                printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1133                        process_nr, thread_nr, global_data, process_data, thread_data);
1134        }
1135
1136        if (g->p.serialize_startup) {
1137                pthread_mutex_lock(&g->startup_mutex);
1138                g->nr_tasks_started++;
1139                pthread_mutex_unlock(&g->startup_mutex);
1140
1141                /* Here we will wait for the main process to start us all at once: */
1142                pthread_mutex_lock(&g->start_work_mutex);
1143                g->nr_tasks_working++;
1144
1145                /* Last one wake the main process: */
1146                if (g->nr_tasks_working == g->p.nr_tasks)
1147                        pthread_mutex_unlock(&g->startup_done_mutex);
1148
1149                pthread_mutex_unlock(&g->start_work_mutex);
1150        }
1151
1152        gettimeofday(&start0, NULL);
1153
1154        start = stop = start0;
1155        last_perturbance = start.tv_sec;
1156
1157        for (l = 0; l < g->p.nr_loops; l++) {
1158                start = stop;
1159
1160                if (g->stop_work)
1161                        break;
1162
1163                val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1164                val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1165                val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1166
1167                if (g->p.sleep_usecs) {
1168                        pthread_mutex_lock(td->process_lock);
1169                        usleep(g->p.sleep_usecs);
1170                        pthread_mutex_unlock(td->process_lock);
1171                }
1172                /*
1173                 * Amount of work to be done under a process-global lock:
1174                 */
1175                if (g->p.bytes_process_locked) {
1176                        pthread_mutex_lock(td->process_lock);
1177                        val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1178                        pthread_mutex_unlock(td->process_lock);
1179                }
1180
1181                work_done = g->p.bytes_global + g->p.bytes_process +
1182                            g->p.bytes_process_locked + g->p.bytes_thread;
1183
1184                update_curr_cpu(task_nr, work_done);
1185                bytes_done += work_done;
1186
1187                if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1188                        continue;
1189
1190                td->loops_done = l;
1191
1192                gettimeofday(&stop, NULL);
1193
1194                /* Check whether our max runtime timed out: */
1195                if (g->p.nr_secs) {
1196                        timersub(&stop, &start0, &diff);
1197                        if ((u32)diff.tv_sec >= g->p.nr_secs) {
1198                                g->stop_work = true;
1199                                break;
1200                        }
1201                }
1202
1203                /* Update the summary at most once per second: */
1204                if (start.tv_sec == stop.tv_sec)
1205                        continue;
1206
1207                /*
1208                 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1209                 * by migrating to CPU#0:
1210                 */
1211                if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1212                        cpu_set_t orig_mask;
1213                        int target_cpu;
1214                        int this_cpu;
1215
1216                        last_perturbance = stop.tv_sec;
1217
1218                        /*
1219                         * Depending on where we are running, move into
1220                         * the other half of the system, to create some
1221                         * real disturbance:
1222                         */
1223                        this_cpu = g->threads[task_nr].curr_cpu;
1224                        if (this_cpu < g->p.nr_cpus/2)
1225                                target_cpu = g->p.nr_cpus-1;
1226                        else
1227                                target_cpu = 0;
1228
1229                        orig_mask = bind_to_cpu(target_cpu);
1230
1231                        /* Here we are running on the target CPU already */
1232                        if (details >= 1)
1233                                printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1234
1235                        bind_to_cpumask(orig_mask);
1236                }
1237
1238                if (details >= 3) {
1239                        timersub(&stop, &start, &diff);
1240                        runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1241                        runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1242
1243                        if (details >= 0) {
1244                                printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1245                                        process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1246                        }
1247                        fflush(stdout);
1248                }
1249                if (!last_task)
1250                        continue;
1251
1252                timersub(&stop, &start0, &diff);
1253                runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1254                runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1255
