linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include <stdlib.h>
   7#include "callchain.h"
   8#include "debug.h"
   9#include "dso.h"
  10#include "env.h"
  11#include "event.h"
  12#include "evsel.h"
  13#include "hist.h"
  14#include "machine.h"
  15#include "map.h"
  16#include "map_symbol.h"
  17#include "branch.h"
  18#include "mem-events.h"
  19#include "srcline.h"
  20#include "symbol.h"
  21#include "sort.h"
  22#include "strlist.h"
  23#include "target.h"
  24#include "thread.h"
  25#include "util.h"
  26#include "vdso.h"
  27#include <stdbool.h>
  28#include <sys/types.h>
  29#include <sys/stat.h>
  30#include <unistd.h>
  31#include "unwind.h"
  32#include "linux/hash.h"
  33#include "asm/bug.h"
  34#include "bpf-event.h"
  35#include <internal/lib.h> // page_size
  36#include "cgroup.h"
  37
  38#include <linux/ctype.h>
  39#include <symbol/kallsyms.h>
  40#include <linux/mman.h>
  41#include <linux/string.h>
  42#include <linux/zalloc.h>
  43
  44static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  45
  46static struct dso *machine__kernel_dso(struct machine *machine)
  47{
  48        return machine->vmlinux_map->dso;
  49}
  50
  51static void dsos__init(struct dsos *dsos)
  52{
  53        INIT_LIST_HEAD(&dsos->head);
  54        dsos->root = RB_ROOT;
  55        init_rwsem(&dsos->lock);
  56}
  57
  58static void machine__threads_init(struct machine *machine)
  59{
  60        int i;
  61
  62        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  63                struct threads *threads = &machine->threads[i];
  64                threads->entries = RB_ROOT_CACHED;
  65                init_rwsem(&threads->lock);
  66                threads->nr = 0;
  67                INIT_LIST_HEAD(&threads->dead);
  68                threads->last_match = NULL;
  69        }
  70}
  71
  72static int machine__set_mmap_name(struct machine *machine)
  73{
  74        if (machine__is_host(machine))
  75                machine->mmap_name = strdup("[kernel.kallsyms]");
  76        else if (machine__is_default_guest(machine))
  77                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  78        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  79                          machine->pid) < 0)
  80                machine->mmap_name = NULL;
  81
  82        return machine->mmap_name ? 0 : -ENOMEM;
  83}
  84
  85int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  86{
  87        int err = -ENOMEM;
  88
  89        memset(machine, 0, sizeof(*machine));
  90        maps__init(&machine->kmaps, machine);
  91        RB_CLEAR_NODE(&machine->rb_node);
  92        dsos__init(&machine->dsos);
  93
  94        machine__threads_init(machine);
  95
  96        machine->vdso_info = NULL;
  97        machine->env = NULL;
  98
  99        machine->pid = pid;
 100
 101        machine->id_hdr_size = 0;
 102        machine->kptr_restrict_warned = false;
 103        machine->comm_exec = false;
 104        machine->kernel_start = 0;
 105        machine->vmlinux_map = NULL;
 106
 107        machine->root_dir = strdup(root_dir);
 108        if (machine->root_dir == NULL)
 109                return -ENOMEM;
 110
 111        if (machine__set_mmap_name(machine))
 112                goto out;
 113
 114        if (pid != HOST_KERNEL_ID) {
 115                struct thread *thread = machine__findnew_thread(machine, -1,
 116                                                                pid);
 117                char comm[64];
 118
 119                if (thread == NULL)
 120                        goto out;
 121
 122                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 123                thread__set_comm(thread, comm, 0);
 124                thread__put(thread);
 125        }
 126
 127        machine->current_tid = NULL;
 128        err = 0;
 129
 130out:
 131        if (err) {
 132                zfree(&machine->root_dir);
 133                zfree(&machine->mmap_name);
 134        }
 135        return 0;
 136}
 137
 138struct machine *machine__new_host(void)
 139{
 140        struct machine *machine = malloc(sizeof(*machine));
 141
 142        if (machine != NULL) {
 143                machine__init(machine, "", HOST_KERNEL_ID);
 144
 145                if (machine__create_kernel_maps(machine) < 0)
 146                        goto out_delete;
 147        }
 148
 149        return machine;
 150out_delete:
 151        free(machine);
 152        return NULL;
 153}
 154
 155struct machine *machine__new_kallsyms(void)
 156{
 157        struct machine *machine = machine__new_host();
 158        /*
 159         * FIXME:
 160         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 161         *    ask for not using the kcore parsing code, once this one is fixed
 162         *    to create a map per module.
 163         */
 164        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 165                machine__delete(machine);
 166                machine = NULL;
 167        }
 168
 169        return machine;
 170}
 171
 172static void dsos__purge(struct dsos *dsos)
 173{
 174        struct dso *pos, *n;
 175
 176        down_write(&dsos->lock);
 177
 178        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 179                RB_CLEAR_NODE(&pos->rb_node);
 180                pos->root = NULL;
 181                list_del_init(&pos->node);
 182                dso__put(pos);
 183        }
 184
 185        up_write(&dsos->lock);
 186}
 187
 188static void dsos__exit(struct dsos *dsos)
 189{
 190        dsos__purge(dsos);
 191        exit_rwsem(&dsos->lock);
 192}
 193
 194void machine__delete_threads(struct machine *machine)
 195{
 196        struct rb_node *nd;
 197        int i;
 198
 199        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 200                struct threads *threads = &machine->threads[i];
 201                down_write(&threads->lock);
 202                nd = rb_first_cached(&threads->entries);
 203                while (nd) {
 204                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 205
 206                        nd = rb_next(nd);
 207                        __machine__remove_thread(machine, t, false);
 208                }
 209                up_write(&threads->lock);
 210        }
 211}
 212
 213void machine__exit(struct machine *machine)
 214{
 215        int i;
 216
 217        if (machine == NULL)
 218                return;
 219
 220        machine__destroy_kernel_maps(machine);
 221        maps__exit(&machine->kmaps);
 222        dsos__exit(&machine->dsos);
 223        machine__exit_vdso(machine);
 224        zfree(&machine->root_dir);
 225        zfree(&machine->mmap_name);
 226        zfree(&machine->current_tid);
 227
 228        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 229                struct threads *threads = &machine->threads[i];
 230                struct thread *thread, *n;
 231                /*
 232                 * Forget about the dead, at this point whatever threads were
 233                 * left in the dead lists better have a reference count taken
 234                 * by who is using them, and then, when they drop those references
 235                 * and it finally hits zero, thread__put() will check and see that
 236                 * its not in the dead threads list and will not try to remove it
 237                 * from there, just calling thread__delete() straight away.
 238                 */
 239                list_for_each_entry_safe(thread, n, &threads->dead, node)
 240                        list_del_init(&thread->node);
 241
 242                exit_rwsem(&threads->lock);
 243        }
 244}
 245
 246void machine__delete(struct machine *machine)
 247{
 248        if (machine) {
 249                machine__exit(machine);
 250                free(machine);
 251        }
 252}
 253
 254void machines__init(struct machines *machines)
 255{
 256        machine__init(&machines->host, "", HOST_KERNEL_ID);
 257        machines->guests = RB_ROOT_CACHED;
 258}
 259
 260void machines__exit(struct machines *machines)
 261{
 262        machine__exit(&machines->host);
 263        /* XXX exit guest */
 264}
 265
 266struct machine *machines__add(struct machines *machines, pid_t pid,
 267                              const char *root_dir)
 268{
 269        struct rb_node **p = &machines->guests.rb_root.rb_node;
 270        struct rb_node *parent = NULL;
 271        struct machine *pos, *machine = malloc(sizeof(*machine));
 272        bool leftmost = true;
 273
 274        if (machine == NULL)
 275                return NULL;
 276
 277        if (machine__init(machine, root_dir, pid) != 0) {
 278                free(machine);
 279                return NULL;
 280        }
 281
 282        while (*p != NULL) {
 283                parent = *p;
 284                pos = rb_entry(parent, struct machine, rb_node);
 285                if (pid < pos->pid)
 286                        p = &(*p)->rb_left;
 287                else {
 288                        p = &(*p)->rb_right;
 289                        leftmost = false;
 290                }
 291        }
 292
 293        rb_link_node(&machine->rb_node, parent, p);
 294        rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 295
 296        return machine;
 297}
 298
 299void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 300{
 301        struct rb_node *nd;
 302
 303        machines->host.comm_exec = comm_exec;
 304
 305        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 306                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 307
 308                machine->comm_exec = comm_exec;
 309        }
 310}
 311
 312struct machine *machines__find(struct machines *machines, pid_t pid)
 313{
 314        struct rb_node **p = &machines->guests.rb_root.rb_node;
 315        struct rb_node *parent = NULL;
 316        struct machine *machine;
 317        struct machine *default_machine = NULL;
 318
 319        if (pid == HOST_KERNEL_ID)
 320                return &machines->host;
 321
 322        while (*p != NULL) {
 323                parent = *p;
 324                machine = rb_entry(parent, struct machine, rb_node);
 325                if (pid < machine->pid)
 326                        p = &(*p)->rb_left;
 327                else if (pid > machine->pid)
 328                        p = &(*p)->rb_right;
 329                else
 330                        return machine;
 331                if (!machine->pid)
 332                        default_machine = machine;
 333        }
 334
 335        return default_machine;
 336}
 337
 338struct machine *machines__findnew(struct machines *machines, pid_t pid)
 339{
 340        char path[PATH_MAX];
 341        const char *root_dir = "";
 342        struct machine *machine = machines__find(machines, pid);
 343
 344        if (machine && (machine->pid == pid))
 345                goto out;
 346
 347        if ((pid != HOST_KERNEL_ID) &&
 348            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 349            (symbol_conf.guestmount)) {
 350                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 351                if (access(path, R_OK)) {
 352                        static struct strlist *seen;
 353
 354                        if (!seen)
 355                                seen = strlist__new(NULL, NULL);
 356
 357                        if (!strlist__has_entry(seen, path)) {
 358                                pr_err("Can't access file %s\n", path);
 359                                strlist__add(seen, path);
 360                        }
 361                        machine = NULL;
 362                        goto out;
 363                }
 364                root_dir = path;
 365        }
 366
 367        machine = machines__add(machines, pid, root_dir);
 368out:
 369        return machine;
 370}
 371
 372void machines__process_guests(struct machines *machines,
 373                              machine__process_t process, void *data)
 374{
 375        struct rb_node *nd;
 376
 377        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 378                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 379                process(pos, data);
 380        }
 381}
 382
 383void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 384{
 385        struct rb_node *node;
 386        struct machine *machine;
 387
 388        machines->host.id_hdr_size = id_hdr_size;
 389
 390        for (node = rb_first_cached(&machines->guests); node;
 391             node = rb_next(node)) {
 392                machine = rb_entry(node, struct machine, rb_node);
 393                machine->id_hdr_size = id_hdr_size;
 394        }
 395
 396        return;
 397}
 398
 399static void machine__update_thread_pid(struct machine *machine,
 400                                       struct thread *th, pid_t pid)
 401{
 402        struct thread *leader;
 403
 404        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 405                return;
 406
 407        th->pid_ = pid;
 408
 409        if (th->pid_ == th->tid)
 410                return;
 411
 412        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 413        if (!leader)
 414                goto out_err;
 415
 416        if (!leader->maps)
 417                leader->maps = maps__new(machine);
 418
 419        if (!leader->maps)
 420                goto out_err;
 421
 422        if (th->maps == leader->maps)
 423                return;
 424
 425        if (th->maps) {
 426                /*
 427                 * Maps are created from MMAP events which provide the pid and
 428                 * tid.  Consequently there never should be any maps on a thread
 429                 * with an unknown pid.  Just print an error if there are.
