linux/tools/perf/builtin-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
  47
  48#define PR_SET_NAME             15               /* Set process name */
  49#define MAX_CPUS                4096
  50#define COMM_LEN                20
  51#define SYM_LEN                 129
  52#define MAX_PID                 1024000
  53
  54static const char *cpu_list;
  55static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
  56
  57struct sched_atom;
  58
  59struct task_desc {
  60        unsigned long           nr;
  61        unsigned long           pid;
  62        char                    comm[COMM_LEN];
  63
  64        unsigned long           nr_events;
  65        unsigned long           curr_event;
  66        struct sched_atom       **atoms;
  67
  68        pthread_t               thread;
  69        sem_t                   sleep_sem;
  70
  71        sem_t                   ready_for_work;
  72        sem_t                   work_done_sem;
  73
  74        u64                     cpu_usage;
  75};
  76
  77enum sched_event_type {
  78        SCHED_EVENT_RUN,
  79        SCHED_EVENT_SLEEP,
  80        SCHED_EVENT_WAKEUP,
  81        SCHED_EVENT_MIGRATION,
  82};
  83
  84struct sched_atom {
  85        enum sched_event_type   type;
  86        int                     specific_wait;
  87        u64                     timestamp;
  88        u64                     duration;
  89        unsigned long           nr;
  90        sem_t                   *wait_sem;
  91        struct task_desc        *wakee;
  92};
  93
  94#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  95
  96/* task state bitmask, copied from include/linux/sched.h */
  97#define TASK_RUNNING            0
  98#define TASK_INTERRUPTIBLE      1
  99#define TASK_UNINTERRUPTIBLE    2
 100#define __TASK_STOPPED          4
 101#define __TASK_TRACED           8
 102/* in tsk->exit_state */
 103#define EXIT_DEAD               16
 104#define EXIT_ZOMBIE             32
 105#define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
 106/* in tsk->state again */
 107#define TASK_DEAD               64
 108#define TASK_WAKEKILL           128
 109#define TASK_WAKING             256
 110#define TASK_PARKED             512
 111
 112enum thread_state {
 113        THREAD_SLEEPING = 0,
 114        THREAD_WAIT_CPU,
 115        THREAD_SCHED_IN,
 116        THREAD_IGNORE
 117};
 118
 119struct work_atom {
 120        struct list_head        list;
 121        enum thread_state       state;
 122        u64                     sched_out_time;
 123        u64                     wake_up_time;
 124        u64                     sched_in_time;
 125        u64                     runtime;
 126};
 127
 128struct work_atoms {
 129        struct list_head        work_list;
 130        struct thread           *thread;
 131        struct rb_node          node;
 132        u64                     max_lat;
 133        u64                     max_lat_at;
 134        u64                     total_lat;
 135        u64                     nb_atoms;
 136        u64                     total_runtime;
 137        int                     num_merged;
 138};
 139
 140typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 141
 142struct perf_sched;
 143
 144struct trace_sched_handler {
 145        int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 146                            struct perf_sample *sample, struct machine *machine);
 147
 148        int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 149                             struct perf_sample *sample, struct machine *machine);
 150
 151        int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 152                            struct perf_sample *sample, struct machine *machine);
 153
 154        /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 155        int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 156                          struct machine *machine);
 157
 158        int (*migrate_task_event)(struct perf_sched *sched,
 159                                  struct evsel *evsel,
 160                                  struct perf_sample *sample,
 161                                  struct machine *machine);
 162};
 163
 164#define COLOR_PIDS PERF_COLOR_BLUE
 165#define COLOR_CPUS PERF_COLOR_BG_RED
 166
 167struct perf_sched_map {
 168        DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 169        int                     *comp_cpus;
 170        bool                     comp;
 171        struct perf_thread_map *color_pids;
 172        const char              *color_pids_str;
 173        struct perf_cpu_map     *color_cpus;
 174        const char              *color_cpus_str;
 175        struct perf_cpu_map     *cpus;
 176        const char              *cpus_str;
 177};
 178
 179struct perf_sched {
 180        struct perf_tool tool;
 181        const char       *sort_order;
 182        unsigned long    nr_tasks;
 183        struct task_desc **pid_to_task;
 184        struct task_desc **tasks;
 185        const struct trace_sched_handler *tp_handler;
 186        pthread_mutex_t  start_work_mutex;
 187        pthread_mutex_t  work_done_wait_mutex;
 188        int              profile_cpu;
 189/*
 190 * Track the current task - that way we can know whether there's any
 191 * weird events, such as a task being switched away that is not current.
 192 */
 193        int              max_cpu;
 194        u32              curr_pid[MAX_CPUS];
 195        struct thread    *curr_thread[MAX_CPUS];
 196        char             next_shortname1;
 197        char             next_shortname2;
 198        unsigned int     replay_repeat;
 199        unsigned long    nr_run_events;
 200        unsigned long    nr_sleep_events;
 201        unsigned long    nr_wakeup_events;
 202        unsigned long    nr_sleep_corrections;
 203        unsigned long    nr_run_events_optimized;
 204        unsigned long    targetless_wakeups;
 205        unsigned long    multitarget_wakeups;
 206        unsigned long    nr_runs;
 207        unsigned long    nr_timestamps;
 208        unsigned long    nr_unordered_timestamps;
 209        unsigned long    nr_context_switch_bugs;
 210        unsigned long    nr_events;
 211        unsigned long    nr_lost_chunks;
 212        unsigned long    nr_lost_events;
 213        u64              run_measurement_overhead;
 214        u64              sleep_measurement_overhead;
 215        u64              start_time;
 216        u64              cpu_usage;
 217        u64              runavg_cpu_usage;
 218        u64              parent_cpu_usage;
 219        u64              runavg_parent_cpu_usage;
 220        u64              sum_runtime;
 221        u64              sum_fluct;
 222        u64              run_avg;
 223        u64              all_runtime;
 224        u64              all_count;
 225        u64              cpu_last_switched[MAX_CPUS];
 226        struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 227        struct list_head sort_list, cmp_pid;
 228        bool force;
 229        bool skip_merge;
 230        struct perf_sched_map map;
 231
 232        /* options for timehist command */
 233        bool            summary;
 234        bool            summary_only;
 235        bool            idle_hist;
 236        bool            show_callchain;
 237        unsigned int    max_stack;
 238        bool            show_cpu_visual;
 239        bool            show_wakeups;
 240        bool            show_next;
 241        bool            show_migrations;
 242        bool            show_state;
 243        u64             skipped_samples;
 244        const char      *time_str;
 245        struct perf_time_interval ptime;
 246        struct perf_time_interval hist_time;
 247};
 248
 249/* per thread run time data */
 250struct thread_runtime {
 251        u64 last_time;      /* time of previous sched in/out event */
 252        u64 dt_run;         /* run time */
 253        u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 254        u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 255        u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 256        u64 dt_delay;       /* time between wakeup and sched-in */
 257        u64 ready_to_run;   /* time of wakeup */
 258
 259        struct stats run_stats;
 260        u64 total_run_time;
 261        u64 total_sleep_time;
 262        u64 total_iowait_time;
 263        u64 total_preempt_time;
 264        u64 total_delay_time;
 265
 266        int last_state;
 267
 268        char shortname[3];
 269        bool comm_changed;
 270
 271        u64 migrations;
 272};
 273
 274/* per event run time data */
 275struct evsel_runtime {
 276        u64 *last_time; /* time this event was last seen per cpu */
 277        u32 ncpu;       /* highest cpu slot allocated */
 278};
 279
 280/* per cpu idle time data */
 281struct idle_thread_runtime {
 282        struct thread_runtime   tr;
 283        struct thread           *last_thread;
 284        struct rb_root_cached   sorted_root;
 285        struct callchain_root   callchain;
 286        struct callchain_cursor cursor;
 287};
 288
 289/* track idle times per cpu */
 290static struct thread **idle_threads;
 291static int idle_max_cpu;
 292static char idle_comm[] = "<idle>";
 293
 294static u64 get_nsecs(void)
 295{
 296        struct timespec ts;
 297
 298        clock_gettime(CLOCK_MONOTONIC, &ts);
 299
 300        return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 301}
 302
 303static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 304{
 305        u64 T0 = get_nsecs(), T1;
 306
 307        do {
 308                T1 = get_nsecs();
 309        } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 310}
 311
 312static void sleep_nsecs(u64 nsecs)
 313{
 314        struct timespec ts;
 315
 316        ts.tv_nsec = nsecs % 999999999;
 317        ts.tv_sec = nsecs / 999999999;
 318
 319        nanosleep(&ts, NULL);
 320}
 321
 322static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 323{
 324        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 325        int i;
 326
 327        for (i = 0; i < 10; i++) {
 328                T0 = get_nsecs();
 329                burn_nsecs(sched, 0);
 330                T1 = get_nsecs();
 331                delta = T1-T0;
 332                min_delta = min(min_delta, delta);
 333        }
 334        sched->run_measurement_overhead = min_delta;
 335
 336        printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 337}
 338
 339static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 340{
 341        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 342        int i;
 343
 344        for (i = 0; i < 10; i++) {
 345                T0 = get_nsecs();
 346                sleep_nsecs(10000);
 347                T1 = get_nsecs();
 348                delta = T1-T0;
 349                min_delta = min(min_delta, delta);
 350        }
 351        min_delta -= 10000;
 352        sched->sleep_measurement_overhead = min_delta;
 353
 354        printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 355}
 356
 357static struct sched_atom *
 358get_new_event(struct task_desc *task, u64 timestamp)
 359{
 360        struct sched_atom *event = zalloc(sizeof(*event));
 361        unsigned long idx = task->nr_events;
 362        size_t size;
 363
 364        event->timestamp = timestamp;
 365        event->nr = idx;
 366
 367        task->nr_events++;
 368        size = sizeof(struct sched_atom *) * task->nr_events;
 369        task->atoms = realloc(task->atoms, size);
 370        BUG_ON(!task->atoms);
 371
 372        task->atoms[idx] = event;
 373
 374        return event;
 375}
 376
 377static struct sched_atom *last_event(struct task_desc *task)
 378{
 379        if (!task->nr_events)
 380                return NULL;
 381
 382        return task->atoms[task->nr_events - 1];
 383}
 384
 385static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 386                                u64 timestamp, u64 duration)
 387{
 388        struct sched_atom *event, *curr_event = last_event(task);
 389
 390        /*
 391         * optimize an existing RUN event by merging this one
 392         * to it:
 393         */
 394        if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 395                sched->nr_run_events_optimized++;
 396                curr_event->duration += duration;
 397                return;
 398        }
 399
 400        event = get_new_event(task, timestamp);
 401
 402        event->type = SCHED_EVENT_RUN;
 403        event->duration = duration;
 404
 405        sched->nr_run_events++;
 406}
 407
 408static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 409                                   u64 timestamp, struct task_desc *wakee)
 410{
 411        struct sched_atom *event, *wakee_event;
 412
 413        event = get_new_event(task, timestamp);
 414        event->type = SCHED_EVENT_WAKEUP;
 415        event->wakee = wakee;
 416
 417        wakee_event = last_event(wakee);
 418        if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 419                sched->targetless_wakeups++;
 420                return;
 421        }
 422        if (wakee_event->wait_sem) {
 423                sched->multitarget_wakeups++;
 424                return;
 425        }
 426
 427        wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 428        sem_init(wakee_event->wait_sem, 0, 0);
 429        wakee_event->specific_wait = 1;
 430        event->wait_sem = wakee_event->wait_sem;
 431
 432        sched->nr_wakeup_events++;
 433}
 434
 435static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 436                                  u64 timestamp, u64 task_state __maybe_unused)
 437{
 438        struct sched_atom *event = get_new_event(task, timestamp);
 439
 440        event->type = SCHED_EVENT_SLEEP;
 441
 442        sched->nr_sleep_events++;
 443}
 444
 445static struct task_desc *register_pid(struct perf_sched *sched,
 446                                      unsigned long pid, const char *comm)
 447{
 448        struct task_desc *task;
 449        static int pid_max;
 450
 451        if (sched->pid_to_task == NULL) {
 452                if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 453                        pid_max = MAX_PID;
 454                BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 455        }
 456        if (pid >= (unsigned long)pid_max) {
 457                BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 458                        sizeof(struct task_desc *))) == NULL);
 459                while (pid >= (unsigned long)pid_max)
