linux/arch/arm/common/mcpm_entry.c
<<
>>
Prefs
   1/*
   2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
   3 *
   4 * Created by:  Nicolas Pitre, March 2012
   5 * Copyright:   (C) 2012-2013  Linaro Limited
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/init.h>
  14#include <linux/irqflags.h>
  15#include <linux/cpu_pm.h>
  16
  17#include <asm/mcpm.h>
  18#include <asm/cacheflush.h>
  19#include <asm/idmap.h>
  20#include <asm/cputype.h>
  21#include <asm/suspend.h>
  22
  23/*
  24 * The public API for this code is documented in arch/arm/include/asm/mcpm.h.
  25 * For a comprehensive description of the main algorithm used here, please
  26 * see Documentation/arm/cluster-pm-race-avoidance.txt.
  27 */
  28
  29struct sync_struct mcpm_sync;
  30
  31/*
  32 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
  33 *    This must be called at the point of committing to teardown of a CPU.
  34 *    The CPU cache (SCTRL.C bit) is expected to still be active.
  35 */
  36static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
  37{
  38        mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
  39        sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
  40}
  41
  42/*
  43 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
  44 *    cluster can be torn down without disrupting this CPU.
  45 *    To avoid deadlocks, this must be called before a CPU is powered down.
  46 *    The CPU cache (SCTRL.C bit) is expected to be off.
  47 *    However L2 cache might or might not be active.
  48 */
  49static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
  50{
  51        dmb();
  52        mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
  53        sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
  54        sev();
  55}
  56
  57/*
  58 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
  59 * @state: the final state of the cluster:
  60 *     CLUSTER_UP: no destructive teardown was done and the cluster has been
  61 *         restored to the previous state (CPU cache still active); or
  62 *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
  63 *         (CPU cache disabled, L2 cache either enabled or disabled).
  64 */
  65static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
  66{
  67        dmb();
  68        mcpm_sync.clusters[cluster].cluster = state;
  69        sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
  70        sev();
  71}
  72
  73/*
  74 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
  75 * This function should be called by the last man, after local CPU teardown
  76 * is complete.  CPU cache expected to be active.
  77 *
  78 * Returns:
  79 *     false: the critical section was not entered because an inbound CPU was
  80 *         observed, or the cluster is already being set up;
  81 *     true: the critical section was entered: it is now safe to tear down the
  82 *         cluster.
  83 */
  84static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
  85{
  86        unsigned int i;
  87        struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
  88
  89        /* Warn inbound CPUs that the cluster is being torn down: */
  90        c->cluster = CLUSTER_GOING_DOWN;
  91        sync_cache_w(&c->cluster);
  92
  93        /* Back out if the inbound cluster is already in the critical region: */
  94        sync_cache_r(&c->inbound);
  95        if (c->inbound == INBOUND_COMING_UP)
  96                goto abort;
  97
  98        /*
  99         * Wait for all CPUs to get out of the GOING_DOWN state, so that local
 100         * teardown is complete on each CPU before tearing down the cluster.
 101         *
 102         * If any CPU has been woken up again from the DOWN state, then we
 103         * shouldn't be taking the cluster down at all: abort in that case.
 104         */
 105        sync_cache_r(&c->cpus);
 106        for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
 107                int cpustate;
 108
 109                if (i == cpu)
 110                        continue;
 111
 112                while (1) {
 113                        cpustate = c->cpus[i].cpu;
 114                        if (cpustate != CPU_GOING_DOWN)
 115                                break;
 116
 117                        wfe();
 118                        sync_cache_r(&c->cpus[i].cpu);
 119                }
 120
 121                switch (cpustate) {
 122                case CPU_DOWN:
 123                        continue;
 124
 125                default:
 126                        goto abort;
 127                }
 128        }
 129
 130        return true;
 131
 132abort:
 133        __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
 134        return false;
 135}
 136
 137static int __mcpm_cluster_state(unsigned int cluster)
 138{
 139        sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
 140        return mcpm_sync.clusters[cluster].cluster;
 141}
 142
 143extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
 144
 145void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
 146{
 147        unsigned long val = ptr ? virt_to_phys(ptr) : 0;
 148        mcpm_entry_vectors[cluster][cpu] = val;
 149        sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
 150}
 151
 152extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
 153
 154void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
 155                         unsigned long poke_phys_addr, unsigned long poke_val)
 156{
 157        unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
 158        poke[0] = poke_phys_addr;
 159        poke[1] = poke_val;
 160        __sync_cache_range_w(poke, 2 * sizeof(*poke));
 161}
 162
 163static const struct mcpm_platform_ops *platform_ops;
 164
 165int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
 166{
 167        if (platform_ops)
 168                return -EBUSY;
 169        platform_ops = ops;
 170        return 0;
 171}
 172
 173bool mcpm_is_available(void)
 174{
 175        return (platform_ops) ? true : false;
 176}
 177
 178/*
 179 * We can't use regular spinlocks. In the switcher case, it is possible
 180 * for an outbound CPU to call power_down() after its inbound counterpart
 181 * is already live using the same logical CPU number which trips lockdep
 182 * debugging.
