linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/bootmem.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
  15#include <linux/genalloc.h>
  16#include <linux/gfp.h>
  17#include <linux/errno.h>
  18#include <linux/list.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-contiguous.h>
  23#include <linux/highmem.h>
  24#include <linux/memblock.h>
  25#include <linux/slab.h>
  26#include <linux/iommu.h>
  27#include <linux/io.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sizes.h>
  30#include <linux/cma.h>
  31
  32#include <asm/memory.h>
  33#include <asm/highmem.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mach/arch.h>
  37#include <asm/dma-iommu.h>
  38#include <asm/mach/map.h>
  39#include <asm/system_info.h>
  40#include <asm/dma-contiguous.h>
  41
  42#include "dma.h"
  43#include "mm.h"
  44
  45struct arm_dma_alloc_args {
  46        struct device *dev;
  47        size_t size;
  48        gfp_t gfp;
  49        pgprot_t prot;
  50        const void *caller;
  51        bool want_vaddr;
  52};
  53
  54struct arm_dma_free_args {
  55        struct device *dev;
  56        size_t size;
  57        void *cpu_addr;
  58        struct page *page;
  59        bool want_vaddr;
  60};
  61
  62struct arm_dma_allocator {
  63        void *(*alloc)(struct arm_dma_alloc_args *args,
  64                       struct page **ret_page);
  65        void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69        struct list_head list;
  70        void *virt;
  71        struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79        struct arm_dma_buffer *buf, *found = NULL;
  80        unsigned long flags;
  81
  82        spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83        list_for_each_entry(buf, &arm_dma_bufs, list) {
  84                if (buf->virt == virt) {
  85                        list_del(&buf->list);
  86                        found = buf;
  87                        break;
  88                }
  89        }
  90        spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91        return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 107                size_t, enum dma_data_direction);
 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 109                size_t, enum dma_data_direction);
 110
 111/**
 112 * arm_dma_map_page - map a portion of a page for streaming DMA
 113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 114 * @page: page that buffer resides in
 115 * @offset: offset into page for start of buffer
 116 * @size: size of buffer to map
 117 * @dir: DMA transfer direction
 118 *
 119 * Ensure that any data held in the cache is appropriately discarded
 120 * or written back.
 121 *
 122 * The device owns this memory once this call has completed.  The CPU
 123 * can regain ownership by calling dma_unmap_page().
 124 */
 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 126             unsigned long offset, size_t size, enum dma_data_direction dir,
 127             struct dma_attrs *attrs)
 128{
 129        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 130                __dma_page_cpu_to_dev(page, offset, size, dir);
 131        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 132}
 133
 134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 135             unsigned long offset, size_t size, enum dma_data_direction dir,
 136             struct dma_attrs *attrs)
 137{
 138        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 139}
 140
 141/**
 142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 144 * @handle: DMA address of buffer
 145 * @size: size of buffer (same as passed to dma_map_page)
 146 * @dir: DMA transfer direction (same as passed to dma_map_page)
 147 *
 148 * Unmap a page streaming mode DMA translation.  The handle and size
 149 * must match what was provided in the previous dma_map_page() call.
 150 * All other usages are undefined.
 151 *
 152 * After this call, reads by the CPU to the buffer are guaranteed to see
 153 * whatever the device wrote there.
