linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 */
  15
  16#include <kvm/iodev.h>
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kvm.h>
  20#include <linux/module.h>
  21#include <linux/errno.h>
  22#include <linux/percpu.h>
  23#include <linux/mm.h>
  24#include <linux/miscdevice.h>
  25#include <linux/vmalloc.h>
  26#include <linux/reboot.h>
  27#include <linux/debugfs.h>
  28#include <linux/highmem.h>
  29#include <linux/file.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/cpu.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/mm.h>
  34#include <linux/sched/stat.h>
  35#include <linux/cpumask.h>
  36#include <linux/smp.h>
  37#include <linux/anon_inodes.h>
  38#include <linux/profile.h>
  39#include <linux/kvm_para.h>
  40#include <linux/pagemap.h>
  41#include <linux/mman.h>
  42#include <linux/swap.h>
  43#include <linux/bitops.h>
  44#include <linux/spinlock.h>
  45#include <linux/compat.h>
  46#include <linux/srcu.h>
  47#include <linux/hugetlb.h>
  48#include <linux/slab.h>
  49#include <linux/sort.h>
  50#include <linux/bsearch.h>
  51#include <linux/io.h>
  52#include <linux/lockdep.h>
  53#include <linux/kthread.h>
  54
  55#include <asm/processor.h>
  56#include <asm/ioctl.h>
  57#include <linux/uaccess.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
  66/* Worst case buffer size needed for holding an integer. */
  67#define ITOA_MAX_LEN 12
  68
  69MODULE_AUTHOR("Qumranet");
  70MODULE_LICENSE("GPL");
  71
  72/* Architectures should define their poll value according to the halt latency */
  73unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  74module_param(halt_poll_ns, uint, 0644);
  75EXPORT_SYMBOL_GPL(halt_poll_ns);
  76
  77/* Default doubles per-vcpu halt_poll_ns. */
  78unsigned int halt_poll_ns_grow = 2;
  79module_param(halt_poll_ns_grow, uint, 0644);
  80EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  81
  82/* The start value to grow halt_poll_ns from */
  83unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  84module_param(halt_poll_ns_grow_start, uint, 0644);
  85EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  86
  87/* Default resets per-vcpu halt_poll_ns . */
  88unsigned int halt_poll_ns_shrink;
  89module_param(halt_poll_ns_shrink, uint, 0644);
  90EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  91
  92/*
  93 * Ordering of locks:
  94 *
  95 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  96 */
  97
  98DEFINE_MUTEX(kvm_lock);
  99static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 100LIST_HEAD(vm_list);
 101
 102static cpumask_var_t cpus_hardware_enabled;
 103static int kvm_usage_count;
 104static atomic_t hardware_enable_failed;
 105
 106static struct kmem_cache *kvm_vcpu_cache;
 107
 108static __read_mostly struct preempt_ops kvm_preempt_ops;
 109static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
 110
 111struct dentry *kvm_debugfs_dir;
 112EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 113
 114static int kvm_debugfs_num_entries;
 115static const struct file_operations stat_fops_per_vm;
 116
 117static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 118                           unsigned long arg);
 119#ifdef CONFIG_KVM_COMPAT
 120static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 121                                  unsigned long arg);
 122#define KVM_COMPAT(c)   .compat_ioctl   = (c)
 123#else
 124/*
 125 * For architectures that don't implement a compat infrastructure,
 126 * adopt a double line of defense:
 127 * - Prevent a compat task from opening /dev/kvm
 128 * - If the open has been done by a 64bit task, and the KVM fd
 129 *   passed to a compat task, let the ioctls fail.
 130 */
 131static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 132                                unsigned long arg) { return -EINVAL; }
 133
 134static int kvm_no_compat_open(struct inode *inode, struct file *file)
 135{
 136        return is_compat_task() ? -ENODEV : 0;
 137}
 138#define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
 139                        .open           = kvm_no_compat_open
 140#endif
 141static int hardware_enable_all(void);
 142static void hardware_disable_all(void);
 143
 144static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 145
 146static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 147
 148__visible bool kvm_rebooting;
 149EXPORT_SYMBOL_GPL(kvm_rebooting);
 150
 151#define KVM_EVENT_CREATE_VM 0
 152#define KVM_EVENT_DESTROY_VM 1
 153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 154static unsigned long long kvm_createvm_count;
 155static unsigned long long kvm_active_vms;
 156
 157__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 158                                                   unsigned long start, unsigned long end)
 159{
 160}
 161
 162bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
 163{
 164        /*
 165         * The metadata used by is_zone_device_page() to determine whether or
 166         * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
 167         * the device has been pinned, e.g. by get_user_pages().  WARN if the
 168         * page_count() is zero to help detect bad usage of this helper.
 169         */
 170        if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
 171                return false;
 172
 173        return is_zone_device_page(pfn_to_page(pfn));
 174}
 175
 176bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 177{
 178        /*
 179         * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
 180         * perspective they are "normal" pages, albeit with slightly different
 181         * usage rules.
 182         */
 183        if (pfn_valid(pfn))
 184                return PageReserved(pfn_to_page(pfn)) &&
 185                       !is_zero_pfn(pfn) &&
 186                       !kvm_is_zone_device_pfn(pfn);
 187
 188        return true;
 189}
 190
 191bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
 192{
 193        struct page *page = pfn_to_page(pfn);
 194
 195        if (!PageTransCompoundMap(page))
 196                return false;
 197
 198        return is_transparent_hugepage(compound_head(page));
 199}
 200
 201/*
 202 * Switches to specified vcpu, until a matching vcpu_put()
 203 */
 204void vcpu_load(struct kvm_vcpu *vcpu)
 205{
 206        int cpu = get_cpu();
 207
 208        __this_cpu_write(kvm_running_vcpu, vcpu);
 209        preempt_notifier_register(&vcpu->preempt_notifier);
 210        kvm_arch_vcpu_load(vcpu, cpu);
 211        put_cpu();
 212}
 213EXPORT_SYMBOL_GPL(vcpu_load);
 214
 215void vcpu_put(struct kvm_vcpu *vcpu)
 216{
 217        preempt_disable();
 218        kvm_arch_vcpu_put(vcpu);
 219        preempt_notifier_unregister(&vcpu->preempt_notifier);
 220        __this_cpu_write(kvm_running_vcpu, NULL);
 221        preempt_enable();
 222}
 223EXPORT_SYMBOL_GPL(vcpu_put);
 224
 225/* TODO: merge with kvm_arch_vcpu_should_kick */
 226static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 227{
 228        int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 229
 230        /*
 231         * We need to wait for the VCPU to reenable interrupts and get out of
 232         * READING_SHADOW_PAGE_TABLES mode.
 233         */
 234        if (req & KVM_REQUEST_WAIT)
 235                return mode != OUTSIDE_GUEST_MODE;
 236
 237        /*
 238         * Need to kick a running VCPU, but otherwise there is nothing to do.
 239         */
 240        return mode == IN_GUEST_MODE;
 241}
 242
 243static void ack_flush(void *_completed)
 244{
 245}
 246
 247static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 248{
 249        if (unlikely(!cpus))
 250                cpus = cpu_online_mask;
 251
 252        if (cpumask_empty(cpus))
 253                return false;
 254
 255        smp_call_function_many(cpus, ack_flush, NULL, wait);
 256        return true;
 257}
 258
 259bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 260                                 struct kvm_vcpu *except,
 261                                 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 262{
 263        int i, cpu, me;
 264        struct kvm_vcpu *vcpu;
 265        bool called;
 266
 267        me = get_cpu();
 268
 269        kvm_for_each_vcpu(i, vcpu, kvm) {
 270                if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
 271                    vcpu == except)
 272                        continue;
 273
 274                kvm_make_request(req, vcpu);
 275                cpu = vcpu->cpu;
 276
 277                if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 278                        continue;
 279
 280                if (tmp != NULL && cpu != -1 && cpu != me &&
 281                    kvm_request_needs_ipi(vcpu, req))
 282                        __cpumask_set_cpu(cpu, tmp);
 283        }
 284
 285        called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 286        put_cpu();
 287
 288        return called;
 289}
 290
 291bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
 292                                      struct kvm_vcpu *except)
 293{
 294        cpumask_var_t cpus;
 295        bool called;
 296
 297        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 298
 299        called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
 300
 301        free_cpumask_var(cpus);
 302        return called;
 303}
 304
 305bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 306{
 307        return kvm_make_all_cpus_request_except(kvm, req, NULL);
 308}
 309
 310#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 311void kvm_flush_remote_tlbs(struct kvm *kvm)
 312{
 313        /*
 314         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 315         * kvm_make_all_cpus_request.
 316         */
 317        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 318
 319        /*
 320         * We want to publish modifications to the page tables before reading
 321         * mode. Pairs with a memory barrier in arch-specific code.
 322         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 323         * and smp_mb in walk_shadow_page_lockless_begin/end.
 324         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 325         *
 326         * There is already an smp_mb__after_atomic() before
 327         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 328         * barrier here.
 329         */
 330        if (!kvm_arch_flush_remote_tlb(kvm)
 331            || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 332                ++kvm->stat.remote_tlb_flush;
 333        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 334}
 335EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 336#endif
 337
 338void kvm_reload_remote_mmus(struct kvm *kvm)
 339{
 340        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 341}
 342
 343#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 344static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
 345                                               gfp_t gfp_flags)
 346{
 347        gfp_flags |= mc->gfp_zero;
 348
 349        if (mc->kmem_cache)
 350                return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
 351        else
 352                return (void *)__get_free_page(gfp_flags);
 353}
 354
 355int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
 356{
 357        void *obj;
 358
 359        if (mc->nobjs >= min)
 360                return 0;
 361        while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
 362                obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
 363                if (!obj)
 364                        return mc->nobjs >= min ? 0 : -ENOMEM;
 365                mc->objects[mc->nobjs++] = obj;
 366        }
 367        return 0;
 368}
 369
 370int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
 371{
 372        return mc->nobjs;
 373}
 374
 375void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 376{
 377        while (mc->nobjs) {
 378                if (mc->kmem_cache)
 379                        kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
 380                else
 381                        free_page((unsigned long)mc->objects[--mc->nobjs]);
 382        }
 383}
 384
 385void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 386{
 387        void *p;
 388
 389        if (WARN_ON(!mc->nobjs))
 390                p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
 391        else
 392                p = mc->objects[--mc->nobjs];
 393        BUG_ON(!p);
 394        return p;
 395}
 396#endif
 397
 398static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 399{
 400        mutex_init(&vcpu->mutex);
 401        vcpu->cpu = -1;
 402        vcpu->kvm = kvm;
 403        vcpu->vcpu_id = id;
 404        vcpu->pid = NULL;
 405        rcuwait_init(&vcpu->wait);
 406        kvm_async_pf_vcpu_init(vcpu);
 407
 408        vcpu->pre_pcpu = -1;
 409        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 410
 411        kvm_vcpu_set_in_spin_loop(vcpu, false);
 412        kvm_vcpu_set_dy_eligible(vcpu, false);
 413        vcpu->preempted = false;
 414        vcpu->ready = false;
 415        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 416}
 417
 418void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
 419{
 420        kvm_arch_vcpu_destroy(vcpu);
 421
 422        /*
 423         * No need for rcu_read_lock as VCPU_RUN is the only place that changes
 424         * the vcpu->pid pointer, and at destruction time all file descriptors
 425         * are already gone.
 426         */
 427        put_pid(rcu_dereference_protected(vcpu->pid, 1));
 428
 429        free_page((unsigned long)vcpu->run);
 430        kmem_cache_free(kvm_vcpu_cache, vcpu);
 431}
 432EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
 433
 434#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 435static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 436{
 437        return container_of(mn, struct kvm, mmu_notifier);
 438}
 439
 440static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
 441                                              struct mm_struct *mm,
 442                                              unsigned long start, unsigned long end)
 443{
 444        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 445        int idx;
 446
 447        idx = srcu_read_lock(&kvm->srcu);
 448        kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
 449        srcu_read_unlock(&kvm->srcu, idx);
 450}
 451
 452static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 453                                        struct mm_struct *mm,
 454                                        unsigned long address,
 455                                        pte_t pte)
 456{
 457        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 458        int idx;
 459
 460        idx = srcu_read_lock(&kvm->srcu);
 461        spin_lock(&kvm->mmu_lock);
 462        kvm->mmu_notifier_seq++;
 463
 464        if (kvm_set_spte_hva(kvm, address, pte))
 465                kvm_flush_remote_tlbs(kvm);
 466
 467        spin_unlock(&kvm->mmu_lock);
 468        srcu_read_unlock(&kvm->srcu, idx);
 469}
 470
 471static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 472                                        const struct mmu_notifier_range *range)
 473{
 474        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 475        int need_tlb_flush = 0, idx;
 476
 477        idx = srcu_read_lock(&kvm->srcu);
 478        spin_lock(&kvm->mmu_lock);
 479        /*
 480         * The count increase must become visible at unlock time as no
 481         * spte can be established without taking the mmu_lock and
 482         * count is also read inside the mmu_lock critical section.
 483         */
 484        kvm->mmu_notifier_count++;
 485        need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
 486                                             range->flags);
 487        need_tlb_flush |= kvm->tlbs_dirty;
 488        /* we've to flush the tlb before the pages can be freed */
 489        if (need_tlb_flush)
 490                kvm_flush_remote_tlbs(kvm);
 491
 492        spin_unlock(&kvm->mmu_lock);
 493        srcu_read_unlock(&kvm->srcu, idx);
 494
 495        return 0;
 496}
 497
 498static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 499                                        const struct mmu_notifier_range *range)
 500{
 501        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 502
 503        spin_lock(&kvm->mmu_lock);
 504        /*
 505         * This sequence increase will notify the kvm page fault that
 506         * the page that is going to be mapped in the spte could have
 507         * been freed.
 508         */
 509        kvm->mmu_notifier_seq++;
 510        smp_wmb();
 511        /*
 512         * The above sequence increase must be visible before the
 513         * below count decrease, which is ensured by the smp_wmb above
 514         * in conjunction with the smp_rmb in mmu_notifier_retry().
 515         */
 516        kvm->mmu_notifier_count--;
 517        spin_unlock(&kvm->mmu_lock);
 518
 519        BUG_ON(kvm->mmu_notifier_count < 0);
 520}
 521
 522static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 523                                              struct mm_struct *mm,
 524                                              unsigned long start,
 525                                              unsigned long end)
 526{
 527        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 528        int young, idx;
 529
 530        idx = srcu_read_lock(&kvm->srcu);
 531        spin_lock(&kvm->mmu_lock);
 532
 533        young = kvm_age_hva(kvm, start, end);
 534        if (young)
 535                kvm_flush_remote_tlbs(kvm);
 536
 537        spin_unlock(&kvm->mmu_lock);
 538        srcu_read_unlock(&kvm->srcu, idx);
 539
 540        return young;
 541}
 542
 543static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 544                                        struct mm_struct *mm,
 545                                        unsigned long start,
 546                                        unsigned long end)
 547{
 548        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 549        int young, idx;
 550
 551        idx = srcu_read_lock(&kvm->srcu);
 552        spin_lock(&kvm->mmu_lock);
 553        /*
 554         * Even though we do not flush TLB, this will still adversely
 555         * affect performance on pre-Haswell Intel EPT, where there is
 556         * no EPT Access Bit to clear so that we have to tear down EPT
 557         * tables instead. If we find this unacceptable, we can always
 558         * add a parameter to kvm_age_hva so that it effectively doesn't
 559         * do anything on clear_young.
 560         *
 561         * Also note that currently we never issue secondary TLB flushes
 562         * from clear_young, leaving this job up to the regular system
 563         * cadence. If we find this inaccurate, we might come up with a
 564         * more sophisticated heuristic later.
