linux/arch/arm/kernel/smp.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/smp.c
   3 *
   4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/spinlock.h>
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/cache.h>
  17#include <linux/profile.h>
  18#include <linux/errno.h>
  19#include <linux/mm.h>
  20#include <linux/err.h>
  21#include <linux/cpu.h>
  22#include <linux/seq_file.h>
  23#include <linux/irq.h>
  24#include <linux/nmi.h>
  25#include <linux/percpu.h>
  26#include <linux/clockchips.h>
  27#include <linux/completion.h>
  28#include <linux/cpufreq.h>
  29#include <linux/irq_work.h>
  30
  31#include <linux/atomic.h>
  32#include <asm/smp.h>
  33#include <asm/cacheflush.h>
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
  36#include <asm/exception.h>
  37#include <asm/idmap.h>
  38#include <asm/topology.h>
  39#include <asm/mmu_context.h>
  40#include <asm/pgtable.h>
  41#include <asm/pgalloc.h>
  42#include <asm/processor.h>
  43#include <asm/sections.h>
  44#include <asm/tlbflush.h>
  45#include <asm/ptrace.h>
  46#include <asm/smp_plat.h>
  47#include <asm/virt.h>
  48#include <asm/mach/arch.h>
  49#include <asm/mpu.h>
  50
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/ipi.h>
  53
  54/*
  55 * as from 2.5, kernels no longer have an init_tasks structure
  56 * so we need some other way of telling a new secondary core
  57 * where to place its SVC stack
  58 */
  59struct secondary_data secondary_data;
  60
  61/*
  62 * control for which core is the next to come out of the secondary
  63 * boot "holding pen"
  64 */
  65volatile int pen_release = -1;
  66
  67enum ipi_msg_type {
  68        IPI_WAKEUP,
  69        IPI_TIMER,
  70        IPI_RESCHEDULE,
  71        IPI_CALL_FUNC,
  72        IPI_CPU_STOP,
  73        IPI_IRQ_WORK,
  74        IPI_COMPLETION,
  75        IPI_CPU_BACKTRACE,
  76        /*
  77         * SGI8-15 can be reserved by secure firmware, and thus may
  78         * not be usable by the kernel. Please keep the above limited
  79         * to at most 8 entries.
  80         */
  81};
  82
  83static DECLARE_COMPLETION(cpu_running);
  84
  85static struct smp_operations smp_ops;
  86
  87void __init smp_set_ops(const struct smp_operations *ops)
  88{
  89        if (ops)
  90                smp_ops = *ops;
  91};
  92
  93static unsigned long get_arch_pgd(pgd_t *pgd)
  94{
  95#ifdef CONFIG_ARM_LPAE
  96        return __phys_to_pfn(virt_to_phys(pgd));
  97#else
  98        return virt_to_phys(pgd);
  99#endif
 100}
 101
 102int __cpu_up(unsigned int cpu, struct task_struct *idle)
 103{
 104        int ret;
 105
 106        if (!smp_ops.smp_boot_secondary)
 107                return -ENOSYS;
 108
 109        /*
 110         * We need to tell the secondary core where to find
 111         * its stack and the page tables.
 112         */
 113        secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 114#ifdef CONFIG_ARM_MPU
 115        secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
 116#endif
 117
 118#ifdef CONFIG_MMU
 119        secondary_data.pgdir = virt_to_phys(idmap_pgd);
 120        secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
 121#endif
 122        sync_cache_w(&secondary_data);
 123
 124        /*
 125         * Now bring the CPU into our world.
 126         */
 127        ret = smp_ops.smp_boot_secondary(cpu, idle);
 128        if (ret == 0) {
 129                /*
 130                 * CPU was successfully started, wait for it
 131                 * to come online or time out.