 460                        sched->pid_to_task[pid_max++] = NULL;
 461        }
 462
 463        task = sched->pid_to_task[pid];
 464
 465        if (task)
 466                return task;
 467
 468        task = zalloc(sizeof(*task));
 469        task->pid = pid;
 470        task->nr = sched->nr_tasks;
 471        strcpy(task->comm, comm);
 472        /*
 473         * every task starts in sleeping state - this gets ignored
 474         * if there's no wakeup pointing to this sleep state:
 475         */
 476        add_sched_event_sleep(sched, task, 0, 0);
 477
 478        sched->pid_to_task[pid] = task;
 479        sched->nr_tasks++;
 480        sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 481        BUG_ON(!sched->tasks);
 482        sched->tasks[task->nr] = task;
 483
 484        if (verbose > 0)
 485                printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 486
 487        return task;
 488}
 489
 490
 491static void print_task_traces(struct perf_sched *sched)
 492{
 493        struct task_desc *task;
 494        unsigned long i;
 495
 496        for (i = 0; i < sched->nr_tasks; i++) {
 497                task = sched->tasks[i];
 498                printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 499                        task->nr, task->comm, task->pid, task->nr_events);
 500        }
 501}
 502
 503static void add_cross_task_wakeups(struct perf_sched *sched)
 504{
 505        struct task_desc *task1, *task2;
 506        unsigned long i, j;
 507
 508        for (i = 0; i < sched->nr_tasks; i++) {
 509                task1 = sched->tasks[i];
 510                j = i + 1;
 511                if (j == sched->nr_tasks)
 512                        j = 0;
 513                task2 = sched->tasks[j];
 514                add_sched_event_wakeup(sched, task1, 0, task2);
 515        }
 516}
 517
 518static void perf_sched__process_event(struct perf_sched *sched,
 519                                      struct sched_atom *atom)
 520{
 521        int ret = 0;
 522
 523        switch (atom->type) {
 524                case SCHED_EVENT_RUN:
 525                        burn_nsecs(sched, atom->duration);
 526                        break;
 527                case SCHED_EVENT_SLEEP:
 528                        if (atom->wait_sem)
 529                                ret = sem_wait(atom->wait_sem);
 530                        BUG_ON(ret);
 531                        break;
 532                case SCHED_EVENT_WAKEUP:
 533                        if (atom->wait_sem)
 534                                ret = sem_post(atom->wait_sem);
 535                        BUG_ON(ret);
 536                        break;
 537                case SCHED_EVENT_MIGRATION:
 538                        break;
 539                default:
 540                        BUG_ON(1);
 541        }
 542}
 543
 544static u64 get_cpu_usage_nsec_parent(void)
 545{
 546        struct rusage ru;
 547        u64 sum;
 548        int err;
 549
 550        err = getrusage(RUSAGE_SELF, &ru);
 551        BUG_ON(err);
 552
 553        sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 554        sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 555
 556        return sum;
 557}
 558
 559static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 560{
 561        struct perf_event_attr attr;
 562        char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 563        int fd;
 564        struct rlimit limit;
 565        bool need_privilege = false;
 566
 567        memset(&attr, 0, sizeof(attr));
 568
 569        attr.type = PERF_TYPE_SOFTWARE;
 570        attr.config = PERF_COUNT_SW_TASK_CLOCK;
 571
 572force_again:
 573        fd = sys_perf_event_open(&attr, 0, -1, -1,
 574                                 perf_event_open_cloexec_flag());
 575
 576        if (fd < 0) {
 577                if (errno == EMFILE) {
 578                        if (sched->force) {
 579                                BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 580                                limit.rlim_cur += sched->nr_tasks - cur_task;
 581                                if (limit.rlim_cur > limit.rlim_max) {
 582                                        limit.rlim_max = limit.rlim_cur;
 583                                        need_privilege = true;
 584                                }
 585                                if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 586                                        if (need_privilege && errno == EPERM)
 587                                                strcpy(info, "Need privilege\n");
 588                                } else
 589                                        goto force_again;
 590                        } else
 591                                strcpy(info, "Have a try with -f option\n");
 592                }
 593                pr_err("Error: sys_perf_event_open() syscall returned "
 594                       "with %d (%s)\n%s", fd,
 595                       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 596                exit(EXIT_FAILURE);
 597        }
 598        return fd;
 599}
 600
 601static u64 get_cpu_usage_nsec_self(int fd)
 602{
 603        u64 runtime;
 604        int ret;
 605
 606        ret = read(fd, &runtime, sizeof(runtime));
 607        BUG_ON(ret != sizeof(runtime));
 608
 609        return runtime;
 610}
 611
 612struct sched_thread_parms {
 613        struct task_desc  *task;
 614        struct perf_sched *sched;
 615        int fd;
 616};
 617
 618static void *thread_func(void *ctx)
 619{
 620        struct sched_thread_parms *parms = ctx;
 621        struct task_desc *this_task = parms->task;
 622        struct perf_sched *sched = parms->sched;
 623        u64 cpu_usage_0, cpu_usage_1;
 624        unsigned long i, ret;
 625        char comm2[22];
 626        int fd = parms->fd;
 627
 628        zfree(&parms);
 629
 630        sprintf(comm2, ":%s", this_task->comm);
 631        prctl(PR_SET_NAME, comm2);
 632        if (fd < 0)
 633                return NULL;
 634again:
 635        ret = sem_post(&this_task->ready_for_work);
 636        BUG_ON(ret);
 637        ret = pthread_mutex_lock(&sched->start_work_mutex);
 638        BUG_ON(ret);
 639        ret = pthread_mutex_unlock(&sched->start_work_mutex);
 640        BUG_ON(ret);
 641
 642        cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 643
 644        for (i = 0; i < this_task->nr_events; i++) {
 645                this_task->curr_event = i;
 646                perf_sched__process_event(sched, this_task->atoms[i]);
 647        }
 648
 649        cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 650        this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 651        ret = sem_post(&this_task->work_done_sem);
 652        BUG_ON(ret);
 653
 654        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 655        BUG_ON(ret);
 656        ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 657        BUG_ON(ret);
 658
 659        goto again;
 660}
 661
 662static void create_tasks(struct perf_sched *sched)
 663{
 664        struct task_desc *task;
 665        pthread_attr_t attr;
 666        unsigned long i;
 667        int err;
 668
 669        err = pthread_attr_init(&attr);
 670        BUG_ON(err);
 671        err = pthread_attr_setstacksize(&attr,
 672                        (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 673        BUG_ON(err);
 674        err = pthread_mutex_lock(&sched->start_work_mutex);
 675        BUG_ON(err);
 676        err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 677        BUG_ON(err);
 678        for (i = 0; i < sched->nr_tasks; i++) {
 679                struct sched_thread_parms *parms = malloc(sizeof(*parms));
 680                BUG_ON(parms == NULL);
 681                parms->task = task = sched->tasks[i];
 682                parms->sched = sched;
 683                parms->fd = self_open_counters(sched, i);
 684                sem_init(&task->sleep_sem, 0, 0);
 685                sem_init(&task->ready_for_work, 0, 0);
 686                sem_init(&task->work_done_sem, 0, 0);
 687                task->curr_event = 0;
 688                err = pthread_create(&task->thread, &attr, thread_func, parms);
 689                BUG_ON(err);
 690        }
 691}
 692
 693static void wait_for_tasks(struct perf_sched *sched)
 694{
 695        u64 cpu_usage_0, cpu_usage_1;
 696        struct task_desc *task;
 697        unsigned long i, ret;
 698
 699        sched->start_time = get_nsecs();
 700        sched->cpu_usage = 0;
 701        pthread_mutex_unlock(&sched->work_done_wait_mutex);
 702
 703        for (i = 0; i < sched->nr_tasks; i++) {
 704                task = sched->tasks[i];
 705                ret = sem_wait(&task->ready_for_work);
 706                BUG_ON(ret);
 707                sem_init(&task->ready_for_work, 0, 0);
 708        }
 709        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 710        BUG_ON(ret);
 711
 712        cpu_usage_0 = get_cpu_usage_nsec_parent();
 713
 714        pthread_mutex_unlock(&sched->start_work_mutex);
 715
 716        for (i = 0; i < sched->nr_tasks; i++) {
 717                task = sched->tasks[i];
 718                ret = sem_wait(&task->work_done_sem);
 719                BUG_ON(ret);
 720                sem_init(&task->work_done_sem, 0, 0);
 721                sched->cpu_usage += task->cpu_usage;
 722                task->cpu_usage = 0;
 723        }
 724
 725        cpu_usage_1 = get_cpu_usage_nsec_parent();
 726        if (!sched->runavg_cpu_usage)
 727                sched->runavg_cpu_usage = sched->cpu_usage;
 728        sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 729
 730        sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 731        if (!sched->runavg_parent_cpu_usage)
 732                sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 733        sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 734                                         sched->parent_cpu_usage)/sched->replay_repeat;
 735
 736        ret = pthread_mutex_lock(&sched->start_work_mutex);
 737        BUG_ON(ret);
 738
 739        for (i = 0; i < sched->nr_tasks; i++) {
 740                task = sched->tasks[i];
 741                sem_init(&task->sleep_sem, 0, 0);
 742                task->curr_event = 0;
 743        }
 744}
 745
 746static void run_one_test(struct perf_sched *sched)
 747{
 748        u64 T0, T1, delta, avg_delta, fluct;
 749
 750        T0 = get_nsecs();
 751        wait_for_tasks(sched);
 752        T1 = get_nsecs();
 753
 754        delta = T1 - T0;
 755        sched->sum_runtime += delta;
 756        sched->nr_runs++;
 757
 758        avg_delta = sched->sum_runtime / sched->nr_runs;
 759        if (delta < avg_delta)
 760                fluct = avg_delta - delta;
 761        else
 762                fluct = delta - avg_delta;
 763        sched->sum_fluct += fluct;
 764        if (!sched->run_avg)
 765                sched->run_avg = delta;
 766        sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 767
 768        printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 769
 770        printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 771
 772        printf("cpu: %0.2f / %0.2f",
 773                (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 774
 775#if 0
 776        /*
 777         * rusage statistics done by the parent, these are less
 778         * accurate than the sched->sum_exec_runtime based statistics:
 779         */
 780        printf(" [%0.2f / %0.2f]",
 781                (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 782                (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 783#endif
 784
 785        printf("\n");
 786
 787        if (sched->nr_sleep_corrections)
 788                printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 789        sched->nr_sleep_corrections = 0;
 790}
 791
 792static void test_calibrations(struct perf_sched *sched)
 793{
 794        u64 T0, T1;
 795
 796        T0 = get_nsecs();
 797        burn_nsecs(sched, NSEC_PER_MSEC);
 798        T1 = get_nsecs();
 799
 800        printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 801
 802        T0 = get_nsecs();
 803        sleep_nsecs(NSEC_PER_MSEC);
 804        T1 = get_nsecs();
 805
 806        printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 807}
 808
 809static int
 810replay_wakeup_event(struct perf_sched *sched,
 811                    struct evsel *evsel, struct perf_sample *sample,
 812                    struct machine *machine __maybe_unused)
 813{
 814        const char *comm = evsel__strval(evsel, sample, "comm");
 815        const u32 pid    = evsel__intval(evsel, sample, "pid");
 816        struct task_desc *waker, *wakee;
 817
 818        if (verbose > 0) {
 819                printf("sched_wakeup event %p\n", evsel);
 820
 821                printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 822        }
 823
 824        waker = register_pid(sched, sample->tid, "<unknown>");
 825        wakee = register_pid(sched, pid, comm);
 826
 827        add_sched_event_wakeup(sched, waker, sample->time, wakee);
 828        return 0;
 829}
 830
 831static int replay_switch_event(struct perf_sched *sched,
 832                               struct evsel *evsel,
 833                               struct perf_sample *sample,
 834                               struct machine *machine __maybe_unused)
 835{
 836        const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
 837                   *next_comm  = evsel__strval(evsel, sample, "next_comm");
 838        const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
 839                  next_pid = evsel__intval(evsel, sample, "next_pid");
 840        const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
 841        struct task_desc *prev, __maybe_unused *next;
 842        u64 timestamp0, timestamp = sample->time;
 843        int cpu = sample->cpu;
 844        s64 delta;
 845
 846        if (verbose > 0)
 847                printf("sched_switch event %p\n", evsel);
 848
 849        if (cpu >= MAX_CPUS || cpu < 0)
 850                return 0;
 851
 852        timestamp0 = sched->cpu_last_switched[cpu];
 853        if (timestamp0)
 854                delta = timestamp - timestamp0;
 855        else
 856                delta = 0;
 857
 858        if (delta < 0) {
 859                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 860                return -1;
 861        }
 862
 863        pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 864                 prev_comm, prev_pid, next_comm, next_pid, delta);
 865