1256                show_summary(runtime_ns_max, l, &convergence);
1257        }
1258
1259        gettimeofday(&stop, NULL);
1260        timersub(&stop, &start0, &diff);
1261        td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1262        td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1263        secs = td->runtime_ns / NSEC_PER_SEC;
1264        td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1265
1266        getrusage(RUSAGE_THREAD, &rusage);
1267        td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1268        td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1269        td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1270        td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1271
1272        free_data(thread_data, g->p.bytes_thread);
1273
1274        pthread_mutex_lock(&g->stop_work_mutex);
1275        g->bytes_done += bytes_done;
1276        pthread_mutex_unlock(&g->stop_work_mutex);
1277
1278        return NULL;
1279}
1280
1281/*
1282 * A worker process starts a couple of threads:
1283 */
1284static void worker_process(int process_nr)
1285{
1286        pthread_mutex_t process_lock;
1287        struct thread_data *td;
1288        pthread_t *pthreads;
1289        u8 *process_data;
1290        int task_nr;
1291        int ret;
1292        int t;
1293
1294        pthread_mutex_init(&process_lock, NULL);
1295        set_taskname("process %d", process_nr);
1296
1297        /*
1298         * Pick up the memory policy and the CPU binding of our first thread,
1299         * so that we initialize memory accordingly:
1300         */
1301        task_nr = process_nr*g->p.nr_threads;
1302        td = g->threads + task_nr;
1303
1304        bind_to_memnode(td->bind_node);
1305        bind_to_cpumask(td->bind_cpumask);
1306
1307        pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1308        process_data = setup_private_data(g->p.bytes_process);
1309
1310        if (g->p.show_details >= 3) {
1311                printf(" # process %2d global mem: %p, process mem: %p\n",
1312                        process_nr, g->data, process_data);
1313        }
1314
1315        for (t = 0; t < g->p.nr_threads; t++) {
1316                task_nr = process_nr*g->p.nr_threads + t;
1317                td = g->threads + task_nr;
1318
1319                td->process_data = process_data;
1320                td->process_nr   = process_nr;
1321                td->thread_nr    = t;
1322                td->task_nr      = task_nr;
1323                td->val          = rand();
1324                td->curr_cpu     = -1;
1325                td->process_lock = &process_lock;
1326
1327                ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1328                BUG_ON(ret);
1329        }
1330
1331        for (t = 0; t < g->p.nr_threads; t++) {
1332                ret = pthread_join(pthreads[t], NULL);
1333                BUG_ON(ret);
1334        }
1335
1336        free_data(process_data, g->p.bytes_process);
1337        free(pthreads);
1338}
1339
1340static void print_summary(void)
1341{
1342        if (g->p.show_details < 0)
1343                return;
1344
1345        printf("\n ###\n");
1346        printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1347                g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1348        printf(" #      %5dx %5ldMB global  shared mem operations\n",
1349                        g->p.nr_loops, g->p.bytes_global/1024/1024);
1350        printf(" #      %5dx %5ldMB process shared mem operations\n",
1351                        g->p.nr_loops, g->p.bytes_process/1024/1024);
1352        printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1353                        g->p.nr_loops, g->p.bytes_thread/1024/1024);
1354
1355        printf(" ###\n");
1356
1357        printf("\n ###\n"); fflush(stdout);
1358}
1359
1360static void init_thread_data(void)
1361{
1362        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1363        int t;
1364
1365        g->threads = zalloc_shared_data(size);
1366
1367        for (t = 0; t < g->p.nr_tasks; t++) {
1368                struct thread_data *td = g->threads + t;
1369                int cpu;
1370
1371                /* Allow all nodes by default: */
1372                td->bind_node = NUMA_NO_NODE;
1373
1374                /* Allow all CPUs by default: */
1375                CPU_ZERO(&td->bind_cpumask);
1376                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1377                        CPU_SET(cpu, &td->bind_cpumask);
1378        }
1379}
1380
1381static void deinit_thread_data(void)
1382{
1383        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1384
1385        free_data(g->threads, size);
1386}
1387
1388static int init(void)
1389{
1390        g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1391
1392        /* Copy over options: */
1393        g->p = p0;
1394
1395        g->p.nr_cpus = numa_num_configured_cpus();
1396
1397        g->p.nr_nodes = numa_max_node() + 1;
1398
1399        /* char array in count_process_nodes(): */
1400        BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1401
1402        if (g->p.show_quiet && !g->p.show_details)
1403                g->p.show_details = -1;
1404
1405        /* Some memory should be specified: */
1406        if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1407                return -1;