 154 */
 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 156                size_t size, enum dma_data_direction dir,
 157                struct dma_attrs *attrs)
 158{
 159        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 160                __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 161                                      handle & ~PAGE_MASK, size, dir);
 162}
 163
 164static void arm_dma_sync_single_for_cpu(struct device *dev,
 165                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 166{
 167        unsigned int offset = handle & (PAGE_SIZE - 1);
 168        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 169        __dma_page_dev_to_cpu(page, offset, size, dir);
 170}
 171
 172static void arm_dma_sync_single_for_device(struct device *dev,
 173                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 174{
 175        unsigned int offset = handle & (PAGE_SIZE - 1);
 176        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 177        __dma_page_cpu_to_dev(page, offset, size, dir);
 178}
 179
 180struct dma_map_ops arm_dma_ops = {
 181        .alloc                  = arm_dma_alloc,
 182        .free                   = arm_dma_free,
 183        .mmap                   = arm_dma_mmap,
 184        .get_sgtable            = arm_dma_get_sgtable,
 185        .map_page               = arm_dma_map_page,
 186        .unmap_page             = arm_dma_unmap_page,
 187        .map_sg                 = arm_dma_map_sg,
 188        .unmap_sg               = arm_dma_unmap_sg,
 189        .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
 190        .sync_single_for_device = arm_dma_sync_single_for_device,
 191        .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
 192        .sync_sg_for_device     = arm_dma_sync_sg_for_device,
 193        .set_dma_mask           = arm_dma_set_mask,
 194};
 195EXPORT_SYMBOL(arm_dma_ops);
 196
 197static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 198        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 199static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 200                                  dma_addr_t handle, struct dma_attrs *attrs);
 201static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 202                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 203                 struct dma_attrs *attrs);
 204
 205struct dma_map_ops arm_coherent_dma_ops = {
 206        .alloc                  = arm_coherent_dma_alloc,
 207        .free                   = arm_coherent_dma_free,
 208        .mmap                   = arm_coherent_dma_mmap,
 209        .get_sgtable            = arm_dma_get_sgtable,
 210        .map_page               = arm_coherent_dma_map_page,
 211        .map_sg                 = arm_dma_map_sg,
 212        .set_dma_mask           = arm_dma_set_mask,
 213};
 214EXPORT_SYMBOL(arm_coherent_dma_ops);
 215
 216static int __dma_supported(struct device *dev, u64 mask, bool warn)
 217{
 218        unsigned long max_dma_pfn;
 219
 220        /*
 221         * If the mask allows for more memory than we can address,
 222         * and we actually have that much memory, then we must
 223         * indicate that DMA to this device is not supported.
 224         */
 225        if (sizeof(mask) != sizeof(dma_addr_t) &&
 226            mask > (dma_addr_t)~0 &&
 227            dma_to_pfn(dev, ~0) < max_pfn - 1) {
 228                if (warn) {
 229                        dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 230                                 mask);
 231                        dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 232                }
 233                return 0;
 234        }
 235
 236        max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 237
 238        /*
 239         * Translate the device's DMA mask to a PFN limit.  This
 240         * PFN number includes the page which we can DMA to.
 241         */
 242        if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 243                if (warn)
 244                        dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 245                                 mask,
 246                                 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 247                                 max_dma_pfn + 1);
 248                return 0;
 249        }
 250
 251        return 1;
 252}
 253
 254static u64 get_coherent_dma_mask(struct device *dev)
 255{
 256        u64 mask = (u64)DMA_BIT_MASK(32);
 257
 258        if (dev) {
 259                mask = dev->coherent_dma_mask;
 260
 261                /*
 262                 * Sanity check the DMA mask - it must be non-zero, and
 263                 * must be able to be satisfied by a DMA allocation.
 264                 */
 265                if (mask == 0) {
 266                        dev_warn(dev, "coherent DMA mask is unset\n");
 267                        return 0;
 268                }
 269
 270                if (!__dma_supported(dev, mask, true))
 271                        return 0;
 272        }
 273
 274        return mask;
 275}
 276
 277static void __dma_clear_buffer(struct page *page, size_t size)
 278{
 279        /*
 280         * Ensure that the allocated pages are zeroed, and that any data
 281         * lurking in the kernel direct-mapped region is invalidated.
 282         */
 283        if (PageHighMem(page)) {
 284                phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 285                phys_addr_t end = base + size;
 286                while (size > 0) {
 287                        void *ptr = kmap_atomic(page);
 288                        memset(ptr, 0, PAGE_SIZE);
 289                        dmac_flush_range(ptr, ptr + PAGE_SIZE);
 290                        kunmap_atomic(ptr);
 291                        page++;
 292                        size -= PAGE_SIZE;
 293                }
 294                outer_flush_range(base, end);
 295        } else {
 296                void *ptr = page_address(page);
 297                memset(ptr, 0, size);
 298                dmac_flush_range(ptr, ptr + size);
 299                outer_flush_range(__pa(ptr), __pa(ptr) + size);
 300        }
 301}
 302
 303/*
 304 * Allocate a DMA buffer for 'dev' of size 'size' using the
 305 * specified gfp mask.  Note that 'size' must be page aligned.
 306 */
 307static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 308{
 309        unsigned long order = get_order(size);
 310        struct page *page, *p, *e;
 311
 312        page = alloc_pages(gfp, order);
 313        if (!page)
 314                return NULL;
 315
 316        /*
 317         * Now split the huge page and free the excess pages
 318         */
 319        split_page(page, order);
 320        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 321                __free_page(p);
 322
 323        __dma_clear_buffer(page, size);
 324
 325        return page;
 326}
 327
 328/*
 329 * Free a DMA buffer.  'size' must be page aligned.