 866        prev = register_pid(sched, prev_pid, prev_comm);
 867        next = register_pid(sched, next_pid, next_comm);
 868
 869        sched->cpu_last_switched[cpu] = timestamp;
 870
 871        add_sched_event_run(sched, prev, timestamp, delta);
 872        add_sched_event_sleep(sched, prev, timestamp, prev_state);
 873
 874        return 0;
 875}
 876
 877static int replay_fork_event(struct perf_sched *sched,
 878                             union perf_event *event,
 879                             struct machine *machine)
 880{
 881        struct thread *child, *parent;
 882
 883        child = machine__findnew_thread(machine, event->fork.pid,
 884                                        event->fork.tid);
 885        parent = machine__findnew_thread(machine, event->fork.ppid,
 886                                         event->fork.ptid);
 887
 888        if (child == NULL || parent == NULL) {
 889                pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 890                                 child, parent);
 891                goto out_put;
 892        }
 893
 894        if (verbose > 0) {
 895                printf("fork event\n");
 896                printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 897                printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 898        }
 899
 900        register_pid(sched, parent->tid, thread__comm_str(parent));
 901        register_pid(sched, child->tid, thread__comm_str(child));
 902out_put:
 903        thread__put(child);
 904        thread__put(parent);
 905        return 0;
 906}
 907
 908struct sort_dimension {
 909        const char              *name;
 910        sort_fn_t               cmp;
 911        struct list_head        list;
 912};
 913
 914/*
 915 * handle runtime stats saved per thread
 916 */
 917static struct thread_runtime *thread__init_runtime(struct thread *thread)
 918{
 919        struct thread_runtime *r;
 920
 921        r = zalloc(sizeof(struct thread_runtime));
 922        if (!r)
 923                return NULL;
 924
 925        init_stats(&r->run_stats);
 926        thread__set_priv(thread, r);
 927
 928        return r;
 929}
 930
 931static struct thread_runtime *thread__get_runtime(struct thread *thread)
 932{
 933        struct thread_runtime *tr;
 934
 935        tr = thread__priv(thread);
 936        if (tr == NULL) {
 937                tr = thread__init_runtime(thread);
 938                if (tr == NULL)
 939                        pr_debug("Failed to malloc memory for runtime data.\n");
 940        }
 941
 942        return tr;
 943}
 944
 945static int
 946thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 947{
 948        struct sort_dimension *sort;
 949        int ret = 0;
 950
 951        BUG_ON(list_empty(list));
 952
 953        list_for_each_entry(sort, list, list) {
 954                ret = sort->cmp(l, r);
 955                if (ret)
 956                        return ret;
 957        }
 958
 959        return ret;
 960}
 961
 962static struct work_atoms *
 963thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 964                         struct list_head *sort_list)
 965{
 966        struct rb_node *node = root->rb_root.rb_node;
 967        struct work_atoms key = { .thread = thread };
 968
 969        while (node) {
 970                struct work_atoms *atoms;
 971                int cmp;
 972
 973                atoms = container_of(node, struct work_atoms, node);
 974
 975                cmp = thread_lat_cmp(sort_list, &key, atoms);
 976                if (cmp > 0)
 977                        node = node->rb_left;
 978                else if (cmp < 0)
 979                        node = node->rb_right;
 980                else {
 981                        BUG_ON(thread != atoms->thread);
 982                        return atoms;
 983                }
 984        }
 985        return NULL;
 986}
 987
 988static void
 989__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 990                         struct list_head *sort_list)
 991{
 992        struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 993        bool leftmost = true;
 994
 995        while (*new) {
 996                struct work_atoms *this;
 997                int cmp;
 998
 999                this = container_of(*new, struct work_atoms, node);
1000                parent = *new;
1001
1002                cmp = thread_lat_cmp(sort_list, data, this);
1003
1004                if (cmp > 0)
1005                        new = &((*new)->rb_left);
1006                else {
1007                        new = &((*new)->rb_right);
1008                        leftmost = false;
1009                }
1010        }
1011
1012        rb_link_node(&data->node, parent, new);
1013        rb_insert_color_cached(&data->node, root, leftmost);
1014}
1015
1016static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1017{
1018        struct work_atoms *atoms = zalloc(sizeof(*atoms));
1019        if (!atoms) {
1020                pr_err("No memory at %s\n", __func__);
1021                return -1;
1022        }
1023
1024        atoms->thread = thread__get(thread);
1025        INIT_LIST_HEAD(&atoms->work_list);
1026        __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1027        return 0;
1028}
1029
1030static char sched_out_state(u64 prev_state)
1031{
1032        const char *str = TASK_STATE_TO_CHAR_STR;
1033
1034        return str[prev_state];
1035}
1036
1037static int
1038add_sched_out_event(struct work_atoms *atoms,
1039                    char run_state,
1040                    u64 timestamp)
1041{
1042        struct work_atom *atom = zalloc(sizeof(*atom));
1043        if (!atom) {
1044                pr_err("Non memory at %s", __func__);
1045                return -1;
1046        }
1047
1048        atom->sched_out_time = timestamp;
1049
1050        if (run_state == 'R') {
1051                atom->state = THREAD_WAIT_CPU;
1052                atom->wake_up_time = atom->sched_out_time;
1053        }
1054
1055        list_add_tail(&atom->list, &atoms->work_list);
1056        return 0;
1057}
1058
1059static void
1060add_runtime_event(struct work_atoms *atoms, u64 delta,
1061                  u64 timestamp __maybe_unused)
1062{
1063        struct work_atom *atom;
1064
1065        BUG_ON(list_empty(&atoms->work_list));
1066
1067        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1068
1069        atom->runtime += delta;
1070        atoms->total_runtime += delta;
1071}
1072
1073static void
1074add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1075{
1076        struct work_atom *atom;
1077        u64 delta;
1078
1079        if (list_empty(&atoms->work_list))
1080                return;
1081
1082        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1083
1084        if (atom->state != THREAD_WAIT_CPU)
1085                return;
1086
1087        if (timestamp < atom->wake_up_time) {
1088                atom->state = THREAD_IGNORE;
1089                return;
1090        }
1091
1092        atom->state = THREAD_SCHED_IN;
1093        atom->sched_in_time = timestamp;
1094
1095        delta = atom->sched_in_time - atom->wake_up_time;
1096        atoms->total_lat += delta;
1097        if (delta > atoms->max_lat) {
1098                atoms->max_lat = delta;
1099                atoms->max_lat_at = timestamp;
1100        }
1101        atoms->nb_atoms++;
1102}
1103
1104static int latency_switch_event(struct perf_sched *sched,
1105                                struct evsel *evsel,
1106                                struct perf_sample *sample,
1107                                struct machine *machine)
1108{
1109        const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1110                  next_pid = evsel__intval(evsel, sample, "next_pid");
1111        const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1112        struct work_atoms *out_events, *in_events;
1113        struct thread *sched_out, *sched_in;
1114        u64 timestamp0, timestamp = sample->time;
1115        int cpu = sample->cpu, err = -1;
1116        s64 delta;
1117
1118        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1119
1120        timestamp0 = sched->cpu_last_switched[cpu];
1121        sched->cpu_last_switched[cpu] = timestamp;
1122        if (timestamp0)
1123                delta = timestamp - timestamp0;
1124        else
1125                delta = 0;
1126
1127        if (delta < 0) {
1128                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1129                return -1;
1130        }
1131
1132        sched_out = machine__findnew_thread(machine, -1, prev_pid);
1133        sched_in = machine__findnew_thread(machine, -1, next_pid);
1134        if (sched_out == NULL || sched_in == NULL)
1135                goto out_put;
1136
1137        out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1138        if (!out_events) {
1139                if (thread_atoms_insert(sched, sched_out))
1140                        goto out_put;
1141                out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1142                if (!out_events) {
1143                        pr_err("out-event: Internal tree error");
1144                        goto out_put;
1145                }
1146        }
1147        if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1148                return -1;
1149
1150        in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1151        if (!in_events) {
1152                if (thread_atoms_insert(sched, sched_in))
1153                        goto out_put;
1154                in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1155                if (!in_events) {
1156                        pr_err("in-event: Internal tree error");
1157                        goto out_put;
1158                }
1159                /*
1160                 * Take came in we have not heard about yet,
1161                 * add in an initial atom in runnable state:
1162                 */
1163                if (add_sched_out_event(in_events, 'R', timestamp))
1164                        goto out_put;
1165        }
1166        add_sched_in_event(in_events, timestamp);
1167        err = 0;
1168out_put:
1169        thread__put(sched_out);
1170        thread__put(sched_in);
1171        return err;
1172}
1173
1174static int latency_runtime_event(struct perf_sched *sched,
1175                                 struct evsel *evsel,
1176                                 struct perf_sample *sample,
1177                                 struct machine *machine)
1178{
1179        const u32 pid      = evsel__intval(evsel, sample, "pid");
1180        const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1181        struct thread *thread = machine__findnew_thread(machine, -1, pid);
1182        struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1183        u64 timestamp = sample->time;
1184        int cpu = sample->cpu, err = -1;
1185
1186        if (thread == NULL)
1187                return -1;
1188
1189        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1190        if (!atoms) {
1191                if (thread_atoms_insert(sched, thread))
1192                        goto out_put;
1193                atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1194                if (!atoms) {
1195                        pr_err("in-event: Internal tree error");
1196                        goto out_put;
1197                }
1198                if (add_sched_out_event(atoms, 'R', timestamp))
1199                        goto out_put;
1200        }
1201
1202        add_runtime_event(atoms, runtime, timestamp);
1203        err = 0;
1204out_put:
1205        thread__put(thread);
1206        return err;
1207}
1208
1209static int latency_wakeup_event(struct perf_sched *sched,
1210                                struct evsel *evsel,
1211                                struct perf_sample *sample,
1212                                struct machine *machine)
1213{
1214        const u32 pid     = evsel__intval(evsel, sample, "pid");
1215        struct work_atoms *atoms;
1216        struct work_atom *atom;
1217        struct thread *wakee;
1218        u64 timestamp = sample->time;
1219        int err = -1;
1220
1221        wakee = machine__findnew_thread(machine, -1, pid);
1222        if (wakee == NULL)
1223                return -1;
1224        atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1225        if (!atoms) {
1226                if (thread_atoms_insert(sched, wakee))
1227                        goto out_put;
1228                atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1229                if (!atoms) {
1230                        pr_err("wakeup-event: Internal tree error");
1231                        goto out_put;
1232                }
1233                if (add_sched_out_event(atoms, 'S', timestamp))
1234                        goto out_put;
1235        }
1236
1237        BUG_ON(list_empty(&atoms->work_list));
1238
1239        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1240
1241        /*
1242         * As we do not guarantee the wakeup event happens when
1243         * task is out of run queue, also may happen when task is
1244         * on run queue and wakeup only change ->state to TASK_RUNNING,
1245         * then we should not set the ->wake_up_time when wake up a
1246         * task which is on run queue.
1247         *
1248         * You WILL be missing events if you've recorded only
1249         * one CPU, or are only looking at only one, so don't
1250         * skip in this case.
1251         */
1252        if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1253                goto out_ok;
1254
1255        sched->nr_timestamps++;
1256        if (atom->sched_out_time > timestamp) {
1257                sched->nr_unordered_timestamps++;
1258                goto out_ok;
1259        }
1260
1261        atom->state = THREAD_WAIT_CPU;
1262        atom->wake_up_time = timestamp;
1263out_ok:
1264        err = 0;
1265out_put:
1266        thread__put(wakee);
1267        return err;
1268}
1269
1270static int latency_migrate_task_event(struct perf_sched *sched,
1271                                      struct evsel *evsel,
1272                                      struct perf_sample *sample,
1273                                      struct machine *machine)
1274{
1275        const u32 pid = evsel__intval(evsel, sample, "pid");
1276        u64 timestamp = sample->time;
1277        struct work_atoms *atoms;
1278        struct work_atom *atom;
1279        struct thread *migrant;
1280        int err = -1;
1281
1282        /*
1283         * Only need to worry about migration when profiling one CPU.