 132                 */
 133                wait_for_completion_timeout(&cpu_running,
 134                                                 msecs_to_jiffies(1000));
 135
 136                if (!cpu_online(cpu)) {
 137                        pr_crit("CPU%u: failed to come online\n", cpu);
 138                        ret = -EIO;
 139                }
 140        } else {
 141                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 142        }
 143
 144
 145        memset(&secondary_data, 0, sizeof(secondary_data));
 146        return ret;
 147}
 148
 149/* platform specific SMP operations */
 150void __init smp_init_cpus(void)
 151{
 152        if (smp_ops.smp_init_cpus)
 153                smp_ops.smp_init_cpus();
 154}
 155
 156int platform_can_secondary_boot(void)
 157{
 158        return !!smp_ops.smp_boot_secondary;
 159}
 160
 161int platform_can_cpu_hotplug(void)
 162{
 163#ifdef CONFIG_HOTPLUG_CPU
 164        if (smp_ops.cpu_kill)
 165                return 1;
 166#endif
 167
 168        return 0;
 169}
 170
 171#ifdef CONFIG_HOTPLUG_CPU
 172static int platform_cpu_kill(unsigned int cpu)
 173{
 174        if (smp_ops.cpu_kill)
 175                return smp_ops.cpu_kill(cpu);
 176        return 1;
 177}
 178
 179static int platform_cpu_disable(unsigned int cpu)
 180{
 181        if (smp_ops.cpu_disable)
 182                return smp_ops.cpu_disable(cpu);
 183
 184        return 0;
 185}
 186
 187int platform_can_hotplug_cpu(unsigned int cpu)
 188{
 189        /* cpu_die must be specified to support hotplug */
 190        if (!smp_ops.cpu_die)
 191                return 0;
 192
 193        if (smp_ops.cpu_can_disable)
 194                return smp_ops.cpu_can_disable(cpu);
 195
 196        /*
 197         * By default, allow disabling all CPUs except the first one,
 198         * since this is special on a lot of platforms, e.g. because
 199         * of clock tick interrupts.
 200         */
 201        return cpu != 0;
 202}
 203
 204/*
 205 * __cpu_disable runs on the processor to be shutdown.
 206 */
 207int __cpu_disable(void)
 208{
 209        unsigned int cpu = smp_processor_id();
 210        int ret;
 211
 212        ret = platform_cpu_disable(cpu);
 213        if (ret)
 214                return ret;
 215
 216        /*
 217         * Take this CPU offline.  Once we clear this, we can't return,
 218         * and we must not schedule until we're ready to give up the cpu.
 219         */
 220        set_cpu_online(cpu, false);
 221
 222        /*
 223         * OK - migrate IRQs away from this CPU
 224         */
 225        migrate_irqs();
 226
 227        /*
 228         * Flush user cache and TLB mappings, and then remove this CPU
 229         * from the vm mask set of all processes.
 230         *
 231         * Caches are flushed to the Level of Unification Inner Shareable
 232         * to write-back dirty lines to unified caches shared by all CPUs.
 233         */
 234        flush_cache_louis();
 235        local_flush_tlb_all();
 236
 237        clear_tasks_mm_cpumask(cpu);
 238
 239        return 0;
 240}
 241
 242static DECLARE_COMPLETION(cpu_died);
 243
 244/*
 245 * called on the thread which is asking for a CPU to be shutdown -
 246 * waits until shutdown has completed, or it is timed out.
 247 */
 248void __cpu_die(unsigned int cpu)
 249{
 250        if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
 251                pr_err("CPU%u: cpu didn't die\n", cpu);
 252                return;
 253        }
 254        pr_notice("CPU%u: shutdown\n", cpu);
 255
 256        /*
 257         * platform_cpu_kill() is generally expected to do the powering off
 258         * and/or cutting of clocks to the dying CPU.  Optionally, this may
 259         * be done by the CPU which is dying in preference to supporting
 260         * this call, but that means there is _no_ synchronisation between
 261         * the requesting CPU and the dying CPU actually losing power.
 262         */
 263        if (!platform_cpu_kill(cpu))
 264                pr_err("CPU%u: unable to kill\n", cpu);
 265}
 266
 267/*
 268 * Called from the idle thread for the CPU which has been shutdown.
 269 *
 270 * Note that we disable IRQs here, but do not re-enable them
 271 * before returning to the caller. This is also the behaviour
 272 * of the other hotplug-cpu capable cores, so presumably coming
 273 * out of idle fixes this.
 274 */
 275void arch_cpu_idle_dead(void)
 276{
 277        unsigned int cpu = smp_processor_id();
 278
 279        idle_task_exit();
 280
 281        local_irq_disable();
 282
 283        /*
 284         * Flush the data out of the L1 cache for this CPU.  This must be
 285         * before the completion to ensure that data is safely written out
 286         * before platform_cpu_kill() gets called - which may disable
 287         * *this* CPU and power down its cache.