 430                 */
 431                if (!maps__empty(th->maps))
 432                        pr_err("Discarding thread maps for %d:%d\n",
 433                               th->pid_, th->tid);
 434                maps__put(th->maps);
 435        }
 436
 437        th->maps = maps__get(leader->maps);
 438out_put:
 439        thread__put(leader);
 440        return;
 441out_err:
 442        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 443        goto out_put;
 444}
 445
 446/*
 447 * Front-end cache - TID lookups come in blocks,
 448 * so most of the time we dont have to look up
 449 * the full rbtree:
 450 */
 451static struct thread*
 452__threads__get_last_match(struct threads *threads, struct machine *machine,
 453                          int pid, int tid)
 454{
 455        struct thread *th;
 456
 457        th = threads->last_match;
 458        if (th != NULL) {
 459                if (th->tid == tid) {
 460                        machine__update_thread_pid(machine, th, pid);
 461                        return thread__get(th);
 462                }
 463
 464                threads->last_match = NULL;
 465        }
 466
 467        return NULL;
 468}
 469
 470static struct thread*
 471threads__get_last_match(struct threads *threads, struct machine *machine,
 472                        int pid, int tid)
 473{
 474        struct thread *th = NULL;
 475
 476        if (perf_singlethreaded)
 477                th = __threads__get_last_match(threads, machine, pid, tid);
 478
 479        return th;
 480}
 481
 482static void
 483__threads__set_last_match(struct threads *threads, struct thread *th)
 484{
 485        threads->last_match = th;
 486}
 487
 488static void
 489threads__set_last_match(struct threads *threads, struct thread *th)
 490{
 491        if (perf_singlethreaded)
 492                __threads__set_last_match(threads, th);
 493}
 494
 495/*
 496 * Caller must eventually drop thread->refcnt returned with a successful
 497 * lookup/new thread inserted.
 498 */
 499static struct thread *____machine__findnew_thread(struct machine *machine,
 500                                                  struct threads *threads,
 501                                                  pid_t pid, pid_t tid,
 502                                                  bool create)
 503{
 504        struct rb_node **p = &threads->entries.rb_root.rb_node;
 505        struct rb_node *parent = NULL;
 506        struct thread *th;
 507        bool leftmost = true;
 508
 509        th = threads__get_last_match(threads, machine, pid, tid);
 510        if (th)
 511                return th;
 512
 513        while (*p != NULL) {
 514                parent = *p;
 515                th = rb_entry(parent, struct thread, rb_node);
 516
 517                if (th->tid == tid) {
 518                        threads__set_last_match(threads, th);
 519                        machine__update_thread_pid(machine, th, pid);
 520                        return thread__get(th);
 521                }
 522
 523                if (tid < th->tid)
 524                        p = &(*p)->rb_left;
 525                else {
 526                        p = &(*p)->rb_right;
 527                        leftmost = false;
 528                }
 529        }
 530
 531        if (!create)
 532                return NULL;
 533
 534        th = thread__new(pid, tid);
 535        if (th != NULL) {
 536                rb_link_node(&th->rb_node, parent, p);
 537                rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 538
 539                /*
 540                 * We have to initialize maps separately after rb tree is updated.
 541                 *
 542                 * The reason is that we call machine__findnew_thread
 543                 * within thread__init_maps to find the thread
 544                 * leader and that would screwed the rb tree.
 545                 */
 546                if (thread__init_maps(th, machine)) {
 547                        rb_erase_cached(&th->rb_node, &threads->entries);
 548                        RB_CLEAR_NODE(&th->rb_node);
 549                        thread__put(th);
 550                        return NULL;
 551                }
 552                /*
 553                 * It is now in the rbtree, get a ref
 554                 */
 555                thread__get(th);
 556                threads__set_last_match(threads, th);
 557                ++threads->nr;
 558        }
 559
 560        return th;
 561}
 562
 563struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 564{
 565        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 566}
 567
 568struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 569                                       pid_t tid)
 570{
 571        struct threads *threads = machine__threads(machine, tid);
 572        struct thread *th;
 573
 574        down_write(&threads->lock);
 575        th = __machine__findnew_thread(machine, pid, tid);
 576        up_write(&threads->lock);
 577        return th;
 578}
 579
 580struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 581                                    pid_t tid)
 582{
 583        struct threads *threads = machine__threads(machine, tid);
 584        struct thread *th;
 585
 586        down_read(&threads->lock);
 587        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 588        up_read(&threads->lock);
 589        return th;
 590}
 591
 592struct comm *machine__thread_exec_comm(struct machine *machine,
 593                                       struct thread *thread)
 594{
 595        if (machine->comm_exec)
 596                return thread__exec_comm(thread);
 597        else
 598                return thread__comm(thread);
 599}
 600
 601int machine__process_comm_event(struct machine *machine, union perf_event *event,
 602                                struct perf_sample *sample)
 603{
 604        struct thread *thread = machine__findnew_thread(machine,
 605                                                        event->comm.pid,
 606                                                        event->comm.tid);
 607        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 608        int err = 0;
 609
 610        if (exec)
 611                machine->comm_exec = true;
 612
 613        if (dump_trace)
 614                perf_event__fprintf_comm(event, stdout);
 615
 616        if (thread == NULL ||
 617            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 618                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 619                err = -1;
 620        }
 621
 622        thread__put(thread);
 623
 624        return err;
 625}
 626
 627int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 628                                      union perf_event *event,
 629                                      struct perf_sample *sample __maybe_unused)
 630{
 631        struct thread *thread = machine__findnew_thread(machine,
 632                                                        event->namespaces.pid,
 633                                                        event->namespaces.tid);
 634        int err = 0;
 635
 636        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 637                  "\nWARNING: kernel seems to support more namespaces than perf"
 638                  " tool.\nTry updating the perf tool..\n\n");
 639
 640        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 641                  "\nWARNING: perf tool seems to support more namespaces than"
 642                  " the kernel.\nTry updating the kernel..\n\n");
 643
 644        if (dump_trace)
 645                perf_event__fprintf_namespaces(event, stdout);
 646
 647        if (thread == NULL ||
 648            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 649                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 650                err = -1;
 651        }
 652
 653        thread__put(thread);
 654
 655        return err;
 656}
 657
 658int machine__process_cgroup_event(struct machine *machine,
 659                                  union perf_event *event,
 660                                  struct perf_sample *sample __maybe_unused)
 661{
 662        struct cgroup *cgrp;
 663
 664        if (dump_trace)
 665                perf_event__fprintf_cgroup(event, stdout);
 666
 667        cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
 668        if (cgrp == NULL)
 669                return -ENOMEM;
 670
 671        return 0;
 672}
 673
 674int machine__process_lost_event(struct machine *machine __maybe_unused,
 675                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 676{
 677        dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
 678                    event->lost.id, event->lost.lost);
 679        return 0;
 680}
 681
 682int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 683                                        union perf_event *event, struct perf_sample *sample)
 684{
 685        dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
 686                    sample->id, event->lost_samples.lost);
 687        return 0;
 688}
 689
 690static struct dso *machine__findnew_module_dso(struct machine *machine,
 691                                               struct kmod_path *m,
 692                                               const char *filename)
 693{
 694        struct dso *dso;
 695
 696        down_write(&machine->dsos.lock);
 697
 698        dso = __dsos__find(&machine->dsos, m->name, true);
 699        if (!dso) {
 700                dso = __dsos__addnew(&machine->dsos, m->name);
 701                if (dso == NULL)
 702                        goto out_unlock;
 703
 704                dso__set_module_info(dso, m, machine);
 705                dso__set_long_name(dso, strdup(filename), true);
 706                dso->kernel = DSO_SPACE__KERNEL;
 707        }
 708
 709        dso__get(dso);
 710out_unlock:
 711        up_write(&machine->dsos.lock);
 712        return dso;
 713}
 714
 715int machine__process_aux_event(struct machine *machine __maybe_unused,
 716                               union perf_event *event)
 717{
 718        if (dump_trace)
 719                perf_event__fprintf_aux(event, stdout);
 720        return 0;
 721}
 722
 723int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 724                                        union perf_event *event)
 725{
 726        if (dump_trace)
 727                perf_event__fprintf_itrace_start(event, stdout);
 728        return 0;
 729}
 730
 731int machine__process_switch_event(struct machine *machine __maybe_unused,
 732                                  union perf_event *event)
 733{
 734        if (dump_trace)
 735                perf_event__fprintf_switch(event, stdout);
 736        return 0;
 737}
 738
 739static int machine__process_ksymbol_register(struct machine *machine,
 740                                             union perf_event *event,
 741                                             struct perf_sample *sample __maybe_unused)
 742{
 743        struct symbol *sym;
 744        struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
 745
 746        if (!map) {
 747                struct dso *dso = dso__new(event->ksymbol.name);
 748
 749                if (dso) {
 750                        dso->kernel = DSO_SPACE__KERNEL;
 751                        map = map__new2(0, dso);
 752                }
 753
 754                if (!dso || !map) {
 755                        dso__put(dso);
 756                        return -ENOMEM;
 757                }
 758
 759                if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
 760                        map->dso->binary_type = DSO_BINARY_TYPE__OOL;
 761                        map->dso->data.file_size = event->ksymbol.len;
 762                        dso__set_loaded(map->dso);
 763                }
 764
 765                map->start = event->ksymbol.addr;
 766                map->end = map->start + event->ksymbol.len;
 767                maps__insert(&machine->kmaps, map);
 768                dso__set_loaded(dso);
 769
 770                if (is_bpf_image(event->ksymbol.name)) {
 771                        dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
 772                        dso__set_long_name(dso, "", false);
 773                }
 774        }
 775
 776        sym = symbol__new(map->map_ip(map, map->start),
 777                          event->ksymbol.len,
 778                          0, 0, event->ksymbol.name);
 779        if (!sym)
 780                return -ENOMEM;
 781        dso__insert_symbol(map->dso, sym);
 782        return 0;
 783}
 784
 785static int machine__process_ksymbol_unregister(struct machine *machine,
 786                                               union perf_event *event,
 787                                               struct perf_sample *sample __maybe_unused)
 788{
 789        struct map *map;
 790
 791        map = maps__find(&machine->kmaps, event->ksymbol.addr);
 792        if (map)
 793                maps__remove(&machine->kmaps, map);
 794
 795        return 0;
 796}
 797
 798int machine__process_ksymbol(struct machine *machine __maybe_unused,
 799                             union perf_event *event,
 800                             struct perf_sample *sample)
 801{
 802        if (dump_trace)
 803                perf_event__fprintf_ksymbol(event, stdout);
 804
 805        if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 806                return machine__process_ksymbol_unregister(machine, event,
 807                                                           sample);
 808        return machine__process_ksymbol_register(machine, event, sample);
 809}
 810
 811int machine__process_text_poke(struct machine *machine, union perf_event *event,
 812                               struct perf_sample *sample __maybe_unused)
 813{
 814        struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
 815        u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
 816
 817        if (dump_trace)
 818                perf_event__fprintf_text_poke(event, machine, stdout);
 819
 820        if (!event->text_poke.new_len)
 821                return 0;
 822
 823        if (cpumode != PERF_RECORD_MISC_KERNEL) {
 824                pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
 825                return 0;
 826        }
 827
 828        if (map && map->dso) {
 829                u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
 830                int ret;
 831
 832                /*
 833                 * Kernel maps might be changed when loading symbols so loading
 834                 * must be done prior to using kernel maps.