1284         */
1285        if (sched->profile_cpu == -1)
1286                return 0;
1287
1288        migrant = machine__findnew_thread(machine, -1, pid);
1289        if (migrant == NULL)
1290                return -1;
1291        atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1292        if (!atoms) {
1293                if (thread_atoms_insert(sched, migrant))
1294                        goto out_put;
1295                register_pid(sched, migrant->tid, thread__comm_str(migrant));
1296                atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1297                if (!atoms) {
1298                        pr_err("migration-event: Internal tree error");
1299                        goto out_put;
1300                }
1301                if (add_sched_out_event(atoms, 'R', timestamp))
1302                        goto out_put;
1303        }
1304
1305        BUG_ON(list_empty(&atoms->work_list));
1306
1307        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1308        atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1309
1310        sched->nr_timestamps++;
1311
1312        if (atom->sched_out_time > timestamp)
1313                sched->nr_unordered_timestamps++;
1314        err = 0;
1315out_put:
1316        thread__put(migrant);
1317        return err;
1318}
1319
1320static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1321{
1322        int i;
1323        int ret;
1324        u64 avg;
1325        char max_lat_at[32];
1326
1327        if (!work_list->nb_atoms)
1328                return;
1329        /*
1330         * Ignore idle threads:
1331         */
1332        if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1333                return;
1334
1335        sched->all_runtime += work_list->total_runtime;
1336        sched->all_count   += work_list->nb_atoms;
1337
1338        if (work_list->num_merged > 1)
1339                ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1340        else
1341                ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1342
1343        for (i = 0; i < 24 - ret; i++)
1344                printf(" ");
1345
1346        avg = work_list->total_lat / work_list->nb_atoms;
1347        timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1348
1349        printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1350              (double)work_list->total_runtime / NSEC_PER_MSEC,
1351                 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1352                 (double)work_list->max_lat / NSEC_PER_MSEC,
1353                 max_lat_at);
1354}
1355
1356static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1357{
1358        if (l->thread == r->thread)
1359                return 0;
1360        if (l->thread->tid < r->thread->tid)
1361                return -1;
1362        if (l->thread->tid > r->thread->tid)
1363                return 1;
1364        return (int)(l->thread - r->thread);
1365}
1366
1367static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1368{
1369        u64 avgl, avgr;
1370
1371        if (!l->nb_atoms)
1372                return -1;
1373
1374        if (!r->nb_atoms)
1375                return 1;
1376
1377        avgl = l->total_lat / l->nb_atoms;
1378        avgr = r->total_lat / r->nb_atoms;
1379
1380        if (avgl < avgr)
1381                return -1;
1382        if (avgl > avgr)
1383                return 1;
1384
1385        return 0;
1386}
1387
1388static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1389{
1390        if (l->max_lat < r->max_lat)
1391                return -1;
1392        if (l->max_lat > r->max_lat)
1393                return 1;
1394
1395        return 0;
1396}
1397
1398static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1399{
1400        if (l->nb_atoms < r->nb_atoms)
1401                return -1;
1402        if (l->nb_atoms > r->nb_atoms)
1403                return 1;
1404
1405        return 0;
1406}
1407
1408static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1409{
1410        if (l->total_runtime < r->total_runtime)
1411                return -1;
1412        if (l->total_runtime > r->total_runtime)
1413                return 1;
1414
1415        return 0;
1416}
1417
1418static int sort_dimension__add(const char *tok, struct list_head *list)
1419{
1420        size_t i;
1421        static struct sort_dimension avg_sort_dimension = {
1422                .name = "avg",
1423                .cmp  = avg_cmp,
1424        };
1425        static struct sort_dimension max_sort_dimension = {
1426                .name = "max",
1427                .cmp  = max_cmp,
1428        };
1429        static struct sort_dimension pid_sort_dimension = {
1430                .name = "pid",
1431                .cmp  = pid_cmp,
1432        };
1433        static struct sort_dimension runtime_sort_dimension = {
1434                .name = "runtime",
1435                .cmp  = runtime_cmp,
1436        };
1437        static struct sort_dimension switch_sort_dimension = {
1438                .name = "switch",
1439                .cmp  = switch_cmp,
1440        };
1441        struct sort_dimension *available_sorts[] = {
1442                &pid_sort_dimension,
1443                &avg_sort_dimension,
1444                &max_sort_dimension,
1445                &switch_sort_dimension,
1446                &runtime_sort_dimension,
1447        };
1448
1449        for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1450                if (!strcmp(available_sorts[i]->name, tok)) {
1451                        list_add_tail(&available_sorts[i]->list, list);
1452
1453                        return 0;
1454                }
1455        }
1456
1457        return -1;
1458}
1459
1460static void perf_sched__sort_lat(struct perf_sched *sched)
1461{
1462        struct rb_node *node;
1463        struct rb_root_cached *root = &sched->atom_root;
1464again:
1465        for (;;) {
1466                struct work_atoms *data;
1467                node = rb_first_cached(root);
1468                if (!node)
1469                        break;
1470
1471                rb_erase_cached(node, root);
1472                data = rb_entry(node, struct work_atoms, node);
1473                __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1474        }
1475        if (root == &sched->atom_root) {
1476                root = &sched->merged_atom_root;
1477                goto again;
1478        }
1479}
1480
1481static int process_sched_wakeup_event(struct perf_tool *tool,
1482                                      struct evsel *evsel,
1483                                      struct perf_sample *sample,
1484                                      struct machine *machine)
1485{
1486        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1487
1488        if (sched->tp_handler->wakeup_event)
1489                return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1490
1491        return 0;
1492}
1493
1494union map_priv {
1495        void    *ptr;
1496        bool     color;
1497};
1498
1499static bool thread__has_color(struct thread *thread)
1500{
1501        union map_priv priv = {
1502                .ptr = thread__priv(thread),
1503        };
1504
1505        return priv.color;
1506}
1507
1508static struct thread*
1509map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1510{
1511        struct thread *thread = machine__findnew_thread(machine, pid, tid);
1512        union map_priv priv = {
1513                .color = false,
1514        };
1515
1516        if (!sched->map.color_pids || !thread || thread__priv(thread))
1517                return thread;
1518
1519        if (thread_map__has(sched->map.color_pids, tid))
1520                priv.color = true;
1521
1522        thread__set_priv(thread, priv.ptr);
1523        return thread;
1524}
1525
1526static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1527                            struct perf_sample *sample, struct machine *machine)
1528{
1529        const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1530        struct thread *sched_in;
1531        struct thread_runtime *tr;
1532        int new_shortname;
1533        u64 timestamp0, timestamp = sample->time;
1534        s64 delta;
1535        int i, this_cpu = sample->cpu;
1536        int cpus_nr;
1537        bool new_cpu = false;
1538        const char *color = PERF_COLOR_NORMAL;
1539        char stimestamp[32];
1540
1541        BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1542
1543        if (this_cpu > sched->max_cpu)
1544                sched->max_cpu = this_cpu;
1545
1546        if (sched->map.comp) {
1547                cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1548                if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1549                        sched->map.comp_cpus[cpus_nr++] = this_cpu;
1550                        new_cpu = true;
1551                }
1552        } else
1553                cpus_nr = sched->max_cpu;
1554
1555        timestamp0 = sched->cpu_last_switched[this_cpu];
1556        sched->cpu_last_switched[this_cpu] = timestamp;
1557        if (timestamp0)
1558                delta = timestamp - timestamp0;
1559        else
1560                delta = 0;
1561
1562        if (delta < 0) {
1563                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1564                return -1;
1565        }
1566
1567        sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1568        if (sched_in == NULL)
1569                return -1;
1570
1571        tr = thread__get_runtime(sched_in);
1572        if (tr == NULL) {
1573                thread__put(sched_in);
1574                return -1;
1575        }
1576
1577        sched->curr_thread[this_cpu] = thread__get(sched_in);
1578
1579        printf("  ");
1580
1581        new_shortname = 0;
1582        if (!tr->shortname[0]) {
1583                if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1584                        /*
1585                         * Don't allocate a letter-number for swapper:0
1586                         * as a shortname. Instead, we use '.' for it.
1587                         */
1588                        tr->shortname[0] = '.';
1589                        tr->shortname[1] = ' ';
1590                } else {
1591                        tr->shortname[0] = sched->next_shortname1;
1592                        tr->shortname[1] = sched->next_shortname2;
1593
1594                        if (sched->next_shortname1 < 'Z') {
1595                                sched->next_shortname1++;
1596                        } else {
1597                                sched->next_shortname1 = 'A';
1598                                if (sched->next_shortname2 < '9')
1599                                        sched->next_shortname2++;
1600                                else
1601                                        sched->next_shortname2 = '0';
1602                        }
1603                }
1604                new_shortname = 1;
1605        }
1606
1607        for (i = 0; i < cpus_nr; i++) {
1608                int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1609                struct thread *curr_thread = sched->curr_thread[cpu];
1610                struct thread_runtime *curr_tr;
1611                const char *pid_color = color;
1612                const char *cpu_color = color;
1613
1614                if (curr_thread && thread__has_color(curr_thread))
1615                        pid_color = COLOR_PIDS;
1616
1617                if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1618                        continue;
1619
1620                if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1621                        cpu_color = COLOR_CPUS;
1622
1623                if (cpu != this_cpu)
1624                        color_fprintf(stdout, color, " ");
1625                else
1626                        color_fprintf(stdout, cpu_color, "*");
1627
1628                if (sched->curr_thread[cpu]) {
1629                        curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1630                        if (curr_tr == NULL) {
1631                                thread__put(sched_in);
1632                                return -1;
1633                        }
1634                        color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1635                } else
1636                        color_fprintf(stdout, color, "   ");
1637        }
1638
1639        if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1640                goto out;
1641
1642        timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1643        color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1644        if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1645                const char *pid_color = color;
1646
1647                if (thread__has_color(sched_in))
1648                        pid_color = COLOR_PIDS;
1649
1650                color_fprintf(stdout, pid_color, "%s => %s:%d",
1651                       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1652                tr->comm_changed = false;
1653        }
1654
1655        if (sched->map.comp && new_cpu)
1656                color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1657
1658out:
1659        color_fprintf(stdout, color, "\n");
1660
1661        thread__put(sched_in);
1662
1663        return 0;
1664}
1665
1666static int process_sched_switch_event(struct perf_tool *tool,
1667                                      struct evsel *evsel,
1668                                      struct perf_sample *sample,
1669                                      struct machine *machine)
1670{
1671        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1672        int this_cpu = sample->cpu, err = 0;
1673        u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1674            next_pid = evsel__intval(evsel, sample, "next_pid");
1675
1676        if (sched->curr_pid[this_cpu] != (u32)-1) {
1677                /*
1678                 * Are we trying to switch away a PID that is
1679                 * not current?
1680                 */
1681                if (sched->curr_pid[this_cpu] != prev_pid)
1682                        sched->nr_context_switch_bugs++;
1683        }
1684
1685        if (sched->tp_handler->switch_event)
1686                err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1687
1688        sched->curr_pid[this_cpu] = next_pid;
1689        return err;
1690}
1691
1692static int process_sched_runtime_event(struct perf_tool *tool,
1693                                       struct evsel *evsel,
1694                                       struct perf_sample *sample,
1695                                       struct machine *machine)
1696{
1697        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1698
1699        if (sched->tp_handler->runtime_event)
1700                return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1701
1702        return 0;
1703}
1704
1705static int perf_sched__process_fork_event(struct perf_tool *tool,
1706                                          union perf_event *event,
1707                                          struct perf_sample *sample,
1708                                          struct machine *machine)
1709{
1710        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1711
1712        /* run the fork event through the perf machineruy */
1713        perf_event__process_fork(tool, event, sample, machine);
1714
1715        /* and then run additional processing needed for this command */
1716        if (sched->tp_handler->fork_event)
1717                return sched->tp_handler->fork_event(sched, event, machine);
1718
1719        return 0;
1720}
1721
1722static int process_sched_migrate_task_event(struct perf_tool *tool,
1723                                            struct evsel *evsel,
1724                                            struct perf_sample *sample,
1725                                            struct machine *machine)
1726{
1727        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1728
1729        if (sched->tp_handler->migrate_task_event)
1730                return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1731
1732        return 0;
1733}
1734
1735typedef int (*tracepoint_handler)(struct perf_tool *tool,
1736                                  struct evsel *evsel,
1737                                  struct perf_sample *sample,
1738                                  struct machine *machine);
1739
1740static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1741                                                 union perf_event *event __maybe_unused,
1742                                                 struct perf_sample *sample,
1743                                                 struct evsel *evsel,
1744                                                 struct machine *machine)
1745{
1746        int err = 0;
1747
1748        if (evsel->handler != NULL) {
1749                tracepoint_handler f = evsel->handler;
1750                err = f(tool, evsel, sample, machine);
1751        }
1752
1753        return err;
1754}
1755
1756static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1757                                    union perf_event *event,
1758                                    struct perf_sample *sample,
1759                                    struct machine *machine)
1760{
1761        struct thread *thread;
1762        struct thread_runtime *tr;
1763        int err;
1764
1765        err = perf_event__process_comm(tool, event, sample, machine);
1766        if (err)
1767                return err;
1768
1769        thread = machine__find_thread(machine, sample->pid, sample->tid);
1770        if (!thread) {
1771                pr_err("Internal error: can't find thread\n");
1772                return -1;
1773        }
1774
1775        tr = thread__get_runtime(thread);
1776        if (tr == NULL) {
1777                thread__put(thread);
1778                return -1;
1779        }
1780
1781        tr->comm_changed = true;
1782        thread__put(thread);
1783
1784        return 0;
1785}
1786
1787static int perf_sched__read_events(struct perf_sched *sched)
1788{
1789        const struct evsel_str_handler handlers[] = {
1790                { "sched:sched_switch",       process_sched_switch_event, },
1791                { "sched:sched_stat_runtime", process_sched_runtime_event, },
1792                { "sched:sched_wakeup",       process_sched_wakeup_event, },
1793                { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1794                { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1795        };
1796        struct perf_session *session;
1797        struct perf_data data = {
1798                .path  = input_name,
1799                .mode  = PERF_DATA_MODE_READ,
1800                .force = sched->force,
1801        };
1802        int rc = -1;
1803
1804        session = perf_session__new(&data, false, &sched->tool);
1805        if (IS_ERR(session)) {
1806                pr_debug("Error creating perf session");
1807                return PTR_ERR(session);
1808        }
1809
1810        symbol__init(&session->header.env);
1811
1812        if (perf_session__set_tracepoints_handlers(session, handlers))
1813                goto out_delete;
1814
1815        if (perf_session__has_traces(session, "record -R")) {
1816                int err = perf_session__process_events(session);
1817                if (err) {
1818                        pr_err("Failed to process events, error %d", err);
1819                        goto out_delete;
1820                }
1821
1822                sched->nr_events      = session->evlist->stats.nr_events[0];
1823                sched->nr_lost_events = session->evlist->stats.total_lost;
1824                sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1825        }
1826
1827        rc = 0;
1828out_delete:
1829        perf_session__delete(session);
1830        return rc;
1831}
1832
1833/*
1834 * scheduling times are printed as msec.usec
1835 */
1836static inline void print_sched_time(unsigned long long nsecs, int width)
1837{
1838        unsigned long msecs;
1839        unsigned long usecs;
1840
1841        msecs  = nsecs / NSEC_PER_MSEC;
1842        nsecs -= msecs * NSEC_PER_MSEC;
1843        usecs  = nsecs / NSEC_PER_USEC;
1844        printf("%*lu.%03lu ", width, msecs, usecs);
1845}
1846
1847/*
1848 * returns runtime data for event, allocating memory for it the
1849 * first time it is used.