 565         */
 566        young = kvm_age_hva(kvm, start, end);
 567        spin_unlock(&kvm->mmu_lock);
 568        srcu_read_unlock(&kvm->srcu, idx);
 569
 570        return young;
 571}
 572
 573static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 574                                       struct mm_struct *mm,
 575                                       unsigned long address)
 576{
 577        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 578        int young, idx;
 579
 580        idx = srcu_read_lock(&kvm->srcu);
 581        spin_lock(&kvm->mmu_lock);
 582        young = kvm_test_age_hva(kvm, address);
 583        spin_unlock(&kvm->mmu_lock);
 584        srcu_read_unlock(&kvm->srcu, idx);
 585
 586        return young;
 587}
 588
 589static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 590                                     struct mm_struct *mm)
 591{
 592        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 593        int idx;
 594
 595        idx = srcu_read_lock(&kvm->srcu);
 596        kvm_arch_flush_shadow_all(kvm);
 597        srcu_read_unlock(&kvm->srcu, idx);
 598}
 599
 600static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 601        .invalidate_range       = kvm_mmu_notifier_invalidate_range,
 602        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 603        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 604        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 605        .clear_young            = kvm_mmu_notifier_clear_young,
 606        .test_young             = kvm_mmu_notifier_test_young,
 607        .change_pte             = kvm_mmu_notifier_change_pte,
 608        .release                = kvm_mmu_notifier_release,
 609};
 610
 611static int kvm_init_mmu_notifier(struct kvm *kvm)
 612{
 613        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 614        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 615}
 616
 617#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 618
 619static int kvm_init_mmu_notifier(struct kvm *kvm)
 620{
 621        return 0;
 622}
 623
 624#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 625
 626static struct kvm_memslots *kvm_alloc_memslots(void)
 627{
 628        int i;
 629        struct kvm_memslots *slots;
 630
 631        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
 632        if (!slots)
 633                return NULL;
 634
 635        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 636                slots->id_to_index[i] = -1;
 637
 638        return slots;
 639}
 640
 641static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 642{
 643        if (!memslot->dirty_bitmap)
 644                return;
 645
 646        kvfree(memslot->dirty_bitmap);
 647        memslot->dirty_bitmap = NULL;
 648}
 649
 650static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 651{
 652        kvm_destroy_dirty_bitmap(slot);
 653
 654        kvm_arch_free_memslot(kvm, slot);
 655
 656        slot->flags = 0;
 657        slot->npages = 0;
 658}
 659
 660static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 661{
 662        struct kvm_memory_slot *memslot;
 663
 664        if (!slots)
 665                return;
 666
 667        kvm_for_each_memslot(memslot, slots)
 668                kvm_free_memslot(kvm, memslot);
 669
 670        kvfree(slots);
 671}
 672
 673static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 674{
 675        int i;
 676
 677        if (!kvm->debugfs_dentry)
 678                return;
 679
 680        debugfs_remove_recursive(kvm->debugfs_dentry);
 681
 682        if (kvm->debugfs_stat_data) {
 683                for (i = 0; i < kvm_debugfs_num_entries; i++)
 684                        kfree(kvm->debugfs_stat_data[i]);
 685                kfree(kvm->debugfs_stat_data);
 686        }
 687}
 688
 689static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 690{
 691        char dir_name[ITOA_MAX_LEN * 2];
 692        struct kvm_stat_data *stat_data;
 693        struct kvm_stats_debugfs_item *p;
 694
 695        if (!debugfs_initialized())
 696                return 0;
 697
 698        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 699        kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 700
 701        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 702                                         sizeof(*kvm->debugfs_stat_data),
 703                                         GFP_KERNEL_ACCOUNT);
 704        if (!kvm->debugfs_stat_data)
 705                return -ENOMEM;
 706
 707        for (p = debugfs_entries; p->name; p++) {
 708                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 709                if (!stat_data)
 710                        return -ENOMEM;
 711
 712                stat_data->kvm = kvm;
 713                stat_data->dbgfs_item = p;
 714                kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 715                debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
 716                                    kvm->debugfs_dentry, stat_data,
 717                                    &stat_fops_per_vm);
 718        }
 719        return 0;
 720}
 721
 722/*
 723 * Called after the VM is otherwise initialized, but just before adding it to
 724 * the vm_list.
 725 */
 726int __weak kvm_arch_post_init_vm(struct kvm *kvm)
 727{
 728        return 0;
 729}
 730
 731/*
 732 * Called just after removing the VM from the vm_list, but before doing any
 733 * other destruction.
 734 */
 735void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
 736{
 737}
 738
 739static struct kvm *kvm_create_vm(unsigned long type)
 740{
 741        struct kvm *kvm = kvm_arch_alloc_vm();
 742        int r = -ENOMEM;
 743        int i;
 744
 745        if (!kvm)
 746                return ERR_PTR(-ENOMEM);
 747
 748        spin_lock_init(&kvm->mmu_lock);
 749        mmgrab(current->mm);
 750        kvm->mm = current->mm;
 751        kvm_eventfd_init(kvm);
 752        mutex_init(&kvm->lock);
 753        mutex_init(&kvm->irq_lock);
 754        mutex_init(&kvm->slots_lock);
 755        INIT_LIST_HEAD(&kvm->devices);
 756
 757        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 758
 759        if (init_srcu_struct(&kvm->srcu))
 760                goto out_err_no_srcu;
 761        if (init_srcu_struct(&kvm->irq_srcu))
 762                goto out_err_no_irq_srcu;
 763
 764        refcount_set(&kvm->users_count, 1);
 765        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 766                struct kvm_memslots *slots = kvm_alloc_memslots();
 767
 768                if (!slots)
 769                        goto out_err_no_arch_destroy_vm;
 770                /* Generations must be different for each address space. */
 771                slots->generation = i;
 772                rcu_assign_pointer(kvm->memslots[i], slots);
 773        }
 774
 775        for (i = 0; i < KVM_NR_BUSES; i++) {
 776                rcu_assign_pointer(kvm->buses[i],
 777                        kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
 778                if (!kvm->buses[i])
 779                        goto out_err_no_arch_destroy_vm;
 780        }
 781
 782        kvm->max_halt_poll_ns = halt_poll_ns;
 783
 784        r = kvm_arch_init_vm(kvm, type);
 785        if (r)
 786                goto out_err_no_arch_destroy_vm;
 787
 788        r = hardware_enable_all();
 789        if (r)
 790                goto out_err_no_disable;
 791
 792#ifdef CONFIG_HAVE_KVM_IRQFD
 793        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 794#endif
 795
 796        r = kvm_init_mmu_notifier(kvm);
 797        if (r)
 798                goto out_err_no_mmu_notifier;
 799
 800        r = kvm_arch_post_init_vm(kvm);
 801        if (r)
 802                goto out_err;
 803
 804        mutex_lock(&kvm_lock);
 805        list_add(&kvm->vm_list, &vm_list);
 806        mutex_unlock(&kvm_lock);
 807
 808        preempt_notifier_inc();
 809
 810        return kvm;
 811
 812out_err:
 813#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 814        if (kvm->mmu_notifier.ops)
 815                mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
 816#endif
 817out_err_no_mmu_notifier:
 818        hardware_disable_all();
 819out_err_no_disable:
 820        kvm_arch_destroy_vm(kvm);
 821out_err_no_arch_destroy_vm:
 822        WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
 823        for (i = 0; i < KVM_NR_BUSES; i++)
 824                kfree(kvm_get_bus(kvm, i));
 825        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 826                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 827        cleanup_srcu_struct(&kvm->irq_srcu);
 828out_err_no_irq_srcu:
 829        cleanup_srcu_struct(&kvm->srcu);
 830out_err_no_srcu:
 831        kvm_arch_free_vm(kvm);
 832        mmdrop(current->mm);
 833        return ERR_PTR(r);
 834}
 835
 836static void kvm_destroy_devices(struct kvm *kvm)
 837{
 838        struct kvm_device *dev, *tmp;
 839
 840        /*
 841         * We do not need to take the kvm->lock here, because nobody else
 842         * has a reference to the struct kvm at this point and therefore
 843         * cannot access the devices list anyhow.
 844         */
 845        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 846                list_del(&dev->vm_node);
 847                dev->ops->destroy(dev);
 848        }
 849}
 850
 851static void kvm_destroy_vm(struct kvm *kvm)
 852{
 853        int i;
 854        struct mm_struct *mm = kvm->mm;
 855
 856        kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 857        kvm_destroy_vm_debugfs(kvm);
 858        kvm_arch_sync_events(kvm);
 859        mutex_lock(&kvm_lock);
 860        list_del(&kvm->vm_list);
 861        mutex_unlock(&kvm_lock);
 862        kvm_arch_pre_destroy_vm(kvm);
 863
 864        kvm_free_irq_routing(kvm);
 865        for (i = 0; i < KVM_NR_BUSES; i++) {
 866                struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 867
 868                if (bus)
 869                        kvm_io_bus_destroy(bus);
 870                kvm->buses[i] = NULL;
 871        }
 872        kvm_coalesced_mmio_free(kvm);
 873#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 874        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 875#else
 876        kvm_arch_flush_shadow_all(kvm);
 877#endif
 878        kvm_arch_destroy_vm(kvm);
 879        kvm_destroy_devices(kvm);
 880        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 881                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 882        cleanup_srcu_struct(&kvm->irq_srcu);
 883        cleanup_srcu_struct(&kvm->srcu);
 884        kvm_arch_free_vm(kvm);
 885        preempt_notifier_dec();
 886        hardware_disable_all();
 887        mmdrop(mm);
 888}
 889
 890void kvm_get_kvm(struct kvm *kvm)
 891{
 892        refcount_inc(&kvm->users_count);
 893}
 894EXPORT_SYMBOL_GPL(kvm_get_kvm);
 895
 896void kvm_put_kvm(struct kvm *kvm)
 897{
 898        if (refcount_dec_and_test(&kvm->users_count))
 899                kvm_destroy_vm(kvm);
 900}
 901EXPORT_SYMBOL_GPL(kvm_put_kvm);
 902
 903/*
 904 * Used to put a reference that was taken on behalf of an object associated
 905 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
 906 * of the new file descriptor fails and the reference cannot be transferred to
 907 * its final owner.  In such cases, the caller is still actively using @kvm and
 908 * will fail miserably if the refcount unexpectedly hits zero.
 909 */
 910void kvm_put_kvm_no_destroy(struct kvm *kvm)
 911{
 912        WARN_ON(refcount_dec_and_test(&kvm->users_count));
 913}
 914EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
 915
 916static int kvm_vm_release(struct inode *inode, struct file *filp)
 917{
 918        struct kvm *kvm = filp->private_data;
 919
 920        kvm_irqfd_release(kvm);
 921
 922        kvm_put_kvm(kvm);
 923        return 0;
 924}
 925
 926/*
 927 * Allocation size is twice as large as the actual dirty bitmap size.
 928 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
 929 */
 930static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
 931{
 932        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 933
 934        memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
 935        if (!memslot->dirty_bitmap)
 936                return -ENOMEM;
 937
 938        return 0;
 939}
 940
 941/*
 942 * Delete a memslot by decrementing the number of used slots and shifting all
 943 * other entries in the array forward one spot.
 944 */
 945static inline void kvm_memslot_delete(struct kvm_memslots *slots,
 946                                      struct kvm_memory_slot *memslot)
 947{
 948        struct kvm_memory_slot *mslots = slots->memslots;
 949        int i;
 950
 951        if (WARN_ON(slots->id_to_index[memslot->id] == -1))
 952                return;
 953
 954        slots->used_slots--;
 955
 956        if (atomic_read(&slots->lru_slot) >= slots->used_slots)
 957                atomic_set(&slots->lru_slot, 0);
 958
 959        for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
 960                mslots[i] = mslots[i + 1];
 961                slots->id_to_index[mslots[i].id] = i;
 962        }
 963        mslots[i] = *memslot;
 964        slots->id_to_index[memslot->id] = -1;
 965}
 966
 967/*
 968 * "Insert" a new memslot by incrementing the number of used slots.  Returns
 969 * the new slot's initial index into the memslots array.
 970 */
 971static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
 972{
 973        return slots->used_slots++;
 974}
 975
 976/*
 977 * Move a changed memslot backwards in the array by shifting existing slots
 978 * with a higher GFN toward the front of the array.  Note, the changed memslot
 979 * itself is not preserved in the array, i.e. not swapped at this time, only
 980 * its new index into the array is tracked.  Returns the changed memslot's
 981 * current index into the memslots array.
 982 */
 983static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
 984                                            struct kvm_memory_slot *memslot)
 985{
 986        struct kvm_memory_slot *mslots = slots->memslots;
 987        int i;
 988
 989        if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
 990            WARN_ON_ONCE(!slots->used_slots))
 991                return -1;
 992
 993        /*
 994         * Move the target memslot backward in the array by shifting existing
 995         * memslots with a higher GFN (than the target memslot) towards the
 996         * front of the array.
 997         */
 998        for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
 999                if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000                        break;
1001
1002                WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003
1004                /* Shift the next memslot forward one and update its index. */
1005                mslots[i] = mslots[i + 1];
1006                slots->id_to_index[mslots[i].id] = i;
1007        }
1008        return i;
1009}
1010
1011/*
1012 * Move a changed memslot forwards in the array by shifting existing slots with
1013 * a lower GFN toward the back of the array.  Note, the changed memslot itself
1014 * is not preserved in the array, i.e. not swapped at this time, only its new
1015 * index into the array is tracked.  Returns the changed memslot's final index
1016 * into the memslots array.
1017 */
1018static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019                                           struct kvm_memory_slot *memslot,
1020                                           int start)
1021{
1022        struct kvm_memory_slot *mslots = slots->memslots;
1023        int i;
1024
1025        for (i = start; i > 0; i--) {
1026                if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027                        break;
1028
1029                WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030
1031                /* Shift the next memslot back one and update its index. */
1032                mslots[i] = mslots[i - 1];
1033                slots->id_to_index[mslots[i].id] = i;
1034        }
1035        return i;
1036}
1037
1038/*
1039 * Re-sort memslots based on their GFN to account for an added, deleted, or
1040 * moved memslot.  Sorting memslots by GFN allows using a binary search during
1041 * memslot lookup.
1042 *
1043 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1044 * at memslots[0] has the highest GFN.
1045 *
1046 * The sorting algorithm takes advantage of having initially sorted memslots
1047 * and knowing the position of the changed memslot.  Sorting is also optimized
1048 * by not swapping the updated memslot and instead only shifting other memslots
1049 * and tracking the new index for the update memslot.  Only once its final
1050 * index is known is the updated memslot copied into its position in the array.
1051 *
1052 *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1053 *    the end of the array.
1054 *
1055 *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1056 *    end of the array and then it forward to its correct location.
1057 *
1058 *  - When moving a memslot, the algorithm first moves the updated memslot
1059 *    backward to handle the scenario where the memslot's GFN was changed to a
1060 *    lower value.  update_memslots() then falls through and runs the same flow
1061 *    as creating a memslot to move the memslot forward to handle the scenario
1062 *    where its GFN was changed to a higher value.
1063 *
1064 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065 * historical reasons.  Originally, invalid memslots where denoted by having
1066 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067 * to the end of the array.  The current algorithm uses dedicated logic to
1068 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069 *
1070 * The other historical motiviation for highest->lowest was to improve the
1071 * performance of memslot lookup.  KVM originally used a linear search starting
1072 * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1073 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074 * single memslot above the 4gb boundary.  As the largest memslot is also the
1075 * most likely to be referenced, sorting it to the front of the array was
1076 * advantageous.  The current binary search starts from the middle of the array
1077 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078 */
1079static void update_memslots(struct kvm_memslots *slots,
1080                            struct kvm_memory_slot *memslot,
1081                            enum kvm_mr_change change)
1082{
1083        int i;
1084
1085        if (change == KVM_MR_DELETE) {
1086                kvm_memslot_delete(slots, memslot);
1087        } else {
1088                if (change == KVM_MR_CREATE)
1089                        i = kvm_memslot_insert_back(slots);
1090                else
1091                        i = kvm_memslot_move_backward(slots, memslot);
1092                i = kvm_memslot_move_forward(slots, memslot, i);
1093
1094                /*
1095                 * Copy the memslot to its new position in memslots and update
1096                 * its index accordingly.
1097                 */
1098                slots->memslots[i] = *memslot;
1099                slots->id_to_index[memslot->id] = i;
1100        }
1101}
1102
1103static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104{
1105        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106
1107#ifdef __KVM_HAVE_READONLY_MEM
1108        valid_flags |= KVM_MEM_READONLY;
1109#endif
1110
1111        if (mem->flags & ~valid_flags)
1112                return -EINVAL;
1113
1114        return 0;
1115}
1116
1117static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118                int as_id, struct kvm_memslots *slots)
1119{
1120        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121        u64 gen = old_memslots->generation;
1122
1123        WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124        slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125
1126        rcu_assign_pointer(kvm->memslots[as_id], slots);
1127        synchronize_srcu_expedited(&kvm->srcu);
1128
1129        /*
1130         * Increment the new memslot generation a second time, dropping the
1131         * update in-progress flag and incrementing the generation based on
1132         * the number of address spaces.  This provides a unique and easily
1133         * identifiable generation number while the memslots are in flux.
1134         */
1135        gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136
1137        /*
1138         * Generations must be unique even across address spaces.  We do not need
1139         * a global counter for that, instead the generation space is evenly split
1140         * across address spaces.  For example, with two address spaces, address
1141         * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142         * use generations 1, 3, 5, ...
1143         */
1144        gen += KVM_ADDRESS_SPACE_NUM;
1145
1146        kvm_arch_memslots_updated(kvm, gen);
1147
1148        slots->generation = gen;
1149
1150        return old_memslots;
1151}
1152
1153/*
1154 * Note, at a minimum, the current number of used slots must be allocated, even
1155 * when deleting a memslot, as we need a complete duplicate of the memslots for
1156 * use when invalidating a memslot prior to deleting/moving the memslot.
1157 */
1158static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159                                             enum kvm_mr_change change)
1160{
1161        struct kvm_memslots *slots;
1162        size_t old_size, new_size;
1163
1164        old_size = sizeof(struct kvm_memslots) +
1165                   (sizeof(struct kvm_memory_slot) * old->used_slots);
1166
1167        if (change == KVM_MR_CREATE)
1168                new_size = old_size + sizeof(struct kvm_memory_slot);
1169        else
1170                new_size = old_size;
1171
1172        slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173        if (likely(slots))
1174                memcpy(slots, old, old_size);
1175
1176        return slots;
1177}
1178
1179static int kvm_set_memslot(struct kvm *kvm,
1180                           const struct kvm_userspace_memory_region *mem,
1181                           struct kvm_memory_slot *old,
1182                           struct kvm_memory_slot *new, int as_id,
1183                           enum kvm_mr_change change)
1184{
1185        struct kvm_memory_slot *slot;
1186        struct kvm_memslots *slots;
1187        int r;
1188
1189        slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190        if (!slots)
1191                return -ENOMEM;
1192
1193        if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194                /*
1195                 * Note, the INVALID flag needs to be in the appropriate entry
1196                 * in the freshly allocated memslots, not in @old or @new.