1408
1409        if (g->p.mb_global_str) {
1410                g->p.mb_global = atof(g->p.mb_global_str);
1411                BUG_ON(g->p.mb_global < 0);
1412        }
1413
1414        if (g->p.mb_proc_str) {
1415                g->p.mb_proc = atof(g->p.mb_proc_str);
1416                BUG_ON(g->p.mb_proc < 0);
1417        }
1418
1419        if (g->p.mb_proc_locked_str) {
1420                g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1421                BUG_ON(g->p.mb_proc_locked < 0);
1422                BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1423        }
1424
1425        if (g->p.mb_thread_str) {
1426                g->p.mb_thread = atof(g->p.mb_thread_str);
1427                BUG_ON(g->p.mb_thread < 0);
1428        }
1429
1430        BUG_ON(g->p.nr_threads <= 0);
1431        BUG_ON(g->p.nr_proc <= 0);
1432
1433        g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1434
1435        g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1436        g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1437        g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1438        g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1439
1440        g->data = setup_shared_data(g->p.bytes_global);
1441
1442        /* Startup serialization: */
1443        init_global_mutex(&g->start_work_mutex);
1444        init_global_mutex(&g->startup_mutex);
1445        init_global_mutex(&g->startup_done_mutex);
1446        init_global_mutex(&g->stop_work_mutex);
1447
1448        init_thread_data();
1449
1450        tprintf("#\n");
1451        if (parse_setup_cpu_list() || parse_setup_node_list())
1452                return -1;
1453        tprintf("#\n");
1454
1455        print_summary();
1456
1457        return 0;
1458}
1459
1460static void deinit(void)
1461{
1462        free_data(g->data, g->p.bytes_global);
1463        g->data = NULL;
1464
1465        deinit_thread_data();
1466
1467        free_data(g, sizeof(*g));
1468        g = NULL;
1469}
1470
1471/*
1472 * Print a short or long result, depending on the verbosity setting:
1473 */
1474static void print_res(const char *name, double val,
1475                      const char *txt_unit, const char *txt_short, const char *txt_long)
1476{
1477        if (!name)
1478                name = "main,";
1479
1480        if (!g->p.show_quiet)
1481                printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1482        else
1483                printf(" %14.3f %s\n", val, txt_long);
1484}
1485
1486static int __bench_numa(const char *name)
1487{
1488        struct timeval start, stop, diff;
1489        u64 runtime_ns_min, runtime_ns_sum;
1490        pid_t *pids, pid, wpid;
1491        double delta_runtime;
1492        double runtime_avg;
1493        double runtime_sec_max;
1494        double runtime_sec_min;
1495        int wait_stat;
1496        double bytes;
1497        int i, t, p;
1498
1499        if (init())
1500                return -1;
1501
1502        pids = zalloc(g->p.nr_proc * sizeof(*pids));
1503        pid = -1;
1504
1505        /* All threads try to acquire it, this way we can wait for them to start up: */
1506        pthread_mutex_lock(&g->start_work_mutex);
1507
1508        if (g->p.serialize_startup) {
1509                tprintf(" #\n");
1510                tprintf(" # Startup synchronization: ..."); fflush(stdout);
1511        }
1512
1513        gettimeofday(&start, NULL);
1514
1515        for (i = 0; i < g->p.nr_proc; i++) {
1516                pid = fork();
1517                dprintf(" # process %2d: PID %d\n", i, pid);
1518
1519                BUG_ON(pid < 0);
1520                if (!pid) {
1521                        /* Child process: */
1522                        worker_process(i);
1523
1524                        exit(0);
1525                }
1526                pids[i] = pid;
1527
1528        }
1529        /* Wait for all the threads to start up: */
1530        while (g->nr_tasks_started != g->p.nr_tasks)
1531                usleep(USEC_PER_MSEC);
1532
1533        BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1534
1535        if (g->p.serialize_startup) {
1536                double startup_sec;
1537
1538                pthread_mutex_lock(&g->startup_done_mutex);
1539
1540                /* This will start all threads: */
1541                pthread_mutex_unlock(&g->start_work_mutex);
1542
1543                /* This mutex is locked - the last started thread will wake us: */
1544                pthread_mutex_lock(&g->startup_done_mutex);
1545
1546                gettimeofday(&stop, NULL);
1547
1548                timersub(&stop, &start, &diff);
1549
1550                startup_sec = diff.tv_sec * NSEC_PER_SEC;
1551                startup_sec += diff.tv_usec * NSEC_PER_USEC;
1552                startup_sec /= NSEC_PER_SEC;
1553
1554                tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1555                tprintf(" #\n");
1556
1557                start = stop;
1558                pthread_mutex_unlock(&g->startup_done_mutex);
1559        } else {
1560                gettimeofday(&start, NULL);
1561        }
1562
1563        /* Parent process: */
1564
1565
1566        for (i = 0; i < g->p.nr_proc; i++) {
1567                wpid = waitpid(pids[i], &wait_stat, 0);
1568                BUG_ON(wpid < 0);
1569                BUG_ON(!WIFEXITED(wait_stat));
1570
1571        }
