linux/Documentation/static-keys.txt
<<
>>
Prefs
   1                        Static Keys
   2                        -----------
   3
   4DEPRECATED API:
   5
   6The use of 'struct static_key' directly, is now DEPRECATED. In addition
   7static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following:
   8
   9struct static_key false = STATIC_KEY_INIT_FALSE;
  10struct static_key true = STATIC_KEY_INIT_TRUE;
  11static_key_true()
  12static_key_false()
  13
  14The updated API replacements are:
  15
  16DEFINE_STATIC_KEY_TRUE(key);
  17DEFINE_STATIC_KEY_FALSE(key);
  18static_branch_likely()
  19static_branch_unlikely()
  20
  210) Abstract
  22
  23Static keys allows the inclusion of seldom used features in
  24performance-sensitive fast-path kernel code, via a GCC feature and a code
  25patching technique. A quick example:
  26
  27        DEFINE_STATIC_KEY_FALSE(key);
  28
  29        ...
  30
  31        if (static_branch_unlikely(&key))
  32                do unlikely code
  33        else
  34                do likely code
  35
  36        ...
  37        static_branch_enable(&key);
  38        ...
  39        static_branch_disable(&key);
  40        ...
  41
  42The static_branch_unlikely() branch will be generated into the code with as little
  43impact to the likely code path as possible.
  44
  45
  461) Motivation
  47
  48
  49Currently, tracepoints are implemented using a conditional branch. The
  50conditional check requires checking a global variable for each tracepoint.
  51Although the overhead of this check is small, it increases when the memory
  52cache comes under pressure (memory cache lines for these global variables may
  53be shared with other memory accesses). As we increase the number of tracepoints
  54in the kernel this overhead may become more of an issue. In addition,
  55tracepoints are often dormant (disabled) and provide no direct kernel
  56functionality. Thus, it is highly desirable to reduce their impact as much as
  57possible. Although tracepoints are the original motivation for this work, other
  58kernel code paths should be able to make use of the static keys facility.
  59
  60
  612) Solution
  62
  63
  64gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
  65
  66http://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
  67
  68Using the 'asm goto', we can create branches that are either taken or not taken
  69by default, without the need to check memory. Then, at run-time, we can patch
  70the branch site to change the branch direction.
  71
  72For example, if we have a simple branch that is disabled by default:
  73
  74        if (static_branch_unlikely(&key))
  75                printk("I am the true branch\n");
  76
  77Thus, by default the 'printk' will not be emitted. And the code generated will
  78consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
  79straight-line code path. When the branch is 'flipped', we will patch the
  80'no-op' in the straight-line codepath with a 'jump' instruction to the
  81out-of-line true branch. Thus, changing branch direction is expensive but
  82branch selection is basically 'free'. That is the basic tradeoff of this
  83optimization.
  84
  85This lowlevel patching mechanism is called 'jump label patching', and it gives
  86the basis for the static keys facility.
  87
  883) Static key label API, usage and examples:
  89
  90
  91In order to make use of this optimization you must first define a key:
  92
  93        DEFINE_STATIC_KEY_TRUE(key);
  94
  95or:
  96
  97        DEFINE_STATIC_KEY_FALSE(key);
  98
  99
 100The key must be global, that is, it can't be allocated on the stack or dynamically
 101allocated at run-time.
 102
 103The key is then used in code as:
 104
 105        if (static_branch_unlikely(&key))
 106                do unlikely code
 107        else
 108                do likely code
 109
 110Or:
 111
 112        if (static_branch_likely(&key))
 113                do likely code
 114        else
 115                do unlikely code
 116
 117Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may
 118be used in either static_branch_likely() or static_branch_unlikely()
 119statemnts.
 120
 121Branch(es) can be set true via:
 122
 123static_branch_enable(&key);
 124
 125or false via:
 126
 127static_branch_disable(&key);
 128
 129The branch(es) can then be switched via reference counts:
 130
 131        static_branch_inc(&key);
 132        ...