 288         */
 289        flush_cache_louis();
 290
 291        /*
 292         * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
 293         * this returns, power and/or clocks can be removed at any point
 294         * from this CPU and its cache by platform_cpu_kill().
 295         */
 296        complete(&cpu_died);
 297
 298        /*
 299         * Ensure that the cache lines associated with that completion are
 300         * written out.  This covers the case where _this_ CPU is doing the
 301         * powering down, to ensure that the completion is visible to the
 302         * CPU waiting for this one.
 303         */
 304        flush_cache_louis();
 305
 306        /*
 307         * The actual CPU shutdown procedure is at least platform (if not
 308         * CPU) specific.  This may remove power, or it may simply spin.
 309         *
 310         * Platforms are generally expected *NOT* to return from this call,
 311         * although there are some which do because they have no way to
 312         * power down the CPU.  These platforms are the _only_ reason we
 313         * have a return path which uses the fragment of assembly below.
 314         *
 315         * The return path should not be used for platforms which can
 316         * power off the CPU.
 317         */
 318        if (smp_ops.cpu_die)
 319                smp_ops.cpu_die(cpu);
 320
 321        pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
 322                cpu);
 323
 324        /*
 325         * Do not return to the idle loop - jump back to the secondary
 326         * cpu initialisation.  There's some initialisation which needs
 327         * to be repeated to undo the effects of taking the CPU offline.
 328         */
 329        __asm__("mov    sp, %0\n"
 330        "       mov     fp, #0\n"
 331        "       b       secondary_start_kernel"
 332                :
 333                : "r" (task_stack_page(current) + THREAD_SIZE - 8));
 334}
 335#endif /* CONFIG_HOTPLUG_CPU */
 336
 337/*
 338 * Called by both boot and secondaries to move global data into
 339 * per-processor storage.
 340 */
 341static void smp_store_cpu_info(unsigned int cpuid)
 342{
 343        struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
 344
 345        cpu_info->loops_per_jiffy = loops_per_jiffy;
 346        cpu_info->cpuid = read_cpuid_id();
 347
 348        store_cpu_topology(cpuid);
 349}
 350
 351/*
 352 * This is the secondary CPU boot entry.  We're using this CPUs
 353 * idle thread stack, but a set of temporary page tables.
 354 */
 355asmlinkage void secondary_start_kernel(void)
 356{
 357        struct mm_struct *mm = &init_mm;
 358        unsigned int cpu;
 359
 360        /*
 361         * The identity mapping is uncached (strongly ordered), so
 362         * switch away from it before attempting any exclusive accesses.
 363         */
 364        cpu_switch_mm(mm->pgd, mm);
 365        local_flush_bp_all();
 366        enter_lazy_tlb(mm, current);
 367        local_flush_tlb_all();
 368
 369        /*
 370         * All kernel threads share the same mm context; grab a
 371         * reference and switch to it.
 372         */
 373        cpu = smp_processor_id();
 374        atomic_inc(&mm->mm_count);
 375        current->active_mm = mm;
 376        cpumask_set_cpu(cpu, mm_cpumask(mm));
 377
 378        cpu_init();
 379
 380        pr_debug("CPU%u: Booted secondary processor\n", cpu);
 381
 382        preempt_disable();
 383        trace_hardirqs_off();
 384
 385        /*
 386         * Give the platform a chance to do its own initialisation.
 387         */
 388        if (smp_ops.smp_secondary_init)
 389                smp_ops.smp_secondary_init(cpu);
 390
 391        notify_cpu_starting(cpu);
 392
 393        calibrate_delay();
 394
 395        smp_store_cpu_info(cpu);
 396
 397        /*
 398         * OK, now it's safe to let the boot CPU continue.  Wait for
 399         * the CPU migration code to notice that the CPU is online
 400         * before we continue - which happens after __cpu_up returns.