1572
1573        runtime_ns_sum = 0;
1574        runtime_ns_min = -1LL;
1575
1576        for (t = 0; t < g->p.nr_tasks; t++) {
1577                u64 thread_runtime_ns = g->threads[t].runtime_ns;
1578
1579                runtime_ns_sum += thread_runtime_ns;
1580                runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1581        }
1582
1583        gettimeofday(&stop, NULL);
1584        timersub(&stop, &start, &diff);
1585
1586        BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1587
1588        tprintf("\n ###\n");
1589        tprintf("\n");
1590
1591        runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1592        runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1593        runtime_sec_max /= NSEC_PER_SEC;
1594
1595        runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1596
1597        bytes = g->bytes_done;
1598        runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1599
1600        if (g->p.measure_convergence) {
1601                print_res(name, runtime_sec_max,
1602                        "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1603        }
1604
1605        print_res(name, runtime_sec_max,
1606                "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1607
1608        print_res(name, runtime_sec_min,
1609                "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1610
1611        print_res(name, runtime_avg,
1612                "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1613
1614        delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1615        print_res(name, delta_runtime / runtime_sec_max * 100.0,
1616                "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1617
1618        print_res(name, bytes / g->p.nr_tasks / 1e9,
1619                "GB,", "data/thread",           "GB data processed, per thread");
1620
1621        print_res(name, bytes / 1e9,
1622                "GB,", "data-total",            "GB data processed, total");
1623
1624        print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1625                "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1626
1627        print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1628                "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1629
1630        print_res(name, bytes / runtime_sec_max / 1e9,
1631                "GB/sec,", "total-speed",       "GB/sec total speed");
1632
1633        if (g->p.show_details >= 2) {
1634                char tname[14 + 2 * 10 + 1];
1635                struct thread_data *td;
1636                for (p = 0; p < g->p.nr_proc; p++) {
1637                        for (t = 0; t < g->p.nr_threads; t++) {
1638                                memset(tname, 0, sizeof(tname));
1639                                td = g->threads + p*g->p.nr_threads + t;
1640                                snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1641                                print_res(tname, td->speed_gbs,
1642                                        "GB/sec",       "thread-speed", "GB/sec/thread speed");
1643                                print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1644                                        "secs", "thread-system-time", "system CPU time/thread");
1645                                print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1646                                        "secs", "thread-user-time", "user CPU time/thread");
1647                        }
1648                }
1649        }
1650
1651        free(pids);
1652
1653        deinit();
1654
1655        return 0;
1656}
1657
1658#define MAX_ARGS 50
1659
1660static int command_size(const char **argv)
1661{
1662        int size = 0;
1663
1664        while (*argv) {
1665                size++;
1666                argv++;
1667        }
1668
1669        BUG_ON(size >= MAX_ARGS);
1670
1671        return size;
1672}
1673
1674static void init_params(struct params *p, const char *name, int argc, const char **argv)
1675{
1676        int i;
1677
1678        printf("\n # Running %s \"perf bench numa", name);
1679
1680        for (i = 0; i < argc; i++)
1681                printf(" %s", argv[i]);
1682
1683        printf("\"\n");
1684
1685        memset(p, 0, sizeof(*p));
1686
1687        /* Initialize nonzero defaults: */
1688
1689        p->serialize_startup            = 1;
1690        p->data_reads                   = true;
1691        p->data_writes                  = true;
1692        p->data_backwards               = true;
1693        p->data_rand_walk               = true;
1694        p->nr_loops                     = -1;
1695        p->init_random                  = true;
1696        p->mb_global_str                = "1";
1697        p->nr_proc                      = 1;
1698        p->nr_threads                   = 1;
1699        p->nr_secs                      = 5;
1700        p->run_all                      = argc == 1;
1701}
1702
1703static int run_bench_numa(const char *name, const char **argv)
1704{
1705        int argc = command_size(argv);
1706
1707        init_params(&p0, name, argc, argv);
1708        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1709        if (argc)
1710                goto err;
1711
1712        if (__bench_numa(name))
1713                goto err;
1714
1715        return 0;
1716
1717err:
1718        return -1;