1197                 */
1198                slot = id_to_memslot(slots, old->id);
1199                slot->flags |= KVM_MEMSLOT_INVALID;
1200
1201                /*
1202                 * We can re-use the old memslots, the only difference from the
1203                 * newly installed memslots is the invalid flag, which will get
1204                 * dropped by update_memslots anyway.  We'll also revert to the
1205                 * old memslots if preparing the new memory region fails.
1206                 */
1207                slots = install_new_memslots(kvm, as_id, slots);
1208
1209                /* From this point no new shadow pages pointing to a deleted,
1210                 * or moved, memslot will be created.
1211                 *
1212                 * validation of sp->gfn happens in:
1213                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214                 *      - kvm_is_visible_gfn (mmu_check_root)
1215                 */
1216                kvm_arch_flush_shadow_memslot(kvm, slot);
1217        }
1218
1219        r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220        if (r)
1221                goto out_slots;
1222
1223        update_memslots(slots, new, change);
1224        slots = install_new_memslots(kvm, as_id, slots);
1225
1226        kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1227
1228        kvfree(slots);
1229        return 0;
1230
1231out_slots:
1232        if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233                slots = install_new_memslots(kvm, as_id, slots);
1234        kvfree(slots);
1235        return r;
1236}
1237
1238static int kvm_delete_memslot(struct kvm *kvm,
1239                              const struct kvm_userspace_memory_region *mem,
1240                              struct kvm_memory_slot *old, int as_id)
1241{
1242        struct kvm_memory_slot new;
1243        int r;
1244
1245        if (!old->npages)
1246                return -EINVAL;
1247
1248        memset(&new, 0, sizeof(new));
1249        new.id = old->id;
1250
1251        r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1252        if (r)
1253                return r;
1254
1255        kvm_free_memslot(kvm, old);
1256        return 0;
1257}
1258
1259/*
1260 * Allocate some memory and give it an address in the guest physical address
1261 * space.
1262 *
1263 * Discontiguous memory is allowed, mostly for framebuffers.
1264 *
1265 * Must be called holding kvm->slots_lock for write.
1266 */
1267int __kvm_set_memory_region(struct kvm *kvm,
1268                            const struct kvm_userspace_memory_region *mem)
1269{
1270        struct kvm_memory_slot old, new;
1271        struct kvm_memory_slot *tmp;
1272        enum kvm_mr_change change;
1273        int as_id, id;
1274        int r;
1275
1276        r = check_memory_region_flags(mem);
1277        if (r)
1278                return r;
1279
1280        as_id = mem->slot >> 16;
1281        id = (u16)mem->slot;
1282
1283        /* General sanity checks */
1284        if (mem->memory_size & (PAGE_SIZE - 1))
1285                return -EINVAL;
1286        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1287                return -EINVAL;
1288        /* We can read the guest memory with __xxx_user() later on. */
1289        if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1290             !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1291                        mem->memory_size))
1292                return -EINVAL;
1293        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1294                return -EINVAL;
1295        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1296                return -EINVAL;
1297
1298        /*
1299         * Make a full copy of the old memslot, the pointer will become stale
1300         * when the memslots are re-sorted by update_memslots(), and the old
1301         * memslot needs to be referenced after calling update_memslots(), e.g.
1302         * to free its resources and for arch specific behavior.
1303         */
1304        tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1305        if (tmp) {
1306                old = *tmp;
1307                tmp = NULL;
1308        } else {
1309                memset(&old, 0, sizeof(old));
1310                old.id = id;
1311        }
1312
1313        if (!mem->memory_size)
1314                return kvm_delete_memslot(kvm, mem, &old, as_id);
1315
1316        new.id = id;
1317        new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1318        new.npages = mem->memory_size >> PAGE_SHIFT;
1319        new.flags = mem->flags;
1320        new.userspace_addr = mem->userspace_addr;
1321
1322        if (new.npages > KVM_MEM_MAX_NR_PAGES)
1323                return -EINVAL;
1324
1325        if (!old.npages) {
1326                change = KVM_MR_CREATE;
1327                new.dirty_bitmap = NULL;
1328                memset(&new.arch, 0, sizeof(new.arch));
1329        } else { /* Modify an existing slot. */
1330                if ((new.userspace_addr != old.userspace_addr) ||
1331                    (new.npages != old.npages) ||
1332                    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1333                        return -EINVAL;
1334
1335                if (new.base_gfn != old.base_gfn)
1336                        change = KVM_MR_MOVE;
1337                else if (new.flags != old.flags)
1338                        change = KVM_MR_FLAGS_ONLY;
1339                else /* Nothing to change. */
1340                        return 0;
1341
1342                /* Copy dirty_bitmap and arch from the current memslot. */
1343                new.dirty_bitmap = old.dirty_bitmap;
1344                memcpy(&new.arch, &old.arch, sizeof(new.arch));
1345        }
1346
1347        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1348                /* Check for overlaps */
1349                kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1350                        if (tmp->id == id)
1351                                continue;
1352                        if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1353                              (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1354                                return -EEXIST;
1355                }
1356        }
1357
1358        /* Allocate/free page dirty bitmap as needed */
1359        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1360                new.dirty_bitmap = NULL;
1361        else if (!new.dirty_bitmap) {
1362                r = kvm_alloc_dirty_bitmap(&new);
1363                if (r)
1364                        return r;
1365
1366                if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1367                        bitmap_set(new.dirty_bitmap, 0, new.npages);
1368        }
1369
1370        r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1371        if (r)
1372                goto out_bitmap;
1373
1374        if (old.dirty_bitmap && !new.dirty_bitmap)
1375                kvm_destroy_dirty_bitmap(&old);
1376        return 0;
1377
1378out_bitmap:
1379        if (new.dirty_bitmap && !old.dirty_bitmap)
1380                kvm_destroy_dirty_bitmap(&new);
1381        return r;
1382}
1383EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1384
1385int kvm_set_memory_region(struct kvm *kvm,
1386                          const struct kvm_userspace_memory_region *mem)
1387{
1388        int r;
1389
1390        mutex_lock(&kvm->slots_lock);
1391        r = __kvm_set_memory_region(kvm, mem);
1392        mutex_unlock(&kvm->slots_lock);
1393        return r;
1394}
1395EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1396
1397static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1398                                          struct kvm_userspace_memory_region *mem)
1399{
1400        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1401                return -EINVAL;
1402
1403        return kvm_set_memory_region(kvm, mem);
1404}
1405
1406#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1407/**
1408 * kvm_get_dirty_log - get a snapshot of dirty pages
1409 * @kvm:        pointer to kvm instance
1410 * @log:        slot id and address to which we copy the log
1411 * @is_dirty:   set to '1' if any dirty pages were found
1412 * @memslot:    set to the associated memslot, always valid on success
1413 */
1414int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1415                      int *is_dirty, struct kvm_memory_slot **memslot)
1416{
1417        struct kvm_memslots *slots;
1418        int i, as_id, id;
1419        unsigned long n;
1420        unsigned long any = 0;
1421
1422        *memslot = NULL;
1423        *is_dirty = 0;
1424
1425        as_id = log->slot >> 16;
1426        id = (u16)log->slot;
1427        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1428                return -EINVAL;
1429
1430        slots = __kvm_memslots(kvm, as_id);
1431        *memslot = id_to_memslot(slots, id);
1432        if (!(*memslot) || !(*memslot)->dirty_bitmap)
1433                return -ENOENT;
1434
1435        kvm_arch_sync_dirty_log(kvm, *memslot);
1436
1437        n = kvm_dirty_bitmap_bytes(*memslot);
1438
1439        for (i = 0; !any && i < n/sizeof(long); ++i)
1440                any = (*memslot)->dirty_bitmap[i];
1441
1442        if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1443                return -EFAULT;
1444
1445        if (any)
1446                *is_dirty = 1;
1447        return 0;
1448}
1449EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1450
1451#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1452/**
1453 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1454 *      and reenable dirty page tracking for the corresponding pages.
1455 * @kvm:        pointer to kvm instance
1456 * @log:        slot id and address to which we copy the log
1457 *
1458 * We need to keep it in mind that VCPU threads can write to the bitmap
1459 * concurrently. So, to avoid losing track of dirty pages we keep the
1460 * following order:
1461 *
1462 *    1. Take a snapshot of the bit and clear it if needed.
1463 *    2. Write protect the corresponding page.
1464 *    3. Copy the snapshot to the userspace.
1465 *    4. Upon return caller flushes TLB's if needed.
1466 *
1467 * Between 2 and 4, the guest may write to the page using the remaining TLB
1468 * entry.  This is not a problem because the page is reported dirty using
1469 * the snapshot taken before and step 4 ensures that writes done after
1470 * exiting to userspace will be logged for the next call.
1471 *
1472 */
1473static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1474{
1475        struct kvm_memslots *slots;
1476        struct kvm_memory_slot *memslot;
1477        int i, as_id, id;
1478        unsigned long n;
1479        unsigned long *dirty_bitmap;
1480        unsigned long *dirty_bitmap_buffer;
1481        bool flush;
1482
1483        as_id = log->slot >> 16;
1484        id = (u16)log->slot;
1485        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1486                return -EINVAL;
1487
1488        slots = __kvm_memslots(kvm, as_id);
1489        memslot = id_to_memslot(slots, id);
1490        if (!memslot || !memslot->dirty_bitmap)
1491                return -ENOENT;
1492
1493        dirty_bitmap = memslot->dirty_bitmap;
1494
1495        kvm_arch_sync_dirty_log(kvm, memslot);
1496
1497        n = kvm_dirty_bitmap_bytes(memslot);
1498        flush = false;
1499        if (kvm->manual_dirty_log_protect) {
1500                /*
1501                 * Unlike kvm_get_dirty_log, we always return false in *flush,
1502                 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1503                 * is some code duplication between this function and
1504                 * kvm_get_dirty_log, but hopefully all architecture
1505                 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1506                 * can be eliminated.
1507                 */
1508                dirty_bitmap_buffer = dirty_bitmap;
1509        } else {
1510                dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1511                memset(dirty_bitmap_buffer, 0, n);
1512
1513                spin_lock(&kvm->mmu_lock);
1514                for (i = 0; i < n / sizeof(long); i++) {
1515                        unsigned long mask;
1516                        gfn_t offset;
1517
1518                        if (!dirty_bitmap[i])
1519                                continue;
1520
1521                        flush = true;
1522                        mask = xchg(&dirty_bitmap[i], 0);
1523                        dirty_bitmap_buffer[i] = mask;
1524
1525                        offset = i * BITS_PER_LONG;
1526                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1527                                                                offset, mask);
1528                }
1529                spin_unlock(&kvm->mmu_lock);
1530        }
1531
1532        if (flush)
1533                kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1534
1535        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1536                return -EFAULT;
1537        return 0;
1538}
1539
1540
1541/**
1542 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1543 * @kvm: kvm instance
1544 * @log: slot id and address to which we copy the log
1545 *
1546 * Steps 1-4 below provide general overview of dirty page logging. See
1547 * kvm_get_dirty_log_protect() function description for additional details.
1548 *
1549 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1550 * always flush the TLB (step 4) even if previous step failed  and the dirty
1551 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1552 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1553 * writes will be marked dirty for next log read.
1554 *
1555 *   1. Take a snapshot of the bit and clear it if needed.
1556 *   2. Write protect the corresponding page.
1557 *   3. Copy the snapshot to the userspace.
1558 *   4. Flush TLB's if needed.
1559 */
1560static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1561                                      struct kvm_dirty_log *log)
1562{
1563        int r;
1564
1565        mutex_lock(&kvm->slots_lock);
1566
1567        r = kvm_get_dirty_log_protect(kvm, log);
1568
1569        mutex_unlock(&kvm->slots_lock);
1570        return r;
1571}
1572
1573/**
1574 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1575 *      and reenable dirty page tracking for the corresponding pages.
1576 * @kvm:        pointer to kvm instance
1577 * @log:        slot id and address from which to fetch the bitmap of dirty pages
1578 */
1579static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1580                                       struct kvm_clear_dirty_log *log)
1581{
1582        struct kvm_memslots *slots;
1583        struct kvm_memory_slot *memslot;
1584        int as_id, id;
1585        gfn_t offset;
1586        unsigned long i, n;
1587        unsigned long *dirty_bitmap;
1588        unsigned long *dirty_bitmap_buffer;
1589        bool flush;
1590
1591        as_id = log->slot >> 16;
1592        id = (u16)log->slot;
1593        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1594                return -EINVAL;
1595
1596        if (log->first_page & 63)
1597                return -EINVAL;
1598
1599        slots = __kvm_memslots(kvm, as_id);
1600        memslot = id_to_memslot(slots, id);
1601        if (!memslot || !memslot->dirty_bitmap)
1602                return -ENOENT;
1603
1604        dirty_bitmap = memslot->dirty_bitmap;
1605
1606        n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1607
1608        if (log->first_page > memslot->npages ||
1609            log->num_pages > memslot->npages - log->first_page ||
1610            (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1611            return -EINVAL;
1612
1613        kvm_arch_sync_dirty_log(kvm, memslot);
1614
1615        flush = false;
1616        dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1617        if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1618                return -EFAULT;
1619
1620        spin_lock(&kvm->mmu_lock);
1621        for (offset = log->first_page, i = offset / BITS_PER_LONG,
1622                 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1623             i++, offset += BITS_PER_LONG) {
1624                unsigned long mask = *dirty_bitmap_buffer++;
1625                atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1626                if (!mask)
1627                        continue;
1628
1629                mask &= atomic_long_fetch_andnot(mask, p);
1630
1631                /*
1632                 * mask contains the bits that really have been cleared.  This
1633                 * never includes any bits beyond the length of the memslot (if
1634                 * the length is not aligned to 64 pages), therefore it is not
1635                 * a problem if userspace sets them in log->dirty_bitmap.
1636                */
1637                if (mask) {
1638                        flush = true;
1639                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1640                                                                offset, mask);
1641                }
1642        }
1643        spin_unlock(&kvm->mmu_lock);
1644
1645        if (flush)
1646                kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1647
1648        return 0;
1649}
1650
1651static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1652                                        struct kvm_clear_dirty_log *log)
1653{
1654        int r;
1655
1656        mutex_lock(&kvm->slots_lock);
1657
1658        r = kvm_clear_dirty_log_protect(kvm, log);
1659
1660        mutex_unlock(&kvm->slots_lock);
1661        return r;
1662}
1663#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1664
1665struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1666{
1667        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1668}
1669EXPORT_SYMBOL_GPL(gfn_to_memslot);
1670
1671struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1672{
1673        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1674}
1675EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1676
1677bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1678{
1679        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1680
1681        return kvm_is_visible_memslot(memslot);
1682}
1683EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1684
1685bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1686{
1687        struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1688
1689        return kvm_is_visible_memslot(memslot);
1690}
1691EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1692
1693unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1694{
1695        struct vm_area_struct *vma;
1696        unsigned long addr, size;
1697
1698        size = PAGE_SIZE;
1699
1700        addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1701        if (kvm_is_error_hva(addr))
1702                return PAGE_SIZE;
1703
1704        mmap_read_lock(current->mm);
1705        vma = find_vma(current->mm, addr);
1706        if (!vma)
1707                goto out;
1708
1709        size = vma_kernel_pagesize(vma);
1710
1711out:
1712        mmap_read_unlock(current->mm);
1713
1714        return size;
1715}
1716
1717static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1718{
1719        return slot->flags & KVM_MEM_READONLY;
1720}
1721
1722static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1723                                       gfn_t *nr_pages, bool write)
1724{
1725        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1726                return KVM_HVA_ERR_BAD;
1727
1728        if (memslot_is_readonly(slot) && write)
1729                return KVM_HVA_ERR_RO_BAD;
1730
1731        if (nr_pages)
1732                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1733
1734        return __gfn_to_hva_memslot(slot, gfn);
1735}
1736
1737static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1738                                     gfn_t *nr_pages)
1739{
1740        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1741}
1742
1743unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1744                                        gfn_t gfn)
1745{
1746        return gfn_to_hva_many(slot, gfn, NULL);
1747}
1748EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1749
1750unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1751{
1752        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1753}
1754EXPORT_SYMBOL_GPL(gfn_to_hva);
1755
1756unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1757{
1758        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1759}
1760EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1761
1762/*
1763 * Return the hva of a @gfn and the R/W attribute if possible.
1764 *
1765 * @slot: the kvm_memory_slot which contains @gfn
1766 * @gfn: the gfn to be translated
1767 * @writable: used to return the read/write attribute of the @slot if the hva
1768 * is valid and @writable is not NULL
1769 */
1770unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1771                                      gfn_t gfn, bool *writable)
1772{
1773        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1774
1775        if (!kvm_is_error_hva(hva) && writable)
1776                *writable = !memslot_is_readonly(slot);
1777
1778        return hva;
1779}
1780
1781unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1782{
1783        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784
1785        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1786}
1787
1788unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1789{
1790        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1791
1792        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1793}
1794
1795static inline int check_user_page_hwpoison(unsigned long addr)
1796{
1797        int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1798
1799        rc = get_user_pages(addr, 1, flags, NULL, NULL);
1800        return rc == -EHWPOISON;
1801}
1802
1803/*
1804 * The fast path to get the writable pfn which will be stored in @pfn,
1805 * true indicates success, otherwise false is returned.  It's also the
1806 * only part that runs if we can in atomic context.
1807 */
1808static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1809                            bool *writable, kvm_pfn_t *pfn)
1810{
1811        struct page *page[1];
1812
1813        /*
1814         * Fast pin a writable pfn only if it is a write fault request
1815         * or the caller allows to map a writable pfn for a read fault
1816         * request.