 835                 */
 836                map__load(map);
 837                ret = dso__data_write_cache_addr(map->dso, map, machine,
 838                                                 event->text_poke.addr,
 839                                                 new_bytes,
 840                                                 event->text_poke.new_len);
 841                if (ret != event->text_poke.new_len)
 842                        pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
 843                                 event->text_poke.addr);
 844        } else {
 845                pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
 846                         event->text_poke.addr);
 847        }
 848
 849        return 0;
 850}
 851
 852static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
 853                                              const char *filename)
 854{
 855        struct map *map = NULL;
 856        struct kmod_path m;
 857        struct dso *dso;
 858
 859        if (kmod_path__parse_name(&m, filename))
 860                return NULL;
 861
 862        dso = machine__findnew_module_dso(machine, &m, filename);
 863        if (dso == NULL)
 864                goto out;
 865
 866        map = map__new2(start, dso);
 867        if (map == NULL)
 868                goto out;
 869
 870        maps__insert(&machine->kmaps, map);
 871
 872        /* Put the map here because maps__insert alread got it */
 873        map__put(map);
 874out:
 875        /* put the dso here, corresponding to  machine__findnew_module_dso */
 876        dso__put(dso);
 877        zfree(&m.name);
 878        return map;
 879}
 880
 881size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 882{
 883        struct rb_node *nd;
 884        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 885
 886        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 887                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 888                ret += __dsos__fprintf(&pos->dsos.head, fp);
 889        }
 890
 891        return ret;
 892}
 893
 894size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 895                                     bool (skip)(struct dso *dso, int parm), int parm)
 896{
 897        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 898}
 899
 900size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 901                                     bool (skip)(struct dso *dso, int parm), int parm)
 902{
 903        struct rb_node *nd;
 904        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 905
 906        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 907                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 908                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 909        }
 910        return ret;
 911}
 912
 913size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 914{
 915        int i;
 916        size_t printed = 0;
 917        struct dso *kdso = machine__kernel_dso(machine);
 918
 919        if (kdso->has_build_id) {
 920                char filename[PATH_MAX];
 921                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 922                                           false))
 923                        printed += fprintf(fp, "[0] %s\n", filename);
 924        }
 925
 926        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 927                printed += fprintf(fp, "[%d] %s\n",
 928                                   i + kdso->has_build_id, vmlinux_path[i]);
 929
 930        return printed;
 931}
 932
 933size_t machine__fprintf(struct machine *machine, FILE *fp)
 934{
 935        struct rb_node *nd;
 936        size_t ret;
 937        int i;
 938
 939        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 940                struct threads *threads = &machine->threads[i];
 941
 942                down_read(&threads->lock);
 943
 944                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 945
 946                for (nd = rb_first_cached(&threads->entries); nd;
 947                     nd = rb_next(nd)) {
 948                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 949
 950                        ret += thread__fprintf(pos, fp);
 951                }
 952
 953                up_read(&threads->lock);
 954        }
 955        return ret;
 956}
 957
 958static struct dso *machine__get_kernel(struct machine *machine)
 959{
 960        const char *vmlinux_name = machine->mmap_name;
 961        struct dso *kernel;
 962
 963        if (machine__is_host(machine)) {
 964                if (symbol_conf.vmlinux_name)
 965                        vmlinux_name = symbol_conf.vmlinux_name;
 966
 967                kernel = machine__findnew_kernel(machine, vmlinux_name,
 968                                                 "[kernel]", DSO_SPACE__KERNEL);
 969        } else {
 970                if (symbol_conf.default_guest_vmlinux_name)
 971                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 972
 973                kernel = machine__findnew_kernel(machine, vmlinux_name,
 974                                                 "[guest.kernel]",
 975                                                 DSO_SPACE__KERNEL_GUEST);
 976        }
 977
 978        if (kernel != NULL && (!kernel->has_build_id))
 979                dso__read_running_kernel_build_id(kernel, machine);
 980
 981        return kernel;
 982}
 983
 984struct process_args {
 985        u64 start;
 986};
 987
 988void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 989                                    size_t bufsz)
 990{
 991        if (machine__is_default_guest(machine))
 992                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 993        else
 994                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 995}
 996
 997const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 998
 999/* Figure out the start address of kernel map from /proc/kallsyms.
1000 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1001 * symbol_name if it's not that important.
1002 */
1003static int machine__get_running_kernel_start(struct machine *machine,
1004                                             const char **symbol_name,
1005                                             u64 *start, u64 *end)
1006{
1007        char filename[PATH_MAX];
1008        int i, err = -1;
1009        const char *name;
1010        u64 addr = 0;
1011
1012        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1013
1014        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1015                return 0;
1016
1017        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1018                err = kallsyms__get_function_start(filename, name, &addr);
1019                if (!err)
1020                        break;
1021        }
1022
1023        if (err)
1024                return -1;
1025
1026        if (symbol_name)
1027                *symbol_name = name;
1028
1029        *start = addr;
1030
1031        err = kallsyms__get_function_start(filename, "_etext", &addr);
1032        if (!err)
1033                *end = addr;
1034
1035        return 0;
1036}
1037
1038int machine__create_extra_kernel_map(struct machine *machine,
1039                                     struct dso *kernel,
1040                                     struct extra_kernel_map *xm)
1041{
1042        struct kmap *kmap;
1043        struct map *map;
1044
1045        map = map__new2(xm->start, kernel);
1046        if (!map)
1047                return -1;
1048
1049        map->end   = xm->end;
1050        map->pgoff = xm->pgoff;
1051
1052        kmap = map__kmap(map);
1053
1054        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1055
1056        maps__insert(&machine->kmaps, map);
1057
1058        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1059                  kmap->name, map->start, map->end);
1060
1061        map__put(map);
1062
1063        return 0;
1064}
1065
1066static u64 find_entry_trampoline(struct dso *dso)
1067{
1068        /* Duplicates are removed so lookup all aliases */
1069        const char *syms[] = {
1070                "_entry_trampoline",
1071                "__entry_trampoline_start",
1072                "entry_SYSCALL_64_trampoline",
1073        };
1074        struct symbol *sym = dso__first_symbol(dso);
1075        unsigned int i;
1076
1077        for (; sym; sym = dso__next_symbol(sym)) {
1078                if (sym->binding != STB_GLOBAL)
1079                        continue;
1080                for (i = 0; i < ARRAY_SIZE(syms); i++) {
1081                        if (!strcmp(sym->name, syms[i]))
1082                                return sym->start;
1083                }
1084        }
1085
1086        return 0;
1087}
1088
1089/*
1090 * These values can be used for kernels that do not have symbols for the entry
1091 * trampolines in kallsyms.
1092 */
1093#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1094#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1095#define X86_64_ENTRY_TRAMPOLINE         0x6000
1096
1097/* Map x86_64 PTI entry trampolines */
1098int machine__map_x86_64_entry_trampolines(struct machine *machine,
1099                                          struct dso *kernel)
1100{
1101        struct maps *kmaps = &machine->kmaps;
1102        int nr_cpus_avail, cpu;
1103        bool found = false;
1104        struct map *map;
1105        u64 pgoff;
1106
1107        /*
1108         * In the vmlinux case, pgoff is a virtual address which must now be
1109         * mapped to a vmlinux offset.
1110         */
1111        maps__for_each_entry(kmaps, map) {
1112                struct kmap *kmap = __map__kmap(map);
1113                struct map *dest_map;
1114
1115                if (!kmap || !is_entry_trampoline(kmap->name))
1116                        continue;
1117
1118                dest_map = maps__find(kmaps, map->pgoff);
1119                if (dest_map != map)
1120                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1121                found = true;
1122        }
1123        if (found || machine->trampolines_mapped)
1124                return 0;
1125
1126        pgoff = find_entry_trampoline(kernel);
1127        if (!pgoff)
1128                return 0;
1129
1130        nr_cpus_avail = machine__nr_cpus_avail(machine);
1131
1132        /* Add a 1 page map for each CPU's entry trampoline */
1133        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1134                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1135                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1136                         X86_64_ENTRY_TRAMPOLINE;
1137                struct extra_kernel_map xm = {
1138                        .start = va,
1139                        .end   = va + page_size,
1140                        .pgoff = pgoff,
1141                };
1142
1143                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1144
1145                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1146                        return -1;
1147        }
1148
1149        machine->trampolines_mapped = nr_cpus_avail;
1150
1151        return 0;
1152}
1153
1154int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1155                                             struct dso *kernel __maybe_unused)
1156{
1157        return 0;
1158}
1159
1160static int
1161__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1162{
1163        /* In case of renewal the kernel map, destroy previous one */
1164        machine__destroy_kernel_maps(machine);
1165
1166        machine->vmlinux_map = map__new2(0, kernel);
1167        if (machine->vmlinux_map == NULL)
1168                return -1;
1169
1170        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1171        maps__insert(&machine->kmaps, machine->vmlinux_map);
1172        return 0;
1173}
1174
1175void machine__destroy_kernel_maps(struct machine *machine)
1176{
1177        struct kmap *kmap;
1178        struct map *map = machine__kernel_map(machine);
1179
1180        if (map == NULL)
1181                return;
1182
1183        kmap = map__kmap(map);
1184        maps__remove(&machine->kmaps, map);
1185        if (kmap && kmap->ref_reloc_sym) {
1186                zfree((char **)&kmap->ref_reloc_sym->name);
1187                zfree(&kmap->ref_reloc_sym);
1188        }
1189
1190        map__zput(machine->vmlinux_map);
1191}
1192
1193int machines__create_guest_kernel_maps(struct machines *machines)
1194{
1195        int ret = 0;
1196        struct dirent **namelist = NULL;
1197        int i, items = 0;
1198        char path[PATH_MAX];
1199        pid_t pid;
1200        char *endp;
1201
1202        if (symbol_conf.default_guest_vmlinux_name ||
1203            symbol_conf.default_guest_modules ||
1204            symbol_conf.default_guest_kallsyms) {
1205                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1206        }
1207
1208        if (symbol_conf.guestmount) {
1209                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1210                if (items <= 0)
1211                        return -ENOENT;
1212                for (i = 0; i < items; i++) {
1213                        if (!isdigit(namelist[i]->d_name[0])) {
1214                                /* Filter out . and .. */
1215                                continue;
1216                        }
1217                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1218                        if ((*endp != '\0') ||
1219                            (endp == namelist[i]->d_name) ||
1220                            (errno == ERANGE)) {
1221                                pr_debug("invalid directory (%s). Skipping.\n",
1222                                         namelist[i]->d_name);
1223                                continue;
1224                        }
1225                        sprintf(path, "%s/%s/proc/kallsyms",
1226                                symbol_conf.guestmount,
1227                                namelist[i]->d_name);
1228                        ret = access(path, R_OK);
1229                        if (ret) {
1230                                pr_debug("Can't access file %s\n", path);
1231                                goto failure;
1232                        }
1233                        machines__create_kernel_maps(machines, pid);
1234                }
1235failure:
1236                free(namelist);
1237        }
1238
1239        return ret;
1240}
1241
1242void machines__destroy_kernel_maps(struct machines *machines)
1243{
1244        struct rb_node *next = rb_first_cached(&machines->guests);
1245
1246        machine__destroy_kernel_maps(&machines->host);
1247
1248        while (next) {
1249                struct machine *pos = rb_entry(next, struct machine, rb_node);
1250
1251                next = rb_next(&pos->rb_node);
1252                rb_erase_cached(&pos->rb_node, &machines->guests);
1253                machine__delete(pos);
1254        }
1255}
1256
1257int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1258{
1259        struct machine *machine = machines__findnew(machines, pid);
1260
1261        if (machine == NULL)
1262                return -1;
1263
1264        return machine__create_kernel_maps(machine);
1265}
1266
1267int machine__load_kallsyms(struct machine *machine, const char *filename)
1268{
1269        struct map *map = machine__kernel_map(machine);
1270        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1271
1272        if (ret > 0) {
1273                dso__set_loaded(map->dso);
1274                /*
1275                 * Since /proc/kallsyms will have multiple sessions for the
1276                 * kernel, with modules between them, fixup the end of all
1277                 * sections.