 133        static_branch_dec(&key);
 134
 135Thus, 'static_branch_inc()' means 'make the branch true', and
 136'static_branch_dec()' means 'make the branch false' with appropriate
 137reference counting. For example, if the key is initialized true, a
 138static_branch_dec(), will switch the branch to false. And a subsequent
 139static_branch_inc(), will change the branch back to true. Likewise, if the
 140key is initialized false, a 'static_branch_inc()', will change the branch to
 141true. And then a 'static_branch_dec()', will again make the branch false.
 142
 143
 1444) Architecture level code patching interface, 'jump labels'
 145
 146
 147There are a few functions and macros that architectures must implement in order
 148to take advantage of this optimization. If there is no architecture support, we
 149simply fall back to a traditional, load, test, and jump sequence.
 150
 151* select HAVE_ARCH_JUMP_LABEL, see: arch/x86/Kconfig
 152
 153* #define JUMP_LABEL_NOP_SIZE, see: arch/x86/include/asm/jump_label.h
 154
 155* __always_inline bool arch_static_branch(struct static_key *key, bool branch), see:
 156                                        arch/x86/include/asm/jump_label.h
 157
 158* __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch),
 159                                        see: arch/x86/include/asm/jump_label.h
 160
 161* void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type),
 162                                        see: arch/x86/kernel/jump_label.c
 163
 164* __init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type),
 165                                        see: arch/x86/kernel/jump_label.c
 166
 167
 168* struct jump_entry, see: arch/x86/include/asm/jump_label.h
 169
 170
 1715) Static keys / jump label analysis, results (x86_64):
 172
 173
 174As an example, let's add the following branch to 'getppid()', such that the
 175system call now looks like:
 176
 177SYSCALL_DEFINE0(getppid)
 178{
 179        int pid;
 180
 181+       if (static_branch_unlikely(&key))
 182+               printk("I am the true branch\n");
 183
 184        rcu_read_lock();
 185        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 186        rcu_read_unlock();
 187
 188        return pid;
 189}
 190
 191The resulting instructions with jump labels generated by GCC is:
 192
 193ffffffff81044290 <sys_getppid>:
 194ffffffff81044290:       55                      push   %rbp
 195ffffffff81044291:       48 89 e5                mov    %rsp,%rbp
 196ffffffff81044294:       e9 00 00 00 00          jmpq   ffffffff81044299 <sys_getppid+0x9>
 197ffffffff81044299:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
 198ffffffff810442a0:       00 00
 199ffffffff810442a2:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
 200ffffffff810442a9:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
 201ffffffff810442b0:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
 202ffffffff810442b7:       e8 f4 d9 00 00          callq  ffffffff81051cb0 <pid_vnr>
 203ffffffff810442bc:       5d                      pop    %rbp
 204ffffffff810442bd:       48 98                   cltq
 205ffffffff810442bf:       c3                      retq
 206ffffffff810442c0:       48 c7 c7 e3 54 98 81    mov    $0xffffffff819854e3,%rdi
 207ffffffff810442c7:       31 c0                   xor    %eax,%eax
 208ffffffff810442c9:       e8 71 13 6d 00          callq  ffffffff8171563f <printk>
 209ffffffff810442ce:       eb c9                   jmp    ffffffff81044299 <sys_getppid+0x9>
 210
 211Without the jump label optimization it looks like:
 212
 213ffffffff810441f0 <sys_getppid>:
 214ffffffff810441f0:       8b 05 8a 52 d8 00       mov    0xd8528a(%rip),%eax        # ffffffff81dc9480 <key>
 215ffffffff810441f6:       55                      push   %rbp
 216ffffffff810441f7:       48 89 e5                mov    %rsp,%rbp
 217ffffffff810441fa:       85 c0                   test   %eax,%eax
 218ffffffff810441fc:       75 27                   jne    ffffffff81044225 <sys_getppid+0x35>
 219ffffffff810441fe:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
 220ffffffff81044205:       00 00
 221ffffffff81044207:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