 401         */
 402        set_cpu_online(cpu, true);
 403        complete(&cpu_running);
 404
 405        local_irq_enable();
 406        local_fiq_enable();
 407        local_abt_enable();
 408
 409        /*
 410         * OK, it's off to the idle thread for us
 411         */
 412        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 413}
 414
 415void __init smp_cpus_done(unsigned int max_cpus)
 416{
 417        int cpu;
 418        unsigned long bogosum = 0;
 419
 420        for_each_online_cpu(cpu)
 421                bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
 422
 423        printk(KERN_INFO "SMP: Total of %d processors activated "
 424               "(%lu.%02lu BogoMIPS).\n",
 425               num_online_cpus(),
 426               bogosum / (500000/HZ),
 427               (bogosum / (5000/HZ)) % 100);
 428
 429        hyp_mode_check();
 430}
 431
 432void __init smp_prepare_boot_cpu(void)
 433{
 434        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 435}
 436
 437void __init smp_prepare_cpus(unsigned int max_cpus)
 438{
 439        unsigned int ncores = num_possible_cpus();
 440
 441        init_cpu_topology();
 442
 443        smp_store_cpu_info(smp_processor_id());
 444
 445        /*
 446         * are we trying to boot more cores than exist?
 447         */
 448        if (max_cpus > ncores)
 449                max_cpus = ncores;
 450        if (ncores > 1 && max_cpus) {
 451                /*
 452                 * Initialise the present map, which describes the set of CPUs
 453                 * actually populated at the present time. A platform should
 454                 * re-initialize the map in the platforms smp_prepare_cpus()
 455                 * if present != possible (e.g. physical hotplug).
 456                 */
 457                init_cpu_present(cpu_possible_mask);
 458
 459                /*
 460                 * Initialise the SCU if there are more than one CPU
 461                 * and let them know where to start.
 462                 */
 463                if (smp_ops.smp_prepare_cpus)
 464                        smp_ops.smp_prepare_cpus(max_cpus);
 465        }
 466}
 467
 468static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
 469
 470void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 471{
 472        if (!__smp_cross_call)
 473                __smp_cross_call = fn;
 474}
 475
 476struct ipi {
 477        const char *desc;
 478        void (*handler)(void);
 479};
 480
 481static void ipi_cpu_stop(void);
 482static void ipi_complete(void);
 483
 484#define IPI_DESC_STRING_IPI_WAKEUP "CPU wakeup interrupts"
 485#define IPI_DESC_STRING_IPI_TIMER "Timer broadcast interrupts"
 486#define IPI_DESC_STRING_IPI_RESCHEDULE "Rescheduling interrupts"
 487#define IPI_DESC_STRING_IPI_CALL_FUNC "Function call interrupts"
 488#define IPI_DESC_STRING_IPI_CPU_STOP "CPU stop interrupts"
 489#define IPI_DESC_STRING_IPI_IRQ_WORK "IRQ work interrupts"
 490#define IPI_DESC_STRING_IPI_COMPLETION "completion interrupts"
 491
 492#define IPI_DESC_STR(x) IPI_DESC_STRING_ ## x
 493
 494static const char* ipi_desc_strings[] __tracepoint_string =
 495                {
 496                        [IPI_WAKEUP] = IPI_DESC_STR(IPI_WAKEUP),
 497                        [IPI_TIMER] = IPI_DESC_STR(IPI_TIMER),
 498                        [IPI_RESCHEDULE] = IPI_DESC_STR(IPI_RESCHEDULE),
 499                        [IPI_CALL_FUNC] = IPI_DESC_STR(IPI_CALL_FUNC),
 500                        [IPI_CPU_STOP] = IPI_DESC_STR(IPI_CPU_STOP),
 501                        [IPI_IRQ_WORK] = IPI_DESC_STR(IPI_IRQ_WORK),
 502                        [IPI_COMPLETION] = IPI_DESC_STR(IPI_COMPLETION)
 503                };
 504
 505
 506static void tick_receive_broadcast_local(void)
 507{
 508        tick_receive_broadcast();
 509}
 510
 511static struct ipi ipi_types[NR_IPI] = {
 512#define S(x, f) [x].desc = IPI_DESC_STR(x), [x].handler = f
 513        S(IPI_WAKEUP, NULL),
 514#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 515        S(IPI_TIMER, tick_receive_broadcast_local),