1817         */
1818        if (!(write_fault || writable))
1819                return false;
1820
1821        if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1822                *pfn = page_to_pfn(page[0]);
1823
1824                if (writable)
1825                        *writable = true;
1826                return true;
1827        }
1828
1829        return false;
1830}
1831
1832/*
1833 * The slow path to get the pfn of the specified host virtual address,
1834 * 1 indicates success, -errno is returned if error is detected.
1835 */
1836static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1837                           bool *writable, kvm_pfn_t *pfn)
1838{
1839        unsigned int flags = FOLL_HWPOISON;
1840        struct page *page;
1841        int npages = 0;
1842
1843        might_sleep();
1844
1845        if (writable)
1846                *writable = write_fault;
1847
1848        if (write_fault)
1849                flags |= FOLL_WRITE;
1850        if (async)
1851                flags |= FOLL_NOWAIT;
1852
1853        npages = get_user_pages_unlocked(addr, 1, &page, flags);
1854        if (npages != 1)
1855                return npages;
1856
1857        /* map read fault as writable if possible */
1858        if (unlikely(!write_fault) && writable) {
1859                struct page *wpage;
1860
1861                if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1862                        *writable = true;
1863                        put_page(page);
1864                        page = wpage;
1865                }
1866        }
1867        *pfn = page_to_pfn(page);
1868        return npages;
1869}
1870
1871static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1872{
1873        if (unlikely(!(vma->vm_flags & VM_READ)))
1874                return false;
1875
1876        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1877                return false;
1878
1879        return true;
1880}
1881
1882static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1883                               unsigned long addr, bool *async,
1884                               bool write_fault, bool *writable,
1885                               kvm_pfn_t *p_pfn)
1886{
1887        unsigned long pfn;
1888        int r;
1889
1890        r = follow_pfn(vma, addr, &pfn);
1891        if (r) {
1892                /*
1893                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1894                 * not call the fault handler, so do it here.
1895                 */
1896                bool unlocked = false;
1897                r = fixup_user_fault(current->mm, addr,
1898                                     (write_fault ? FAULT_FLAG_WRITE : 0),
1899                                     &unlocked);
1900                if (unlocked)
1901                        return -EAGAIN;
1902                if (r)
1903                        return r;
1904
1905                r = follow_pfn(vma, addr, &pfn);
1906                if (r)
1907                        return r;
1908
1909        }
1910
1911        if (writable)
1912                *writable = true;
1913
1914        /*
1915         * Get a reference here because callers of *hva_to_pfn* and
1916         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1917         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1918         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1919         * simply do nothing for reserved pfns.
1920         *
1921         * Whoever called remap_pfn_range is also going to call e.g.
1922         * unmap_mapping_range before the underlying pages are freed,
1923         * causing a call to our MMU notifier.
1924         */ 
1925        kvm_get_pfn(pfn);
1926
1927        *p_pfn = pfn;
1928        return 0;
1929}
1930
1931/*
1932 * Pin guest page in memory and return its pfn.
1933 * @addr: host virtual address which maps memory to the guest
1934 * @atomic: whether this function can sleep
1935 * @async: whether this function need to wait IO complete if the
1936 *         host page is not in the memory
1937 * @write_fault: whether we should get a writable host page
1938 * @writable: whether it allows to map a writable host page for !@write_fault
1939 *
1940 * The function will map a writable host page for these two cases:
1941 * 1): @write_fault = true
1942 * 2): @write_fault = false && @writable, @writable will tell the caller
1943 *     whether the mapping is writable.
1944 */
1945static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1946                        bool write_fault, bool *writable)
1947{
1948        struct vm_area_struct *vma;
1949        kvm_pfn_t pfn = 0;
1950        int npages, r;
1951
1952        /* we can do it either atomically or asynchronously, not both */
1953        BUG_ON(atomic && async);
1954
1955        if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1956                return pfn;
1957
1958        if (atomic)
1959                return KVM_PFN_ERR_FAULT;
1960
1961        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1962        if (npages == 1)
1963                return pfn;
1964
1965        mmap_read_lock(current->mm);
1966        if (npages == -EHWPOISON ||
1967              (!async && check_user_page_hwpoison(addr))) {
1968                pfn = KVM_PFN_ERR_HWPOISON;
1969                goto exit;
1970        }
1971
1972retry:
1973        vma = find_vma_intersection(current->mm, addr, addr + 1);
1974
1975        if (vma == NULL)
1976                pfn = KVM_PFN_ERR_FAULT;
1977        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1978                r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1979                if (r == -EAGAIN)
1980                        goto retry;
1981                if (r < 0)
1982                        pfn = KVM_PFN_ERR_FAULT;
1983        } else {
1984                if (async && vma_is_valid(vma, write_fault))
1985                        *async = true;
1986                pfn = KVM_PFN_ERR_FAULT;
1987        }
1988exit:
1989        mmap_read_unlock(current->mm);
1990        return pfn;
1991}
1992
1993kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1994                               bool atomic, bool *async, bool write_fault,
1995                               bool *writable)
1996{
1997        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1998
1999        if (addr == KVM_HVA_ERR_RO_BAD) {
2000                if (writable)
2001                        *writable = false;
2002                return KVM_PFN_ERR_RO_FAULT;
2003        }
2004
2005        if (kvm_is_error_hva(addr)) {
2006                if (writable)
2007                        *writable = false;
2008                return KVM_PFN_NOSLOT;
2009        }
2010
2011        /* Do not map writable pfn in the readonly memslot. */
2012        if (writable && memslot_is_readonly(slot)) {
2013                *writable = false;
2014                writable = NULL;
2015        }
2016
2017        return hva_to_pfn(addr, atomic, async, write_fault,
2018                          writable);
2019}
2020EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2021
2022kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2023                      bool *writable)
2024{
2025        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2026                                    write_fault, writable);
2027}
2028EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2029
2030kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2031{
2032        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2033}
2034EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2035
2036kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2037{
2038        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2039}
2040EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2041
2042kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2043{
2044        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2045}
2046EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2047
2048kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2049{
2050        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2051}
2052EXPORT_SYMBOL_GPL(gfn_to_pfn);
2053
2054kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2055{
2056        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2057}
2058EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2059
2060int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2061                            struct page **pages, int nr_pages)
2062{
2063        unsigned long addr;
2064        gfn_t entry = 0;
2065
2066        addr = gfn_to_hva_many(slot, gfn, &entry);
2067        if (kvm_is_error_hva(addr))
2068                return -1;
2069
2070        if (entry < nr_pages)
2071                return 0;
2072
2073        return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2074}
2075EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2076
2077static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2078{
2079        if (is_error_noslot_pfn(pfn))
2080                return KVM_ERR_PTR_BAD_PAGE;
2081
2082        if (kvm_is_reserved_pfn(pfn)) {
2083                WARN_ON(1);
2084                return KVM_ERR_PTR_BAD_PAGE;
2085        }
2086
2087        return pfn_to_page(pfn);
2088}
2089
2090struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2091{
2092        kvm_pfn_t pfn;
2093
2094        pfn = gfn_to_pfn(kvm, gfn);
2095
2096        return kvm_pfn_to_page(pfn);
2097}
2098EXPORT_SYMBOL_GPL(gfn_to_page);
2099
2100void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2101{
2102        if (pfn == 0)
2103                return;
2104
2105        if (cache)
2106                cache->pfn = cache->gfn = 0;
2107
2108        if (dirty)
2109                kvm_release_pfn_dirty(pfn);
2110        else
2111                kvm_release_pfn_clean(pfn);
2112}
2113
2114static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2115                                 struct gfn_to_pfn_cache *cache, u64 gen)
2116{
2117        kvm_release_pfn(cache->pfn, cache->dirty, cache);
2118
2119        cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2120        cache->gfn = gfn;
2121        cache->dirty = false;
2122        cache->generation = gen;
2123}
2124
2125static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2126                         struct kvm_host_map *map,
2127                         struct gfn_to_pfn_cache *cache,
2128                         bool atomic)
2129{
2130        kvm_pfn_t pfn;
2131        void *hva = NULL;
2132        struct page *page = KVM_UNMAPPED_PAGE;
2133        struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2134        u64 gen = slots->generation;
2135
2136        if (!map)
2137                return -EINVAL;
2138
2139        if (cache) {
2140                if (!cache->pfn || cache->gfn != gfn ||
2141                        cache->generation != gen) {
2142                        if (atomic)
2143                                return -EAGAIN;
2144                        kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2145                }
2146                pfn = cache->pfn;
2147        } else {
2148                if (atomic)
2149                        return -EAGAIN;
2150                pfn = gfn_to_pfn_memslot(slot, gfn);
2151        }
2152        if (is_error_noslot_pfn(pfn))
2153                return -EINVAL;
2154
2155        if (pfn_valid(pfn)) {
2156                page = pfn_to_page(pfn);
2157                if (atomic)
2158                        hva = kmap_atomic(page);
2159                else
2160                        hva = kmap(page);
2161#ifdef CONFIG_HAS_IOMEM
2162        } else if (!atomic) {
2163                hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2164        } else {
2165                return -EINVAL;
2166#endif
2167        }
2168
2169        if (!hva)
2170                return -EFAULT;
2171
2172        map->page = page;
2173        map->hva = hva;
2174        map->pfn = pfn;
2175        map->gfn = gfn;
2176
2177        return 0;
2178}
2179
2180int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2181                struct gfn_to_pfn_cache *cache, bool atomic)
2182{
2183        return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2184                        cache, atomic);
2185}
2186EXPORT_SYMBOL_GPL(kvm_map_gfn);
2187
2188int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2189{
2190        return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2191                NULL, false);
2192}
2193EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2194
2195static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2196                        struct kvm_host_map *map,
2197                        struct gfn_to_pfn_cache *cache,
2198                        bool dirty, bool atomic)
2199{
2200        if (!map)
2201                return;
2202
2203        if (!map->hva)
2204                return;
2205
2206        if (map->page != KVM_UNMAPPED_PAGE) {
2207                if (atomic)
2208                        kunmap_atomic(map->hva);
2209                else
2210                        kunmap(map->page);
2211        }
2212#ifdef CONFIG_HAS_IOMEM
2213        else if (!atomic)
2214                memunmap(map->hva);
2215        else
2216                WARN_ONCE(1, "Unexpected unmapping in atomic context");
2217#endif
2218
2219        if (dirty)
2220                mark_page_dirty_in_slot(memslot, map->gfn);
2221
2222        if (cache)
2223                cache->dirty |= dirty;
2224        else
2225                kvm_release_pfn(map->pfn, dirty, NULL);
2226
2227        map->hva = NULL;
2228        map->page = NULL;
2229}
2230
2231int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2232                  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2233{
2234        __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2235                        cache, dirty, atomic);
2236        return 0;
2237}
2238EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2239
2240void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2241{
2242        __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2243                        dirty, false);
2244}
2245EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2246
2247struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2248{
2249        kvm_pfn_t pfn;
2250
2251        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2252
2253        return kvm_pfn_to_page(pfn);
2254}
2255EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2256
2257void kvm_release_page_clean(struct page *page)
2258{
2259        WARN_ON(is_error_page(page));
2260
2261        kvm_release_pfn_clean(page_to_pfn(page));
2262}
2263EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2264
2265void kvm_release_pfn_clean(kvm_pfn_t pfn)
2266{
2267        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2268                put_page(pfn_to_page(pfn));
2269}
2270EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2271
2272void kvm_release_page_dirty(struct page *page)
2273{
2274        WARN_ON(is_error_page(page));
2275
2276        kvm_release_pfn_dirty(page_to_pfn(page));
2277}
2278EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2279
2280void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2281{
2282        kvm_set_pfn_dirty(pfn);
2283        kvm_release_pfn_clean(pfn);
2284}
2285EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2286
2287void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2288{
2289        if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2290                SetPageDirty(pfn_to_page(pfn));
2291}
2292EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2293
2294void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2295{
2296        if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2297                mark_page_accessed(pfn_to_page(pfn));
2298}
2299EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2300
2301void kvm_get_pfn(kvm_pfn_t pfn)
2302{
2303        if (!kvm_is_reserved_pfn(pfn))
2304                get_page(pfn_to_page(pfn));
2305}
2306EXPORT_SYMBOL_GPL(kvm_get_pfn);
2307
2308static int next_segment(unsigned long len, int offset)
2309{
2310        if (len > PAGE_SIZE - offset)
2311                return PAGE_SIZE - offset;
2312        else
2313                return len;
2314}
2315
2316static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2317                                 void *data, int offset, int len)
2318{
2319        int r;
2320        unsigned long addr;
2321
2322        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323        if (kvm_is_error_hva(addr))
2324                return -EFAULT;
2325        r = __copy_from_user(data, (void __user *)addr + offset, len);
2326        if (r)
2327                return -EFAULT;
2328        return 0;
2329}
2330
2331int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2332                        int len)
2333{
2334        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2335
2336        return __kvm_read_guest_page(slot, gfn, data, offset, len);
2337}
2338EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2339
2340int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2341                             int offset, int len)
2342{
2343        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344
2345        return __kvm_read_guest_page(slot, gfn, data, offset, len);
2346}
2347EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2348
2349int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2350{
2351        gfn_t gfn = gpa >> PAGE_SHIFT;
2352        int seg;
2353        int offset = offset_in_page(gpa);
2354        int ret;
2355
2356        while ((seg = next_segment(len, offset)) != 0) {
2357                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2358                if (ret < 0)
2359                        return ret;
2360                offset = 0;
2361                len -= seg;
2362                data += seg;
2363                ++gfn;
2364        }
2365        return 0;
2366}
2367EXPORT_SYMBOL_GPL(kvm_read_guest);
2368
2369int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2370{
2371        gfn_t gfn = gpa >> PAGE_SHIFT;
2372        int seg;
2373        int offset = offset_in_page(gpa);
2374        int ret;
2375
2376        while ((seg = next_segment(len, offset)) != 0) {
2377                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2378                if (ret < 0)
2379                        return ret;
2380                offset = 0;
2381                len -= seg;
2382                data += seg;
2383                ++gfn;
2384        }
2385        return 0;
2386}
2387EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2388
2389static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2390                                   void *data, int offset, unsigned long len)
2391{
2392        int r;
2393        unsigned long addr;
2394
2395        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2396        if (kvm_is_error_hva(addr))
2397                return -EFAULT;
2398        pagefault_disable();
2399        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2400        pagefault_enable();
2401        if (r)
2402                return -EFAULT;
2403        return 0;
2404}
2405
2406int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2407                               void *data, unsigned long len)
2408{
2409        gfn_t gfn = gpa >> PAGE_SHIFT;
2410        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2411        int offset = offset_in_page(gpa);
2412
2413        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2414}
2415EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2416
2417static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2418                                  const void *data, int offset, int len)
2419{
2420        int r;
2421        unsigned long addr;
2422
2423        addr = gfn_to_hva_memslot(memslot, gfn);
2424        if (kvm_is_error_hva(addr))
2425                return -EFAULT;
2426        r = __copy_to_user((void __user *)addr + offset, data, len);
2427        if (r)
2428                return -EFAULT;
2429        mark_page_dirty_in_slot(memslot, gfn);
2430        return 0;
2431}
2432
2433int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2434                         const void *data, int offset, int len)
2435{
2436        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2437
2438        return __kvm_write_guest_page(slot, gfn, data, offset, len);
2439}
2440EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2441
2442int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2443                              const void *data, int offset, int len)
2444{
2445        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2446
2447        return __kvm_write_guest_page(slot, gfn, data, offset, len);
2448}
2449EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2450
2451int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2452                    unsigned long len)
2453{
2454        gfn_t gfn = gpa >> PAGE_SHIFT;
2455        int seg;
2456        int offset = offset_in_page(gpa);
2457        int ret;
2458
2459        while ((seg = next_segment(len, offset)) != 0) {
2460                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2461                if (ret < 0)
2462                        return ret;
2463                offset = 0;
2464                len -= seg;
2465                data += seg;
2466                ++gfn;
2467        }
2468        return 0;
2469}
2470EXPORT_SYMBOL_GPL(kvm_write_guest);
2471
2472int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2473                         unsigned long len)
2474{
2475        gfn_t gfn = gpa >> PAGE_SHIFT;
2476        int seg;
2477        int offset = offset_in_page(gpa);
2478        int ret;
2479
2480        while ((seg = next_segment(len, offset)) != 0) {
2481                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2482                if (ret < 0)
2483                        return ret;
2484                offset = 0;
2485                len -= seg;
2486                data += seg;
2487                ++gfn;
2488        }
2489        return 0;
2490}
2491EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2492
2493static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2494                                       struct gfn_to_hva_cache *ghc,
2495                                       gpa_t gpa, unsigned long len)
2496{
2497        int offset = offset_in_page(gpa);
2498        gfn_t start_gfn = gpa >> PAGE_SHIFT;
2499        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2500        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2501        gfn_t nr_pages_avail;
2502
2503        /* Update ghc->generation before performing any error checks. */
2504        ghc->generation = slots->generation;
2505
2506        if (start_gfn > end_gfn) {
2507                ghc->hva = KVM_HVA_ERR_BAD;
2508                return -EINVAL;
2509        }
2510
2511        /*
2512         * If the requested region crosses two memslots, we still
2513         * verify that the entire region is valid here.