 330 */
 331static void __dma_free_buffer(struct page *page, size_t size)
 332{
 333        struct page *e = page + (size >> PAGE_SHIFT);
 334
 335        while (page < e) {
 336                __free_page(page);
 337                page++;
 338        }
 339}
 340
 341#ifdef CONFIG_MMU
 342
 343static void *__alloc_from_contiguous(struct device *dev, size_t size,
 344                                     pgprot_t prot, struct page **ret_page,
 345                                     const void *caller, bool want_vaddr);
 346
 347static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 348                                 pgprot_t prot, struct page **ret_page,
 349                                 const void *caller, bool want_vaddr);
 350
 351static void *
 352__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 353        const void *caller)
 354{
 355        /*
 356         * DMA allocation can be mapped to user space, so lets
 357         * set VM_USERMAP flags too.
 358         */
 359        return dma_common_contiguous_remap(page, size,
 360                        VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 361                        prot, caller);
 362}
 363
 364static void __dma_free_remap(void *cpu_addr, size_t size)
 365{
 366        dma_common_free_remap(cpu_addr, size,
 367                        VM_ARM_DMA_CONSISTENT | VM_USERMAP);
 368}
 369
 370#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 371static struct gen_pool *atomic_pool;
 372
 373static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
 374
 375static int __init early_coherent_pool(char *p)
 376{
 377        atomic_pool_size = memparse(p, &p);
 378        return 0;
 379}
 380early_param("coherent_pool", early_coherent_pool);
 381
 382void __init init_dma_coherent_pool_size(unsigned long size)
 383{
 384        /*
 385         * Catch any attempt to set the pool size too late.
 386         */
 387        BUG_ON(atomic_pool);
 388
 389        /*
 390         * Set architecture specific coherent pool size only if
 391         * it has not been changed by kernel command line parameter.
 392         */
 393        if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 394                atomic_pool_size = size;
 395}
 396
 397/*
 398 * Initialise the coherent pool for atomic allocations.
 399 */
 400static int __init atomic_pool_init(void)
 401{
 402        pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 403        gfp_t gfp = GFP_KERNEL | GFP_DMA;
 404        struct page *page;
 405        void *ptr;
 406
 407        atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 408        if (!atomic_pool)
 409                goto out;
 410
 411        if (dev_get_cma_area(NULL))
 412                ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 413                                              &page, atomic_pool_init, true);
 414        else
 415                ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 416                                           &page, atomic_pool_init, true);
 417        if (ptr) {
 418                int ret;
 419
 420                ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 421                                        page_to_phys(page),
 422                                        atomic_pool_size, -1);
 423                if (ret)
 424                        goto destroy_genpool;
 425
 426                gen_pool_set_algo(atomic_pool,
 427                                gen_pool_first_fit_order_align,
 428                                (void *)PAGE_SHIFT);
 429                pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
 430                       atomic_pool_size / 1024);
 431                return 0;
 432        }
 433
 434destroy_genpool:
 435        gen_pool_destroy(atomic_pool);
 436        atomic_pool = NULL;
 437out:
 438        pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
 439               atomic_pool_size / 1024);
 440        return -ENOMEM;
 441}
 442/*
 443 * CMA is activated by core_initcall, so we must be called after it.
 444 */
 445postcore_initcall(atomic_pool_init);
 446
 447struct dma_contig_early_reserve {
 448        phys_addr_t base;
 449        unsigned long size;
 450};
 451
 452static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 453
 454static int dma_mmu_remap_num __initdata;
 455
 456void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 457{
 458        dma_mmu_remap[dma_mmu_remap_num].base = base;
 459        dma_mmu_remap[dma_mmu_remap_num].size = size;
 460        dma_mmu_remap_num++;
 461}
 462
 463void __init dma_contiguous_remap(void)
 464{
 465        int i;
 466        for (i = 0; i < dma_mmu_remap_num; i++) {
 467                phys_addr_t start = dma_mmu_remap[i].base;
 468                phys_addr_t end = start + dma_mmu_remap[i].size;
 469                struct map_desc map;
 470                unsigned long addr;
 471
 472                if (end > arm_lowmem_limit)
 473                        end = arm_lowmem_limit;
 474                if (start >= end)
 475                        continue;
 476
 477                map.pfn = __phys_to_pfn(start);
 478                map.virtual = __phys_to_virt(start);
 479                map.length = end - start;
 480                map.type = MT_MEMORY_DMA_READY;
 481
 482                /*
 483                 * Clear previous low-memory mapping to ensure that the
 484                 * TLB does not see any conflicting entries, then flush
 485                 * the TLB of the old entries before creating new mappings.