 516#endif
 517        S(IPI_RESCHEDULE, scheduler_ipi),
 518        S(IPI_CALL_FUNC, generic_smp_call_function_interrupt),
 519        S(IPI_CPU_STOP, ipi_cpu_stop),
 520#ifdef CONFIG_IRQ_WORK
 521        S(IPI_IRQ_WORK, irq_work_run),
 522#endif
 523        S(IPI_COMPLETION, ipi_complete),
 524};
 525
 526static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 527{
 528        trace_ipi_raise(target, ipi_desc_strings[ipinr]);
 529        __smp_cross_call(target, ipinr);
 530}
 531
 532void show_ipi_list(struct seq_file *p, int prec)
 533{
 534        unsigned int cpu, i;
 535
 536        for (i = 0; i < NR_IPI; i++) {
 537                if (ipi_types[i].handler) {
 538                        seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
 539                        for_each_present_cpu(cpu)
 540                                seq_printf(p, "%10u ",
 541                                        __get_irq_stat(cpu, ipi_irqs[i]));
 542                        seq_printf(p, " %s\n", ipi_types[i].desc);
 543                }
 544        }
 545}
 546
 547u64 smp_irq_stat_cpu(unsigned int cpu)
 548{
 549        u64 sum = 0;
 550        int i;
 551
 552        for (i = 0; i < NR_IPI; i++)
 553                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 554
 555        return sum;
 556}
 557
 558void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 559{
 560        smp_cross_call(mask, IPI_CALL_FUNC);
 561}
 562
 563void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 564{
 565        smp_cross_call(mask, IPI_WAKEUP);
 566}
 567
 568void arch_send_call_function_single_ipi(int cpu)
 569{
 570        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 571}
 572
 573#ifdef CONFIG_IRQ_WORK
 574void arch_irq_work_raise(void)
 575{
 576        if (arch_irq_work_has_interrupt())
 577                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 578}
 579#endif
 580
 581#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 582void tick_broadcast(const struct cpumask *mask)
 583{
 584        smp_cross_call(mask, IPI_TIMER);
 585}
 586#endif
 587
 588static DEFINE_RAW_SPINLOCK(stop_lock);
 589
 590/*
 591 * ipi_cpu_stop - handle IPI from smp_send_stop()
 592 */
 593static void ipi_cpu_stop(void)
 594{
 595        unsigned int cpu = smp_processor_id();
 596
 597        if (system_state == SYSTEM_BOOTING ||
 598            system_state == SYSTEM_RUNNING) {
 599                raw_spin_lock(&stop_lock);
 600                pr_crit("CPU%u: stopping\n", cpu);
 601                dump_stack();
 602                raw_spin_unlock(&stop_lock);
 603        }
 604
 605        set_cpu_online(cpu, false);
 606
 607        local_fiq_disable();
 608        local_irq_disable();
 609
 610        while (1)
 611                cpu_relax();
 612}
 613
 614static DEFINE_PER_CPU(struct completion *, cpu_completion);
 615
 616int register_ipi_completion(struct completion *completion, int cpu)
 617{
 618        per_cpu(cpu_completion, cpu) = completion;
 619        return IPI_COMPLETION;
 620}
 621
 622static void ipi_complete(void)
 623{
 624        unsigned int cpu = smp_processor_id();
 625
 626        complete(per_cpu(cpu_completion, cpu));
 627}
 628
 629/*
 630 * Main handler for inter-processor interrupts
 631 */
 632asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
 633{
 634        handle_IPI(ipinr, regs);
 635}
 636
 637void handle_IPI(int ipinr, struct pt_regs *regs)
 638{
 639        unsigned int cpu = smp_processor_id();
 640        struct pt_regs *old_regs = set_irq_regs(regs);
 641
 642        if (ipi_types[ipinr].handler) {
 643                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 644                irq_enter();
 645                (*ipi_types[ipinr].handler)();
 646                irq_exit();
 647        } else
 648                pr_debug("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
 649
 650        set_irq_regs(old_regs);
 651}
 652
 653/*
 654 * set_ipi_handler:
 655 * Interface provided for a kernel module to specify an IPI handler function.