1278                 */
1279                maps__fixup_end(&machine->kmaps);
1280        }
1281
1282        return ret;
1283}
1284
1285int machine__load_vmlinux_path(struct machine *machine)
1286{
1287        struct map *map = machine__kernel_map(machine);
1288        int ret = dso__load_vmlinux_path(map->dso, map);
1289
1290        if (ret > 0)
1291                dso__set_loaded(map->dso);
1292
1293        return ret;
1294}
1295
1296static char *get_kernel_version(const char *root_dir)
1297{
1298        char version[PATH_MAX];
1299        FILE *file;
1300        char *name, *tmp;
1301        const char *prefix = "Linux version ";
1302
1303        sprintf(version, "%s/proc/version", root_dir);
1304        file = fopen(version, "r");
1305        if (!file)
1306                return NULL;
1307
1308        tmp = fgets(version, sizeof(version), file);
1309        fclose(file);
1310        if (!tmp)
1311                return NULL;
1312
1313        name = strstr(version, prefix);
1314        if (!name)
1315                return NULL;
1316        name += strlen(prefix);
1317        tmp = strchr(name, ' ');
1318        if (tmp)
1319                *tmp = '\0';
1320
1321        return strdup(name);
1322}
1323
1324static bool is_kmod_dso(struct dso *dso)
1325{
1326        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1327               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1328}
1329
1330static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1331{
1332        char *long_name;
1333        struct map *map = maps__find_by_name(maps, m->name);
1334
1335        if (map == NULL)
1336                return 0;
1337
1338        long_name = strdup(path);
1339        if (long_name == NULL)
1340                return -ENOMEM;
1341
1342        dso__set_long_name(map->dso, long_name, true);
1343        dso__kernel_module_get_build_id(map->dso, "");
1344
1345        /*
1346         * Full name could reveal us kmod compression, so
1347         * we need to update the symtab_type if needed.
1348         */
1349        if (m->comp && is_kmod_dso(map->dso)) {
1350                map->dso->symtab_type++;
1351                map->dso->comp = m->comp;
1352        }
1353
1354        return 0;
1355}
1356
1357static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1358{
1359        struct dirent *dent;
1360        DIR *dir = opendir(dir_name);
1361        int ret = 0;
1362
1363        if (!dir) {
1364                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1365                return -1;
1366        }
1367
1368        while ((dent = readdir(dir)) != NULL) {
1369                char path[PATH_MAX];
1370                struct stat st;
1371
1372                /*sshfs might return bad dent->d_type, so we have to stat*/
1373                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1374                if (stat(path, &st))
1375                        continue;
1376
1377                if (S_ISDIR(st.st_mode)) {
1378                        if (!strcmp(dent->d_name, ".") ||
1379                            !strcmp(dent->d_name, ".."))
1380                                continue;
1381
1382                        /* Do not follow top-level source and build symlinks */
1383                        if (depth == 0) {
1384                                if (!strcmp(dent->d_name, "source") ||
1385                                    !strcmp(dent->d_name, "build"))
1386                                        continue;
1387                        }
1388
1389                        ret = maps__set_modules_path_dir(maps, path, depth + 1);
1390                        if (ret < 0)
1391                                goto out;
1392                } else {
1393                        struct kmod_path m;
1394
1395                        ret = kmod_path__parse_name(&m, dent->d_name);
1396                        if (ret)
1397                                goto out;
1398
1399                        if (m.kmod)
1400                                ret = maps__set_module_path(maps, path, &m);
1401
1402                        zfree(&m.name);
1403
1404                        if (ret)
1405                                goto out;
1406                }
1407        }
1408
1409out:
1410        closedir(dir);
1411        return ret;
1412}
1413
1414static int machine__set_modules_path(struct machine *machine)
1415{
1416        char *version;
1417        char modules_path[PATH_MAX];
1418
1419        version = get_kernel_version(machine->root_dir);
1420        if (!version)
1421                return -1;
1422
1423        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1424                 machine->root_dir, version);
1425        free(version);
1426
1427        return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1428}
1429int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1430                                u64 *size __maybe_unused,
1431                                const char *name __maybe_unused)
1432{
1433        return 0;
1434}
1435
1436static int machine__create_module(void *arg, const char *name, u64 start,
1437                                  u64 size)
1438{
1439        struct machine *machine = arg;
1440        struct map *map;
1441
1442        if (arch__fix_module_text_start(&start, &size, name) < 0)
1443                return -1;
1444
1445        map = machine__addnew_module_map(machine, start, name);
1446        if (map == NULL)
1447                return -1;
1448        map->end = start + size;
1449
1450        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1451
1452        return 0;
1453}
1454
1455static int machine__create_modules(struct machine *machine)
1456{
1457        const char *modules;
1458        char path[PATH_MAX];
1459
1460        if (machine__is_default_guest(machine)) {
1461                modules = symbol_conf.default_guest_modules;
1462        } else {
1463                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1464                modules = path;
1465        }
1466
1467        if (symbol__restricted_filename(modules, "/proc/modules"))
1468                return -1;
1469
1470        if (modules__parse(modules, machine, machine__create_module))
1471                return -1;
1472
1473        if (!machine__set_modules_path(machine))
1474                return 0;
1475
1476        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1477
1478        return 0;
1479}
1480
1481static void machine__set_kernel_mmap(struct machine *machine,
1482                                     u64 start, u64 end)
1483{
1484        machine->vmlinux_map->start = start;
1485        machine->vmlinux_map->end   = end;
1486        /*
1487         * Be a bit paranoid here, some perf.data file came with
1488         * a zero sized synthesized MMAP event for the kernel.
1489         */
1490        if (start == 0 && end == 0)
1491                machine->vmlinux_map->end = ~0ULL;
1492}
1493
1494static void machine__update_kernel_mmap(struct machine *machine,
1495                                     u64 start, u64 end)
1496{
1497        struct map *map = machine__kernel_map(machine);
1498
1499        map__get(map);
1500        maps__remove(&machine->kmaps, map);
1501
1502        machine__set_kernel_mmap(machine, start, end);
1503
1504        maps__insert(&machine->kmaps, map);
1505        map__put(map);
1506}
1507
1508int machine__create_kernel_maps(struct machine *machine)
1509{
1510        struct dso *kernel = machine__get_kernel(machine);
1511        const char *name = NULL;
1512        struct map *map;
1513        u64 start = 0, end = ~0ULL;
1514        int ret;
1515
1516        if (kernel == NULL)
1517                return -1;
1518
1519        ret = __machine__create_kernel_maps(machine, kernel);
1520        if (ret < 0)
1521                goto out_put;
1522
1523        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1524                if (machine__is_host(machine))
1525                        pr_debug("Problems creating module maps, "
1526                                 "continuing anyway...\n");
1527                else
1528                        pr_debug("Problems creating module maps for guest %d, "
1529                                 "continuing anyway...\n", machine->pid);
1530        }
1531
1532        if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1533                if (name &&
1534                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1535                        machine__destroy_kernel_maps(machine);
1536                        ret = -1;
1537                        goto out_put;
1538                }
1539
1540                /*
1541                 * we have a real start address now, so re-order the kmaps
1542                 * assume it's the last in the kmaps
1543                 */
1544                machine__update_kernel_mmap(machine, start, end);
1545        }
1546
1547        if (machine__create_extra_kernel_maps(machine, kernel))
1548                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1549
1550        if (end == ~0ULL) {
1551                /* update end address of the kernel map using adjacent module address */
1552                map = map__next(machine__kernel_map(machine));
1553                if (map)
1554                        machine__set_kernel_mmap(machine, start, map->start);
1555        }
1556
1557out_put:
1558        dso__put(kernel);
1559        return ret;
1560}
1561
1562static bool machine__uses_kcore(struct machine *machine)
1563{
1564        struct dso *dso;
1565
1566        list_for_each_entry(dso, &machine->dsos.head, node) {
1567                if (dso__is_kcore(dso))
1568                        return true;
1569        }
1570
1571        return false;
1572}
1573
1574static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1575                                             union perf_event *event)
1576{
1577        return machine__is(machine, "x86_64") &&
1578               is_entry_trampoline(event->mmap.filename);
1579}
1580
1581static int machine__process_extra_kernel_map(struct machine *machine,
1582                                             union perf_event *event)
1583{
1584        struct dso *kernel = machine__kernel_dso(machine);
1585        struct extra_kernel_map xm = {
1586                .start = event->mmap.start,
1587                .end   = event->mmap.start + event->mmap.len,
1588                .pgoff = event->mmap.pgoff,
1589        };
1590
1591        if (kernel == NULL)
1592                return -1;
1593
1594        strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1595
1596        return machine__create_extra_kernel_map(machine, kernel, &xm);
1597}
1598
1599static int machine__process_kernel_mmap_event(struct machine *machine,
1600                                              union perf_event *event)
1601{
1602        struct map *map;
1603        enum dso_space_type dso_space;
1604        bool is_kernel_mmap;
1605
1606        /* If we have maps from kcore then we do not need or want any others */
1607        if (machine__uses_kcore(machine))
1608                return 0;
1609
1610        if (machine__is_host(machine))
1611                dso_space = DSO_SPACE__KERNEL;
1612        else
1613                dso_space = DSO_SPACE__KERNEL_GUEST;
1614
1615        is_kernel_mmap = memcmp(event->mmap.filename,
1616                                machine->mmap_name,
1617                                strlen(machine->mmap_name) - 1) == 0;
1618        if (event->mmap.filename[0] == '/' ||
1619            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1620                map = machine__addnew_module_map(machine, event->mmap.start,
1621                                                 event->mmap.filename);
1622                if (map == NULL)
1623                        goto out_problem;
1624
1625                map->end = map->start + event->mmap.len;
1626        } else if (is_kernel_mmap) {
1627                const char *symbol_name = (event->mmap.filename +
1628                                strlen(machine->mmap_name));
1629                /*
1630                 * Should be there already, from the build-id table in
1631                 * the header.