 183 */
 184static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 185
 186static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
 187
 188static inline bool mcpm_cluster_unused(unsigned int cluster)
 189{
 190        int i, cnt;
 191        for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
 192                cnt |= mcpm_cpu_use_count[cluster][i];
 193        return !cnt;
 194}
 195
 196int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
 197{
 198        bool cpu_is_down, cluster_is_down;
 199        int ret = 0;
 200
 201        pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
 202        if (!platform_ops)
 203                return -EUNATCH; /* try not to shadow power_up errors */
 204        might_sleep();
 205
 206        /*
 207         * Since this is called with IRQs enabled, and no arch_spin_lock_irq
 208         * variant exists, we need to disable IRQs manually here.
 209         */
 210        local_irq_disable();
 211        arch_spin_lock(&mcpm_lock);
 212
 213        cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
 214        cluster_is_down = mcpm_cluster_unused(cluster);
 215
 216        mcpm_cpu_use_count[cluster][cpu]++;
 217        /*
 218         * The only possible values are:
 219         * 0 = CPU down
 220         * 1 = CPU (still) up
 221         * 2 = CPU requested to be up before it had a chance
 222         *     to actually make itself down.
 223         * Any other value is a bug.
 224         */
 225        BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
 226               mcpm_cpu_use_count[cluster][cpu] != 2);
 227
 228        if (cluster_is_down)
 229                ret = platform_ops->cluster_powerup(cluster);
 230        if (cpu_is_down && !ret)
 231                ret = platform_ops->cpu_powerup(cpu, cluster);
 232
 233        arch_spin_unlock(&mcpm_lock);
 234        local_irq_enable();
 235        return ret;
 236}
 237
 238typedef void (*phys_reset_t)(unsigned long);
 239
 240void mcpm_cpu_power_down(void)
 241{
 242        unsigned int mpidr, cpu, cluster;
 243        bool cpu_going_down, last_man;
 244        phys_reset_t phys_reset;
 245
 246        mpidr = read_cpuid_mpidr();
 247        cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 248        cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 249        pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
 250        if (WARN_ON_ONCE(!platform_ops))
 251               return;
 252        BUG_ON(!irqs_disabled());
 253
 254        setup_mm_for_reboot();
 255
 256        __mcpm_cpu_going_down(cpu, cluster);
 257        arch_spin_lock(&mcpm_lock);
 258        BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
 259
 260        mcpm_cpu_use_count[cluster][cpu]--;
 261        BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
 262               mcpm_cpu_use_count[cluster][cpu] != 1);
 263        cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
 264        last_man = mcpm_cluster_unused(cluster);
 265
 266        if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
 267                platform_ops->cpu_powerdown_prepare(cpu, cluster);
 268                platform_ops->cluster_powerdown_prepare(cluster);
 269                arch_spin_unlock(&mcpm_lock);
 270                platform_ops->cluster_cache_disable();
 271                __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
 272        } else {
 273                if (cpu_going_down)
 274                        platform_ops->cpu_powerdown_prepare(cpu, cluster);
 275                arch_spin_unlock(&mcpm_lock);
 276                /*
 277                 * If cpu_going_down is false here, that means a power_up
 278                 * request raced ahead of us.  Even if we do not want to
 279                 * shut this CPU down, the caller still expects execution
 280                 * to return through the system resume entry path, like
 281                 * when the WFI is aborted due to a new IRQ or the like..
 282                 * So let's continue with cache cleaning in all cases.
 283                 */
 284                platform_ops->cpu_cache_disable();
 285        }
 286
 287        __mcpm_cpu_down(cpu, cluster);
 288
 289        /* Now we are prepared for power-down, do it: */
 290        if (cpu_going_down)
 291                wfi();
 292
 293        /*
 294         * It is possible for a power_up request to happen concurrently
 295         * with a power_down request for the same CPU. In this case the
 296         * CPU might not be able to actually enter a powered down state
 297         * with the WFI instruction if the power_up request has removed
 298         * the required reset condition.  We must perform a re-entry in
 299         * the kernel as if the power_up method just had deasserted reset
 300         * on the CPU.
