linux/arch/arm/mach-vexpress/spc.c
<<
>>
Prefs
   1/*
   2 * Versatile Express Serial Power Controller (SPC) support
   3 *
   4 * Copyright (C) 2013 ARM Ltd.
   5 *
   6 * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
   7 *          Achin Gupta           <achin.gupta@arm.com>
   8 *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  15 * kind, whether express or implied; without even the implied warranty
  16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 */
  19
  20#include <linux/clk-provider.h>
  21#include <linux/clkdev.h>
  22#include <linux/cpu.h>
  23#include <linux/delay.h>
  24#include <linux/err.h>
  25#include <linux/interrupt.h>
  26#include <linux/io.h>
  27#include <linux/platform_device.h>
  28#include <linux/pm_opp.h>
  29#include <linux/slab.h>
  30#include <linux/semaphore.h>
  31
  32#include <asm/cacheflush.h>
  33
  34#define SPCLOG "vexpress-spc: "
  35
  36#define PERF_LVL_A15            0x00
  37#define PERF_REQ_A15            0x04
  38#define PERF_LVL_A7             0x08
  39#define PERF_REQ_A7             0x0c
  40#define COMMS                   0x10
  41#define COMMS_REQ               0x14
  42#define PWC_STATUS              0x18
  43#define PWC_FLAG                0x1c
  44
  45/* SPC wake-up IRQs status and mask */
  46#define WAKE_INT_MASK           0x24
  47#define WAKE_INT_RAW            0x28
  48#define WAKE_INT_STAT           0x2c
  49/* SPC power down registers */
  50#define A15_PWRDN_EN            0x30
  51#define A7_PWRDN_EN             0x34
  52/* SPC per-CPU mailboxes */
  53#define A15_BX_ADDR0            0x68
  54#define A7_BX_ADDR0             0x78
  55
  56/* SPC CPU/cluster reset statue */
  57#define STANDBYWFI_STAT         0x3c
  58#define STANDBYWFI_STAT_A15_CPU_MASK(cpu)       (1 << (cpu))
  59#define STANDBYWFI_STAT_A7_CPU_MASK(cpu)        (1 << (3 + (cpu)))
  60
  61/* SPC system config interface registers */
  62#define SYSCFG_WDATA            0x70
  63#define SYSCFG_RDATA            0x74
  64
  65/* A15/A7 OPP virtual register base */
  66#define A15_PERFVAL_BASE        0xC10
  67#define A7_PERFVAL_BASE         0xC30
  68
  69/* Config interface control bits */
  70#define SYSCFG_START            (1 << 31)
  71#define SYSCFG_SCC              (6 << 20)
  72#define SYSCFG_STAT             (14 << 20)
  73
  74/* wake-up interrupt masks */
  75#define GBL_WAKEUP_INT_MSK      (0x3 << 10)
  76
  77/* TC2 static dual-cluster configuration */
  78#define MAX_CLUSTERS            2
  79
  80/*
  81 * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
  82 * operation, the operation could start just before jiffie is about
  83 * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
  84 */
  85#define TIMEOUT_US      20000
  86
  87#define MAX_OPPS        8
  88#define CA15_DVFS       0
  89#define CA7_DVFS        1
  90#define SPC_SYS_CFG     2
  91#define STAT_COMPLETE(type)     ((1 << 0) << (type << 2))
  92#define STAT_ERR(type)          ((1 << 1) << (type << 2))
  93#define RESPONSE_MASK(type)     (STAT_COMPLETE(type) | STAT_ERR(type))
  94
  95struct ve_spc_opp {
  96        unsigned long freq;
  97        unsigned long u_volt;
  98};
  99
 100struct ve_spc_drvdata {
 101        void __iomem *baseaddr;
 102        /*
 103         * A15s cluster identifier
 104         * It corresponds to A15 processors MPIDR[15:8] bitfield
 105         */
 106        u32 a15_clusid;
 107        uint32_t cur_rsp_mask;
 108        uint32_t cur_rsp_stat;
 109        struct semaphore sem;
 110        struct completion done;
 111        struct ve_spc_opp *opps[MAX_CLUSTERS];
 112        int num_opps[MAX_CLUSTERS];
 113};
 114
 115static struct ve_spc_drvdata *info;
 116
 117static inline bool cluster_is_a15(u32 cluster)
 118{
 119        return cluster == info->a15_clusid;
 120}
 121
 122/**
 123 * ve_spc_global_wakeup_irq()
 124 *
 125 * Function to set/clear global wakeup IRQs. Not protected by locking since
 126 * it might be used in code paths where normal cacheable locks are not
 127 * working. Locking must be provided by the caller to ensure atomicity.