 486                 *
 487                 * This ensures that any speculatively loaded TLB entries
 488                 * (even though they may be rare) can not cause any problems,
 489                 * and ensures that this code is architecturally compliant.
 490                 */
 491                for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 492                     addr += PMD_SIZE)
 493                        pmd_clear(pmd_off_k(addr));
 494
 495                flush_tlb_kernel_range(__phys_to_virt(start),
 496                                       __phys_to_virt(end));
 497
 498                iotable_init(&map, 1);
 499        }
 500}
 501
 502static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 503                            void *data)
 504{
 505        struct page *page = virt_to_page(addr);
 506        pgprot_t prot = *(pgprot_t *)data;
 507
 508        set_pte_ext(pte, mk_pte(page, prot), 0);
 509        return 0;
 510}
 511
 512static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 513{
 514        unsigned long start = (unsigned long) page_address(page);
 515        unsigned end = start + size;
 516
 517        apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 518        flush_tlb_kernel_range(start, end);
 519}
 520
 521static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 522                                 pgprot_t prot, struct page **ret_page,
 523                                 const void *caller, bool want_vaddr)
 524{
 525        struct page *page;
 526        void *ptr = NULL;
 527        page = __dma_alloc_buffer(dev, size, gfp);
 528        if (!page)
 529                return NULL;
 530        if (!want_vaddr)
 531                goto out;
 532
 533        ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 534        if (!ptr) {
 535                __dma_free_buffer(page, size);
 536                return NULL;
 537        }
 538
 539 out:
 540        *ret_page = page;
 541        return ptr;
 542}
 543
 544static void *__alloc_from_pool(size_t size, struct page **ret_page)
 545{
 546        unsigned long val;
 547        void *ptr = NULL;
 548
 549        if (!atomic_pool) {
 550                WARN(1, "coherent pool not initialised!\n");
 551                return NULL;
 552        }
 553
 554        val = gen_pool_alloc(atomic_pool, size);
 555        if (val) {
 556                phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 557
 558                *ret_page = phys_to_page(phys);
 559                ptr = (void *)val;
 560        }
 561
 562        return ptr;
 563}
 564
 565static bool __in_atomic_pool(void *start, size_t size)
 566{
 567        return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 568}
 569
 570static int __free_from_pool(void *start, size_t size)
 571{
 572        if (!__in_atomic_pool(start, size))
 573                return 0;
 574
 575        gen_pool_free(atomic_pool, (unsigned long)start, size);
 576
 577        return 1;
 578}
 579
 580static void *__alloc_from_contiguous(struct device *dev, size_t size,
 581                                     pgprot_t prot, struct page **ret_page,
 582                                     const void *caller, bool want_vaddr)
 583{
 584        unsigned long order = get_order(size);
 585        size_t count = size >> PAGE_SHIFT;
 586        struct page *page;
 587        void *ptr = NULL;
 588
 589        page = dma_alloc_from_contiguous(dev, count, order);
 590        if (!page)
 591                return NULL;
 592
 593        __dma_clear_buffer(page, size);
 594
 595        if (!want_vaddr)
 596                goto out;
 597
 598        if (PageHighMem(page)) {
 599                ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 600                if (!ptr) {
 601                        dma_release_from_contiguous(dev, page, count);
 602                        return NULL;
 603                }
 604        } else {
 605                __dma_remap(page, size, prot);
 606                ptr = page_address(page);
 607        }
 608
 609 out:
 610        *ret_page = page;
 611        return ptr;
 612}
 613
 614static void __free_from_contiguous(struct device *dev, struct page *page,
 615                                   void *cpu_addr, size_t size, bool want_vaddr)
 616{
 617        if (want_vaddr) {
 618                if (PageHighMem(page))
 619                        __dma_free_remap(cpu_addr, size);
 620                else
 621                        __dma_remap(page, size, PAGE_KERNEL);
 622        }
 623        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 624}
 625
 626static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 627{
 628        prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 629                            pgprot_writecombine(prot) :
 630                            pgprot_dmacoherent(prot);
 631        return prot;
 632}
 633
 634#define nommu() 0
 635
 636#else   /* !CONFIG_MMU */
 637
 638#define nommu() 1
 639
 640#define __get_dma_pgprot(attrs, prot)                           __pgprot(0)