2514         */
2515        for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2516                ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2517                ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2518                                           &nr_pages_avail);
2519                if (kvm_is_error_hva(ghc->hva))
2520                        return -EFAULT;
2521        }
2522
2523        /* Use the slow path for cross page reads and writes. */
2524        if (nr_pages_needed == 1)
2525                ghc->hva += offset;
2526        else
2527                ghc->memslot = NULL;
2528
2529        ghc->gpa = gpa;
2530        ghc->len = len;
2531        return 0;
2532}
2533
2534int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2535                              gpa_t gpa, unsigned long len)
2536{
2537        struct kvm_memslots *slots = kvm_memslots(kvm);
2538        return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2539}
2540EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2541
2542int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2543                                  void *data, unsigned int offset,
2544                                  unsigned long len)
2545{
2546        struct kvm_memslots *slots = kvm_memslots(kvm);
2547        int r;
2548        gpa_t gpa = ghc->gpa + offset;
2549
2550        BUG_ON(len + offset > ghc->len);
2551
2552        if (slots->generation != ghc->generation) {
2553                if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2554                        return -EFAULT;
2555        }
2556
2557        if (kvm_is_error_hva(ghc->hva))
2558                return -EFAULT;
2559
2560        if (unlikely(!ghc->memslot))
2561                return kvm_write_guest(kvm, gpa, data, len);
2562
2563        r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2564        if (r)
2565                return -EFAULT;
2566        mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2567
2568        return 0;
2569}
2570EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2571
2572int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2573                           void *data, unsigned long len)
2574{
2575        return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2576}
2577EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2578
2579int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2580                                 void *data, unsigned int offset,
2581                                 unsigned long len)
2582{
2583        struct kvm_memslots *slots = kvm_memslots(kvm);
2584        int r;
2585        gpa_t gpa = ghc->gpa + offset;
2586
2587        BUG_ON(len + offset > ghc->len);
2588
2589        if (slots->generation != ghc->generation) {
2590                if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2591                        return -EFAULT;
2592        }
2593
2594        if (kvm_is_error_hva(ghc->hva))
2595                return -EFAULT;
2596
2597        if (unlikely(!ghc->memslot))
2598                return kvm_read_guest(kvm, gpa, data, len);
2599
2600        r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2601        if (r)
2602                return -EFAULT;
2603
2604        return 0;
2605}
2606EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2607
2608int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2609                          void *data, unsigned long len)
2610{
2611        return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2612}
2613EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2614
2615int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2616{
2617        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2618
2619        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2620}
2621EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2622
2623int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2624{
2625        gfn_t gfn = gpa >> PAGE_SHIFT;
2626        int seg;
2627        int offset = offset_in_page(gpa);
2628        int ret;
2629
2630        while ((seg = next_segment(len, offset)) != 0) {
2631                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2632                if (ret < 0)
2633                        return ret;
2634                offset = 0;
2635                len -= seg;
2636                ++gfn;
2637        }
2638        return 0;
2639}
2640EXPORT_SYMBOL_GPL(kvm_clear_guest);
2641
2642static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2643                                    gfn_t gfn)
2644{
2645        if (memslot && memslot->dirty_bitmap) {
2646                unsigned long rel_gfn = gfn - memslot->base_gfn;
2647
2648                set_bit_le(rel_gfn, memslot->dirty_bitmap);
2649        }
2650}
2651
2652void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2653{
2654        struct kvm_memory_slot *memslot;
2655
2656        memslot = gfn_to_memslot(kvm, gfn);
2657        mark_page_dirty_in_slot(memslot, gfn);
2658}
2659EXPORT_SYMBOL_GPL(mark_page_dirty);
2660
2661void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2662{
2663        struct kvm_memory_slot *memslot;
2664
2665        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2666        mark_page_dirty_in_slot(memslot, gfn);
2667}
2668EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2669
2670void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2671{
2672        if (!vcpu->sigset_active)
2673                return;
2674
2675        /*
2676         * This does a lockless modification of ->real_blocked, which is fine
2677         * because, only current can change ->real_blocked and all readers of
2678         * ->real_blocked don't care as long ->real_blocked is always a subset
2679         * of ->blocked.
2680         */
2681        sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2682}
2683
2684void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2685{
2686        if (!vcpu->sigset_active)
2687                return;
2688
2689        sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2690        sigemptyset(&current->real_blocked);
2691}
2692
2693static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2694{
2695        unsigned int old, val, grow, grow_start;
2696
2697        old = val = vcpu->halt_poll_ns;
2698        grow_start = READ_ONCE(halt_poll_ns_grow_start);
2699        grow = READ_ONCE(halt_poll_ns_grow);
2700        if (!grow)
2701                goto out;
2702
2703        val *= grow;
2704        if (val < grow_start)
2705                val = grow_start;
2706
2707        if (val > halt_poll_ns)
2708                val = halt_poll_ns;
2709
2710        vcpu->halt_poll_ns = val;
2711out:
2712        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2713}
2714
2715static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2716{
2717        unsigned int old, val, shrink;
2718
2719        old = val = vcpu->halt_poll_ns;
2720        shrink = READ_ONCE(halt_poll_ns_shrink);
2721        if (shrink == 0)
2722                val = 0;
2723        else
2724                val /= shrink;
2725
2726        vcpu->halt_poll_ns = val;
2727        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2728}
2729
2730static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2731{
2732        int ret = -EINTR;
2733        int idx = srcu_read_lock(&vcpu->kvm->srcu);
2734
2735        if (kvm_arch_vcpu_runnable(vcpu)) {
2736                kvm_make_request(KVM_REQ_UNHALT, vcpu);
2737                goto out;
2738        }
2739        if (kvm_cpu_has_pending_timer(vcpu))
2740                goto out;
2741        if (signal_pending(current))
2742                goto out;
2743
2744        ret = 0;
2745out:
2746        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2747        return ret;
2748}
2749
2750static inline void
2751update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2752{
2753        if (waited)
2754                vcpu->stat.halt_poll_fail_ns += poll_ns;
2755        else
2756                vcpu->stat.halt_poll_success_ns += poll_ns;
2757}
2758
2759/*
2760 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2761 */
2762void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2763{
2764        ktime_t start, cur, poll_end;
2765        bool waited = false;
2766        u64 block_ns;
2767
2768        kvm_arch_vcpu_blocking(vcpu);
2769
2770        start = cur = poll_end = ktime_get();
2771        if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2772                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2773
2774                ++vcpu->stat.halt_attempted_poll;
2775                do {
2776                        /*
2777                         * This sets KVM_REQ_UNHALT if an interrupt
2778                         * arrives.
2779                         */
2780                        if (kvm_vcpu_check_block(vcpu) < 0) {
2781                                ++vcpu->stat.halt_successful_poll;
2782                                if (!vcpu_valid_wakeup(vcpu))
2783                                        ++vcpu->stat.halt_poll_invalid;
2784                                goto out;
2785                        }
2786                        poll_end = cur = ktime_get();
2787                } while (single_task_running() && ktime_before(cur, stop));
2788        }
2789
2790        prepare_to_rcuwait(&vcpu->wait);
2791        for (;;) {
2792                set_current_state(TASK_INTERRUPTIBLE);
2793
2794                if (kvm_vcpu_check_block(vcpu) < 0)
2795                        break;
2796
2797                waited = true;
2798                schedule();
2799        }
2800        finish_rcuwait(&vcpu->wait);
2801        cur = ktime_get();
2802out:
2803        kvm_arch_vcpu_unblocking(vcpu);
2804        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2805
2806        update_halt_poll_stats(
2807                vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2808
2809        if (!kvm_arch_no_poll(vcpu)) {
2810                if (!vcpu_valid_wakeup(vcpu)) {
2811                        shrink_halt_poll_ns(vcpu);
2812                } else if (vcpu->kvm->max_halt_poll_ns) {
2813                        if (block_ns <= vcpu->halt_poll_ns)
2814                                ;
2815                        /* we had a long block, shrink polling */
2816                        else if (vcpu->halt_poll_ns &&
2817                                        block_ns > vcpu->kvm->max_halt_poll_ns)
2818                                shrink_halt_poll_ns(vcpu);
2819                        /* we had a short halt and our poll time is too small */
2820                        else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2821                                        block_ns < vcpu->kvm->max_halt_poll_ns)
2822                                grow_halt_poll_ns(vcpu);
2823                } else {
2824                        vcpu->halt_poll_ns = 0;
2825                }
2826        }
2827
2828        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2829        kvm_arch_vcpu_block_finish(vcpu);
2830}
2831EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2832
2833bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2834{
2835        struct rcuwait *waitp;
2836
2837        waitp = kvm_arch_vcpu_get_wait(vcpu);
2838        if (rcuwait_wake_up(waitp)) {
2839                WRITE_ONCE(vcpu->ready, true);
2840                ++vcpu->stat.halt_wakeup;
2841                return true;
2842        }
2843
2844        return false;
2845}
2846EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2847
2848#ifndef CONFIG_S390
2849/*
2850 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2851 */
2852void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2853{
2854        int me;
2855        int cpu = vcpu->cpu;
2856
2857        if (kvm_vcpu_wake_up(vcpu))
2858                return;
2859
2860        me = get_cpu();
2861        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2862                if (kvm_arch_vcpu_should_kick(vcpu))
2863                        smp_send_reschedule(cpu);
2864        put_cpu();
2865}
2866EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2867#endif /* !CONFIG_S390 */
2868
2869int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2870{
2871        struct pid *pid;
2872        struct task_struct *task = NULL;
2873        int ret = 0;
2874
2875        rcu_read_lock();
2876        pid = rcu_dereference(target->pid);
2877        if (pid)
2878                task = get_pid_task(pid, PIDTYPE_PID);
2879        rcu_read_unlock();
2880        if (!task)
2881                return ret;
2882        ret = yield_to(task, 1);
2883        put_task_struct(task);
2884
2885        return ret;
2886}
2887EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2888
2889/*
2890 * Helper that checks whether a VCPU is eligible for directed yield.
2891 * Most eligible candidate to yield is decided by following heuristics:
2892 *
2893 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2894 *  (preempted lock holder), indicated by @in_spin_loop.
2895 *  Set at the beginning and cleared at the end of interception/PLE handler.
2896 *
2897 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2898 *  chance last time (mostly it has become eligible now since we have probably
2899 *  yielded to lockholder in last iteration. This is done by toggling
2900 *  @dy_eligible each time a VCPU checked for eligibility.)
2901 *
2902 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2903 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2904 *  burning. Giving priority for a potential lock-holder increases lock
2905 *  progress.
2906 *
2907 *  Since algorithm is based on heuristics, accessing another VCPU data without
2908 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2909 *  and continue with next VCPU and so on.
2910 */
2911static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2912{
2913#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2914        bool eligible;
2915
2916        eligible = !vcpu->spin_loop.in_spin_loop ||
2917                    vcpu->spin_loop.dy_eligible;
2918
2919        if (vcpu->spin_loop.in_spin_loop)
2920                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2921
2922        return eligible;
2923#else
2924        return true;
2925#endif
2926}
2927
2928/*
2929 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2930 * a vcpu_load/vcpu_put pair.  However, for most architectures
2931 * kvm_arch_vcpu_runnable does not require vcpu_load.
2932 */
2933bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2934{
2935        return kvm_arch_vcpu_runnable(vcpu);
2936}
2937
2938static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2939{
2940        if (kvm_arch_dy_runnable(vcpu))
2941                return true;
2942
2943#ifdef CONFIG_KVM_ASYNC_PF
2944        if (!list_empty_careful(&vcpu->async_pf.done))
2945                return true;
2946#endif
2947
2948        return false;
2949}
2950
2951void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2952{
2953        struct kvm *kvm = me->kvm;
2954        struct kvm_vcpu *vcpu;
2955        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2956        int yielded = 0;
2957        int try = 3;
2958        int pass;
2959        int i;
2960
2961        kvm_vcpu_set_in_spin_loop(me, true);
2962        /*
2963         * We boost the priority of a VCPU that is runnable but not
2964         * currently running, because it got preempted by something
2965         * else and called schedule in __vcpu_run.  Hopefully that
2966         * VCPU is holding the lock that we need and will release it.
2967         * We approximate round-robin by starting at the last boosted VCPU.
2968         */
2969        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2970                kvm_for_each_vcpu(i, vcpu, kvm) {
2971                        if (!pass && i <= last_boosted_vcpu) {
2972                                i = last_boosted_vcpu;
2973                                continue;
2974                        } else if (pass && i > last_boosted_vcpu)
2975                                break;
2976                        if (!READ_ONCE(vcpu->ready))
2977                                continue;
2978                        if (vcpu == me)
2979                                continue;
2980                        if (rcuwait_active(&vcpu->wait) &&
2981                            !vcpu_dy_runnable(vcpu))
2982                                continue;
2983                        if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2984                                !kvm_arch_vcpu_in_kernel(vcpu))
2985                                continue;
2986                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2987                                continue;
2988
2989                        yielded = kvm_vcpu_yield_to(vcpu);
2990                        if (yielded > 0) {
2991                                kvm->last_boosted_vcpu = i;
2992                                break;
2993                        } else if (yielded < 0) {
2994                                try--;
2995                                if (!try)
2996                                        break;
2997                        }
2998                }
2999        }
3000        kvm_vcpu_set_in_spin_loop(me, false);
3001
3002        /* Ensure vcpu is not eligible during next spinloop */
3003        kvm_vcpu_set_dy_eligible(me, false);
3004}
3005EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3006
3007static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3008{
3009        struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3010        struct page *page;
3011
3012        if (vmf->pgoff == 0)
3013                page = virt_to_page(vcpu->run);
3014#ifdef CONFIG_X86
3015        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3016                page = virt_to_page(vcpu->arch.pio_data);
3017#endif
3018#ifdef CONFIG_KVM_MMIO
3019        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3020                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3021#endif
3022        else
3023                return kvm_arch_vcpu_fault(vcpu, vmf);
3024        get_page(page);
3025        vmf->page = page;
3026        return 0;
3027}
3028
3029static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3030        .fault = kvm_vcpu_fault,
3031};
3032
3033static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3034{
3035        vma->vm_ops = &kvm_vcpu_vm_ops;
3036        return 0;
3037}
3038
3039static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3040{
3041        struct kvm_vcpu *vcpu = filp->private_data;
3042
3043        kvm_put_kvm(vcpu->kvm);
3044        return 0;
3045}
3046
3047static struct file_operations kvm_vcpu_fops = {
3048        .release        = kvm_vcpu_release,
3049        .unlocked_ioctl = kvm_vcpu_ioctl,
3050        .mmap           = kvm_vcpu_mmap,
3051        .llseek         = noop_llseek,
3052        KVM_COMPAT(kvm_vcpu_compat_ioctl),
3053};
3054
3055/*
3056 * Allocates an inode for the vcpu.
3057 */
3058static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3059{
3060        char name[8 + 1 + ITOA_MAX_LEN + 1];
3061
3062        snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3063        return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3064}
3065
3066static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3067{
3068#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3069        struct dentry *debugfs_dentry;
3070        char dir_name[ITOA_MAX_LEN * 2];
3071
3072        if (!debugfs_initialized())
3073                return;
3074
3075        snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3076        debugfs_dentry = debugfs_create_dir(dir_name,
3077                                            vcpu->kvm->debugfs_dentry);
3078
3079        kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3080#endif
3081}
3082
3083/*
3084 * Creates some virtual cpus.  Good luck creating more than one.
3085 */
3086static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3087{
3088        int r;
3089        struct kvm_vcpu *vcpu;
3090        struct page *page;
3091
3092        if (id >= KVM_MAX_VCPU_ID)
3093                return -EINVAL;
3094
3095        mutex_lock(&kvm->lock);
3096        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3097                mutex_unlock(&kvm->lock);
3098                return -EINVAL;
3099        }
3100
3101        kvm->created_vcpus++;
3102        mutex_unlock(&kvm->lock);
3103
3104        r = kvm_arch_vcpu_precreate(kvm, id);
3105        if (r)
3106                goto vcpu_decrement;
3107
3108        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3109        if (!vcpu) {
3110                r = -ENOMEM;
3111                goto vcpu_decrement;
3112        }
3113
3114        BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3115        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3116        if (!page) {
3117                r = -ENOMEM;
3118                goto vcpu_free;
3119        }
3120        vcpu->run = page_address(page);
3121
3122        kvm_vcpu_init(vcpu, kvm, id);
3123
3124        r = kvm_arch_vcpu_create(vcpu);
3125        if (r)
3126                goto vcpu_free_run_page;
3127
3128        mutex_lock(&kvm->lock);
3129        if (kvm_get_vcpu_by_id(kvm, id)) {
3130                r = -EEXIST;
3131                goto unlock_vcpu_destroy;
3132        }
3133
3134        vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3135        BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3136
3137        /* Now it's all set up, let userspace reach it */
3138        kvm_get_kvm(kvm);
3139        r = create_vcpu_fd(vcpu);
3140        if (r < 0) {
3141                kvm_put_kvm_no_destroy(kvm);
3142                goto unlock_vcpu_destroy;
3143        }
3144
3145        kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3146
3147        /*
3148         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3149         * before kvm->online_vcpu's incremented value.