1850 */
1851static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1852{
1853        struct evsel_runtime *r = evsel->priv;
1854
1855        if (r == NULL) {
1856                r = zalloc(sizeof(struct evsel_runtime));
1857                evsel->priv = r;
1858        }
1859
1860        return r;
1861}
1862
1863/*
1864 * save last time event was seen per cpu
1865 */
1866static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1867{
1868        struct evsel_runtime *r = evsel__get_runtime(evsel);
1869
1870        if (r == NULL)
1871                return;
1872
1873        if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1874                int i, n = __roundup_pow_of_two(cpu+1);
1875                void *p = r->last_time;
1876
1877                p = realloc(r->last_time, n * sizeof(u64));
1878                if (!p)
1879                        return;
1880
1881                r->last_time = p;
1882                for (i = r->ncpu; i < n; ++i)
1883                        r->last_time[i] = (u64) 0;
1884
1885                r->ncpu = n;
1886        }
1887
1888        r->last_time[cpu] = timestamp;
1889}
1890
1891/* returns last time this event was seen on the given cpu */
1892static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1893{
1894        struct evsel_runtime *r = evsel__get_runtime(evsel);
1895
1896        if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1897                return 0;
1898
1899        return r->last_time[cpu];
1900}
1901
1902static int comm_width = 30;
1903
1904static char *timehist_get_commstr(struct thread *thread)
1905{
1906        static char str[32];
1907        const char *comm = thread__comm_str(thread);
1908        pid_t tid = thread->tid;
1909        pid_t pid = thread->pid_;
1910        int n;
1911
1912        if (pid == 0)
1913                n = scnprintf(str, sizeof(str), "%s", comm);
1914
1915        else if (tid != pid)
1916                n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1917
1918        else
1919                n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1920
1921        if (n > comm_width)
1922                comm_width = n;
1923
1924        return str;
1925}
1926
1927static void timehist_header(struct perf_sched *sched)
1928{
1929        u32 ncpus = sched->max_cpu + 1;
1930        u32 i, j;
1931
1932        printf("%15s %6s ", "time", "cpu");
1933
1934        if (sched->show_cpu_visual) {
1935                printf(" ");
1936                for (i = 0, j = 0; i < ncpus; ++i) {
1937                        printf("%x", j++);
1938                        if (j > 15)
1939                                j = 0;
1940                }
1941                printf(" ");
1942        }
1943
1944        printf(" %-*s  %9s  %9s  %9s", comm_width,
1945                "task name", "wait time", "sch delay", "run time");
1946
1947        if (sched->show_state)
1948                printf("  %s", "state");
1949
1950        printf("\n");
1951
1952        /*
1953         * units row
1954         */
1955        printf("%15s %-6s ", "", "");
1956
1957        if (sched->show_cpu_visual)
1958                printf(" %*s ", ncpus, "");
1959
1960        printf(" %-*s  %9s  %9s  %9s", comm_width,
1961               "[tid/pid]", "(msec)", "(msec)", "(msec)");
1962
1963        if (sched->show_state)
1964                printf("  %5s", "");
1965
1966        printf("\n");
1967
1968        /*
1969         * separator
1970         */
1971        printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1972
1973        if (sched->show_cpu_visual)
1974                printf(" %.*s ", ncpus, graph_dotted_line);
1975
1976        printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1977                graph_dotted_line, graph_dotted_line, graph_dotted_line,
1978                graph_dotted_line);
1979
1980        if (sched->show_state)
1981                printf("  %.5s", graph_dotted_line);
1982
1983        printf("\n");
1984}
1985
1986static char task_state_char(struct thread *thread, int state)
1987{
1988        static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1989        unsigned bit = state ? ffs(state) : 0;
1990
1991        /* 'I' for idle */
1992        if (thread->tid == 0)
1993                return 'I';
1994
1995        return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1996}
1997
1998static void timehist_print_sample(struct perf_sched *sched,
1999                                  struct evsel *evsel,
2000                                  struct perf_sample *sample,
2001                                  struct addr_location *al,
2002                                  struct thread *thread,
2003                                  u64 t, int state)
2004{
2005        struct thread_runtime *tr = thread__priv(thread);
2006        const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2007        const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2008        u32 max_cpus = sched->max_cpu + 1;
2009        char tstr[64];
2010        char nstr[30];
2011        u64 wait_time;
2012
2013        if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2014                return;
2015
2016        timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2017        printf("%15s [%04d] ", tstr, sample->cpu);
2018
2019        if (sched->show_cpu_visual) {
2020                u32 i;
2021                char c;
2022
2023                printf(" ");
2024                for (i = 0; i < max_cpus; ++i) {
2025                        /* flag idle times with 'i'; others are sched events */
2026                        if (i == sample->cpu)
2027                                c = (thread->tid == 0) ? 'i' : 's';
2028                        else
2029                                c = ' ';
2030                        printf("%c", c);
2031                }
2032                printf(" ");
2033        }
2034
2035        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2036
2037        wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2038        print_sched_time(wait_time, 6);
2039
2040        print_sched_time(tr->dt_delay, 6);
2041        print_sched_time(tr->dt_run, 6);
2042
2043        if (sched->show_state)
2044                printf(" %5c ", task_state_char(thread, state));
2045
2046        if (sched->show_next) {
2047                snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2048                printf(" %-*s", comm_width, nstr);
2049        }
2050
2051        if (sched->show_wakeups && !sched->show_next)
2052                printf("  %-*s", comm_width, "");
2053
2054        if (thread->tid == 0)
2055                goto out;
2056
2057        if (sched->show_callchain)
2058                printf("  ");
2059
2060        sample__fprintf_sym(sample, al, 0,
2061                            EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2062                            EVSEL__PRINT_CALLCHAIN_ARROW |
2063                            EVSEL__PRINT_SKIP_IGNORED,
2064                            &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2065
2066out:
2067        printf("\n");
2068}
2069
2070/*
2071 * Explanation of delta-time stats:
2072 *
2073 *            t = time of current schedule out event
2074 *        tprev = time of previous sched out event
2075 *                also time of schedule-in event for current task
2076 *    last_time = time of last sched change event for current task
2077 *                (i.e, time process was last scheduled out)
2078 * ready_to_run = time of wakeup for current task
2079 *
2080 * -----|------------|------------|------------|------
2081 *    last         ready        tprev          t
2082 *    time         to run
2083 *
2084 *      |-------- dt_wait --------|
2085 *                   |- dt_delay -|-- dt_run --|
2086 *
2087 *   dt_run = run time of current task
2088 *  dt_wait = time between last schedule out event for task and tprev
2089 *            represents time spent off the cpu
2090 * dt_delay = time between wakeup and schedule-in of task
2091 */
2092
2093static void timehist_update_runtime_stats(struct thread_runtime *r,
2094                                         u64 t, u64 tprev)
2095{
2096        r->dt_delay   = 0;
2097        r->dt_sleep   = 0;
2098        r->dt_iowait  = 0;
2099        r->dt_preempt = 0;
2100        r->dt_run     = 0;
2101
2102        if (tprev) {
2103                r->dt_run = t - tprev;
2104                if (r->ready_to_run) {
2105                        if (r->ready_to_run > tprev)
2106                                pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2107                        else
2108                                r->dt_delay = tprev - r->ready_to_run;
2109                }
2110
2111                if (r->last_time > tprev)
2112                        pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2113                else if (r->last_time) {
2114                        u64 dt_wait = tprev - r->last_time;
2115
2116                        if (r->last_state == TASK_RUNNING)
2117                                r->dt_preempt = dt_wait;
2118                        else if (r->last_state == TASK_UNINTERRUPTIBLE)
2119                                r->dt_iowait = dt_wait;
2120                        else
2121                                r->dt_sleep = dt_wait;
2122                }
2123        }
2124
2125        update_stats(&r->run_stats, r->dt_run);
2126
2127        r->total_run_time     += r->dt_run;
2128        r->total_delay_time   += r->dt_delay;
2129        r->total_sleep_time   += r->dt_sleep;
2130        r->total_iowait_time  += r->dt_iowait;
2131        r->total_preempt_time += r->dt_preempt;
2132}
2133
2134static bool is_idle_sample(struct perf_sample *sample,
2135                           struct evsel *evsel)
2136{
2137        /* pid 0 == swapper == idle task */
2138        if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2139                return evsel__intval(evsel, sample, "prev_pid") == 0;
2140
2141        return sample->pid == 0;
2142}
2143
2144static void save_task_callchain(struct perf_sched *sched,
2145                                struct perf_sample *sample,
2146                                struct evsel *evsel,
2147                                struct machine *machine)
2148{
2149        struct callchain_cursor *cursor = &callchain_cursor;
2150        struct thread *thread;
2151
2152        /* want main thread for process - has maps */
2153        thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2154        if (thread == NULL) {
2155                pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2156                return;
2157        }
2158
2159        if (!sched->show_callchain || sample->callchain == NULL)
2160                return;
2161
2162        if (thread__resolve_callchain(thread, cursor, evsel, sample,
2163                                      NULL, NULL, sched->max_stack + 2) != 0) {
2164                if (verbose > 0)
2165                        pr_err("Failed to resolve callchain. Skipping\n");
2166
2167                return;
2168        }
2169
2170        callchain_cursor_commit(cursor);
2171
2172        while (true) {
2173                struct callchain_cursor_node *node;
2174                struct symbol *sym;
2175
2176                node = callchain_cursor_current(cursor);
2177                if (node == NULL)
2178                        break;
2179
2180                sym = node->ms.sym;
2181                if (sym) {
2182                        if (!strcmp(sym->name, "schedule") ||
2183                            !strcmp(sym->name, "__schedule") ||
2184                            !strcmp(sym->name, "preempt_schedule"))
2185                                sym->ignore = 1;
2186                }
2187
2188                callchain_cursor_advance(cursor);
2189        }
2190}
2191
2192static int init_idle_thread(struct thread *thread)
2193{
2194        struct idle_thread_runtime *itr;
2195
2196        thread__set_comm(thread, idle_comm, 0);
2197
2198        itr = zalloc(sizeof(*itr));
2199        if (itr == NULL)
2200                return -ENOMEM;
2201
2202        init_stats(&itr->tr.run_stats);
2203        callchain_init(&itr->callchain);
2204        callchain_cursor_reset(&itr->cursor);
2205        thread__set_priv(thread, itr);
2206
2207        return 0;
2208}
2209
2210/*
2211 * Track idle stats per cpu by maintaining a local thread
2212 * struct for the idle task on each cpu.