 641#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)  NULL
 642#define __alloc_from_pool(size, ret_page)                       NULL
 643#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)    NULL
 644#define __free_from_pool(cpu_addr, size)                        do { } while (0)
 645#define __free_from_contiguous(dev, page, cpu_addr, size, wv)   do { } while (0)
 646#define __dma_free_remap(cpu_addr, size)                        do { } while (0)
 647
 648#endif  /* CONFIG_MMU */
 649
 650static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 651                                   struct page **ret_page)
 652{
 653        struct page *page;
 654        page = __dma_alloc_buffer(dev, size, gfp);
 655        if (!page)
 656                return NULL;
 657
 658        *ret_page = page;
 659        return page_address(page);
 660}
 661
 662static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 663                                    struct page **ret_page)
 664{
 665        return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 666                                     ret_page);
 667}
 668
 669static void simple_allocator_free(struct arm_dma_free_args *args)
 670{
 671        __dma_free_buffer(args->page, args->size);
 672}
 673
 674static struct arm_dma_allocator simple_allocator = {
 675        .alloc = simple_allocator_alloc,
 676        .free = simple_allocator_free,
 677};
 678
 679static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 680                                 struct page **ret_page)
 681{
 682        return __alloc_from_contiguous(args->dev, args->size, args->prot,
 683                                       ret_page, args->caller,
 684                                       args->want_vaddr);
 685}
 686
 687static void cma_allocator_free(struct arm_dma_free_args *args)
 688{
 689        __free_from_contiguous(args->dev, args->page, args->cpu_addr,
 690                               args->size, args->want_vaddr);
 691}
 692
 693static struct arm_dma_allocator cma_allocator = {
 694        .alloc = cma_allocator_alloc,
 695        .free = cma_allocator_free,
 696};
 697
 698static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 699                                  struct page **ret_page)
 700{
 701        return __alloc_from_pool(args->size, ret_page);
 702}
 703
 704static void pool_allocator_free(struct arm_dma_free_args *args)
 705{
 706        __free_from_pool(args->cpu_addr, args->size);
 707}
 708
 709static struct arm_dma_allocator pool_allocator = {
 710        .alloc = pool_allocator_alloc,
 711        .free = pool_allocator_free,
 712};
 713
 714static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 715                                   struct page **ret_page)
 716{
 717        return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 718                                    args->prot, ret_page, args->caller,
 719                                    args->want_vaddr);
 720}
 721
 722static void remap_allocator_free(struct arm_dma_free_args *args)
 723{
 724        if (args->want_vaddr)
 725                __dma_free_remap(args->cpu_addr, args->size);
 726
 727        __dma_free_buffer(args->page, args->size);
 728}
 729
 730static struct arm_dma_allocator remap_allocator = {
 731        .alloc = remap_allocator_alloc,
 732        .free = remap_allocator_free,
 733};
 734
 735static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 736                         gfp_t gfp, pgprot_t prot, bool is_coherent,
 737                         struct dma_attrs *attrs, const void *caller)
 738{
 739        u64 mask = get_coherent_dma_mask(dev);
 740        struct page *page = NULL;
 741        void *addr;
 742        bool allowblock, cma;
 743        struct arm_dma_buffer *buf;
 744        struct arm_dma_alloc_args args = {
 745                .dev = dev,
 746                .size = PAGE_ALIGN(size),
 747                .gfp = gfp,
 748                .prot = prot,
 749                .caller = caller,
 750                .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
 751        };
 752
 753#ifdef CONFIG_DMA_API_DEBUG
 754        u64 limit = (mask + 1) & ~mask;
 755        if (limit && size >= limit) {
 756                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 757                        size, mask);
 758                return NULL;
 759        }
 760#endif
 761
 762        if (!mask)
 763                return NULL;
 764
 765        buf = kzalloc(sizeof(*buf),
 766                      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 767        if (!buf)
 768                return NULL;
 769
 770        if (mask < 0xffffffffULL)
 771                gfp |= GFP_DMA;
 772
 773        /*
 774         * Following is a work-around (a.k.a. hack) to prevent pages
 775         * with __GFP_COMP being passed to split_page() which cannot
 776         * handle them.  The real problem is that this flag probably
 777         * should be 0 on ARM as it is not supported on this
 778         * platform; see CONFIG_HUGETLBFS.