1719}
1720
1721#define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1722#define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1723
1724#define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1725#define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1726
1727#define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1728#define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1729
1730/*
1731 * The built-in test-suite executed by "perf bench numa -a".
1732 *
1733 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1734 */
1735static const char *tests[][MAX_ARGS] = {
1736   /* Basic single-stream NUMA bandwidth measurements: */
1737   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1738                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1739   { "RAM-bw-local-NOTHP,",
1740                          "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1741                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1742   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1743                          "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1744
1745   /* 2-stream NUMA bandwidth measurements: */
1746   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1747                           "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1748   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1749                           "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1750
1751   /* Cross-stream NUMA bandwidth measurement: */
1752   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1753                           "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1754
1755   /* Convergence latency measurements: */
1756   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1757   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1758   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1759   { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1760   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1761   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1762   { " 4x4-convergence-NOTHP,",
1763                          "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1764   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1765   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1766   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1767   { " 8x4-convergence-NOTHP,",
1768                          "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1769   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1770   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1771   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1772   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1773   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1774
1775   /* Various NUMA process/thread layout bandwidth measurements: */
1776   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1777   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1778   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1779   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1780   { " 8x1-bw-process-NOTHP,",
1781                          "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1782   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1783
1784   { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1785   { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1786   { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1787   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1788
1789   { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1790   { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1791   { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1792   { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1793   { " 4x8-bw-process-NOTHP,",
1794                          "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1795   { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1796   { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1797
1798   { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1799   { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1800
1801   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1802   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1803   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1804   { "numa01-bw-thread-NOTHP,",
1805                          "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1806};
1807
1808static int bench_all(void)
1809{
1810        int nr = ARRAY_SIZE(tests);
1811        int ret;
1812        int i;
1813
1814        ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1815        BUG_ON(ret < 0);
1816
1817        for (i = 0; i < nr; i++) {
1818                run_bench_numa(tests[i][0], tests[i] + 1);
1819        }
1820
1821        printf("\n");
1822
1823        return 0;
1824}
1825
1826int bench_numa(int argc, const char **argv)
1827{
1828        init_params(&p0, "main,", argc, argv);
1829        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1830        if (argc)
1831                goto err;
1832
1833        if (p0.run_all)
1834                return bench_all();
1835
1836        if (__bench_numa(NULL))
1837                goto err;
1838
1839        return 0;
1840
1841err:
1842        usage_with_options(numa_usage, options);
1843        return -1;
1844}
1845