1632                 */
1633                struct dso *kernel = NULL;
1634                struct dso *dso;
1635
1636                down_read(&machine->dsos.lock);
1637
1638                list_for_each_entry(dso, &machine->dsos.head, node) {
1639
1640                        /*
1641                         * The cpumode passed to is_kernel_module is not the
1642                         * cpumode of *this* event. If we insist on passing
1643                         * correct cpumode to is_kernel_module, we should
1644                         * record the cpumode when we adding this dso to the
1645                         * linked list.
1646                         *
1647                         * However we don't really need passing correct
1648                         * cpumode.  We know the correct cpumode must be kernel
1649                         * mode (if not, we should not link it onto kernel_dsos
1650                         * list).
1651                         *
1652                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1653                         * is_kernel_module() treats it as a kernel cpumode.
1654                         */
1655
1656                        if (!dso->kernel ||
1657                            is_kernel_module(dso->long_name,
1658                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1659                                continue;
1660
1661
1662                        kernel = dso;
1663                        break;
1664                }
1665
1666                up_read(&machine->dsos.lock);
1667
1668                if (kernel == NULL)
1669                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1670                if (kernel == NULL)
1671                        goto out_problem;
1672
1673                kernel->kernel = dso_space;
1674                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1675                        dso__put(kernel);
1676                        goto out_problem;
1677                }
1678
1679                if (strstr(kernel->long_name, "vmlinux"))
1680                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1681
1682                machine__update_kernel_mmap(machine, event->mmap.start,
1683                                         event->mmap.start + event->mmap.len);
1684
1685                /*
1686                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1687                 * symbol. Effectively having zero here means that at record
1688                 * time /proc/sys/kernel/kptr_restrict was non zero.
1689                 */
1690                if (event->mmap.pgoff != 0) {
1691                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1692                                                        symbol_name,
1693                                                        event->mmap.pgoff);
1694                }
1695
1696                if (machine__is_default_guest(machine)) {
1697                        /*
1698                         * preload dso of guest kernel and modules
1699                         */
1700                        dso__load(kernel, machine__kernel_map(machine));
1701                }
1702        } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1703                return machine__process_extra_kernel_map(machine, event);
1704        }
1705        return 0;
1706out_problem:
1707        return -1;
1708}
1709
1710int machine__process_mmap2_event(struct machine *machine,
1711                                 union perf_event *event,
1712                                 struct perf_sample *sample)
1713{
1714        struct thread *thread;
1715        struct map *map;
1716        struct dso_id dso_id = {
1717                .maj = event->mmap2.maj,
1718                .min = event->mmap2.min,
1719                .ino = event->mmap2.ino,
1720                .ino_generation = event->mmap2.ino_generation,
1721        };
1722        int ret = 0;
1723
1724        if (dump_trace)
1725                perf_event__fprintf_mmap2(event, stdout);
1726
1727        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1728            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1729                ret = machine__process_kernel_mmap_event(machine, event);
1730                if (ret < 0)
1731                        goto out_problem;
1732                return 0;
1733        }
1734
1735        thread = machine__findnew_thread(machine, event->mmap2.pid,
1736                                        event->mmap2.tid);
1737        if (thread == NULL)
1738                goto out_problem;
1739
1740        map = map__new(machine, event->mmap2.start,
1741                        event->mmap2.len, event->mmap2.pgoff,
1742                        &dso_id, event->mmap2.prot,
1743                        event->mmap2.flags,
1744                        event->mmap2.filename, thread);
1745
1746        if (map == NULL)
1747                goto out_problem_map;
1748
1749        ret = thread__insert_map(thread, map);
1750        if (ret)
1751                goto out_problem_insert;
1752
1753        thread__put(thread);
1754        map__put(map);
1755        return 0;
1756
1757out_problem_insert:
1758        map__put(map);
1759out_problem_map:
1760        thread__put(thread);
1761out_problem:
1762        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1763        return 0;
1764}
1765
1766int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1767                                struct perf_sample *sample)
1768{
1769        struct thread *thread;
1770        struct map *map;
1771        u32 prot = 0;
1772        int ret = 0;
1773
1774        if (dump_trace)
1775                perf_event__fprintf_mmap(event, stdout);
1776
1777        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1778            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1779                ret = machine__process_kernel_mmap_event(machine, event);
1780                if (ret < 0)
1781                        goto out_problem;
1782                return 0;
1783        }
1784
1785        thread = machine__findnew_thread(machine, event->mmap.pid,
1786                                         event->mmap.tid);
1787        if (thread == NULL)
1788                goto out_problem;
1789
1790        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1791                prot = PROT_EXEC;
1792
1793        map = map__new(machine, event->mmap.start,
1794                        event->mmap.len, event->mmap.pgoff,
1795                        NULL, prot, 0, event->mmap.filename, thread);
1796
1797        if (map == NULL)
1798                goto out_problem_map;
1799
1800        ret = thread__insert_map(thread, map);
1801        if (ret)
1802                goto out_problem_insert;
1803
1804        thread__put(thread);
1805        map__put(map);
1806        return 0;
1807
1808out_problem_insert:
1809        map__put(map);
1810out_problem_map:
1811        thread__put(thread);
1812out_problem:
1813        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1814        return 0;
1815}
1816
1817static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1818{
1819        struct threads *threads = machine__threads(machine, th->tid);
1820
1821        if (threads->last_match == th)
1822                threads__set_last_match(threads, NULL);
1823
1824        if (lock)
1825                down_write(&threads->lock);
1826
1827        BUG_ON(refcount_read(&th->refcnt) == 0);
1828
1829        rb_erase_cached(&th->rb_node, &threads->entries);
1830        RB_CLEAR_NODE(&th->rb_node);
1831        --threads->nr;
1832        /*
1833         * Move it first to the dead_threads list, then drop the reference,
1834         * if this is the last reference, then the thread__delete destructor
1835         * will be called and we will remove it from the dead_threads list.
1836         */
1837        list_add_tail(&th->node, &threads->dead);
1838
1839        /*
1840         * We need to do the put here because if this is the last refcount,
1841         * then we will be touching the threads->dead head when removing the
1842         * thread.
1843         */
1844        thread__put(th);
1845
1846        if (lock)
1847                up_write(&threads->lock);
1848}
1849
1850void machine__remove_thread(struct machine *machine, struct thread *th)
1851{
1852        return __machine__remove_thread(machine, th, true);
1853}
1854
1855int machine__process_fork_event(struct machine *machine, union perf_event *event,
1856                                struct perf_sample *sample)
1857{
1858        struct thread *thread = machine__find_thread(machine,
1859                                                     event->fork.pid,
1860                                                     event->fork.tid);
1861        struct thread *parent = machine__findnew_thread(machine,
1862                                                        event->fork.ppid,
1863                                                        event->fork.ptid);
1864        bool do_maps_clone = true;
1865        int err = 0;
1866
1867        if (dump_trace)
1868                perf_event__fprintf_task(event, stdout);
1869
1870        /*
1871         * There may be an existing thread that is not actually the parent,
1872         * either because we are processing events out of order, or because the
1873         * (fork) event that would have removed the thread was lost. Assume the
1874         * latter case and continue on as best we can.
1875         */
1876        if (parent->pid_ != (pid_t)event->fork.ppid) {
1877                dump_printf("removing erroneous parent thread %d/%d\n",
1878                            parent->pid_, parent->tid);
1879                machine__remove_thread(machine, parent);
1880                thread__put(parent);
1881                parent = machine__findnew_thread(machine, event->fork.ppid,
1882                                                 event->fork.ptid);
1883        }
1884
1885        /* if a thread currently exists for the thread id remove it */
1886        if (thread != NULL) {
1887                machine__remove_thread(machine, thread);
1888                thread__put(thread);
1889        }
1890
1891        thread = machine__findnew_thread(machine, event->fork.pid,
1892                                         event->fork.tid);
1893        /*
1894         * When synthesizing FORK events, we are trying to create thread
1895         * objects for the already running tasks on the machine.
1896         *
1897         * Normally, for a kernel FORK event, we want to clone the parent's
1898         * maps because that is what the kernel just did.
1899         *
1900         * But when synthesizing, this should not be done.  If we do, we end up
1901         * with overlapping maps as we process the sythesized MMAP2 events that
1902         * get delivered shortly thereafter.
1903         *
1904         * Use the FORK event misc flags in an internal way to signal this
1905         * situation, so we can elide the map clone when appropriate.
1906         */
1907        if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1908                do_maps_clone = false;
1909
1910        if (thread == NULL || parent == NULL ||
1911            thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1912                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1913                err = -1;
1914        }
1915        thread__put(thread);
1916        thread__put(parent);
1917
1918        return err;
1919}
1920
1921int machine__process_exit_event(struct machine *machine, union perf_event *event,
1922                                struct perf_sample *sample __maybe_unused)
1923{
1924        struct thread *thread = machine__find_thread(machine,
1925                                                     event->fork.pid,
1926                                                     event->fork.tid);
1927
1928        if (dump_trace)
1929                perf_event__fprintf_task(event, stdout);
1930
1931        if (thread != NULL) {
1932                thread__exited(thread);
1933                thread__put(thread);
1934        }
1935
1936        return 0;
1937}
1938
1939int machine__process_event(struct machine *machine, union perf_event *event,
1940                           struct perf_sample *sample)
1941{
1942        int ret;
1943
1944        switch (event->header.type) {
1945        case PERF_RECORD_COMM:
1946                ret = machine__process_comm_event(machine, event, sample); break;
1947        case PERF_RECORD_MMAP:
1948                ret = machine__process_mmap_event(machine, event, sample); break;
1949        case PERF_RECORD_NAMESPACES:
1950                ret = machine__process_namespaces_event(machine, event, sample); break;
1951        case PERF_RECORD_CGROUP:
1952                ret = machine__process_cgroup_event(machine, event, sample); break;
1953        case PERF_RECORD_MMAP2:
1954                ret = machine__process_mmap2_event(machine, event, sample); break;
1955        case PERF_RECORD_FORK:
1956                ret = machine__process_fork_event(machine, event, sample); break;
1957        case PERF_RECORD_EXIT:
1958                ret = machine__process_exit_event(machine, event, sample); break;
1959        case PERF_RECORD_LOST:
1960                ret = machine__process_lost_event(machine, event, sample); break;
1961        case PERF_RECORD_AUX:
1962                ret = machine__process_aux_event(machine, event); break;
1963        case PERF_RECORD_ITRACE_START:
1964                ret = machine__process_itrace_start_event(machine, event); break;
1965        case PERF_RECORD_LOST_SAMPLES:
1966                ret = machine__process_lost_samples_event(machine, event, sample); break;
1967        case PERF_RECORD_SWITCH:
1968        case PERF_RECORD_SWITCH_CPU_WIDE:
1969                ret = machine__process_switch_event(machine, event); break;
1970        case PERF_RECORD_KSYMBOL:
1971                ret = machine__process_ksymbol(machine, event, sample); break;
1972        case PERF_RECORD_BPF_EVENT:
1973                ret = machine__process_bpf(machine, event, sample); break;
1974        case PERF_RECORD_TEXT_POKE:
1975                ret = machine__process_text_poke(machine, event, sample); break;
1976        default:
1977                ret = -1;
1978                break;
1979        }
1980
1981        return ret;
1982}
1983
1984static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1985{
1986        if (!regexec(regex, sym->name, 0, NULL, 0))
1987                return 1;
1988        return 0;
1989}
1990
1991static void ip__resolve_ams(struct thread *thread,
1992                            struct addr_map_symbol *ams,
1993                            u64 ip)
1994{
1995        struct addr_location al;
1996
1997        memset(&al, 0, sizeof(al));
1998        /*
1999         * We cannot use the header.misc hint to determine whether a
2000         * branch stack address is user, kernel, guest, hypervisor.