 779         */
 780        gfp &= ~(__GFP_COMP);
 781        args.gfp = gfp;
 782
 783        *handle = DMA_ERROR_CODE;
 784        allowblock = gfpflags_allow_blocking(gfp);
 785        cma = allowblock ? dev_get_cma_area(dev) : false;
 786
 787        if (cma)
 788                buf->allocator = &cma_allocator;
 789        else if (nommu() || is_coherent)
 790                buf->allocator = &simple_allocator;
 791        else if (allowblock)
 792                buf->allocator = &remap_allocator;
 793        else
 794                buf->allocator = &pool_allocator;
 795
 796        addr = buf->allocator->alloc(&args, &page);
 797
 798        if (page) {
 799                unsigned long flags;
 800
 801                *handle = pfn_to_dma(dev, page_to_pfn(page));
 802                buf->virt = args.want_vaddr ? addr : page;
 803
 804                spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 805                list_add(&buf->list, &arm_dma_bufs);
 806                spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 807        } else {
 808                kfree(buf);
 809        }
 810
 811        return args.want_vaddr ? addr : page;
 812}
 813
 814/*
 815 * Allocate DMA-coherent memory space and return both the kernel remapped
 816 * virtual and bus address for that space.
 817 */
 818void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 819                    gfp_t gfp, struct dma_attrs *attrs)
 820{
 821        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 822
 823        return __dma_alloc(dev, size, handle, gfp, prot, false,
 824                           attrs, __builtin_return_address(0));
 825}
 826
 827static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 828        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 829{
 830        return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 831                           attrs, __builtin_return_address(0));
 832}
 833
 834static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 835                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 836                 struct dma_attrs *attrs)
 837{
 838        int ret = -ENXIO;
 839#ifdef CONFIG_MMU
 840        unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 841        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 842        unsigned long pfn = dma_to_pfn(dev, dma_addr);
 843        unsigned long off = vma->vm_pgoff;
 844
 845        if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 846                return ret;
 847
 848        if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 849                ret = remap_pfn_range(vma, vma->vm_start,
 850                                      pfn + off,
 851                                      vma->vm_end - vma->vm_start,
 852                                      vma->vm_page_prot);
 853        }
 854#endif  /* CONFIG_MMU */
 855
 856        return ret;
 857}
 858
 859/*
 860 * Create userspace mapping for the DMA-coherent memory.
 861 */
 862static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 863                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 864                 struct dma_attrs *attrs)
 865{
 866        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 867}
 868
 869int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 870                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 871                 struct dma_attrs *attrs)
 872{
 873#ifdef CONFIG_MMU
 874        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 875#endif  /* CONFIG_MMU */
 876        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 877}
 878
 879/*
 880 * Free a buffer as defined by the above mapping.
 881 */
 882static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 883                           dma_addr_t handle, struct dma_attrs *attrs,
 884                           bool is_coherent)
 885{
 886        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 887        struct arm_dma_buffer *buf;
 888        struct arm_dma_free_args args = {
 889                .dev = dev,
 890                .size = PAGE_ALIGN(size),
 891                .cpu_addr = cpu_addr,
 892                .page = page,
 893                .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
 894        };
 895
 896        buf = arm_dma_buffer_find(cpu_addr);
 897        if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 898                return;
 899
 900        buf->allocator->free(&args);
 901        kfree(buf);
 902}
 903
 904void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 905                  dma_addr_t handle, struct dma_attrs *attrs)
 906{
 907        __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 908}
 909
 910static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 911                                  dma_addr_t handle, struct dma_attrs *attrs)
 912{
 913        __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 914}
 915
 916int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 917                 void *cpu_addr, dma_addr_t handle, size_t size,
 918                 struct dma_attrs *attrs)
 919{
 920        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 921        int ret;
 922
 923        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 924        if (unlikely(ret))
 925                return ret;
 926
 927        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 928        return 0;
 929}
 930
 931static void dma_cache_maint_page(struct page *page, unsigned long offset,
 932        size_t size, enum dma_data_direction dir,
 933        void (*op)(const void *, size_t, int))
 934{
 935        unsigned long pfn;
 936        size_t left = size;
 937
 938        pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 939        offset %= PAGE_SIZE;
 940
 941        /*
 942         * A single sg entry may refer to multiple physically contiguous
 943         * pages.  But we still need to process highmem pages individually.