3150         */
3151        smp_wmb();
3152        atomic_inc(&kvm->online_vcpus);
3153
3154        mutex_unlock(&kvm->lock);
3155        kvm_arch_vcpu_postcreate(vcpu);
3156        kvm_create_vcpu_debugfs(vcpu);
3157        return r;
3158
3159unlock_vcpu_destroy:
3160        mutex_unlock(&kvm->lock);
3161        kvm_arch_vcpu_destroy(vcpu);
3162vcpu_free_run_page:
3163        free_page((unsigned long)vcpu->run);
3164vcpu_free:
3165        kmem_cache_free(kvm_vcpu_cache, vcpu);
3166vcpu_decrement:
3167        mutex_lock(&kvm->lock);
3168        kvm->created_vcpus--;
3169        mutex_unlock(&kvm->lock);
3170        return r;
3171}
3172
3173static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3174{
3175        if (sigset) {
3176                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3177                vcpu->sigset_active = 1;
3178                vcpu->sigset = *sigset;
3179        } else
3180                vcpu->sigset_active = 0;
3181        return 0;
3182}
3183
3184static long kvm_vcpu_ioctl(struct file *filp,
3185                           unsigned int ioctl, unsigned long arg)
3186{
3187        struct kvm_vcpu *vcpu = filp->private_data;
3188        void __user *argp = (void __user *)arg;
3189        int r;
3190        struct kvm_fpu *fpu = NULL;
3191        struct kvm_sregs *kvm_sregs = NULL;
3192
3193        if (vcpu->kvm->mm != current->mm)
3194                return -EIO;
3195
3196        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3197                return -EINVAL;
3198
3199        /*
3200         * Some architectures have vcpu ioctls that are asynchronous to vcpu
3201         * execution; mutex_lock() would break them.
3202         */
3203        r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3204        if (r != -ENOIOCTLCMD)
3205                return r;
3206
3207        if (mutex_lock_killable(&vcpu->mutex))
3208                return -EINTR;
3209        switch (ioctl) {
3210        case KVM_RUN: {
3211                struct pid *oldpid;
3212                r = -EINVAL;
3213                if (arg)
3214                        goto out;
3215                oldpid = rcu_access_pointer(vcpu->pid);
3216                if (unlikely(oldpid != task_pid(current))) {
3217                        /* The thread running this VCPU changed. */
3218                        struct pid *newpid;
3219
3220                        r = kvm_arch_vcpu_run_pid_change(vcpu);
3221                        if (r)
3222                                break;
3223
3224                        newpid = get_task_pid(current, PIDTYPE_PID);
3225                        rcu_assign_pointer(vcpu->pid, newpid);
3226                        if (oldpid)
3227                                synchronize_rcu();
3228                        put_pid(oldpid);
3229                }
3230                r = kvm_arch_vcpu_ioctl_run(vcpu);
3231                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3232                break;
3233        }
3234        case KVM_GET_REGS: {
3235                struct kvm_regs *kvm_regs;
3236
3237                r = -ENOMEM;
3238                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3239                if (!kvm_regs)
3240                        goto out;
3241                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3242                if (r)
3243                        goto out_free1;
3244                r = -EFAULT;
3245                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3246                        goto out_free1;
3247                r = 0;
3248out_free1:
3249                kfree(kvm_regs);
3250                break;
3251        }
3252        case KVM_SET_REGS: {
3253                struct kvm_regs *kvm_regs;
3254
3255                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3256                if (IS_ERR(kvm_regs)) {
3257                        r = PTR_ERR(kvm_regs);
3258                        goto out;
3259                }
3260                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3261                kfree(kvm_regs);
3262                break;
3263        }
3264        case KVM_GET_SREGS: {
3265                kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3266                                    GFP_KERNEL_ACCOUNT);
3267                r = -ENOMEM;
3268                if (!kvm_sregs)
3269                        goto out;
3270                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3271                if (r)
3272                        goto out;
3273                r = -EFAULT;
3274                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3275                        goto out;
3276                r = 0;
3277                break;
3278        }
3279        case KVM_SET_SREGS: {
3280                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3281                if (IS_ERR(kvm_sregs)) {
3282                        r = PTR_ERR(kvm_sregs);
3283                        kvm_sregs = NULL;
3284                        goto out;
3285                }
3286                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3287                break;
3288        }
3289        case KVM_GET_MP_STATE: {
3290                struct kvm_mp_state mp_state;
3291
3292                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3293                if (r)
3294                        goto out;
3295                r = -EFAULT;
3296                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3297                        goto out;
3298                r = 0;
3299                break;
3300        }
3301        case KVM_SET_MP_STATE: {
3302                struct kvm_mp_state mp_state;
3303
3304                r = -EFAULT;
3305                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3306                        goto out;
3307                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3308                break;
3309        }
3310        case KVM_TRANSLATE: {
3311                struct kvm_translation tr;
3312
3313                r = -EFAULT;
3314                if (copy_from_user(&tr, argp, sizeof(tr)))
3315                        goto out;
3316                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3317                if (r)
3318                        goto out;
3319                r = -EFAULT;
3320                if (copy_to_user(argp, &tr, sizeof(tr)))
3321                        goto out;
3322                r = 0;
3323                break;
3324        }
3325        case KVM_SET_GUEST_DEBUG: {
3326                struct kvm_guest_debug dbg;
3327
3328                r = -EFAULT;
3329                if (copy_from_user(&dbg, argp, sizeof(dbg)))
3330                        goto out;
3331                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3332                break;
3333        }
3334        case KVM_SET_SIGNAL_MASK: {
3335                struct kvm_signal_mask __user *sigmask_arg = argp;
3336                struct kvm_signal_mask kvm_sigmask;
3337                sigset_t sigset, *p;
3338
3339                p = NULL;
3340                if (argp) {
3341                        r = -EFAULT;
3342                        if (copy_from_user(&kvm_sigmask, argp,
3343                                           sizeof(kvm_sigmask)))
3344                                goto out;
3345                        r = -EINVAL;
3346                        if (kvm_sigmask.len != sizeof(sigset))
3347                                goto out;
3348                        r = -EFAULT;
3349                        if (copy_from_user(&sigset, sigmask_arg->sigset,
3350                                           sizeof(sigset)))
3351                                goto out;
3352                        p = &sigset;
3353                }
3354                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3355                break;
3356        }
3357        case KVM_GET_FPU: {
3358                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3359                r = -ENOMEM;
3360                if (!fpu)
3361                        goto out;
3362                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3363                if (r)
3364                        goto out;
3365                r = -EFAULT;
3366                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3367                        goto out;
3368                r = 0;
3369                break;
3370        }
3371        case KVM_SET_FPU: {
3372                fpu = memdup_user(argp, sizeof(*fpu));
3373                if (IS_ERR(fpu)) {
3374                        r = PTR_ERR(fpu);
3375                        fpu = NULL;
3376                        goto out;
3377                }
3378                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3379                break;
3380        }
3381        default:
3382                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3383        }
3384out:
3385        mutex_unlock(&vcpu->mutex);
3386        kfree(fpu);
3387        kfree(kvm_sregs);
3388        return r;
3389}
3390
3391#ifdef CONFIG_KVM_COMPAT
3392static long kvm_vcpu_compat_ioctl(struct file *filp,
3393                                  unsigned int ioctl, unsigned long arg)
3394{
3395        struct kvm_vcpu *vcpu = filp->private_data;
3396        void __user *argp = compat_ptr(arg);
3397        int r;
3398
3399        if (vcpu->kvm->mm != current->mm)
3400                return -EIO;
3401
3402        switch (ioctl) {
3403        case KVM_SET_SIGNAL_MASK: {
3404                struct kvm_signal_mask __user *sigmask_arg = argp;
3405                struct kvm_signal_mask kvm_sigmask;
3406                sigset_t sigset;
3407
3408                if (argp) {
3409                        r = -EFAULT;
3410                        if (copy_from_user(&kvm_sigmask, argp,
3411                                           sizeof(kvm_sigmask)))
3412                                goto out;
3413                        r = -EINVAL;
3414                        if (kvm_sigmask.len != sizeof(compat_sigset_t))
3415                                goto out;
3416                        r = -EFAULT;
3417                        if (get_compat_sigset(&sigset,
3418                                              (compat_sigset_t __user *)sigmask_arg->sigset))
3419                                goto out;
3420                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3421                } else
3422                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3423                break;
3424        }
3425        default:
3426                r = kvm_vcpu_ioctl(filp, ioctl, arg);
3427        }
3428
3429out:
3430        return r;
3431}
3432#endif
3433
3434static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3435{
3436        struct kvm_device *dev = filp->private_data;
3437
3438        if (dev->ops->mmap)
3439                return dev->ops->mmap(dev, vma);
3440
3441        return -ENODEV;
3442}
3443
3444static int kvm_device_ioctl_attr(struct kvm_device *dev,
3445                                 int (*accessor)(struct kvm_device *dev,
3446                                                 struct kvm_device_attr *attr),
3447                                 unsigned long arg)
3448{
3449        struct kvm_device_attr attr;
3450
3451        if (!accessor)
3452                return -EPERM;
3453
3454        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3455                return -EFAULT;
3456
3457        return accessor(dev, &attr);
3458}
3459
3460static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3461                             unsigned long arg)
3462{
3463        struct kvm_device *dev = filp->private_data;
3464
3465        if (dev->kvm->mm != current->mm)
3466                return -EIO;
3467
3468        switch (ioctl) {
3469        case KVM_SET_DEVICE_ATTR:
3470                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3471        case KVM_GET_DEVICE_ATTR:
3472                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3473        case KVM_HAS_DEVICE_ATTR:
3474                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3475        default:
3476                if (dev->ops->ioctl)
3477                        return dev->ops->ioctl(dev, ioctl, arg);
3478
3479                return -ENOTTY;
3480        }
3481}
3482
3483static int kvm_device_release(struct inode *inode, struct file *filp)
3484{
3485        struct kvm_device *dev = filp->private_data;
3486        struct kvm *kvm = dev->kvm;
3487
3488        if (dev->ops->release) {
3489                mutex_lock(&kvm->lock);
3490                list_del(&dev->vm_node);
3491                dev->ops->release(dev);
3492                mutex_unlock(&kvm->lock);
3493        }
3494
3495        kvm_put_kvm(kvm);
3496        return 0;
3497}
3498
3499static const struct file_operations kvm_device_fops = {
3500        .unlocked_ioctl = kvm_device_ioctl,
3501        .release = kvm_device_release,
3502        KVM_COMPAT(kvm_device_ioctl),
3503        .mmap = kvm_device_mmap,
3504};
3505
3506struct kvm_device *kvm_device_from_filp(struct file *filp)
3507{
3508        if (filp->f_op != &kvm_device_fops)
3509                return NULL;
3510
3511        return filp->private_data;
3512}
3513
3514static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3515#ifdef CONFIG_KVM_MPIC
3516        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3517        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3518#endif
3519};
3520
3521int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3522{
3523        if (type >= ARRAY_SIZE(kvm_device_ops_table))
3524                return -ENOSPC;
3525
3526        if (kvm_device_ops_table[type] != NULL)
3527                return -EEXIST;
3528
3529        kvm_device_ops_table[type] = ops;
3530        return 0;
3531}
3532
3533void kvm_unregister_device_ops(u32 type)
3534{
3535        if (kvm_device_ops_table[type] != NULL)
3536                kvm_device_ops_table[type] = NULL;
3537}
3538
3539static int kvm_ioctl_create_device(struct kvm *kvm,
3540                                   struct kvm_create_device *cd)
3541{
3542        const struct kvm_device_ops *ops = NULL;
3543        struct kvm_device *dev;
3544        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3545        int type;
3546        int ret;
3547
3548        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3549                return -ENODEV;
3550
3551        type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3552        ops = kvm_device_ops_table[type];
3553        if (ops == NULL)
3554                return -ENODEV;
3555
3556        if (test)
3557                return 0;
3558
3559        dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3560        if (!dev)
3561                return -ENOMEM;
3562
3563        dev->ops = ops;
3564        dev->kvm = kvm;
3565
3566        mutex_lock(&kvm->lock);
3567        ret = ops->create(dev, type);
3568        if (ret < 0) {
3569                mutex_unlock(&kvm->lock);
3570                kfree(dev);
3571                return ret;
3572        }
3573        list_add(&dev->vm_node, &kvm->devices);
3574        mutex_unlock(&kvm->lock);
3575
3576        if (ops->init)
3577                ops->init(dev);
3578
3579        kvm_get_kvm(kvm);
3580        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3581        if (ret < 0) {
3582                kvm_put_kvm_no_destroy(kvm);
3583                mutex_lock(&kvm->lock);
3584                list_del(&dev->vm_node);
3585                mutex_unlock(&kvm->lock);
3586                ops->destroy(dev);
3587                return ret;
3588        }
3589
3590        cd->fd = ret;
3591        return 0;
3592}
3593
3594static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3595{
3596        switch (arg) {
3597        case KVM_CAP_USER_MEMORY:
3598        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3599        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3600        case KVM_CAP_INTERNAL_ERROR_DATA:
3601#ifdef CONFIG_HAVE_KVM_MSI
3602        case KVM_CAP_SIGNAL_MSI:
3603#endif
3604#ifdef CONFIG_HAVE_KVM_IRQFD
3605        case KVM_CAP_IRQFD:
3606        case KVM_CAP_IRQFD_RESAMPLE:
3607#endif
3608        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3609        case KVM_CAP_CHECK_EXTENSION_VM:
3610        case KVM_CAP_ENABLE_CAP_VM:
3611        case KVM_CAP_HALT_POLL:
3612                return 1;
3613#ifdef CONFIG_KVM_MMIO
3614        case KVM_CAP_COALESCED_MMIO:
3615                return KVM_COALESCED_MMIO_PAGE_OFFSET;
3616        case KVM_CAP_COALESCED_PIO:
3617                return 1;
3618#endif
3619#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3620        case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3621                return KVM_DIRTY_LOG_MANUAL_CAPS;
3622#endif
3623#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3624        case KVM_CAP_IRQ_ROUTING:
3625                return KVM_MAX_IRQ_ROUTES;
3626#endif
3627#if KVM_ADDRESS_SPACE_NUM > 1
3628        case KVM_CAP_MULTI_ADDRESS_SPACE:
3629                return KVM_ADDRESS_SPACE_NUM;
3630#endif
3631        case KVM_CAP_NR_MEMSLOTS:
3632                return KVM_USER_MEM_SLOTS;
3633        default:
3634                break;
3635        }
3636        return kvm_vm_ioctl_check_extension(kvm, arg);
3637}
3638
3639int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3640                                                  struct kvm_enable_cap *cap)
3641{
3642        return -EINVAL;
3643}
3644
3645static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3646                                           struct kvm_enable_cap *cap)
3647{
3648        switch (cap->cap) {
3649#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3650        case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3651                u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3652
3653                if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3654                        allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3655
3656                if (cap->flags || (cap->args[0] & ~allowed_options))
3657                        return -EINVAL;
3658                kvm->manual_dirty_log_protect = cap->args[0];
3659                return 0;
3660        }
3661#endif
3662        case KVM_CAP_HALT_POLL: {
3663                if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3664                        return -EINVAL;
3665
3666                kvm->max_halt_poll_ns = cap->args[0];
3667                return 0;
3668        }
3669        default:
3670                return kvm_vm_ioctl_enable_cap(kvm, cap);
3671        }
3672}
3673
3674static long kvm_vm_ioctl(struct file *filp,
3675                           unsigned int ioctl, unsigned long arg)
3676{
3677        struct kvm *kvm = filp->private_data;
3678        void __user *argp = (void __user *)arg;
3679        int r;
3680
3681        if (kvm->mm != current->mm)
3682                return -EIO;
3683        switch (ioctl) {
3684        case KVM_CREATE_VCPU:
3685                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3686                break;
3687        case KVM_ENABLE_CAP: {
3688                struct kvm_enable_cap cap;
3689
3690                r = -EFAULT;
3691                if (copy_from_user(&cap, argp, sizeof(cap)))
3692                        goto out;
3693                r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3694                break;
3695        }
3696        case KVM_SET_USER_MEMORY_REGION: {
3697                struct kvm_userspace_memory_region kvm_userspace_mem;
3698
3699                r = -EFAULT;
3700                if (copy_from_user(&kvm_userspace_mem, argp,
3701                                                sizeof(kvm_userspace_mem)))
3702                        goto out;
3703
3704                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3705                break;
3706        }
3707        case KVM_GET_DIRTY_LOG: {
3708                struct kvm_dirty_log log;
3709
3710                r = -EFAULT;
3711                if (copy_from_user(&log, argp, sizeof(log)))
3712                        goto out;
3713                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3714                break;
3715        }
3716#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3717        case KVM_CLEAR_DIRTY_LOG: {
3718                struct kvm_clear_dirty_log log;
3719
3720                r = -EFAULT;
3721                if (copy_from_user(&log, argp, sizeof(log)))
3722                        goto out;
3723                r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3724                break;
3725        }
3726#endif
3727#ifdef CONFIG_KVM_MMIO
3728        case KVM_REGISTER_COALESCED_MMIO: {
3729                struct kvm_coalesced_mmio_zone zone;
3730
3731                r = -EFAULT;
3732                if (copy_from_user(&zone, argp, sizeof(zone)))
3733                        goto out;
3734                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3735                break;
3736        }
3737        case KVM_UNREGISTER_COALESCED_MMIO: {
3738                struct kvm_coalesced_mmio_zone zone;
3739
3740                r = -EFAULT;
3741                if (copy_from_user(&zone, argp, sizeof(zone)))
3742                        goto out;
3743                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3744                break;
3745        }
3746#endif
3747        case KVM_IRQFD: {
3748                struct kvm_irqfd data;
3749
3750                r = -EFAULT;
3751                if (copy_from_user(&data, argp, sizeof(data)))
3752                        goto out;