 128 *
 129 * @set: if true, global wake-up IRQs are set, if false they are cleared
 130 */
 131void ve_spc_global_wakeup_irq(bool set)
 132{
 133        u32 reg;
 134
 135        reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
 136
 137        if (set)
 138                reg |= GBL_WAKEUP_INT_MSK;
 139        else
 140                reg &= ~GBL_WAKEUP_INT_MSK;
 141
 142        writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
 143}
 144
 145/**
 146 * ve_spc_cpu_wakeup_irq()
 147 *
 148 * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
 149 * it might be used in code paths where normal cacheable locks are not
 150 * working. Locking must be provided by the caller to ensure atomicity.
 151 *
 152 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
 153 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
 154 * @set: if true, wake-up IRQs are set, if false they are cleared
 155 */
 156void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
 157{
 158        u32 mask, reg;
 159
 160        if (cluster >= MAX_CLUSTERS)
 161                return;
 162
 163        mask = 1 << cpu;
 164
 165        if (!cluster_is_a15(cluster))
 166                mask <<= 4;
 167
 168        reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
 169
 170        if (set)
 171                reg |= mask;
 172        else
 173                reg &= ~mask;
 174
 175        writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
 176}
 177
 178/**
 179 * ve_spc_set_resume_addr() - set the jump address used for warm boot
 180 *
 181 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
 182 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
 183 * @addr: physical resume address
 184 */
 185void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
 186{
 187        void __iomem *baseaddr;
 188
 189        if (cluster >= MAX_CLUSTERS)
 190                return;
 191
 192        if (cluster_is_a15(cluster))
 193                baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
 194        else
 195                baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
 196
 197        writel_relaxed(addr, baseaddr);
 198}
 199
 200/**
 201 * ve_spc_powerdown()
 202 *
 203 * Function to enable/disable cluster powerdown. Not protected by locking
 204 * since it might be used in code paths where normal cacheable locks are not
 205 * working. Locking must be provided by the caller to ensure atomicity.
 206 *
 207 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
 208 * @enable: if true enables powerdown, if false disables it
 209 */
 210void ve_spc_powerdown(u32 cluster, bool enable)
 211{
 212        u32 pwdrn_reg;
 213
 214        if (cluster >= MAX_CLUSTERS)
 215                return;
 216
 217        pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
 218        writel_relaxed(enable, info->baseaddr + pwdrn_reg);
 219}
 220
 221static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
 222{
 223        return cluster_is_a15(cluster) ?
 224                  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
 225                : STANDBYWFI_STAT_A7_CPU_MASK(cpu);
 226}
 227
 228/**
 229 * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
 230 *
 231 * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
 232 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
 233 *
 234 * @return: non-zero if and only if the specified CPU is in WFI
 235 *
 236 * Take care when interpreting the result of this function: a CPU might
 237 * be in WFI temporarily due to idle, and is not necessarily safely
 238 * parked.
 239 */
 240int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
 241{
 242        int ret;
 243        u32 mask = standbywfi_cpu_mask(cpu, cluster);
 244
 245        if (cluster >= MAX_CLUSTERS)
 246                return 1;
 247
 248        ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
 249
 250        pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
 251                 __func__, STANDBYWFI_STAT, ret, mask);
 252
 253        return ret & mask;
 254}
 255
 256static int ve_spc_get_performance(int cluster, u32 *freq)
 257{
 258        struct ve_spc_opp *opps = info->opps[cluster];
 259        u32 perf_cfg_reg = 0;
 260        u32 perf;
 261
 262        perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
 263
 264        perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
 265        if (perf >= info->num_opps[cluster])
 266                return -EINVAL;
 267
 268        opps += perf;
 269        *freq = opps->freq;
 270
 271        return 0;
 272}
 273
 274/* find closest match to given frequency in OPP table */
 275static int ve_spc_round_performance(int cluster, u32 freq)
 276{
 277        int idx, max_opp = info->num_opps[cluster];
 278        struct ve_spc_opp *opps = info->opps[cluster];
 279        u32 fmin = 0, fmax = ~0, ftmp;
 280
 281        freq /= 1000; /* OPP entries in kHz */
 282        for (idx = 0; idx < max_opp; idx++, opps++) {
 283                ftmp = opps->freq;
 284                if (ftmp >= freq) {
 285                        if (ftmp <= fmax)
 286                                fmax = ftmp;
 287                } else {
 288                        if (ftmp >= fmin)
 289                                fmin = ftmp;
 290                }
 291        }
 292        if (fmax != ~0)
 293                return fmax * 1000;
 294        else
 295                return fmin * 1000;
 296}
 297
 298static int ve_spc_find_performance_index(int cluster, u32 freq)
 299{
 300        int idx, max_opp = info->num_opps[cluster];
 301        struct ve_spc_opp *opps = info->opps[cluster];
 302
 303        for (idx = 0; idx < max_opp; idx++, opps++)
 304                if (opps->freq == freq)
 305                        break;
 306        return (idx == max_opp) ? -EINVAL : idx;