 301         */
 302        phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
 303        phys_reset(virt_to_phys(mcpm_entry_point));
 304
 305        /* should never get here */
 306        BUG();
 307}
 308
 309int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
 310{
 311        int ret;
 312
 313        if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
 314                return -EUNATCH;
 315
 316        ret = platform_ops->wait_for_powerdown(cpu, cluster);
 317        if (ret)
 318                pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
 319                        __func__, cpu, cluster, ret);
 320
 321        return ret;
 322}
 323
 324void mcpm_cpu_suspend(void)
 325{
 326        if (WARN_ON_ONCE(!platform_ops))
 327                return;
 328
 329        /* Some platforms might have to enable special resume modes, etc. */
 330        if (platform_ops->cpu_suspend_prepare) {
 331                unsigned int mpidr = read_cpuid_mpidr();
 332                unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 333                unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 
 334                arch_spin_lock(&mcpm_lock);
 335                platform_ops->cpu_suspend_prepare(cpu, cluster);
 336                arch_spin_unlock(&mcpm_lock);
 337        }
 338        mcpm_cpu_power_down();
 339}
 340
 341int mcpm_cpu_powered_up(void)
 342{
 343        unsigned int mpidr, cpu, cluster;
 344        bool cpu_was_down, first_man;
 345        unsigned long flags;
 346
 347        if (!platform_ops)
 348                return -EUNATCH;
 349
 350        mpidr = read_cpuid_mpidr();
 351        cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 352        cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 353        local_irq_save(flags);
 354        arch_spin_lock(&mcpm_lock);
 355
 356        cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
 357        first_man = mcpm_cluster_unused(cluster);
 358
 359        if (first_man && platform_ops->cluster_is_up)
 360                platform_ops->cluster_is_up(cluster);
 361        if (cpu_was_down)
 362                mcpm_cpu_use_count[cluster][cpu] = 1;
 363        if (platform_ops->cpu_is_up)
 364                platform_ops->cpu_is_up(cpu, cluster);
 365
 366        arch_spin_unlock(&mcpm_lock);
 367        local_irq_restore(flags);
 368
 369        return 0;
 370}
 371
 372#ifdef CONFIG_ARM_CPU_SUSPEND
 373
 374static int __init nocache_trampoline(unsigned long _arg)
 375{
 376        void (*cache_disable)(void) = (void *)_arg;
 377        unsigned int mpidr = read_cpuid_mpidr();
 378        unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
 379        unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 380        phys_reset_t phys_reset;
 381
 382        mcpm_set_entry_vector(cpu, cluster, cpu_resume);
 383        setup_mm_for_reboot();
 384
 385        __mcpm_cpu_going_down(cpu, cluster);
 386        BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
 387        cache_disable();
 388        __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
 389        __mcpm_cpu_down(cpu, cluster);
 390
 391        phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
 392        phys_reset(virt_to_phys(mcpm_entry_point));
 393        BUG();
 394}
 395
 396int __init mcpm_loopback(void (*cache_disable)(void))
 397{
 398        int ret;
 399
 400        /*
 401         * We're going to soft-restart the current CPU through the
 402         * low-level MCPM code by leveraging the suspend/resume
 403         * infrastructure. Let's play it safe by using cpu_pm_enter()
 404         * in case the CPU init code path resets the VFP or similar.
 405         */
 406        local_irq_disable();
 407        local_fiq_disable();
 408        ret = cpu_pm_enter();
 409        if (!ret) {
 410                ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
 411                cpu_pm_exit();
 412        }
 413        local_fiq_enable();
 414        local_irq_enable();
 415        if (ret)
 416                pr_err("%s returned %d\n", __func__, ret);
 417        return ret;
 418}
 419
 420#endif
 421
 422extern unsigned long mcpm_power_up_setup_phys;
 423
 424int __init mcpm_sync_init(
 425        void (*power_up_setup)(unsigned int affinity_level))
 426{
 427        unsigned int i, j, mpidr, this_cluster;
 428
 429        BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
 430        BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
 431
 432        /*
 433         * Set initial CPU and cluster states.
 434         * Only one cluster is assumed to be active at this point.
 435         */
 436        for (i = 0; i < MAX_NR_CLUSTERS; i++) {
 437                mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
 438                mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
 439                for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
 440                        mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
 441        }
 442        mpidr = read_cpuid_mpidr();
 443        this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 444        for_each_online_cpu(i) {
 445                mcpm_cpu_use_count[this_cluster][i] = 1;
 446                mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
 447        }
 448        mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
 449        sync_cache_w(&mcpm_sync);
 450
 451        if (power_up_setup) {
 452                mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
 453                sync_cache_w(&mcpm_power_up_setup_phys);
 454        }
 455
 456        return 0;
 457}
 458