3753                r = kvm_irqfd(kvm, &data);
3754                break;
3755        }
3756        case KVM_IOEVENTFD: {
3757                struct kvm_ioeventfd data;
3758
3759                r = -EFAULT;
3760                if (copy_from_user(&data, argp, sizeof(data)))
3761                        goto out;
3762                r = kvm_ioeventfd(kvm, &data);
3763                break;
3764        }
3765#ifdef CONFIG_HAVE_KVM_MSI
3766        case KVM_SIGNAL_MSI: {
3767                struct kvm_msi msi;
3768
3769                r = -EFAULT;
3770                if (copy_from_user(&msi, argp, sizeof(msi)))
3771                        goto out;
3772                r = kvm_send_userspace_msi(kvm, &msi);
3773                break;
3774        }
3775#endif
3776#ifdef __KVM_HAVE_IRQ_LINE
3777        case KVM_IRQ_LINE_STATUS:
3778        case KVM_IRQ_LINE: {
3779                struct kvm_irq_level irq_event;
3780
3781                r = -EFAULT;
3782                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3783                        goto out;
3784
3785                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3786                                        ioctl == KVM_IRQ_LINE_STATUS);
3787                if (r)
3788                        goto out;
3789
3790                r = -EFAULT;
3791                if (ioctl == KVM_IRQ_LINE_STATUS) {
3792                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3793                                goto out;
3794                }
3795
3796                r = 0;
3797                break;
3798        }
3799#endif
3800#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3801        case KVM_SET_GSI_ROUTING: {
3802                struct kvm_irq_routing routing;
3803                struct kvm_irq_routing __user *urouting;
3804                struct kvm_irq_routing_entry *entries = NULL;
3805
3806                r = -EFAULT;
3807                if (copy_from_user(&routing, argp, sizeof(routing)))
3808                        goto out;
3809                r = -EINVAL;
3810                if (!kvm_arch_can_set_irq_routing(kvm))
3811                        goto out;
3812                if (routing.nr > KVM_MAX_IRQ_ROUTES)
3813                        goto out;
3814                if (routing.flags)
3815                        goto out;
3816                if (routing.nr) {
3817                        urouting = argp;
3818                        entries = vmemdup_user(urouting->entries,
3819                                               array_size(sizeof(*entries),
3820                                                          routing.nr));
3821                        if (IS_ERR(entries)) {
3822                                r = PTR_ERR(entries);
3823                                goto out;
3824                        }
3825                }
3826                r = kvm_set_irq_routing(kvm, entries, routing.nr,
3827                                        routing.flags);
3828                kvfree(entries);
3829                break;
3830        }
3831#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3832        case KVM_CREATE_DEVICE: {
3833                struct kvm_create_device cd;
3834
3835                r = -EFAULT;
3836                if (copy_from_user(&cd, argp, sizeof(cd)))
3837                        goto out;
3838
3839                r = kvm_ioctl_create_device(kvm, &cd);
3840                if (r)
3841                        goto out;
3842
3843                r = -EFAULT;
3844                if (copy_to_user(argp, &cd, sizeof(cd)))
3845                        goto out;
3846
3847                r = 0;
3848                break;
3849        }
3850        case KVM_CHECK_EXTENSION:
3851                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3852                break;
3853        default:
3854                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3855        }
3856out:
3857        return r;
3858}
3859
3860#ifdef CONFIG_KVM_COMPAT
3861struct compat_kvm_dirty_log {
3862        __u32 slot;
3863        __u32 padding1;
3864        union {
3865                compat_uptr_t dirty_bitmap; /* one bit per page */
3866                __u64 padding2;
3867        };
3868};
3869
3870static long kvm_vm_compat_ioctl(struct file *filp,
3871                           unsigned int ioctl, unsigned long arg)
3872{
3873        struct kvm *kvm = filp->private_data;
3874        int r;
3875
3876        if (kvm->mm != current->mm)
3877                return -EIO;
3878        switch (ioctl) {
3879        case KVM_GET_DIRTY_LOG: {
3880                struct compat_kvm_dirty_log compat_log;
3881                struct kvm_dirty_log log;
3882
3883                if (copy_from_user(&compat_log, (void __user *)arg,
3884                                   sizeof(compat_log)))
3885                        return -EFAULT;
3886                log.slot         = compat_log.slot;
3887                log.padding1     = compat_log.padding1;
3888                log.padding2     = compat_log.padding2;
3889                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3890
3891                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3892                break;
3893        }
3894        default:
3895                r = kvm_vm_ioctl(filp, ioctl, arg);
3896        }
3897        return r;
3898}
3899#endif
3900
3901static struct file_operations kvm_vm_fops = {
3902        .release        = kvm_vm_release,
3903        .unlocked_ioctl = kvm_vm_ioctl,
3904        .llseek         = noop_llseek,
3905        KVM_COMPAT(kvm_vm_compat_ioctl),
3906};
3907
3908static int kvm_dev_ioctl_create_vm(unsigned long type)
3909{
3910        int r;
3911        struct kvm *kvm;
3912        struct file *file;
3913
3914        kvm = kvm_create_vm(type);
3915        if (IS_ERR(kvm))
3916                return PTR_ERR(kvm);
3917#ifdef CONFIG_KVM_MMIO
3918        r = kvm_coalesced_mmio_init(kvm);
3919        if (r < 0)
3920                goto put_kvm;
3921#endif
3922        r = get_unused_fd_flags(O_CLOEXEC);
3923        if (r < 0)
3924                goto put_kvm;
3925
3926        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3927        if (IS_ERR(file)) {
3928                put_unused_fd(r);
3929                r = PTR_ERR(file);
3930                goto put_kvm;
3931        }
3932
3933        /*
3934         * Don't call kvm_put_kvm anymore at this point; file->f_op is
3935         * already set, with ->release() being kvm_vm_release().  In error
3936         * cases it will be called by the final fput(file) and will take
3937         * care of doing kvm_put_kvm(kvm).
3938         */
3939        if (kvm_create_vm_debugfs(kvm, r) < 0) {
3940                put_unused_fd(r);
3941                fput(file);
3942                return -ENOMEM;
3943        }
3944        kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3945
3946        fd_install(r, file);
3947        return r;
3948
3949put_kvm:
3950        kvm_put_kvm(kvm);
3951        return r;
3952}
3953
3954static long kvm_dev_ioctl(struct file *filp,
3955                          unsigned int ioctl, unsigned long arg)
3956{
3957        long r = -EINVAL;
3958
3959        switch (ioctl) {
3960        case KVM_GET_API_VERSION:
3961                if (arg)
3962                        goto out;
3963                r = KVM_API_VERSION;
3964                break;
3965        case KVM_CREATE_VM:
3966                r = kvm_dev_ioctl_create_vm(arg);
3967                break;
3968        case KVM_CHECK_EXTENSION:
3969                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3970                break;
3971        case KVM_GET_VCPU_MMAP_SIZE:
3972                if (arg)
3973                        goto out;
3974                r = PAGE_SIZE;     /* struct kvm_run */
3975#ifdef CONFIG_X86
3976                r += PAGE_SIZE;    /* pio data page */
3977#endif
3978#ifdef CONFIG_KVM_MMIO
3979                r += PAGE_SIZE;    /* coalesced mmio ring page */
3980#endif
3981                break;
3982        case KVM_TRACE_ENABLE:
3983        case KVM_TRACE_PAUSE:
3984        case KVM_TRACE_DISABLE:
3985                r = -EOPNOTSUPP;
3986                break;
3987        default:
3988                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3989        }
3990out:
3991        return r;
3992}
3993
3994static struct file_operations kvm_chardev_ops = {
3995        .unlocked_ioctl = kvm_dev_ioctl,
3996        .llseek         = noop_llseek,
3997        KVM_COMPAT(kvm_dev_ioctl),
3998};
3999
4000static struct miscdevice kvm_dev = {
4001        KVM_MINOR,
4002        "kvm",
4003        &kvm_chardev_ops,
4004};
4005
4006static void hardware_enable_nolock(void *junk)
4007{
4008        int cpu = raw_smp_processor_id();
4009        int r;
4010
4011        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4012                return;
4013
4014        cpumask_set_cpu(cpu, cpus_hardware_enabled);
4015
4016        r = kvm_arch_hardware_enable();
4017
4018        if (r) {
4019                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4020                atomic_inc(&hardware_enable_failed);
4021                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4022        }
4023}
4024
4025static int kvm_starting_cpu(unsigned int cpu)
4026{
4027        raw_spin_lock(&kvm_count_lock);
4028        if (kvm_usage_count)
4029                hardware_enable_nolock(NULL);
4030        raw_spin_unlock(&kvm_count_lock);
4031        return 0;
4032}
4033
4034static void hardware_disable_nolock(void *junk)
4035{
4036        int cpu = raw_smp_processor_id();
4037
4038        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4039                return;
4040        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4041        kvm_arch_hardware_disable();
4042}
4043
4044static int kvm_dying_cpu(unsigned int cpu)
4045{
4046        raw_spin_lock(&kvm_count_lock);
4047        if (kvm_usage_count)
4048                hardware_disable_nolock(NULL);
4049        raw_spin_unlock(&kvm_count_lock);
4050        return 0;
4051}
4052
4053static void hardware_disable_all_nolock(void)
4054{
4055        BUG_ON(!kvm_usage_count);
4056
4057        kvm_usage_count--;
4058        if (!kvm_usage_count)
4059                on_each_cpu(hardware_disable_nolock, NULL, 1);
4060}
4061
4062static void hardware_disable_all(void)
4063{
4064        raw_spin_lock(&kvm_count_lock);
4065        hardware_disable_all_nolock();
4066        raw_spin_unlock(&kvm_count_lock);
4067}
4068
4069static int hardware_enable_all(void)
4070{
4071        int r = 0;
4072
4073        raw_spin_lock(&kvm_count_lock);
4074
4075        kvm_usage_count++;
4076        if (kvm_usage_count == 1) {
4077                atomic_set(&hardware_enable_failed, 0);
4078                on_each_cpu(hardware_enable_nolock, NULL, 1);
4079
4080                if (atomic_read(&hardware_enable_failed)) {
4081                        hardware_disable_all_nolock();
4082                        r = -EBUSY;
4083                }
4084        }
4085
4086        raw_spin_unlock(&kvm_count_lock);
4087
4088        return r;
4089}
4090
4091static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4092                      void *v)
4093{
4094        /*
4095         * Some (well, at least mine) BIOSes hang on reboot if
4096         * in vmx root mode.
4097         *
4098         * And Intel TXT required VMX off for all cpu when system shutdown.
4099         */
4100        pr_info("kvm: exiting hardware virtualization\n");
4101        kvm_rebooting = true;
4102        on_each_cpu(hardware_disable_nolock, NULL, 1);
4103        return NOTIFY_OK;
4104}
4105
4106static struct notifier_block kvm_reboot_notifier = {
4107        .notifier_call = kvm_reboot,
4108        .priority = 0,
4109};
4110
4111static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4112{
4113        int i;
4114
4115        for (i = 0; i < bus->dev_count; i++) {
4116                struct kvm_io_device *pos = bus->range[i].dev;
4117
4118                kvm_iodevice_destructor(pos);
4119        }
4120        kfree(bus);
4121}
4122
4123static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4124                                 const struct kvm_io_range *r2)
4125{
4126        gpa_t addr1 = r1->addr;
4127        gpa_t addr2 = r2->addr;
4128
4129        if (addr1 < addr2)
4130                return -1;
4131
4132        /* If r2->len == 0, match the exact address.  If r2->len != 0,
4133         * accept any overlapping write.  Any order is acceptable for
4134         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4135         * we process all of them.
4136         */
4137        if (r2->len) {
4138                addr1 += r1->len;
4139                addr2 += r2->len;
4140        }
4141
4142        if (addr1 > addr2)
4143                return 1;
4144
4145        return 0;
4146}
4147
4148static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4149{
4150        return kvm_io_bus_cmp(p1, p2);
4151}
4152
4153static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4154                             gpa_t addr, int len)
4155{
4156        struct kvm_io_range *range, key;
4157        int off;
4158
4159        key = (struct kvm_io_range) {
4160                .addr = addr,
4161                .len = len,
4162        };
4163
4164        range = bsearch(&key, bus->range, bus->dev_count,
4165                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4166        if (range == NULL)
4167                return -ENOENT;
4168
4169        off = range - bus->range;
4170
4171        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4172                off--;
4173
4174        return off;
4175}
4176
4177static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4178                              struct kvm_io_range *range, const void *val)
4179{
4180        int idx;
4181
4182        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4183        if (idx < 0)
4184                return -EOPNOTSUPP;
4185
4186        while (idx < bus->dev_count &&
4187                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4188                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4189                                        range->len, val))
4190                        return idx;
4191                idx++;
4192        }
4193
4194        return -EOPNOTSUPP;
4195}
4196
4197/* kvm_io_bus_write - called under kvm->slots_lock */
4198int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4199                     int len, const void *val)
4200{
4201        struct kvm_io_bus *bus;
4202        struct kvm_io_range range;
4203        int r;
4204
4205        range = (struct kvm_io_range) {
4206                .addr = addr,
4207                .len = len,
4208        };
4209
4210        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4211        if (!bus)
4212                return -ENOMEM;
4213        r = __kvm_io_bus_write(vcpu, bus, &range, val);
4214        return r < 0 ? r : 0;
4215}
4216EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4217
4218/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4219int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4220                            gpa_t addr, int len, const void *val, long cookie)
4221{
4222        struct kvm_io_bus *bus;
4223        struct kvm_io_range range;
4224
4225        range = (struct kvm_io_range) {
4226                .addr = addr,
4227                .len = len,
4228        };
4229
4230        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4231        if (!bus)
4232                return -ENOMEM;
4233
4234        /* First try the device referenced by cookie. */
4235        if ((cookie >= 0) && (cookie < bus->dev_count) &&
4236            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4237                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4238                                        val))
4239                        return cookie;
4240
4241        /*
4242         * cookie contained garbage; fall back to search and return the
4243         * correct cookie value.
4244         */
4245        return __kvm_io_bus_write(vcpu, bus, &range, val);
4246}
4247
4248static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4249                             struct kvm_io_range *range, void *val)
4250{
4251        int idx;
4252
4253        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4254        if (idx < 0)
4255                return -EOPNOTSUPP;
4256
4257        while (idx < bus->dev_count &&
4258                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4259                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4260                                       range->len, val))
4261                        return idx;
4262                idx++;
4263        }
4264
4265        return -EOPNOTSUPP;
4266}
4267
4268/* kvm_io_bus_read - called under kvm->slots_lock */
4269int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4270                    int len, void *val)
4271{
4272        struct kvm_io_bus *bus;
4273        struct kvm_io_range range;
4274        int r;
4275
4276        range = (struct kvm_io_range) {
4277                .addr = addr,
4278                .len = len,
4279        };
4280
4281        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4282        if (!bus)
4283                return -ENOMEM;
4284        r = __kvm_io_bus_read(vcpu, bus, &range, val);
4285        return r < 0 ? r : 0;
4286}
4287
4288/* Caller must hold slots_lock. */
4289int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4290                            int len, struct kvm_io_device *dev)
4291{
4292        int i;
4293        struct kvm_io_bus *new_bus, *bus;
4294        struct kvm_io_range range;
4295
4296        bus = kvm_get_bus(kvm, bus_idx);
4297        if (!bus)
4298                return -ENOMEM;
4299
4300        /* exclude ioeventfd which is limited by maximum fd */
4301        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4302                return -ENOSPC;
4303
4304        new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4305                          GFP_KERNEL_ACCOUNT);
4306        if (!new_bus)
4307                return -ENOMEM;
4308
4309        range = (struct kvm_io_range) {
4310                .addr = addr,
4311                .len = len,
4312                .dev = dev,
4313        };
4314
4315        for (i = 0; i < bus->dev_count; i++)
4316                if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4317                        break;
4318
4319        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4320        new_bus->dev_count++;
4321        new_bus->range[i] = range;
4322        memcpy(new_bus->range + i + 1, bus->range + i,
4323                (bus->dev_count - i) * sizeof(struct kvm_io_range));
4324        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4325        synchronize_srcu_expedited(&kvm->srcu);
4326        kfree(bus);
4327
4328        return 0;
4329}
4330
4331/* Caller must hold slots_lock. */
4332void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4333                               struct kvm_io_device *dev)
4334{
4335        int i, j;
4336        struct kvm_io_bus *new_bus, *bus;
4337
4338        bus = kvm_get_bus(kvm, bus_idx);
4339        if (!bus)
4340                return;
4341
4342        for (i = 0; i < bus->dev_count; i++)
4343                if (bus->range[i].dev == dev) {
4344                        break;
4345                }
4346
4347        if (i == bus->dev_count)
4348                return;
4349
4350        new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4351                          GFP_KERNEL_ACCOUNT);
4352        if (new_bus) {
4353                memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4354                new_bus->dev_count--;
4355                memcpy(new_bus->range + i, bus->range + i + 1,
4356                       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4357        } else {
4358                pr_err("kvm: failed to shrink bus, removing it completely\n");
4359                for (j = 0; j < bus->dev_count; j++) {
4360                        if (j == i)
4361                                continue;
4362                        kvm_iodevice_destructor(bus->range[j].dev);
4363                }
4364        }
4365
4366        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4367        synchronize_srcu_expedited(&kvm->srcu);
4368        kfree(bus);
4369        return;
4370}
4371
4372struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4373                                         gpa_t addr)
4374{
4375        struct kvm_io_bus *bus;
4376        int dev_idx, srcu_idx;
4377        struct kvm_io_device *iodev = NULL;
4378
4379        srcu_idx = srcu_read_lock(&kvm->srcu);
4380
4381        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4382        if (!bus)
4383                goto out_unlock;
4384
4385        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4386        if (dev_idx < 0)
4387                goto out_unlock;
4388
4389        iodev = bus->range[dev_idx].dev;
4390
4391out_unlock:
4392        srcu_read_unlock(&kvm->srcu, srcu_idx);
4393
4394        return iodev;
4395}
4396EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4397
4398static int kvm_debugfs_open(struct inode *inode, struct file *file,
4399                           int (*get)(void *, u64 *), int (*set)(void *, u64),
4400                           const char *fmt)
4401{
4402        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4403                                          inode->i_private;
4404
4405        /* The debugfs files are a reference to the kvm struct which
4406         * is still valid when kvm_destroy_vm is called.