2213 */
2214static int init_idle_threads(int ncpu)
2215{
2216        int i, ret;
2217
2218        idle_threads = zalloc(ncpu * sizeof(struct thread *));
2219        if (!idle_threads)
2220                return -ENOMEM;
2221
2222        idle_max_cpu = ncpu;
2223
2224        /* allocate the actual thread struct if needed */
2225        for (i = 0; i < ncpu; ++i) {
2226                idle_threads[i] = thread__new(0, 0);
2227                if (idle_threads[i] == NULL)
2228                        return -ENOMEM;
2229
2230                ret = init_idle_thread(idle_threads[i]);
2231                if (ret < 0)
2232                        return ret;
2233        }
2234
2235        return 0;
2236}
2237
2238static void free_idle_threads(void)
2239{
2240        int i;
2241
2242        if (idle_threads == NULL)
2243                return;
2244
2245        for (i = 0; i < idle_max_cpu; ++i) {
2246                if ((idle_threads[i]))
2247                        thread__delete(idle_threads[i]);
2248        }
2249
2250        free(idle_threads);
2251}
2252
2253static struct thread *get_idle_thread(int cpu)
2254{
2255        /*
2256         * expand/allocate array of pointers to local thread
2257         * structs if needed
2258         */
2259        if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2260                int i, j = __roundup_pow_of_two(cpu+1);
2261                void *p;
2262
2263                p = realloc(idle_threads, j * sizeof(struct thread *));
2264                if (!p)
2265                        return NULL;
2266
2267                idle_threads = (struct thread **) p;
2268                for (i = idle_max_cpu; i < j; ++i)
2269                        idle_threads[i] = NULL;
2270
2271                idle_max_cpu = j;
2272        }
2273
2274        /* allocate a new thread struct if needed */
2275        if (idle_threads[cpu] == NULL) {
2276                idle_threads[cpu] = thread__new(0, 0);
2277
2278                if (idle_threads[cpu]) {
2279                        if (init_idle_thread(idle_threads[cpu]) < 0)
2280                                return NULL;
2281                }
2282        }
2283
2284        return idle_threads[cpu];
2285}
2286
2287static void save_idle_callchain(struct perf_sched *sched,
2288                                struct idle_thread_runtime *itr,
2289                                struct perf_sample *sample)
2290{
2291        if (!sched->show_callchain || sample->callchain == NULL)
2292                return;
2293
2294        callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2295}
2296
2297static struct thread *timehist_get_thread(struct perf_sched *sched,
2298                                          struct perf_sample *sample,
2299                                          struct machine *machine,
2300                                          struct evsel *evsel)
2301{
2302        struct thread *thread;
2303
2304        if (is_idle_sample(sample, evsel)) {
2305                thread = get_idle_thread(sample->cpu);
2306                if (thread == NULL)
2307                        pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2308
2309        } else {
2310                /* there were samples with tid 0 but non-zero pid */
2311                thread = machine__findnew_thread(machine, sample->pid,
2312                                                 sample->tid ?: sample->pid);
2313                if (thread == NULL) {
2314                        pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2315                                 sample->tid);
2316                }
2317
2318                save_task_callchain(sched, sample, evsel, machine);
2319                if (sched->idle_hist) {
2320                        struct thread *idle;
2321                        struct idle_thread_runtime *itr;
2322
2323                        idle = get_idle_thread(sample->cpu);
2324                        if (idle == NULL) {
2325                                pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2326                                return NULL;
2327                        }
2328
2329                        itr = thread__priv(idle);
2330                        if (itr == NULL)
2331                                return NULL;
2332
2333                        itr->last_thread = thread;
2334
2335                        /* copy task callchain when entering to idle */
2336                        if (evsel__intval(evsel, sample, "next_pid") == 0)
2337                                save_idle_callchain(sched, itr, sample);
2338                }
2339        }
2340
2341        return thread;
2342}
2343
2344static bool timehist_skip_sample(struct perf_sched *sched,
2345                                 struct thread *thread,
2346                                 struct evsel *evsel,
2347                                 struct perf_sample *sample)
2348{
2349        bool rc = false;
2350
2351        if (thread__is_filtered(thread)) {
2352                rc = true;
2353                sched->skipped_samples++;
2354        }
2355
2356        if (sched->idle_hist) {
2357                if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2358                        rc = true;
2359                else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2360                         evsel__intval(evsel, sample, "next_pid") != 0)
2361                        rc = true;
2362        }
2363
2364        return rc;
2365}
2366
2367static void timehist_print_wakeup_event(struct perf_sched *sched,
2368                                        struct evsel *evsel,
2369                                        struct perf_sample *sample,
2370                                        struct machine *machine,
2371                                        struct thread *awakened)
2372{
2373        struct thread *thread;
2374        char tstr[64];
2375
2376        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2377        if (thread == NULL)
2378                return;
2379
2380        /* show wakeup unless both awakee and awaker are filtered */
2381        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2382            timehist_skip_sample(sched, awakened, evsel, sample)) {
2383                return;
2384        }
2385
2386        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2387        printf("%15s [%04d] ", tstr, sample->cpu);
2388        if (sched->show_cpu_visual)
2389                printf(" %*s ", sched->max_cpu + 1, "");
2390
2391        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2392
2393        /* dt spacer */
2394        printf("  %9s  %9s  %9s ", "", "", "");
2395
2396        printf("awakened: %s", timehist_get_commstr(awakened));
2397
2398        printf("\n");
2399}
2400
2401static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2402                                        union perf_event *event __maybe_unused,
2403                                        struct evsel *evsel __maybe_unused,
2404                                        struct perf_sample *sample __maybe_unused,
2405                                        struct machine *machine __maybe_unused)
2406{
2407        return 0;
2408}
2409
2410static int timehist_sched_wakeup_event(struct perf_tool *tool,
2411                                       union perf_event *event __maybe_unused,
2412                                       struct evsel *evsel,
2413                                       struct perf_sample *sample,
2414                                       struct machine *machine)
2415{
2416        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2417        struct thread *thread;
2418        struct thread_runtime *tr = NULL;
2419        /* want pid of awakened task not pid in sample */
2420        const u32 pid = evsel__intval(evsel, sample, "pid");
2421
2422        thread = machine__findnew_thread(machine, 0, pid);
2423        if (thread == NULL)
2424                return -1;
2425
2426        tr = thread__get_runtime(thread);
2427        if (tr == NULL)
2428                return -1;
2429
2430        if (tr->ready_to_run == 0)
2431                tr->ready_to_run = sample->time;
2432
2433        /* show wakeups if requested */
2434        if (sched->show_wakeups &&
2435            !perf_time__skip_sample(&sched->ptime, sample->time))
2436                timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2437
2438        return 0;
2439}
2440
2441static void timehist_print_migration_event(struct perf_sched *sched,
2442                                        struct evsel *evsel,
2443                                        struct perf_sample *sample,
2444                                        struct machine *machine,
2445                                        struct thread *migrated)
2446{
2447        struct thread *thread;
2448        char tstr[64];
2449        u32 max_cpus = sched->max_cpu + 1;
2450        u32 ocpu, dcpu;
2451
2452        if (sched->summary_only)
2453                return;
2454
2455        max_cpus = sched->max_cpu + 1;
2456        ocpu = evsel__intval(evsel, sample, "orig_cpu");
2457        dcpu = evsel__intval(evsel, sample, "dest_cpu");
2458
2459        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2460        if (thread == NULL)
2461                return;
2462
2463        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2464            timehist_skip_sample(sched, migrated, evsel, sample)) {
2465                return;
2466        }
2467
2468        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2469        printf("%15s [%04d] ", tstr, sample->cpu);
2470
2471        if (sched->show_cpu_visual) {
2472                u32 i;
2473                char c;
2474
2475                printf("  ");
2476                for (i = 0; i < max_cpus; ++i) {
2477                        c = (i == sample->cpu) ? 'm' : ' ';
2478                        printf("%c", c);
2479                }
2480                printf("  ");
2481        }
2482
2483        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2484
2485        /* dt spacer */
2486        printf("  %9s  %9s  %9s ", "", "", "");
2487
2488        printf("migrated: %s", timehist_get_commstr(migrated));
2489        printf(" cpu %d => %d", ocpu, dcpu);
2490
2491        printf("\n");
2492}
2493
2494static int timehist_migrate_task_event(struct perf_tool *tool,
2495                                       union perf_event *event __maybe_unused,
2496                                       struct evsel *evsel,
2497                                       struct perf_sample *sample,
2498                                       struct machine *machine)
2499{
2500        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2501        struct thread *thread;
2502        struct thread_runtime *tr = NULL;
2503        /* want pid of migrated task not pid in sample */
2504        const u32 pid = evsel__intval(evsel, sample, "pid");
2505
2506        thread = machine__findnew_thread(machine, 0, pid);
2507        if (thread == NULL)
2508                return -1;
2509
2510        tr = thread__get_runtime(thread);
2511        if (tr == NULL)
2512                return -1;
2513
2514        tr->migrations++;
2515
2516        /* show migrations if requested */
2517        timehist_print_migration_event(sched, evsel, sample, machine, thread);
2518
2519        return 0;
2520}
2521
2522static int timehist_sched_change_event(struct perf_tool *tool,
2523                                       union perf_event *event,
2524                                       struct evsel *evsel,
2525                                       struct perf_sample *sample,
2526                                       struct machine *machine)
2527{
2528        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2529        struct perf_time_interval *ptime = &sched->ptime;
2530        struct addr_location al;
2531        struct thread *thread;
2532        struct thread_runtime *tr = NULL;
2533        u64 tprev, t = sample->time;
2534        int rc = 0;
2535        int state = evsel__intval(evsel, sample, "prev_state");
2536
2537        if (machine__resolve(machine, &al, sample) < 0) {
2538                pr_err("problem processing %d event. skipping it\n",
2539                       event->header.type);
2540                rc = -1;
2541                goto out;
2542        }
2543
2544        thread = timehist_get_thread(sched, sample, machine, evsel);
2545        if (thread == NULL) {
2546                rc = -1;
2547                goto out;
2548        }
2549
2550        if (timehist_skip_sample(sched, thread, evsel, sample))
2551                goto out;
2552
2553        tr = thread__get_runtime(thread);
2554        if (tr == NULL) {
2555                rc = -1;
2556                goto out;
2557        }
2558
2559        tprev = evsel__get_time(evsel, sample->cpu);
2560
2561        /*
2562         * If start time given:
2563         * - sample time is under window user cares about - skip sample
2564         * - tprev is under window user cares about  - reset to start of window
2565         */
2566        if (ptime->start && ptime->start > t)
2567                goto out;
2568
2569        if (tprev && ptime->start > tprev)
2570                tprev = ptime->start;
2571
2572        /*
2573         * If end time given:
2574         * - previous sched event is out of window - we are done
2575         * - sample time is beyond window user cares about - reset it
2576         *   to close out stats for time window interest
2577         */
2578        if (ptime->end) {
2579                if (tprev > ptime->end)
2580                        goto out;
2581
2582                if (t > ptime->end)
2583                        t = ptime->end;
2584        }
2585
2586        if (!sched->idle_hist || thread->tid == 0) {
2587                if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2588                        timehist_update_runtime_stats(tr, t, tprev);
2589
2590                if (sched->idle_hist) {
2591                        struct idle_thread_runtime *itr = (void *)tr;
2592                        struct thread_runtime *last_tr;
2593
2594                        BUG_ON(thread->tid != 0);
2595
2596                        if (itr->last_thread == NULL)
2597                                goto out;
2598
2599                        /* add current idle time as last thread's runtime */
2600                        last_tr = thread__get_runtime(itr->last_thread);
2601                        if (last_tr == NULL)
2602                                goto out;
2603
2604                        timehist_update_runtime_stats(last_tr, t, tprev);
2605                        /*
2606                         * remove delta time of last thread as it's not updated
2607                         * and otherwise it will show an invalid value next
2608                         * time.  we only care total run time and run stat.
2609                         */
2610                        last_tr->dt_run = 0;
2611                        last_tr->dt_delay = 0;
2612                        last_tr->dt_sleep = 0;
2613                        last_tr->dt_iowait = 0;
2614                        last_tr->dt_preempt = 0;
2615
2616                        if (itr->cursor.nr)
2617                                callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2618
2619                        itr->last_thread = NULL;
2620                }
2621        }
2622
2623        if (!sched->summary_only)
2624                timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2625
2626out:
2627        if (sched->hist_time.start == 0 && t >= ptime->start)
2628                sched->hist_time.start = t;
2629        if (ptime->end == 0 || t <= ptime->end)
2630                sched->hist_time.end = t;
2631
2632        if (tr) {
2633                /* time of this sched_switch event becomes last time task seen */
2634                tr->last_time = sample->time;
2635
2636                /* last state is used to determine where to account wait time */
2637                tr->last_state = state;
2638
2639                /* sched out event for task so reset ready to run time */
2640                tr->ready_to_run = 0;
2641        }
2642
2643        evsel__save_time(evsel, sample->time, sample->cpu);
2644
2645        return rc;
2646}
2647
2648static int timehist_sched_switch_event(struct perf_tool *tool,
2649                             union perf_event *event,
2650                             struct evsel *evsel,
2651                             struct perf_sample *sample,
2652                             struct machine *machine __maybe_unused)
2653{
2654        return timehist_sched_change_event(tool, event, evsel, sample, machine);
2655}
2656
2657static int process_lost(struct perf_tool *tool __maybe_unused,
2658                        union perf_event *event,
2659                        struct perf_sample *sample,
2660                        struct machine *machine __maybe_unused)
2661{
2662        char tstr[64];
2663
2664        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2665        printf("%15s ", tstr);
2666        printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2667
2668        return 0;
2669}
2670
2671
2672static void print_thread_runtime(struct thread *t,
2673                                 struct thread_runtime *r)
2674{
2675        double mean = avg_stats(&r->run_stats);
2676        float stddev;
2677
2678        printf("%*s   %5d  %9" PRIu64 " ",
2679               comm_width, timehist_get_commstr(t), t->ppid,
2680               (u64) r->run_stats.n);
2681
2682        print_sched_time(r->total_run_time, 8);
2683        stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2684        print_sched_time(r->run_stats.min, 6);
2685        printf(" ");
2686        print_sched_time((u64) mean, 6);
2687        printf(" ");
2688        print_sched_time(r->run_stats.max, 6);