 307}
 308
 309static int ve_spc_waitforcompletion(int req_type)
 310{
 311        int ret = wait_for_completion_interruptible_timeout(
 312                        &info->done, usecs_to_jiffies(TIMEOUT_US));
 313        if (ret == 0)
 314                ret = -ETIMEDOUT;
 315        else if (ret > 0)
 316                ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
 317        return ret;
 318}
 319
 320static int ve_spc_set_performance(int cluster, u32 freq)
 321{
 322        u32 perf_cfg_reg, perf_stat_reg;
 323        int ret, perf, req_type;
 324
 325        if (cluster_is_a15(cluster)) {
 326                req_type = CA15_DVFS;
 327                perf_cfg_reg = PERF_LVL_A15;
 328                perf_stat_reg = PERF_REQ_A15;
 329        } else {
 330                req_type = CA7_DVFS;
 331                perf_cfg_reg = PERF_LVL_A7;
 332                perf_stat_reg = PERF_REQ_A7;
 333        }
 334
 335        perf = ve_spc_find_performance_index(cluster, freq);
 336
 337        if (perf < 0)
 338                return perf;
 339
 340        if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
 341                return -ETIME;
 342
 343        init_completion(&info->done);
 344        info->cur_rsp_mask = RESPONSE_MASK(req_type);
 345
 346        writel(perf, info->baseaddr + perf_cfg_reg);
 347        ret = ve_spc_waitforcompletion(req_type);
 348
 349        info->cur_rsp_mask = 0;
 350        up(&info->sem);
 351
 352        return ret;
 353}
 354
 355static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
 356{
 357        int ret;
 358
 359        if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
 360                return -ETIME;
 361
 362        init_completion(&info->done);
 363        info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
 364
 365        /* Set the control value */
 366        writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
 367        ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
 368
 369        if (ret == 0)
 370                *data = readl(info->baseaddr + SYSCFG_RDATA);
 371
 372        info->cur_rsp_mask = 0;
 373        up(&info->sem);
 374
 375        return ret;
 376}
 377
 378static irqreturn_t ve_spc_irq_handler(int irq, void *data)
 379{
 380        struct ve_spc_drvdata *drv_data = data;
 381        uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
 382
 383        if (info->cur_rsp_mask & status) {
 384                info->cur_rsp_stat = status;
 385                complete(&drv_data->done);
 386        }
 387
 388        return IRQ_HANDLED;
 389}
 390
 391/*
 392 *  +--------------------------+
 393 *  | 31      20 | 19        0 |
 394 *  +--------------------------+
 395 *  |   m_volt   |  freq(kHz)  |
 396 *  +--------------------------+
 397 */
 398#define MULT_FACTOR     20
 399#define VOLT_SHIFT      20
 400#define FREQ_MASK       (0xFFFFF)
 401static int ve_spc_populate_opps(uint32_t cluster)
 402{
 403        uint32_t data = 0, off, ret, idx;
 404        struct ve_spc_opp *opps;
 405
 406        opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL);
 407        if (!opps)
 408                return -ENOMEM;
 409
 410        info->opps[cluster] = opps;
 411
 412        off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
 413        for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
 414                ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
 415                if (!ret) {
 416                        opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
 417                        opps->u_volt = (data >> VOLT_SHIFT) * 1000;
 418                } else {
 419                        break;
 420                }
 421        }
 422        info->num_opps[cluster] = idx;
 423
 424        return ret;
 425}
 426
 427static int ve_init_opp_table(struct device *cpu_dev)
 428{
 429        int cluster;
 430        int idx, ret = 0, max_opp;
 431        struct ve_spc_opp *opps;
 432
 433        cluster = topology_physical_package_id(cpu_dev->id);
 434        cluster = cluster < 0 ? 0 : cluster;
 435
 436        max_opp = info->num_opps[cluster];
 437        opps = info->opps[cluster];
 438
 439        for (idx = 0; idx < max_opp; idx++, opps++) {
 440                ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
 441                if (ret) {
 442                        dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
 443                                 opps->freq, opps->u_volt);
 444                        return ret;
 445                }
 446        }
 447        return ret;
 448}
 449
 450int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
 451{
 452        int ret;
 453        info = kzalloc(sizeof(*info), GFP_KERNEL);
 454        if (!info) {
 455                pr_err(SPCLOG "unable to allocate mem\n");
 456                return -ENOMEM;
 457        }
 458
 459        info->baseaddr = baseaddr;
 460        info->a15_clusid = a15_clusid;
 461
 462        if (irq <= 0) {
 463                pr_err(SPCLOG "Invalid IRQ %d\n", irq);
 464                kfree(info);
 465                return -EINVAL;
 466        }
 467
 468        init_completion(&info->done);
 469
 470        readl_relaxed(info->baseaddr + PWC_STATUS);
 471
 472        ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
 473                                | IRQF_ONESHOT, "vexpress-spc", info);
 474        if (ret) {
 475                pr_err(SPCLOG "IRQ %d request failed\n", irq);
 476                kfree(info);
 477                return -ENODEV;
 478        }
 479
 480        sema_init(&info->sem, 1);
 481        /*
 482         * Multi-cluster systems may need this data when non-coherent, during
 483         * cluster power-up/power-down. Make sure driver info reaches main
 484         * memory.