 656 */
 657int set_ipi_handler(int ipinr, void *handler, char *desc)
 658{
 659        unsigned int cpu = smp_processor_id();
 660
 661        if (ipi_types[ipinr].handler) {
 662                pr_crit("CPU%u: IPI handler 0x%x already registered to %pf\n",
 663                                        cpu, ipinr, ipi_types[ipinr].handler);
 664                return -1;
 665        }
 666
 667        ipi_types[ipinr].handler = handler;
 668        ipi_types[ipinr].desc = desc;
 669
 670        return 0;
 671}
 672EXPORT_SYMBOL(set_ipi_handler);
 673
 674/*
 675 * clear_ipi_handler:
 676 * Interface provided for a kernel module to clear an IPI handler function.
 677 */
 678void clear_ipi_handler(int ipinr)
 679{
 680        ipi_types[ipinr].handler = NULL;
 681        ipi_types[ipinr].desc = NULL;
 682}
 683EXPORT_SYMBOL(clear_ipi_handler);
 684
 685void smp_send_reschedule(int cpu)
 686{
 687        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 688}
 689
 690void smp_send_stop(void)
 691{
 692        unsigned long timeout;
 693        struct cpumask mask;
 694
 695        cpumask_copy(&mask, cpu_online_mask);
 696        cpumask_clear_cpu(smp_processor_id(), &mask);
 697        if (!cpumask_empty(&mask))
 698                smp_cross_call(&mask, IPI_CPU_STOP);
 699
 700        /* Wait up to one second for other CPUs to stop */
 701        timeout = USEC_PER_SEC;
 702        while (num_online_cpus() > 1 && timeout--)
 703                udelay(1);
 704
 705        if (num_online_cpus() > 1)
 706                pr_warn("SMP: failed to stop secondary CPUs\n");
 707}
 708
 709/*
 710 * not supported here
 711 */
 712int setup_profiling_timer(unsigned int multiplier)
 713{
 714        return -EINVAL;
 715}
 716
 717#ifdef CONFIG_CPU_FREQ
 718
 719static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
 720static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
 721static unsigned long global_l_p_j_ref;
 722static unsigned long global_l_p_j_ref_freq;
 723
 724static int cpufreq_callback(struct notifier_block *nb,
 725                                        unsigned long val, void *data)
 726{
 727        struct cpufreq_freqs *freq = data;
 728        int cpu = freq->cpu;
 729
 730        if (freq->flags & CPUFREQ_CONST_LOOPS)
 731                return NOTIFY_OK;
 732
 733        if (!per_cpu(l_p_j_ref, cpu)) {
 734                per_cpu(l_p_j_ref, cpu) =
 735                        per_cpu(cpu_data, cpu).loops_per_jiffy;
 736                per_cpu(l_p_j_ref_freq, cpu) = freq->old;
 737                if (!global_l_p_j_ref) {
 738                        global_l_p_j_ref = loops_per_jiffy;
 739                        global_l_p_j_ref_freq = freq->old;
 740                }
 741        }
 742
 743        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 744            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 745                loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
 746                                                global_l_p_j_ref_freq,
 747                                                freq->new);
 748                per_cpu(cpu_data, cpu).loops_per_jiffy =
 749                        cpufreq_scale(per_cpu(l_p_j_ref, cpu),
 750                                        per_cpu(l_p_j_ref_freq, cpu),
 751                                        freq->new);
 752        }
 753        return NOTIFY_OK;
 754}
 755
 756static struct notifier_block cpufreq_notifier = {
 757        .notifier_call  = cpufreq_callback,
 758};
 759
 760static int __init register_cpufreq_notifier(void)
 761{
 762        return cpufreq_register_notifier(&cpufreq_notifier,
 763                                                CPUFREQ_TRANSITION_NOTIFIER);
 764}
 765core_initcall(register_cpufreq_notifier);
 766
 767#endif
 768
 769static void raise_nmi(cpumask_t *mask)
 770{
 771        /*
 772         * Generate the backtrace directly if we are running in a calling
 773         * context that is not preemptible by the backtrace IPI. Note
 774         * that nmi_cpu_backtrace() automatically removes the current cpu
 775         * from mask.
 776         */
 777        if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled())
 778                nmi_cpu_backtrace(NULL);
 779
 780        smp_cross_call(mask, IPI_CPU_BACKTRACE);
 781}
 782
 783void arch_trigger_all_cpu_backtrace(bool include_self)
 784{
 785        nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
 786}
 787