4407         * To avoid the race between open and the removal of the debugfs
4408         * directory we test against the users count.
4409         */
4410        if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4411                return -ENOENT;
4412
4413        if (simple_attr_open(inode, file, get,
4414                    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4415                    ? set : NULL,
4416                    fmt)) {
4417                kvm_put_kvm(stat_data->kvm);
4418                return -ENOMEM;
4419        }
4420
4421        return 0;
4422}
4423
4424static int kvm_debugfs_release(struct inode *inode, struct file *file)
4425{
4426        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4427                                          inode->i_private;
4428
4429        simple_attr_release(inode, file);
4430        kvm_put_kvm(stat_data->kvm);
4431
4432        return 0;
4433}
4434
4435static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4436{
4437        *val = *(ulong *)((void *)kvm + offset);
4438
4439        return 0;
4440}
4441
4442static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4443{
4444        *(ulong *)((void *)kvm + offset) = 0;
4445
4446        return 0;
4447}
4448
4449static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4450{
4451        int i;
4452        struct kvm_vcpu *vcpu;
4453
4454        *val = 0;
4455
4456        kvm_for_each_vcpu(i, vcpu, kvm)
4457                *val += *(u64 *)((void *)vcpu + offset);
4458
4459        return 0;
4460}
4461
4462static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4463{
4464        int i;
4465        struct kvm_vcpu *vcpu;
4466
4467        kvm_for_each_vcpu(i, vcpu, kvm)
4468                *(u64 *)((void *)vcpu + offset) = 0;
4469
4470        return 0;
4471}
4472
4473static int kvm_stat_data_get(void *data, u64 *val)
4474{
4475        int r = -EFAULT;
4476        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4477
4478        switch (stat_data->dbgfs_item->kind) {
4479        case KVM_STAT_VM:
4480                r = kvm_get_stat_per_vm(stat_data->kvm,
4481                                        stat_data->dbgfs_item->offset, val);
4482                break;
4483        case KVM_STAT_VCPU:
4484                r = kvm_get_stat_per_vcpu(stat_data->kvm,
4485                                          stat_data->dbgfs_item->offset, val);
4486                break;
4487        }
4488
4489        return r;
4490}
4491
4492static int kvm_stat_data_clear(void *data, u64 val)
4493{
4494        int r = -EFAULT;
4495        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4496
4497        if (val)
4498                return -EINVAL;
4499
4500        switch (stat_data->dbgfs_item->kind) {
4501        case KVM_STAT_VM:
4502                r = kvm_clear_stat_per_vm(stat_data->kvm,
4503                                          stat_data->dbgfs_item->offset);
4504                break;
4505        case KVM_STAT_VCPU:
4506                r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4507                                            stat_data->dbgfs_item->offset);
4508                break;
4509        }
4510
4511        return r;
4512}
4513
4514static int kvm_stat_data_open(struct inode *inode, struct file *file)
4515{
4516        __simple_attr_check_format("%llu\n", 0ull);
4517        return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4518                                kvm_stat_data_clear, "%llu\n");
4519}
4520
4521static const struct file_operations stat_fops_per_vm = {
4522        .owner = THIS_MODULE,
4523        .open = kvm_stat_data_open,
4524        .release = kvm_debugfs_release,
4525        .read = simple_attr_read,
4526        .write = simple_attr_write,
4527        .llseek = no_llseek,
4528};
4529
4530static int vm_stat_get(void *_offset, u64 *val)
4531{
4532        unsigned offset = (long)_offset;
4533        struct kvm *kvm;
4534        u64 tmp_val;
4535
4536        *val = 0;
4537        mutex_lock(&kvm_lock);
4538        list_for_each_entry(kvm, &vm_list, vm_list) {
4539                kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4540                *val += tmp_val;
4541        }
4542        mutex_unlock(&kvm_lock);
4543        return 0;
4544}
4545
4546static int vm_stat_clear(void *_offset, u64 val)
4547{
4548        unsigned offset = (long)_offset;
4549        struct kvm *kvm;
4550
4551        if (val)
4552                return -EINVAL;
4553
4554        mutex_lock(&kvm_lock);
4555        list_for_each_entry(kvm, &vm_list, vm_list) {
4556                kvm_clear_stat_per_vm(kvm, offset);
4557        }
4558        mutex_unlock(&kvm_lock);
4559
4560        return 0;
4561}
4562
4563DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4564
4565static int vcpu_stat_get(void *_offset, u64 *val)
4566{
4567        unsigned offset = (long)_offset;
4568        struct kvm *kvm;
4569        u64 tmp_val;
4570
4571        *val = 0;
4572        mutex_lock(&kvm_lock);
4573        list_for_each_entry(kvm, &vm_list, vm_list) {
4574                kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4575                *val += tmp_val;
4576        }
4577        mutex_unlock(&kvm_lock);
4578        return 0;
4579}
4580
4581static int vcpu_stat_clear(void *_offset, u64 val)
4582{
4583        unsigned offset = (long)_offset;
4584        struct kvm *kvm;
4585
4586        if (val)
4587                return -EINVAL;
4588
4589        mutex_lock(&kvm_lock);
4590        list_for_each_entry(kvm, &vm_list, vm_list) {
4591                kvm_clear_stat_per_vcpu(kvm, offset);
4592        }
4593        mutex_unlock(&kvm_lock);
4594
4595        return 0;
4596}
4597
4598DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4599                        "%llu\n");
4600
4601static const struct file_operations *stat_fops[] = {
4602        [KVM_STAT_VCPU] = &vcpu_stat_fops,
4603        [KVM_STAT_VM]   = &vm_stat_fops,
4604};
4605
4606static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4607{
4608        struct kobj_uevent_env *env;
4609        unsigned long long created, active;
4610
4611        if (!kvm_dev.this_device || !kvm)
4612                return;
4613
4614        mutex_lock(&kvm_lock);
4615        if (type == KVM_EVENT_CREATE_VM) {
4616                kvm_createvm_count++;
4617                kvm_active_vms++;
4618        } else if (type == KVM_EVENT_DESTROY_VM) {
4619                kvm_active_vms--;
4620        }
4621        created = kvm_createvm_count;
4622        active = kvm_active_vms;
4623        mutex_unlock(&kvm_lock);
4624
4625        env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4626        if (!env)
4627                return;
4628
4629        add_uevent_var(env, "CREATED=%llu", created);
4630        add_uevent_var(env, "COUNT=%llu", active);
4631
4632        if (type == KVM_EVENT_CREATE_VM) {
4633                add_uevent_var(env, "EVENT=create");
4634                kvm->userspace_pid = task_pid_nr(current);
4635        } else if (type == KVM_EVENT_DESTROY_VM) {
4636                add_uevent_var(env, "EVENT=destroy");
4637        }
4638        add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4639
4640        if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4641                char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4642
4643                if (p) {
4644                        tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4645                        if (!IS_ERR(tmp))
4646                                add_uevent_var(env, "STATS_PATH=%s", tmp);
4647                        kfree(p);
4648                }
4649        }
4650        /* no need for checks, since we are adding at most only 5 keys */
4651        env->envp[env->envp_idx++] = NULL;
4652        kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4653        kfree(env);
4654}
4655
4656static void kvm_init_debug(void)
4657{
4658        struct kvm_stats_debugfs_item *p;
4659
4660        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4661
4662        kvm_debugfs_num_entries = 0;
4663        for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4664                debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4665                                    kvm_debugfs_dir, (void *)(long)p->offset,
4666                                    stat_fops[p->kind]);
4667        }
4668}
4669
4670static int kvm_suspend(void)
4671{
4672        if (kvm_usage_count)
4673                hardware_disable_nolock(NULL);
4674        return 0;
4675}
4676
4677static void kvm_resume(void)
4678{
4679        if (kvm_usage_count) {
4680#ifdef CONFIG_LOCKDEP
4681                WARN_ON(lockdep_is_held(&kvm_count_lock));
4682#endif
4683                hardware_enable_nolock(NULL);
4684        }
4685}
4686
4687static struct syscore_ops kvm_syscore_ops = {
4688        .suspend = kvm_suspend,
4689        .resume = kvm_resume,
4690};
4691
4692static inline
4693struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4694{
4695        return container_of(pn, struct kvm_vcpu, preempt_notifier);
4696}
4697
4698static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4699{
4700        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4701
4702        WRITE_ONCE(vcpu->preempted, false);
4703        WRITE_ONCE(vcpu->ready, false);
4704
4705        __this_cpu_write(kvm_running_vcpu, vcpu);
4706        kvm_arch_sched_in(vcpu, cpu);
4707        kvm_arch_vcpu_load(vcpu, cpu);
4708}
4709
4710static void kvm_sched_out(struct preempt_notifier *pn,
4711                          struct task_struct *next)
4712{
4713        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4714
4715        if (current->state == TASK_RUNNING) {
4716                WRITE_ONCE(vcpu->preempted, true);
4717                WRITE_ONCE(vcpu->ready, true);
4718        }
4719        kvm_arch_vcpu_put(vcpu);
4720        __this_cpu_write(kvm_running_vcpu, NULL);
4721}
4722
4723/**
4724 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4725 *
4726 * We can disable preemption locally around accessing the per-CPU variable,
4727 * and use the resolved vcpu pointer after enabling preemption again,
4728 * because even if the current thread is migrated to another CPU, reading
4729 * the per-CPU value later will give us the same value as we update the
4730 * per-CPU variable in the preempt notifier handlers.
4731 */
4732struct kvm_vcpu *kvm_get_running_vcpu(void)
4733{
4734        struct kvm_vcpu *vcpu;
4735
4736        preempt_disable();
4737        vcpu = __this_cpu_read(kvm_running_vcpu);
4738        preempt_enable();
4739
4740        return vcpu;
4741}
4742EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4743
4744/**
4745 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4746 */
4747struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4748{
4749        return &kvm_running_vcpu;
4750}
4751
4752struct kvm_cpu_compat_check {
4753        void *opaque;
4754        int *ret;
4755};
4756
4757static void check_processor_compat(void *data)
4758{
4759        struct kvm_cpu_compat_check *c = data;
4760
4761        *c->ret = kvm_arch_check_processor_compat(c->opaque);
4762}
4763
4764int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4765                  struct module *module)
4766{
4767        struct kvm_cpu_compat_check c;
4768        int r;
4769        int cpu;
4770
4771        r = kvm_arch_init(opaque);
4772        if (r)
4773                goto out_fail;
4774
4775        /*
4776         * kvm_arch_init makes sure there's at most one caller
4777         * for architectures that support multiple implementations,
4778         * like intel and amd on x86.
4779         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4780         * conflicts in case kvm is already setup for another implementation.
4781         */
4782        r = kvm_irqfd_init();
4783        if (r)
4784                goto out_irqfd;
4785
4786        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4787                r = -ENOMEM;
4788                goto out_free_0;
4789        }
4790
4791        r = kvm_arch_hardware_setup(opaque);
4792        if (r < 0)
4793                goto out_free_1;
4794
4795        c.ret = &r;
4796        c.opaque = opaque;
4797        for_each_online_cpu(cpu) {
4798                smp_call_function_single(cpu, check_processor_compat, &c, 1);
4799                if (r < 0)
4800                        goto out_free_2;
4801        }
4802
4803        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4804                                      kvm_starting_cpu, kvm_dying_cpu);
4805        if (r)
4806                goto out_free_2;
4807        register_reboot_notifier(&kvm_reboot_notifier);
4808
4809        /* A kmem cache lets us meet the alignment requirements of fx_save. */
4810        if (!vcpu_align)
4811                vcpu_align = __alignof__(struct kvm_vcpu);
4812        kvm_vcpu_cache =
4813                kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4814                                           SLAB_ACCOUNT,
4815                                           offsetof(struct kvm_vcpu, arch),
4816                                           sizeof_field(struct kvm_vcpu, arch),
4817                                           NULL);
4818        if (!kvm_vcpu_cache) {
4819                r = -ENOMEM;
4820                goto out_free_3;
4821        }
4822
4823        r = kvm_async_pf_init();
4824        if (r)
4825                goto out_free;
4826
4827        kvm_chardev_ops.owner = module;
4828        kvm_vm_fops.owner = module;
4829        kvm_vcpu_fops.owner = module;
4830
4831        r = misc_register(&kvm_dev);
4832        if (r) {
4833                pr_err("kvm: misc device register failed\n");
4834                goto out_unreg;
4835        }
4836
4837        register_syscore_ops(&kvm_syscore_ops);
4838
4839        kvm_preempt_ops.sched_in = kvm_sched_in;
4840        kvm_preempt_ops.sched_out = kvm_sched_out;
4841
4842        kvm_init_debug();
4843
4844        r = kvm_vfio_ops_init();
4845        WARN_ON(r);
4846
4847        return 0;
4848
4849out_unreg:
4850        kvm_async_pf_deinit();
4851out_free:
4852        kmem_cache_destroy(kvm_vcpu_cache);
4853out_free_3:
4854        unregister_reboot_notifier(&kvm_reboot_notifier);
4855        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4856out_free_2:
4857        kvm_arch_hardware_unsetup();
4858out_free_1:
4859        free_cpumask_var(cpus_hardware_enabled);
4860out_free_0:
4861        kvm_irqfd_exit();
4862out_irqfd:
4863        kvm_arch_exit();
4864out_fail:
4865        return r;
4866}
4867EXPORT_SYMBOL_GPL(kvm_init);
4868
4869void kvm_exit(void)
4870{
4871        debugfs_remove_recursive(kvm_debugfs_dir);
4872        misc_deregister(&kvm_dev);
4873        kmem_cache_destroy(kvm_vcpu_cache);
4874        kvm_async_pf_deinit();
4875        unregister_syscore_ops(&kvm_syscore_ops);
4876        unregister_reboot_notifier(&kvm_reboot_notifier);
4877        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4878        on_each_cpu(hardware_disable_nolock, NULL, 1);
4879        kvm_arch_hardware_unsetup();
4880        kvm_arch_exit();
4881        kvm_irqfd_exit();
4882        free_cpumask_var(cpus_hardware_enabled);
4883        kvm_vfio_ops_exit();
4884}
4885EXPORT_SYMBOL_GPL(kvm_exit);
4886
4887struct kvm_vm_worker_thread_context {
4888        struct kvm *kvm;
4889        struct task_struct *parent;
4890        struct completion init_done;
4891        kvm_vm_thread_fn_t thread_fn;
4892        uintptr_t data;
4893        int err;
4894};
4895
4896static int kvm_vm_worker_thread(void *context)
4897{
4898        /*
4899         * The init_context is allocated on the stack of the parent thread, so
4900         * we have to locally copy anything that is needed beyond initialization
4901         */
4902        struct kvm_vm_worker_thread_context *init_context = context;
4903        struct kvm *kvm = init_context->kvm;
4904        kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4905        uintptr_t data = init_context->data;
4906        int err;
4907
4908        err = kthread_park(current);
4909        /* kthread_park(current) is never supposed to return an error */
4910        WARN_ON(err != 0);
4911        if (err)
4912                goto init_complete;
4913
4914        err = cgroup_attach_task_all(init_context->parent, current);
4915        if (err) {
4916                kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4917                        __func__, err);
4918                goto init_complete;
4919        }
4920
4921        set_user_nice(current, task_nice(init_context->parent));
4922
4923init_complete:
4924        init_context->err = err;
4925        complete(&init_context->init_done);
4926        init_context = NULL;
4927
4928        if (err)
4929                return err;
4930
4931        /* Wait to be woken up by the spawner before proceeding. */
4932        kthread_parkme();
4933
4934        if (!kthread_should_stop())
4935                err = thread_fn(kvm, data);
4936
4937        return err;
4938}
4939
4940int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4941                                uintptr_t data, const char *name,
4942                                struct task_struct **thread_ptr)
4943{
4944        struct kvm_vm_worker_thread_context init_context = {};
4945        struct task_struct *thread;
4946
4947        *thread_ptr = NULL;
4948        init_context.kvm = kvm;
4949        init_context.parent = current;
4950        init_context.thread_fn = thread_fn;
4951        init_context.data = data;
4952        init_completion(&init_context.init_done);
4953
4954        thread = kthread_run(kvm_vm_worker_thread, &init_context,
4955                             "%s-%d", name, task_pid_nr(current));
4956        if (IS_ERR(thread))
4957                return PTR_ERR(thread);
4958
4959        /* kthread_run is never supposed to return NULL */
4960        WARN_ON(thread == NULL);
4961
4962        wait_for_completion(&init_context.init_done);
4963
4964        if (!init_context.err)
4965                *thread_ptr = thread;
4966
4967        return init_context.err;
4968}
4969