 485         */
 486        sync_cache_w(info);
 487        sync_cache_w(&info);
 488
 489        return 0;
 490}
 491
 492struct clk_spc {
 493        struct clk_hw hw;
 494        int cluster;
 495};
 496
 497#define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
 498static unsigned long spc_recalc_rate(struct clk_hw *hw,
 499                unsigned long parent_rate)
 500{
 501        struct clk_spc *spc = to_clk_spc(hw);
 502        u32 freq;
 503
 504        if (ve_spc_get_performance(spc->cluster, &freq))
 505                return -EIO;
 506
 507        return freq * 1000;
 508}
 509
 510static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
 511                unsigned long *parent_rate)
 512{
 513        struct clk_spc *spc = to_clk_spc(hw);
 514
 515        return ve_spc_round_performance(spc->cluster, drate);
 516}
 517
 518static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
 519                unsigned long parent_rate)
 520{
 521        struct clk_spc *spc = to_clk_spc(hw);
 522
 523        return ve_spc_set_performance(spc->cluster, rate / 1000);
 524}
 525
 526static struct clk_ops clk_spc_ops = {
 527        .recalc_rate = spc_recalc_rate,
 528        .round_rate = spc_round_rate,
 529        .set_rate = spc_set_rate,
 530};
 531
 532static struct clk *ve_spc_clk_register(struct device *cpu_dev)
 533{
 534        struct clk_init_data init;
 535        struct clk_spc *spc;
 536
 537        spc = kzalloc(sizeof(*spc), GFP_KERNEL);
 538        if (!spc) {
 539                pr_err("could not allocate spc clk\n");
 540                return ERR_PTR(-ENOMEM);
 541        }
 542
 543        spc->hw.init = &init;
 544        spc->cluster = topology_physical_package_id(cpu_dev->id);
 545
 546        spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
 547
 548        init.name = dev_name(cpu_dev);
 549        init.ops = &clk_spc_ops;
 550        init.flags = CLK_IS_ROOT | CLK_GET_RATE_NOCACHE;
 551        init.num_parents = 0;
 552
 553        return devm_clk_register(cpu_dev, &spc->hw);
 554}
 555
 556static int __init ve_spc_clk_init(void)
 557{
 558        int cpu;
 559        struct clk *clk;
 560
 561        if (!info)
 562                return 0; /* Continue only if SPC is initialised */
 563
 564        if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
 565                pr_err("failed to build OPP table\n");
 566                return -ENODEV;
 567        }
 568
 569        for_each_possible_cpu(cpu) {
 570                struct device *cpu_dev = get_cpu_device(cpu);
 571                if (!cpu_dev) {
 572                        pr_warn("failed to get cpu%d device\n", cpu);
 573                        continue;
 574                }
 575                clk = ve_spc_clk_register(cpu_dev);
 576                if (IS_ERR(clk)) {
 577                        pr_warn("failed to register cpu%d clock\n", cpu);
 578                        continue;
 579                }
 580                if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
 581                        pr_warn("failed to register cpu%d clock lookup\n", cpu);
 582                        continue;
 583                }
 584
 585                if (ve_init_opp_table(cpu_dev))
 586                        pr_warn("failed to initialise cpu%d opp table\n", cpu);
 587        }
 588
 589        platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
 590        return 0;
 591}
 592device_initcall(ve_spc_clk_init);
 593