2689        printf("  ");
2690        printf("%5.2f", stddev);
2691        printf("   %5" PRIu64, r->migrations);
2692        printf("\n");
2693}
2694
2695static void print_thread_waittime(struct thread *t,
2696                                  struct thread_runtime *r)
2697{
2698        printf("%*s   %5d  %9" PRIu64 " ",
2699               comm_width, timehist_get_commstr(t), t->ppid,
2700               (u64) r->run_stats.n);
2701
2702        print_sched_time(r->total_run_time, 8);
2703        print_sched_time(r->total_sleep_time, 6);
2704        printf(" ");
2705        print_sched_time(r->total_iowait_time, 6);
2706        printf(" ");
2707        print_sched_time(r->total_preempt_time, 6);
2708        printf(" ");
2709        print_sched_time(r->total_delay_time, 6);
2710        printf("\n");
2711}
2712
2713struct total_run_stats {
2714        struct perf_sched *sched;
2715        u64  sched_count;
2716        u64  task_count;
2717        u64  total_run_time;
2718};
2719
2720static int __show_thread_runtime(struct thread *t, void *priv)
2721{
2722        struct total_run_stats *stats = priv;
2723        struct thread_runtime *r;
2724
2725        if (thread__is_filtered(t))
2726                return 0;
2727
2728        r = thread__priv(t);
2729        if (r && r->run_stats.n) {
2730                stats->task_count++;
2731                stats->sched_count += r->run_stats.n;
2732                stats->total_run_time += r->total_run_time;
2733
2734                if (stats->sched->show_state)
2735                        print_thread_waittime(t, r);
2736                else
2737                        print_thread_runtime(t, r);
2738        }
2739
2740        return 0;
2741}
2742
2743static int show_thread_runtime(struct thread *t, void *priv)
2744{
2745        if (t->dead)
2746                return 0;
2747
2748        return __show_thread_runtime(t, priv);
2749}
2750
2751static int show_deadthread_runtime(struct thread *t, void *priv)
2752{
2753        if (!t->dead)
2754                return 0;
2755
2756        return __show_thread_runtime(t, priv);
2757}
2758
2759static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2760{
2761        const char *sep = " <- ";
2762        struct callchain_list *chain;
2763        size_t ret = 0;
2764        char bf[1024];
2765        bool first;
2766
2767        if (node == NULL)
2768                return 0;
2769
2770        ret = callchain__fprintf_folded(fp, node->parent);
2771        first = (ret == 0);
2772
2773        list_for_each_entry(chain, &node->val, list) {
2774                if (chain->ip >= PERF_CONTEXT_MAX)
2775                        continue;
2776                if (chain->ms.sym && chain->ms.sym->ignore)
2777                        continue;
2778                ret += fprintf(fp, "%s%s", first ? "" : sep,
2779                               callchain_list__sym_name(chain, bf, sizeof(bf),
2780                                                        false));
2781                first = false;
2782        }
2783
2784        return ret;
2785}
2786
2787static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2788{
2789        size_t ret = 0;
2790        FILE *fp = stdout;
2791        struct callchain_node *chain;
2792        struct rb_node *rb_node = rb_first_cached(root);
2793
2794        printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2795        printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2796               graph_dotted_line);
2797
2798        while (rb_node) {
2799                chain = rb_entry(rb_node, struct callchain_node, rb_node);
2800                rb_node = rb_next(rb_node);
2801
2802                ret += fprintf(fp, "  ");
2803                print_sched_time(chain->hit, 12);
2804                ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2805                ret += fprintf(fp, " %8d  ", chain->count);
2806                ret += callchain__fprintf_folded(fp, chain);
2807                ret += fprintf(fp, "\n");
2808        }
2809
2810        return ret;
2811}
2812
2813static void timehist_print_summary(struct perf_sched *sched,
2814                                   struct perf_session *session)
2815{
2816        struct machine *m = &session->machines.host;
2817        struct total_run_stats totals;
2818        u64 task_count;
2819        struct thread *t;
2820        struct thread_runtime *r;
2821        int i;
2822        u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2823
2824        memset(&totals, 0, sizeof(totals));
2825        totals.sched = sched;
2826
2827        if (sched->idle_hist) {
2828                printf("\nIdle-time summary\n");
2829                printf("%*s  parent  sched-out  ", comm_width, "comm");
2830                printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2831        } else if (sched->show_state) {
2832                printf("\nWait-time summary\n");
2833                printf("%*s  parent   sched-in  ", comm_width, "comm");
2834                printf("   run-time      sleep      iowait     preempt       delay\n");
2835        } else {
2836                printf("\nRuntime summary\n");
2837                printf("%*s  parent   sched-in  ", comm_width, "comm");
2838                printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2839        }
2840        printf("%*s            (count)  ", comm_width, "");
2841        printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2842               sched->show_state ? "(msec)" : "%");
2843        printf("%.117s\n", graph_dotted_line);
2844
2845        machine__for_each_thread(m, show_thread_runtime, &totals);
2846        task_count = totals.task_count;
2847        if (!task_count)
2848                printf("<no still running tasks>\n");
2849
2850        printf("\nTerminated tasks:\n");
2851        machine__for_each_thread(m, show_deadthread_runtime, &totals);
2852        if (task_count == totals.task_count)
2853                printf("<no terminated tasks>\n");
2854
2855        /* CPU idle stats not tracked when samples were skipped */
2856        if (sched->skipped_samples && !sched->idle_hist)
2857                return;
2858
2859        printf("\nIdle stats:\n");
2860        for (i = 0; i < idle_max_cpu; ++i) {
2861                if (cpu_list && !test_bit(i, cpu_bitmap))
2862                        continue;
2863
2864                t = idle_threads[i];
2865                if (!t)
2866                        continue;
2867
2868                r = thread__priv(t);
2869                if (r && r->run_stats.n) {
2870                        totals.sched_count += r->run_stats.n;
2871                        printf("    CPU %2d idle for ", i);
2872                        print_sched_time(r->total_run_time, 6);
2873                        printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2874                } else
2875                        printf("    CPU %2d idle entire time window\n", i);
2876        }
2877
2878        if (sched->idle_hist && sched->show_callchain) {
2879                callchain_param.mode  = CHAIN_FOLDED;
2880                callchain_param.value = CCVAL_PERIOD;
2881
2882                callchain_register_param(&callchain_param);
2883
2884                printf("\nIdle stats by callchain:\n");
2885                for (i = 0; i < idle_max_cpu; ++i) {
2886                        struct idle_thread_runtime *itr;
2887
2888                        t = idle_threads[i];
2889                        if (!t)
2890                                continue;
2891
2892                        itr = thread__priv(t);
2893                        if (itr == NULL)
2894                                continue;
2895
2896                        callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2897                                             0, &callchain_param);
2898
2899                        printf("  CPU %2d:", i);
2900                        print_sched_time(itr->tr.total_run_time, 6);
2901                        printf(" msec\n");
2902                        timehist_print_idlehist_callchain(&itr->sorted_root);
2903                        printf("\n");
2904                }
2905        }
2906
2907        printf("\n"
2908               "    Total number of unique tasks: %" PRIu64 "\n"
2909               "Total number of context switches: %" PRIu64 "\n",
2910               totals.task_count, totals.sched_count);
2911
2912        printf("           Total run time (msec): ");
2913        print_sched_time(totals.total_run_time, 2);
2914        printf("\n");
2915
2916        printf("    Total scheduling time (msec): ");
2917        print_sched_time(hist_time, 2);
2918        printf(" (x %d)\n", sched->max_cpu);
2919}
2920
2921typedef int (*sched_handler)(struct perf_tool *tool,
2922                          union perf_event *event,
2923                          struct evsel *evsel,
2924                          struct perf_sample *sample,
2925                          struct machine *machine);
2926
2927static int perf_timehist__process_sample(struct perf_tool *tool,
2928                                         union perf_event *event,
2929                                         struct perf_sample *sample,
2930                                         struct evsel *evsel,
2931                                         struct machine *machine)
2932{
2933        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2934        int err = 0;
2935        int this_cpu = sample->cpu;
2936
2937        if (this_cpu > sched->max_cpu)
2938                sched->max_cpu = this_cpu;
2939
2940        if (evsel->handler != NULL) {
2941                sched_handler f = evsel->handler;
2942
2943                err = f(tool, event, evsel, sample, machine);
2944        }
2945
2946        return err;
2947}
2948
2949static int timehist_check_attr(struct perf_sched *sched,
2950                               struct evlist *evlist)
2951{
2952        struct evsel *evsel;
2953        struct evsel_runtime *er;
2954
2955        list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2956                er = evsel__get_runtime(evsel);
2957                if (er == NULL) {
2958                        pr_err("Failed to allocate memory for evsel runtime data\n");
2959                        return -1;
2960                }
2961
2962                if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2963                        pr_info("Samples do not have callchains.\n");
2964                        sched->show_callchain = 0;
2965                        symbol_conf.use_callchain = 0;
2966                }
2967        }
2968
2969        return 0;
2970}
2971
2972static int perf_sched__timehist(struct perf_sched *sched)
2973{
2974        struct evsel_str_handler handlers[] = {
2975                { "sched:sched_switch",       timehist_sched_switch_event, },
2976                { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2977                { "sched:sched_waking",       timehist_sched_wakeup_event, },
2978                { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2979        };
2980        const struct evsel_str_handler migrate_handlers[] = {
2981                { "sched:sched_migrate_task", timehist_migrate_task_event, },
2982        };
2983        struct perf_data data = {
2984                .path  = input_name,
2985                .mode  = PERF_DATA_MODE_READ,
2986                .force = sched->force,
2987        };
2988
2989        struct perf_session *session;
2990        struct evlist *evlist;
2991        int err = -1;
2992
2993        /*
2994         * event handlers for timehist option
2995         */
2996        sched->tool.sample       = perf_timehist__process_sample;
2997        sched->tool.mmap         = perf_event__process_mmap;
2998        sched->tool.comm         = perf_event__process_comm;
2999        sched->tool.exit         = perf_event__process_exit;
3000        sched->tool.fork         = perf_event__process_fork;
3001        sched->tool.lost         = process_lost;
3002        sched->tool.attr         = perf_event__process_attr;
3003        sched->tool.tracing_data = perf_event__process_tracing_data;
3004        sched->tool.build_id     = perf_event__process_build_id;
3005
3006        sched->tool.ordered_events = true;
3007        sched->tool.ordering_requires_timestamps = true;
3008
3009        symbol_conf.use_callchain = sched->show_callchain;
3010
3011        session = perf_session__new(&data, false, &sched->tool);
3012        if (IS_ERR(session))
3013                return PTR_ERR(session);
3014
3015        if (cpu_list) {
3016                err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3017                if (err < 0)
3018                        goto out;
3019        }
3020
3021        evlist = session->evlist;
3022
3023        symbol__init(&session->header.env);
3024
3025        if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3026                pr_err("Invalid time string\n");
3027                return -EINVAL;
3028        }
3029
3030        if (timehist_check_attr(sched, evlist) != 0)
3031                goto out;
3032
3033        setup_pager();
3034
3035        /* prefer sched_waking if it is captured */
3036        if (perf_evlist__find_tracepoint_by_name(session->evlist,
3037                                                  "sched:sched_waking"))
3038                handlers[1].handler = timehist_sched_wakeup_ignore;
3039
3040        /* setup per-evsel handlers */
3041        if (perf_session__set_tracepoints_handlers(session, handlers))
3042                goto out;
3043
3044        /* sched_switch event at a minimum needs to exist */
3045        if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3046                                                  "sched:sched_switch")) {
3047                pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3048                goto out;
3049        }
3050
3051        if (sched->show_migrations &&
3052            perf_session__set_tracepoints_handlers(session, migrate_handlers))
3053                goto out;
3054
3055        /* pre-allocate struct for per-CPU idle stats */
3056        sched->max_cpu = session->header.env.nr_cpus_online;
3057        if (sched->max_cpu == 0)
3058                sched->max_cpu = 4;
3059        if (init_idle_threads(sched->max_cpu))
3060                goto out;
3061
3062        /* summary_only implies summary option, but don't overwrite summary if set */
3063        if (sched->summary_only)
3064                sched->summary = sched->summary_only;
3065
3066        if (!sched->summary_only)
3067                timehist_header(sched);
3068
3069        err = perf_session__process_events(session);
3070        if (err) {
3071                pr_err("Failed to process events, error %d", err);
3072                goto out;
3073        }
3074
3075        sched->nr_events      = evlist->stats.nr_events[0];
3076        sched->nr_lost_events = evlist->stats.total_lost;
3077        sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3078
3079        if (sched->summary)
3080                timehist_print_summary(sched, session);
3081
3082out:
3083        free_idle_threads();
3084        perf_session__delete(session);
3085
3086        return err;
3087}
3088
3089
3090static void print_bad_events(struct perf_sched *sched)
3091{
3092        if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3093                printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3094                        (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3095                        sched->nr_unordered_timestamps, sched->nr_timestamps);
3096        }
3097        if (sched->nr_lost_events && sched->nr_events) {
3098                printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3099                        (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3100                        sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3101        }
3102        if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3103                printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3104                        (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3105                        sched->nr_context_switch_bugs, sched->nr_timestamps);
3106                if (sched->nr_lost_events)
3107                        printf(" (due to lost events?)");
3108                printf("\n");
3109        }
3110}
3111
3112static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3113{
3114        struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3115        struct work_atoms *this;
3116        const char *comm = thread__comm_str(data->thread), *this_comm;
3117        bool leftmost = true;
3118
3119        while (*new) {
3120                int cmp;
3121
3122                this = container_of(*new, struct work_atoms, node);
3123                parent = *new;
3124
3125                this_comm = thread__comm_str(this->thread);
3126                cmp = strcmp(comm, this_comm);
3127                if (cmp > 0) {
3128                        new = &((*new)->rb_left);
3129                } else if (cmp < 0) {
3130                        new = &((*new)->rb_right);
3131                        leftmost = false;
3132                } else {
3133                        this->num_merged++;
3134                        this->total_runtime += data->total_runtime;
3135                        this->nb_atoms += data->nb_atoms;
3136                        this->total_lat += data->total_lat;
3137                        list_splice(&data->work_list, &this->work_list);
3138                        if (this->max_lat < data->max_lat) {
3139                                this->max_lat = data->max_lat;
3140                                this->max_lat_at = data->max_lat_at;
3141                        }
3142                        zfree(&data);
3143                        return;
3144                }
3145        }
3146