2001         * Branches may straddle the kernel/user/hypervisor boundaries.
2002         * Thus, we have to try consecutively until we find a match
2003         * or else, the symbol is unknown
2004         */
2005        thread__find_cpumode_addr_location(thread, ip, &al);
2006
2007        ams->addr = ip;
2008        ams->al_addr = al.addr;
2009        ams->ms.maps = al.maps;
2010        ams->ms.sym = al.sym;
2011        ams->ms.map = al.map;
2012        ams->phys_addr = 0;
2013}
2014
2015static void ip__resolve_data(struct thread *thread,
2016                             u8 m, struct addr_map_symbol *ams,
2017                             u64 addr, u64 phys_addr)
2018{
2019        struct addr_location al;
2020
2021        memset(&al, 0, sizeof(al));
2022
2023        thread__find_symbol(thread, m, addr, &al);
2024
2025        ams->addr = addr;
2026        ams->al_addr = al.addr;
2027        ams->ms.maps = al.maps;
2028        ams->ms.sym = al.sym;
2029        ams->ms.map = al.map;
2030        ams->phys_addr = phys_addr;
2031}
2032
2033struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2034                                     struct addr_location *al)
2035{
2036        struct mem_info *mi = mem_info__new();
2037
2038        if (!mi)
2039                return NULL;
2040
2041        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2042        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2043                         sample->addr, sample->phys_addr);
2044        mi->data_src.val = sample->data_src;
2045
2046        return mi;
2047}
2048
2049static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2050{
2051        struct map *map = ms->map;
2052        char *srcline = NULL;
2053
2054        if (!map || callchain_param.key == CCKEY_FUNCTION)
2055                return srcline;
2056
2057        srcline = srcline__tree_find(&map->dso->srclines, ip);
2058        if (!srcline) {
2059                bool show_sym = false;
2060                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2061
2062                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2063                                      ms->sym, show_sym, show_addr, ip);
2064                srcline__tree_insert(&map->dso->srclines, ip, srcline);
2065        }
2066
2067        return srcline;
2068}
2069
2070struct iterations {
2071        int nr_loop_iter;
2072        u64 cycles;
2073};
2074
2075static int add_callchain_ip(struct thread *thread,
2076                            struct callchain_cursor *cursor,
2077                            struct symbol **parent,
2078                            struct addr_location *root_al,
2079                            u8 *cpumode,
2080                            u64 ip,
2081                            bool branch,
2082                            struct branch_flags *flags,
2083                            struct iterations *iter,
2084                            u64 branch_from)
2085{
2086        struct map_symbol ms;
2087        struct addr_location al;
2088        int nr_loop_iter = 0;
2089        u64 iter_cycles = 0;
2090        const char *srcline = NULL;
2091
2092        al.filtered = 0;
2093        al.sym = NULL;
2094        if (!cpumode) {
2095                thread__find_cpumode_addr_location(thread, ip, &al);
2096        } else {
2097                if (ip >= PERF_CONTEXT_MAX) {
2098                        switch (ip) {
2099                        case PERF_CONTEXT_HV:
2100                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2101                                break;
2102                        case PERF_CONTEXT_KERNEL:
2103                                *cpumode = PERF_RECORD_MISC_KERNEL;
2104                                break;
2105                        case PERF_CONTEXT_USER:
2106                                *cpumode = PERF_RECORD_MISC_USER;
2107                                break;
2108                        default:
2109                                pr_debug("invalid callchain context: "
2110                                         "%"PRId64"\n", (s64) ip);
2111                                /*
2112                                 * It seems the callchain is corrupted.
2113                                 * Discard all.
2114                                 */
2115                                callchain_cursor_reset(cursor);
2116                                return 1;
2117                        }
2118                        return 0;
2119                }
2120                thread__find_symbol(thread, *cpumode, ip, &al);
2121        }
2122
2123        if (al.sym != NULL) {
2124                if (perf_hpp_list.parent && !*parent &&
2125                    symbol__match_regex(al.sym, &parent_regex))
2126                        *parent = al.sym;
2127                else if (have_ignore_callees && root_al &&
2128                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2129                        /* Treat this symbol as the root,
2130                           forgetting its callees. */
2131                        *root_al = al;
2132                        callchain_cursor_reset(cursor);
2133                }
2134        }
2135
2136        if (symbol_conf.hide_unresolved && al.sym == NULL)
2137                return 0;
2138
2139        if (iter) {
2140                nr_loop_iter = iter->nr_loop_iter;
2141                iter_cycles = iter->cycles;
2142        }
2143
2144        ms.maps = al.maps;
2145        ms.map = al.map;
2146        ms.sym = al.sym;
2147        srcline = callchain_srcline(&ms, al.addr);
2148        return callchain_cursor_append(cursor, ip, &ms,
2149                                       branch, flags, nr_loop_iter,
2150                                       iter_cycles, branch_from, srcline);
2151}
2152
2153struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2154                                           struct addr_location *al)
2155{
2156        unsigned int i;
2157        const struct branch_stack *bs = sample->branch_stack;
2158        struct branch_entry *entries = perf_sample__branch_entries(sample);
2159        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2160
2161        if (!bi)
2162                return NULL;
2163
2164        for (i = 0; i < bs->nr; i++) {
2165                ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2166                ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2167                bi[i].flags = entries[i].flags;
2168        }
2169        return bi;
2170}
2171
2172static void save_iterations(struct iterations *iter,
2173                            struct branch_entry *be, int nr)
2174{
2175        int i;
2176
2177        iter->nr_loop_iter++;
2178        iter->cycles = 0;
2179
2180        for (i = 0; i < nr; i++)
2181                iter->cycles += be[i].flags.cycles;
2182}
2183
2184#define CHASHSZ 127
2185#define CHASHBITS 7
2186#define NO_ENTRY 0xff
2187
2188#define PERF_MAX_BRANCH_DEPTH 127
2189
2190/* Remove loops. */
2191static int remove_loops(struct branch_entry *l, int nr,
2192                        struct iterations *iter)
2193{
2194        int i, j, off;
2195        unsigned char chash[CHASHSZ];
2196
2197        memset(chash, NO_ENTRY, sizeof(chash));
2198
2199        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2200
2201        for (i = 0; i < nr; i++) {
2202                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2203
2204                /* no collision handling for now */
2205                if (chash[h] == NO_ENTRY) {
2206                        chash[h] = i;
2207                } else if (l[chash[h]].from == l[i].from) {
2208                        bool is_loop = true;
2209                        /* check if it is a real loop */
2210                        off = 0;
2211                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2212                                if (l[j].from != l[i + off].from) {
2213                                        is_loop = false;
2214                                        break;
2215                                }
2216                        if (is_loop) {
2217                                j = nr - (i + off);
2218                                if (j > 0) {
2219                                        save_iterations(iter + i + off,
2220                                                l + i, off);
2221
2222                                        memmove(iter + i, iter + i + off,
2223                                                j * sizeof(*iter));
2224
2225                                        memmove(l + i, l + i + off,
2226                                                j * sizeof(*l));
2227                                }
2228
2229                                nr -= off;
2230                        }
2231                }
2232        }
2233        return nr;
2234}
2235
2236static int lbr_callchain_add_kernel_ip(struct thread *thread,
2237                                       struct callchain_cursor *cursor,
2238                                       struct perf_sample *sample,
2239                                       struct symbol **parent,
2240                                       struct addr_location *root_al,
2241                                       u64 branch_from,
2242                                       bool callee, int end)
2243{
2244        struct ip_callchain *chain = sample->callchain;
2245        u8 cpumode = PERF_RECORD_MISC_USER;
2246        int err, i;
2247
2248        if (callee) {
2249                for (i = 0; i < end + 1; i++) {
2250                        err = add_callchain_ip(thread, cursor, parent,
2251                                               root_al, &cpumode, chain->ips[i],
2252                                               false, NULL, NULL, branch_from);
2253                        if (err)
2254                                return err;
2255                }
2256                return 0;
2257        }
2258
2259        for (i = end; i >= 0; i--) {
2260                err = add_callchain_ip(thread, cursor, parent,
2261                                       root_al, &cpumode, chain->ips[i],
2262                                       false, NULL, NULL, branch_from);
2263                if (err)
2264                        return err;
2265        }
2266
2267        return 0;
2268}
2269
2270static void save_lbr_cursor_node(struct thread *thread,
2271                                 struct callchain_cursor *cursor,
2272                                 int idx)
2273{
2274        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2275
2276        if (!lbr_stitch)
2277                return;
2278
2279        if (cursor->pos == cursor->nr) {
2280                lbr_stitch->prev_lbr_cursor[idx].valid = false;
2281                return;
2282        }
2283
2284        if (!cursor->curr)
2285                cursor->curr = cursor->first;
2286        else
2287                cursor->curr = cursor->curr->next;
2288        memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2289               sizeof(struct callchain_cursor_node));
2290
2291        lbr_stitch->prev_lbr_cursor[idx].valid = true;
2292        cursor->pos++;
2293}
2294
2295static int lbr_callchain_add_lbr_ip(struct thread *thread,
2296                                    struct callchain_cursor *cursor,
2297                                    struct perf_sample *sample,
2298                                    struct symbol **parent,
2299                                    struct addr_location *root_al,
2300                                    u64 *branch_from,
2301                                    bool callee)
2302{
2303        struct branch_stack *lbr_stack = sample->branch_stack;
2304        struct branch_entry *entries = perf_sample__branch_entries(sample);
2305        u8 cpumode = PERF_RECORD_MISC_USER;
2306        int lbr_nr = lbr_stack->nr;
2307        struct branch_flags *flags;
2308        int err, i;
2309        u64 ip;
2310
2311        /*
2312         * The curr and pos are not used in writing session. They are cleared
2313         * in callchain_cursor_commit() when the writing session is closed.
2314         * Using curr and pos to track the current cursor node.
2315         */
2316        if (thread->lbr_stitch) {
2317                cursor->curr = NULL;
2318                cursor->pos = cursor->nr;
2319                if (cursor->nr) {
2320                        cursor->curr = cursor->first;
2321                        for (i = 0; i < (int)(cursor->nr - 1); i++)
2322                                cursor->curr = cursor->curr->next;
2323                }
2324        }
2325
2326        if (callee) {
2327                /* Add LBR ip from first entries.to */
2328                ip = entries[0].to;
2329                flags = &entries[0].flags;
2330                *branch_from = entries[0].from;
2331                err = add_callchain_ip(thread, cursor, parent,
2332                                       root_al, &cpumode, ip,
2333                                       true, flags, NULL,
2334                                       *branch_from);
2335                if (err)
2336                        return err;
2337
2338                /*
2339                 * The number of cursor node increases.