 222ffffffff8104420e:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
 223ffffffff81044215:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
 224ffffffff8104421c:       e8 2f da 00 00          callq  ffffffff81051c50 <pid_vnr>
 225ffffffff81044221:       5d                      pop    %rbp
 226ffffffff81044222:       48 98                   cltq
 227ffffffff81044224:       c3                      retq
 228ffffffff81044225:       48 c7 c7 13 53 98 81    mov    $0xffffffff81985313,%rdi
 229ffffffff8104422c:       31 c0                   xor    %eax,%eax
 230ffffffff8104422e:       e8 60 0f 6d 00          callq  ffffffff81715193 <printk>
 231ffffffff81044233:       eb c9                   jmp    ffffffff810441fe <sys_getppid+0xe>
 232ffffffff81044235:       66 66 2e 0f 1f 84 00    data32 nopw %cs:0x0(%rax,%rax,1)
 233ffffffff8104423c:       00 00 00 00
 234
 235Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
 236vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
 237to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
 238label case adds:
 239
 2406 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
 241
 242If we then include the padding bytes, the jump label code saves, 16 total bytes
 243of instruction memory for this small function. In this case the non-jump label
 244function is 80 bytes long. Thus, we have saved 20% of the instruction
 245footprint. We can in fact improve this even further, since the 5-byte no-op
 246really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
 247However, we have not yet implemented optimal no-op sizes (they are currently
 248hard-coded).
 249
 250Since there are a number of static key API uses in the scheduler paths,
 251'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
 252performance improvement. Testing done on 3.3.0-rc2:
 253
 254jump label disabled:
 255
 256 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
 257
 258        855.700314 task-clock                #    0.534 CPUs utilized            ( +-  0.11% )
 259           200,003 context-switches          #    0.234 M/sec                    ( +-  0.00% )
 260                 0 CPU-migrations            #    0.000 M/sec                    ( +- 39.58% )
 261               487 page-faults               #    0.001 M/sec                    ( +-  0.02% )
 262     1,474,374,262 cycles                    #    1.723 GHz                      ( +-  0.17% )
 263   <not supported> stalled-cycles-frontend
 264   <not supported> stalled-cycles-backend
 265     1,178,049,567 instructions              #    0.80  insns per cycle          ( +-  0.06% )
 266       208,368,926 branches                  #  243.507 M/sec                    ( +-  0.06% )
 267         5,569,188 branch-misses             #    2.67% of all branches          ( +-  0.54% )
 268
 269       1.601607384 seconds time elapsed                                          ( +-  0.07% )
 270
 271jump label enabled:
 272
 273 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
 274
 275        841.043185 task-clock                #    0.533 CPUs utilized            ( +-  0.12% )
 276           200,004 context-switches          #    0.238 M/sec                    ( +-  0.00% )
 277                 0 CPU-migrations            #    0.000 M/sec                    ( +- 40.87% )
 278               487 page-faults               #    0.001 M/sec                    ( +-  0.05% )
 279     1,432,559,428 cycles                    #    1.703 GHz                      ( +-  0.18% )
 280   <not supported> stalled-cycles-frontend
 281   <not supported> stalled-cycles-backend
 282     1,175,363,994 instructions              #    0.82  insns per cycle          ( +-  0.04% )
 283       206,859,359 branches                  #  245.956 M/sec                    ( +-  0.04% )
 284         4,884,119 branch-misses             #    2.36% of all branches          ( +-  0.85% )
 285
 286       1.579384366 seconds time elapsed
 287
 288The percentage of saved branches is .7%, and we've saved 12% on
 289'branch-misses'. This is where we would expect to get the most savings, since
 290this optimization is about reducing the number of branches. In addition, we've
 291saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.
 292