3147        data->num_merged++;
3148        rb_link_node(&data->node, parent, new);
3149        rb_insert_color_cached(&data->node, root, leftmost);
3150}
3151
3152static void perf_sched__merge_lat(struct perf_sched *sched)
3153{
3154        struct work_atoms *data;
3155        struct rb_node *node;
3156
3157        if (sched->skip_merge)
3158                return;
3159
3160        while ((node = rb_first_cached(&sched->atom_root))) {
3161                rb_erase_cached(node, &sched->atom_root);
3162                data = rb_entry(node, struct work_atoms, node);
3163                __merge_work_atoms(&sched->merged_atom_root, data);
3164        }
3165}
3166
3167static int perf_sched__lat(struct perf_sched *sched)
3168{
3169        struct rb_node *next;
3170
3171        setup_pager();
3172
3173        if (perf_sched__read_events(sched))
3174                return -1;
3175
3176        perf_sched__merge_lat(sched);
3177        perf_sched__sort_lat(sched);
3178
3179        printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3180        printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3181        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3182
3183        next = rb_first_cached(&sched->sorted_atom_root);
3184
3185        while (next) {
3186                struct work_atoms *work_list;
3187
3188                work_list = rb_entry(next, struct work_atoms, node);
3189                output_lat_thread(sched, work_list);
3190                next = rb_next(next);
3191                thread__zput(work_list->thread);
3192        }
3193
3194        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3195        printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3196                (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3197
3198        printf(" ---------------------------------------------------\n");
3199
3200        print_bad_events(sched);
3201        printf("\n");
3202
3203        return 0;
3204}
3205
3206static int setup_map_cpus(struct perf_sched *sched)
3207{
3208        struct perf_cpu_map *map;
3209
3210        sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3211
3212        if (sched->map.comp) {
3213                sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3214                if (!sched->map.comp_cpus)
3215                        return -1;
3216        }
3217
3218        if (!sched->map.cpus_str)
3219                return 0;
3220
3221        map = perf_cpu_map__new(sched->map.cpus_str);
3222        if (!map) {
3223                pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3224                return -1;
3225        }
3226
3227        sched->map.cpus = map;
3228        return 0;
3229}
3230
3231static int setup_color_pids(struct perf_sched *sched)
3232{
3233        struct perf_thread_map *map;
3234
3235        if (!sched->map.color_pids_str)
3236                return 0;
3237
3238        map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3239        if (!map) {
3240                pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3241                return -1;
3242        }
3243
3244        sched->map.color_pids = map;
3245        return 0;
3246}
3247
3248static int setup_color_cpus(struct perf_sched *sched)
3249{
3250        struct perf_cpu_map *map;
3251
3252        if (!sched->map.color_cpus_str)
3253                return 0;
3254
3255        map = perf_cpu_map__new(sched->map.color_cpus_str);
3256        if (!map) {
3257                pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3258                return -1;
3259        }
3260
3261        sched->map.color_cpus = map;
3262        return 0;
3263}
3264
3265static int perf_sched__map(struct perf_sched *sched)
3266{
3267        if (setup_map_cpus(sched))
3268                return -1;
3269
3270        if (setup_color_pids(sched))
3271                return -1;
3272
3273        if (setup_color_cpus(sched))
3274                return -1;
3275
3276        setup_pager();
3277        if (perf_sched__read_events(sched))
3278                return -1;
3279        print_bad_events(sched);
3280        return 0;
3281}
3282
3283static int perf_sched__replay(struct perf_sched *sched)
3284{
3285        unsigned long i;
3286
3287        calibrate_run_measurement_overhead(sched);
3288        calibrate_sleep_measurement_overhead(sched);
3289
3290        test_calibrations(sched);
3291
3292        if (perf_sched__read_events(sched))
3293                return -1;
3294
3295        printf("nr_run_events:        %ld\n", sched->nr_run_events);
3296        printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3297        printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3298
3299        if (sched->targetless_wakeups)
3300                printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3301        if (sched->multitarget_wakeups)
3302                printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3303        if (sched->nr_run_events_optimized)
3304                printf("run atoms optimized: %ld\n",
3305                        sched->nr_run_events_optimized);
3306
3307        print_task_traces(sched);
3308        add_cross_task_wakeups(sched);
3309
3310        create_tasks(sched);
3311        printf("------------------------------------------------------------\n");
3312        for (i = 0; i < sched->replay_repeat; i++)
3313                run_one_test(sched);
3314
3315        return 0;
3316}
3317
3318static void setup_sorting(struct perf_sched *sched, const struct option *options,
3319                          const char * const usage_msg[])
3320{
3321        char *tmp, *tok, *str = strdup(sched->sort_order);
3322
3323        for (tok = strtok_r(str, ", ", &tmp);
3324                        tok; tok = strtok_r(NULL, ", ", &tmp)) {
3325                if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3326                        usage_with_options_msg(usage_msg, options,
3327                                        "Unknown --sort key: `%s'", tok);
3328                }
3329        }
3330
3331        free(str);
3332
3333        sort_dimension__add("pid", &sched->cmp_pid);
3334}
3335
3336static int __cmd_record(int argc, const char **argv)
3337{
3338        unsigned int rec_argc, i, j;
3339        const char **rec_argv;
3340        const char * const record_args[] = {
3341                "record",
3342                "-a",
3343                "-R",
3344                "-m", "1024",
3345                "-c", "1",
3346                "-e", "sched:sched_switch",
3347                "-e", "sched:sched_stat_wait",
3348                "-e", "sched:sched_stat_sleep",
3349                "-e", "sched:sched_stat_iowait",
3350                "-e", "sched:sched_stat_runtime",
3351                "-e", "sched:sched_process_fork",
3352                "-e", "sched:sched_wakeup_new",
3353                "-e", "sched:sched_migrate_task",
3354        };
3355        struct tep_event *waking_event;
3356
3357        /*
3358         * +2 for either "-e", "sched:sched_wakeup" or
3359         * "-e", "sched:sched_waking"
3360         */
3361        rec_argc = ARRAY_SIZE(record_args) + 2 + argc - 1;
3362        rec_argv = calloc(rec_argc + 1, sizeof(char *));
3363
3364        if (rec_argv == NULL)
3365                return -ENOMEM;
3366
3367        for (i = 0; i < ARRAY_SIZE(record_args); i++)
3368                rec_argv[i] = strdup(record_args[i]);
3369
3370        rec_argv[i++] = "-e";
3371        waking_event = trace_event__tp_format("sched", "sched_waking");
3372        if (!IS_ERR(waking_event))
3373                rec_argv[i++] = strdup("sched:sched_waking");
3374        else
3375                rec_argv[i++] = strdup("sched:sched_wakeup");
3376
3377        for (j = 1; j < (unsigned int)argc; j++, i++)
3378                rec_argv[i] = argv[j];
3379
3380        BUG_ON(i != rec_argc);
3381
3382        return cmd_record(i, rec_argv);
3383}
3384
3385int cmd_sched(int argc, const char **argv)
3386{
3387        static const char default_sort_order[] = "avg, max, switch, runtime";
3388        struct perf_sched sched = {
3389                .tool = {
3390                        .sample          = perf_sched__process_tracepoint_sample,
3391                        .comm            = perf_sched__process_comm,
3392                        .namespaces      = perf_event__process_namespaces,
3393                        .lost            = perf_event__process_lost,
3394                        .fork            = perf_sched__process_fork_event,
3395                        .ordered_events = true,
3396                },
3397                .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3398                .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3399                .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3400                .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3401                .sort_order           = default_sort_order,
3402                .replay_repeat        = 10,
3403                .profile_cpu          = -1,
3404                .next_shortname1      = 'A',
3405                .next_shortname2      = '0',
3406                .skip_merge           = 0,
3407                .show_callchain       = 1,
3408                .max_stack            = 5,
3409        };
3410        const struct option sched_options[] = {
3411        OPT_STRING('i', "input", &input_name, "file",
3412                    "input file name"),
3413        OPT_INCR('v', "verbose", &verbose,
3414                    "be more verbose (show symbol address, etc)"),
3415        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3416                    "dump raw trace in ASCII"),
3417        OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3418        OPT_END()
3419        };
3420        const struct option latency_options[] = {
3421        OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3422                   "sort by key(s): runtime, switch, avg, max"),
3423        OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3424                    "CPU to profile on"),
3425        OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3426                    "latency stats per pid instead of per comm"),
3427        OPT_PARENT(sched_options)
3428        };
3429        const struct option replay_options[] = {
3430        OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3431                     "repeat the workload replay N times (-1: infinite)"),
3432        OPT_PARENT(sched_options)
3433        };
3434        const struct option map_options[] = {
3435        OPT_BOOLEAN(0, "compact", &sched.map.comp,
3436                    "map output in compact mode"),
3437        OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3438                   "highlight given pids in map"),
3439        OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3440                    "highlight given CPUs in map"),
3441        OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3442                    "display given CPUs in map"),
3443        OPT_PARENT(sched_options)
3444        };
3445        const struct option timehist_options[] = {
3446        OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3447                   "file", "vmlinux pathname"),
3448        OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3449                   "file", "kallsyms pathname"),
3450        OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3451                    "Display call chains if present (default on)"),
3452        OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3453                   "Maximum number of functions to display backtrace."),
3454        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3455                    "Look for files with symbols relative to this directory"),
3456        OPT_BOOLEAN('s', "summary", &sched.summary_only,
3457                    "Show only syscall summary with statistics"),
3458        OPT_BOOLEAN('S', "with-summary", &sched.summary,
3459                    "Show all syscalls and summary with statistics"),
3460        OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3461        OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3462        OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3463        OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3464        OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3465        OPT_STRING(0, "time", &sched.time_str, "str",
3466                   "Time span for analysis (start,stop)"),
3467        OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3468        OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3469                   "analyze events only for given process id(s)"),
3470        OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3471                   "analyze events only for given thread id(s)"),
3472        OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3473        OPT_PARENT(sched_options)
3474        };
3475
3476        const char * const latency_usage[] = {
3477                "perf sched latency [<options>]",
3478                NULL
3479        };
3480        const char * const replay_usage[] = {
3481                "perf sched replay [<options>]",
3482                NULL
3483        };
3484        const char * const map_usage[] = {
3485                "perf sched map [<options>]",
3486                NULL
3487        };
3488        const char * const timehist_usage[] = {
3489                "perf sched timehist [<options>]",
3490                NULL
3491        };
3492        const char *const sched_subcommands[] = { "record", "latency", "map",
3493                                                  "replay", "script",
3494                                                  "timehist", NULL };
3495        const char *sched_usage[] = {
3496                NULL,
3497                NULL
3498        };
3499        struct trace_sched_handler lat_ops  = {
3500                .wakeup_event       = latency_wakeup_event,
3501                .switch_event       = latency_switch_event,
3502                .runtime_event      = latency_runtime_event,
3503                .migrate_task_event = latency_migrate_task_event,
3504        };
3505        struct trace_sched_handler map_ops  = {
3506                .switch_event       = map_switch_event,
3507        };
3508        struct trace_sched_handler replay_ops  = {
3509                .wakeup_event       = replay_wakeup_event,
3510                .switch_event       = replay_switch_event,
3511                .fork_event         = replay_fork_event,
3512        };
3513        unsigned int i;
3514
3515        for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3516                sched.curr_pid[i] = -1;
3517
3518        argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3519                                        sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3520        if (!argc)
3521                usage_with_options(sched_usage, sched_options);
3522
3523        /*
3524         * Aliased to 'perf script' for now:
3525         */
3526        if (!strcmp(argv[0], "script"))
3527                return cmd_script(argc, argv);
3528
3529        if (!strncmp(argv[0], "rec", 3)) {
3530                return __cmd_record(argc, argv);
3531        } else if (!strncmp(argv[0], "lat", 3)) {
3532                sched.tp_handler = &lat_ops;
3533                if (argc > 1) {
3534                        argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3535                        if (argc)
3536                                usage_with_options(latency_usage, latency_options);
3537                }
3538                setup_sorting(&sched, latency_options, latency_usage);
3539                return perf_sched__lat(&sched);
3540        } else if (!strcmp(argv[0], "map")) {
3541                if (argc) {
3542                        argc = parse_options(argc, argv, map_options, map_usage, 0);
3543                        if (argc)
3544                                usage_with_options(map_usage, map_options);
3545                }
3546                sched.tp_handler = &map_ops;
3547                setup_sorting(&sched, latency_options, latency_usage);
3548                return perf_sched__map(&sched);
3549        } else if (!strncmp(argv[0], "rep", 3)) {
3550                sched.tp_handler = &replay_ops;
3551                if (argc) {
3552                        argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3553                        if (argc)
3554                                usage_with_options(replay_usage, replay_options);
3555                }
3556                return perf_sched__replay(&sched);
3557        } else if (!strcmp(argv[0], "timehist")) {
3558                if (argc) {
3559                        argc = parse_options(argc, argv, timehist_options,
3560                                             timehist_usage, 0);
3561                        if (argc)
3562                                usage_with_options(timehist_usage, timehist_options);
3563                }
3564                if ((sched.show_wakeups || sched.show_next) &&
3565                    sched.summary_only) {
3566                        pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3567                        parse_options_usage(timehist_usage, timehist_options, "s", true);
3568                        if (sched.show_wakeups)
3569                                parse_options_usage(NULL, timehist_options, "w", true);
3570                        if (sched.show_next)
3571                                parse_options_usage(NULL, timehist_options, "n", true);
3572                        return -EINVAL;
3573                }
3574
3575                return perf_sched__timehist(&sched);
3576        } else {
3577                usage_with_options(sched_usage, sched_options);
3578        }
3579
3580        return 0;
3581}
3582