2340                 * Move the current cursor node.
2341                 * But does not need to save current cursor node for entry 0.
2342                 * It's impossible to stitch the whole LBRs of previous sample.
2343                 */
2344                if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2345                        if (!cursor->curr)
2346                                cursor->curr = cursor->first;
2347                        else
2348                                cursor->curr = cursor->curr->next;
2349                        cursor->pos++;
2350                }
2351
2352                /* Add LBR ip from entries.from one by one. */
2353                for (i = 0; i < lbr_nr; i++) {
2354                        ip = entries[i].from;
2355                        flags = &entries[i].flags;
2356                        err = add_callchain_ip(thread, cursor, parent,
2357                                               root_al, &cpumode, ip,
2358                                               true, flags, NULL,
2359                                               *branch_from);
2360                        if (err)
2361                                return err;
2362                        save_lbr_cursor_node(thread, cursor, i);
2363                }
2364                return 0;
2365        }
2366
2367        /* Add LBR ip from entries.from one by one. */
2368        for (i = lbr_nr - 1; i >= 0; i--) {
2369                ip = entries[i].from;
2370                flags = &entries[i].flags;
2371                err = add_callchain_ip(thread, cursor, parent,
2372                                       root_al, &cpumode, ip,
2373                                       true, flags, NULL,
2374                                       *branch_from);
2375                if (err)
2376                        return err;
2377                save_lbr_cursor_node(thread, cursor, i);
2378        }
2379
2380        /* Add LBR ip from first entries.to */
2381        ip = entries[0].to;
2382        flags = &entries[0].flags;
2383        *branch_from = entries[0].from;
2384        err = add_callchain_ip(thread, cursor, parent,
2385                               root_al, &cpumode, ip,
2386                               true, flags, NULL,
2387                               *branch_from);
2388        if (err)
2389                return err;
2390
2391        return 0;
2392}
2393
2394static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2395                                             struct callchain_cursor *cursor)
2396{
2397        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2398        struct callchain_cursor_node *cnode;
2399        struct stitch_list *stitch_node;
2400        int err;
2401
2402        list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2403                cnode = &stitch_node->cursor;
2404
2405                err = callchain_cursor_append(cursor, cnode->ip,
2406                                              &cnode->ms,
2407                                              cnode->branch,
2408                                              &cnode->branch_flags,
2409                                              cnode->nr_loop_iter,
2410                                              cnode->iter_cycles,
2411                                              cnode->branch_from,
2412                                              cnode->srcline);
2413                if (err)
2414                        return err;
2415        }
2416        return 0;
2417}
2418
2419static struct stitch_list *get_stitch_node(struct thread *thread)
2420{
2421        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2422        struct stitch_list *stitch_node;
2423
2424        if (!list_empty(&lbr_stitch->free_lists)) {
2425                stitch_node = list_first_entry(&lbr_stitch->free_lists,
2426                                               struct stitch_list, node);
2427                list_del(&stitch_node->node);
2428
2429                return stitch_node;
2430        }
2431
2432        return malloc(sizeof(struct stitch_list));
2433}
2434
2435static bool has_stitched_lbr(struct thread *thread,
2436                             struct perf_sample *cur,
2437                             struct perf_sample *prev,
2438                             unsigned int max_lbr,
2439                             bool callee)
2440{
2441        struct branch_stack *cur_stack = cur->branch_stack;
2442        struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2443        struct branch_stack *prev_stack = prev->branch_stack;
2444        struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2445        struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2446        int i, j, nr_identical_branches = 0;
2447        struct stitch_list *stitch_node;
2448        u64 cur_base, distance;
2449
2450        if (!cur_stack || !prev_stack)
2451                return false;
2452
2453        /* Find the physical index of the base-of-stack for current sample. */
2454        cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2455
2456        distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2457                                                     (max_lbr + prev_stack->hw_idx - cur_base);
2458        /* Previous sample has shorter stack. Nothing can be stitched. */
2459        if (distance + 1 > prev_stack->nr)
2460                return false;
2461
2462        /*
2463         * Check if there are identical LBRs between two samples.
2464         * Identicall LBRs must have same from, to and flags values. Also,
2465         * they have to be saved in the same LBR registers (same physical
2466         * index).
2467         *
2468         * Starts from the base-of-stack of current sample.
2469         */
2470        for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2471                if ((prev_entries[i].from != cur_entries[j].from) ||
2472                    (prev_entries[i].to != cur_entries[j].to) ||
2473                    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2474                        break;
2475                nr_identical_branches++;
2476        }
2477
2478        if (!nr_identical_branches)
2479                return false;
2480
2481        /*
2482         * Save the LBRs between the base-of-stack of previous sample
2483         * and the base-of-stack of current sample into lbr_stitch->lists.
2484         * These LBRs will be stitched later.
2485         */
2486        for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2487
2488                if (!lbr_stitch->prev_lbr_cursor[i].valid)
2489                        continue;
2490
2491                stitch_node = get_stitch_node(thread);
2492                if (!stitch_node)
2493                        return false;
2494
2495                memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2496                       sizeof(struct callchain_cursor_node));
2497
2498                if (callee)
2499                        list_add(&stitch_node->node, &lbr_stitch->lists);
2500                else
2501                        list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2502        }
2503
2504        return true;
2505}
2506
2507static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2508{
2509        if (thread->lbr_stitch)
2510                return true;
2511
2512        thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2513        if (!thread->lbr_stitch)
2514                goto err;
2515
2516        thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2517        if (!thread->lbr_stitch->prev_lbr_cursor)
2518                goto free_lbr_stitch;
2519
2520        INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2521        INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2522
2523        return true;
2524
2525free_lbr_stitch:
2526        zfree(&thread->lbr_stitch);
2527err:
2528        pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2529        thread->lbr_stitch_enable = false;
2530        return false;
2531}
2532
2533/*
2534 * Recolve LBR callstack chain sample
2535 * Return:
2536 * 1 on success get LBR callchain information
2537 * 0 no available LBR callchain information, should try fp
2538 * negative error code on other errors.
2539 */
2540static int resolve_lbr_callchain_sample(struct thread *thread,
2541                                        struct callchain_cursor *cursor,
2542                                        struct perf_sample *sample,
2543                                        struct symbol **parent,
2544                                        struct addr_location *root_al,
2545                                        int max_stack,
2546                                        unsigned int max_lbr)
2547{
2548        bool callee = (callchain_param.order == ORDER_CALLEE);
2549        struct ip_callchain *chain = sample->callchain;
2550        int chain_nr = min(max_stack, (int)chain->nr), i;
2551        struct lbr_stitch *lbr_stitch;
2552        bool stitched_lbr = false;
2553        u64 branch_from = 0;
2554        int err;
2555
2556        for (i = 0; i < chain_nr; i++) {
2557                if (chain->ips[i] == PERF_CONTEXT_USER)
2558                        break;
2559        }
2560
2561        /* LBR only affects the user callchain */
2562        if (i == chain_nr)
2563                return 0;
2564
2565        if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2566            (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2567                lbr_stitch = thread->lbr_stitch;
2568
2569                stitched_lbr = has_stitched_lbr(thread, sample,
2570                                                &lbr_stitch->prev_sample,
2571                                                max_lbr, callee);
2572
2573                if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2574                        list_replace_init(&lbr_stitch->lists,
2575                                          &lbr_stitch->free_lists);
2576                }
2577                memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2578        }
2579
2580        if (callee) {
2581                /* Add kernel ip */
2582                err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2583                                                  parent, root_al, branch_from,
2584                                                  true, i);
2585                if (err)
2586                        goto error;
2587
2588                err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2589                                               root_al, &branch_from, true);
2590                if (err)
2591                        goto error;
2592
2593                if (stitched_lbr) {
2594                        err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2595                        if (err)
2596                                goto error;
2597                }
2598
2599        } else {
2600                if (stitched_lbr) {
2601                        err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2602                        if (err)
2603                                goto error;
2604                }
2605                err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2606                                               root_al, &branch_from, false);
2607                if (err)
2608                        goto error;
2609
2610                /* Add kernel ip */
2611                err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2612                                                  parent, root_al, branch_from,
2613                                                  false, i);
2614                if (err)
2615                        goto error;
2616        }
2617        return 1;
2618
2619error:
2620        return (err < 0) ? err : 0;
2621}
2622
2623static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2624                             struct callchain_cursor *cursor,
2625                             struct symbol **parent,
2626                             struct addr_location *root_al,
2627                             u8 *cpumode, int ent)
2628{
2629        int err = 0;
2630
2631        while (--ent >= 0) {
2632                u64 ip = chain->ips[ent];
2633
2634                if (ip >= PERF_CONTEXT_MAX) {
2635                        err = add_callchain_ip(thread, cursor, parent,
2636                                               root_al, cpumode, ip,
2637                                               false, NULL, NULL, 0);
2638                        break;
2639                }
2640        }
2641        return err;
2642}
2643
2644static int thread__resolve_callchain_sample(struct thread *thread,
2645                                            struct callchain_cursor *cursor,
2646                                            struct evsel *evsel,
2647                                            struct perf_sample *sample,
2648                                            struct symbol **parent,
2649                                            struct addr_location *root_al,
2650                                            int max_stack)
2651{
2652        struct branch_stack *branch = sample->branch_stack;
2653        struct branch_entry *entries = perf_sample__branch_entries(sample);
2654        struct ip_callchain *chain = sample->callchain;
2655        int chain_nr = 0;
2656        u8 cpumode = PERF_RECORD_MISC_USER;
2657        int i, j, err, nr_entries;
2658        int skip_idx = -1;
2659        int first_call = 0;
2660
2661        if (chain)
2662                chain_nr = chain->nr;
2663
2664        if (evsel__has_branch_callstack(evsel)) {
2665                struct perf_env *env = evsel__env(evsel);
2666
2667                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2668                                                   root_al, max_stack,
2669                                                   !env ? 0 : env->max_branches);
2670                if (err)
2671                        return (err < 0) ? err : 0;
2672        }
2673
2674        /*
2675         * Based on DWARF debug information, some architectures skip
2676         * a callchain entry saved by the kernel.
2677         */
2678        skip_idx = arch_skip_callchain_idx(thread, chain);
2679
2680        /*
2681         * Add branches to call stack for easier browsing. This gives
2682         * more context for a sample than just the callers.
2683         *
2684         * This uses individual histograms of paths compared to the
2685         * aggregated histograms the normal LBR mode uses.
2686         *
2687         * Limitations for now:
2688         * - No extra filters
2689         * - No annotations (should annotate somehow)
2690         */
2691
2692        if (branch && callchain_param.branch_callstack) {
2693                int nr = min(max_stack, (int)branch->nr);
2694                struct branch_entry be[nr];
2695                struct iterations iter[nr];
2696
2697                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2698                        pr_warning("corrupted branch chain. skipping...\n");
2699                        goto check_calls;
2700                }
2701
2702                for (i = 0; i < nr; i++) {
2703                        if (callchain_param.order == ORDER_CALLEE) {
2704                                be[i] = entries[i];
2705
2706                                if (chain == NULL)
2707                                        continue;
2708
2709                                /*
2710                                 * Check for overlap into the callchain.
2711                                 * The return address is one off compared to
2712                                 * the branch entry. To adjust for this
2713                                 * assume the calling instruction is not longer
2714                                 * than 8 bytes.
2715                                 */
2716                                if (i == skip_idx ||
2717                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2718                                        first_call++;
2719                                else if (be[i].from < chain->ips[first_call] &&
2720                                    be[i].from >= chain->ips[first_call] - 8)
2721                                        first_call++;
2722                        } else
2723                                be[i] = entries[branch->nr - i - 1];
2724                }
2725
2726                memset(iter, 0, sizeof(struct iterations) * nr);
2727                nr = remove_loops(be, nr, iter);
2728
2729                for (i = 0; i < nr; i++) {
2730                        err = add_callchain_ip(thread, cursor, parent,
2731                                               root_al,
2732                                               NULL, be[i].to,
2733                                               true, &be[i].flags,
2734                                               NULL, be[i].from);
2735
2736                        if (!err)
2737                                err = add_callchain_ip(thread, cursor, parent, root_al,
2738                                                       NULL, be[i].from,
2739                                                       true, &be[i].flags,
2740                                                       &iter[i], 0);
2741                        if (err == -EINVAL)
2742                                break;
2743                        if (err)
2744                                return err;
2745                }
2746
2747                if (chain_nr == 0)
2748                        return 0;
2749
2750                chain_nr -= nr;
2751        }
2752
2753check_calls:
2754        if (chain && callchain_param.order != ORDER_CALLEE) {
2755                err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2756                                        &cpumode, chain->nr - first_call);
2757                if (err)
2758                        return (err < 0) ? err : 0;
2759        }
2760        for (i = first_call, nr_entries = 0;
2761             i < chain_nr && nr_entries < max_stack; i++) {
2762                u64 ip;
2763
2764                if (callchain_param.order == ORDER_CALLEE)
2765                        j = i;
2766                else
2767                        j = chain->nr - i - 1;
2768
2769#ifdef HAVE_SKIP_CALLCHAIN_IDX
2770                if (j == skip_idx)
2771                        continue;
2772#endif
2773                ip = chain->ips[j];
2774                if (ip < PERF_CONTEXT_MAX)
2775                       ++nr_entries;
2776                else if (callchain_param.order != ORDER_CALLEE) {
2777                        err = find_prev_cpumode(chain, thread, cursor, parent,
2778                                                root_al, &cpumode, j);
2779                        if (err)
2780                                return (err < 0) ? err : 0;
2781                        continue;
2782                }
2783
2784                err = add_callchain_ip(thread, cursor, parent,
2785                                       root_al, &cpumode, ip,
2786                                       false, NULL, NULL, 0);
2787
2788                if (err)
2789                        return (err < 0) ? err : 0;
2790        }
2791
2792        return 0;
2793}
2794
2795static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2796{
2797        struct symbol *sym = ms->sym;
2798        struct map *map = ms->map;
2799        struct inline_node *inline_node;
2800        struct inline_list *ilist;
2801        u64 addr;
2802        int ret = 1;
2803
2804        if (!symbol_conf.inline_name || !map || !sym)
2805                return ret;
2806
2807        addr = map__map_ip(map, ip);
2808        addr = map__rip_2objdump(map, addr);
2809
2810        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2811        if (!inline_node) {
2812                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2813                if (!inline_node)
2814                        return ret;
2815                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2816        }
2817
2818        list_for_each_entry(ilist, &inline_node->val, list) {
2819                struct map_symbol ilist_ms = {
2820                        .maps = ms->maps,
2821                        .map = map,
2822                        .sym = ilist->symbol,
2823                };
2824                ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2825                                              NULL, 0, 0, 0, ilist->srcline);
2826
2827                if (ret != 0)
2828                        return ret;
2829        }
2830
2831        return ret;
2832}
2833
2834static int unwind_entry(struct unwind_entry *entry, void *arg)
2835{
2836        struct callchain_cursor *cursor = arg;
2837        const char *srcline = NULL;
2838        u64 addr = entry->ip;
2839
2840        if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2841                return 0;
2842
2843        if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2844                return 0;
2845
2846        /*
2847         * Convert entry->ip from a virtual address to an offset in
2848         * its corresponding binary.
2849         */
2850        if (entry->ms.map)
2851                addr = map__map_ip(entry->ms.map, entry->ip);
2852
2853        srcline = callchain_srcline(&entry->ms, addr);
2854        return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2855                                       false, NULL, 0, 0, 0, srcline);
2856}
2857
2858static int thread__resolve_callchain_unwind(struct thread *thread,
2859                                            struct callchain_cursor *cursor,
2860                                            struct evsel *evsel,
2861                                            struct perf_sample *sample,
2862                                            int max_stack)
2863{
2864        /* Can we do dwarf post unwind? */
2865        if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2866              (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2867                return 0;
2868
2869        /* Bail out if nothing was captured. */
2870        if ((!sample->user_regs.regs) ||
2871            (!sample->user_stack.size))
2872                return 0;
2873
2874        return unwind__get_entries(unwind_entry, cursor,
2875                                   thread, sample, max_stack);
2876}
2877
2878int thread__resolve_callchain(struct thread *thread,
2879                              struct callchain_cursor *cursor,
2880                              struct evsel *evsel,
2881                              struct perf_sample *sample,
2882                              struct symbol **parent,
2883                              struct addr_location *root_al,
2884                              int max_stack)
2885{
2886        int ret = 0;
2887
2888        callchain_cursor_reset(cursor);
2889
2890        if (callchain_param.order == ORDER_CALLEE) {
2891                ret = thread__resolve_callchain_sample(thread, cursor,
2892                                                       evsel, sample,
2893                                                       parent, root_al,
2894                                                       max_stack);
2895                if (ret)
2896                        return ret;
2897                ret = thread__resolve_callchain_unwind(thread, cursor,
2898                                                       evsel, sample,
2899                                                       max_stack);
2900        } else {
2901                ret = thread__resolve_callchain_unwind(thread, cursor,
2902                                                       evsel, sample,
2903                                                       max_stack);
2904                if (ret)
2905                        return ret;
2906                ret = thread__resolve_callchain_sample(thread, cursor,
2907                                                       evsel, sample,
2908                                                       parent, root_al,
2909                                                       max_stack);
2910        }
2911
2912        return ret;
2913}
2914
2915int machine__for_each_thread(struct machine *machine,
2916                             int (*fn)(struct thread *thread, void *p),
2917                             void *priv)
2918{
2919        struct threads *threads;
2920        struct rb_node *nd;
2921        struct thread *thread;
2922        int rc = 0;
2923        int i;
2924
2925        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2926                threads = &machine->threads[i];
2927                for (nd = rb_first_cached(&threads->entries); nd;
2928                     nd = rb_next(nd)) {
2929                        thread = rb_entry(nd, struct thread, rb_node);
2930                        rc = fn(thread, priv);
2931                        if (rc != 0)
2932                                return rc;
2933                }
2934
2935                list_for_each_entry(thread, &threads->dead, node) {
2936                        rc = fn(thread, priv);
2937                        if (rc != 0)
2938                                return rc;
2939                }
2940        }
2941        return rc;
2942}
2943
2944int machines__for_each_thread(struct machines *machines,
2945                              int (*fn)(struct thread *thread, void *p),
2946                              void *priv)
2947{
2948        struct rb_node *nd;
2949        int rc = 0;
2950
2951        rc = machine__for_each_thread(&machines->host, fn, priv);
2952        if (rc != 0)
2953                return rc;
2954
2955        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2956                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2957
2958                rc = machine__for_each_thread(machine, fn, priv);
2959                if (rc != 0)
2960                        return rc;
2961        }
2962        return rc;
2963}
2964
2965pid_t machine__get_current_tid(struct machine *machine, int cpu)
2966{
2967        int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2968
2969        if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2970                return -1;
2971
2972        return machine->current_tid[cpu];
2973}
2974
2975int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2976                             pid_t tid)
2977{
2978        struct thread *thread;
2979        int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2980
2981        if (cpu < 0)
2982                return -EINVAL;
2983
2984        if (!machine->current_tid) {
2985                int i;
2986
2987                machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2988                if (!machine->current_tid)
2989                        return -ENOMEM;
2990                for (i = 0; i < nr_cpus; i++)
2991                        machine->current_tid[i] = -1;
2992        }
2993
2994        if (cpu >= nr_cpus) {
2995                pr_err("Requested CPU %d too large. ", cpu);
2996                pr_err("Consider raising MAX_NR_CPUS\n");
2997                return -EINVAL;
2998        }
2999
3000        machine->current_tid[cpu] = tid;
3001
3002        thread = machine__findnew_thread(machine, pid, tid);
3003        if (!thread)
3004                return -ENOMEM;
3005
3006        thread->cpu = cpu;
3007        thread__put(thread);
3008
3009        return 0;
3010}
3011
3012/*
3013 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3014 * normalized arch is needed.
3015 */
3016bool machine__is(struct machine *machine, const char *arch)
3017{
3018        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3019}
3020
3021int machine__nr_cpus_avail(struct machine *machine)
3022{
3023        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3024}
3025
3026int machine__get_kernel_start(struct machine *machine)
3027{
3028        struct map *map = machine__kernel_map(machine);
3029        int err = 0;
3030
3031        /*
3032         * The only addresses above 2^63 are kernel addresses of a 64-bit
3033         * kernel.  Note that addresses are unsigned so that on a 32-bit system
3034         * all addresses including kernel addresses are less than 2^32.  In
3035         * that case (32-bit system), if the kernel mapping is unknown, all
3036         * addresses will be assumed to be in user space - see
3037         * machine__kernel_ip().
3038         */
3039        machine->kernel_start = 1ULL << 63;
3040        if (map) {
3041                err = map__load(map);
3042                /*
3043                 * On x86_64, PTI entry trampolines are less than the
3044                 * start of kernel text, but still above 2^63. So leave
3045                 * kernel_start = 1ULL << 63 for x86_64.
3046                 */
3047                if (!err && !machine__is(machine, "x86_64"))
3048                        machine->kernel_start = map->start;
3049        }
3050        return err;
3051}
3052
3053u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3054{
3055        u8 addr_cpumode = cpumode;
3056        bool kernel_ip;
3057
3058        if (!machine->single_address_space)
3059                goto out;
3060
3061        kernel_ip = machine__kernel_ip(machine, addr);
3062        switch (cpumode) {
3063        case PERF_RECORD_MISC_KERNEL:
3064        case PERF_RECORD_MISC_USER:
3065                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3066                                           PERF_RECORD_MISC_USER;
3067                break;
3068        case PERF_RECORD_MISC_GUEST_KERNEL:
3069        case PERF_RECORD_MISC_GUEST_USER:
3070                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3071                                           PERF_RECORD_MISC_GUEST_USER;
3072                break;
3073        default:
3074                break;
3075        }
3076out:
3077        return addr_cpumode;
3078}
3079
3080struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3081{
3082        return dsos__findnew_id(&machine->dsos, filename, id);
3083}
3084
3085struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3086{
3087        return machine__findnew_dso_id(machine, filename, NULL);
3088}
3089
3090char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3091{
3092        struct machine *machine = vmachine;
3093        struct map *map;
3094        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3095
3096        if (sym == NULL)
3097                return NULL;
3098
3099        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3100        *addrp = map->unmap_ip(map, sym->start);
3101        return sym->name;
3102}
3103