 944         * If highmem is not configured then the bulk of this loop gets
 945         * optimized out.
 946         */
 947        do {
 948                size_t len = left;
 949                void *vaddr;
 950
 951                page = pfn_to_page(pfn);
 952
 953                if (PageHighMem(page)) {
 954                        if (len + offset > PAGE_SIZE)
 955                                len = PAGE_SIZE - offset;
 956
 957                        if (cache_is_vipt_nonaliasing()) {
 958                                vaddr = kmap_atomic(page);
 959                                op(vaddr + offset, len, dir);
 960                                kunmap_atomic(vaddr);
 961                        } else {
 962                                vaddr = kmap_high_get(page);
 963                                if (vaddr) {
 964                                        op(vaddr + offset, len, dir);
 965                                        kunmap_high(page);
 966                                }
 967                        }
 968                } else {
 969                        vaddr = page_address(page) + offset;
 970                        op(vaddr, len, dir);
 971                }
 972                offset = 0;
 973                pfn++;
 974                left -= len;
 975        } while (left);
 976}
 977
 978/*
 979 * Make an area consistent for devices.
 980 * Note: Drivers should NOT use this function directly, as it will break
 981 * platforms with CONFIG_DMABOUNCE.
 982 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 983 */
 984static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 985        size_t size, enum dma_data_direction dir)
 986{
 987        phys_addr_t paddr;
 988
 989        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 990
 991        paddr = page_to_phys(page) + off;
 992        if (dir == DMA_FROM_DEVICE) {
 993                outer_inv_range(paddr, paddr + size);
 994        } else {
 995                outer_clean_range(paddr, paddr + size);
 996        }
 997        /* FIXME: non-speculating: flush on bidirectional mappings? */
 998}
 999
1000static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1001        size_t size, enum dma_data_direction dir)
1002{
1003        phys_addr_t paddr = page_to_phys(page) + off;
1004
1005        /* FIXME: non-speculating: not required */
1006        /* in any case, don't bother invalidating if DMA to device */
1007        if (dir != DMA_TO_DEVICE) {
1008                outer_inv_range(paddr, paddr + size);
1009
1010                dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1011        }
1012
1013        /*
1014         * Mark the D-cache clean for these pages to avoid extra flushing.
1015         */
1016        if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1017                unsigned long pfn;
1018                size_t left = size;
1019
1020                pfn = page_to_pfn(page) + off / PAGE_SIZE;
1021                off %= PAGE_SIZE;
1022                if (off) {
1023                        pfn++;
1024                        left -= PAGE_SIZE - off;
1025                }
1026                while (left >= PAGE_SIZE) {
1027                        page = pfn_to_page(pfn++);
1028                        set_bit(PG_dcache_clean, &page->flags);
1029                        left -= PAGE_SIZE;
1030                }
1031        }
1032}
1033
1034/**
1035 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1036 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1037 * @sg: list of buffers
1038 * @nents: number of buffers to map
1039 * @dir: DMA transfer direction
1040 *
1041 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1042 * This is the scatter-gather version of the dma_map_single interface.
1043 * Here the scatter gather list elements are each tagged with the
1044 * appropriate dma address and length.  They are obtained via
1045 * sg_dma_{address,length}.
1046 *
1047 * Device ownership issues as mentioned for dma_map_single are the same
1048 * here.
1049 */
1050int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1051                enum dma_data_direction dir, struct dma_attrs *attrs)
1052{
1053        struct dma_map_ops *ops = get_dma_ops(dev);
1054        struct scatterlist *s;
1055        int i, j;
1056
1057        for_each_sg(sg, s, nents, i) {
1058#ifdef CONFIG_NEED_SG_DMA_LENGTH
1059                s->dma_length = s->length;
1060#endif
1061                s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1062                                                s->length, dir, attrs);
1063                if (dma_mapping_error(dev, s->dma_address))
1064                        goto bad_mapping;
1065        }
1066        return nents;
1067
1068 bad_mapping:
1069        for_each_sg(sg, s, i, j)
1070                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1071        return 0;
1072}
1073
1074/**
1075 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077 * @sg: list of buffers
1078 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1079 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1080 *
1081 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1082 * rules concerning calls here are the same as for dma_unmap_single().
1083 */
1084void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1085                enum dma_data_direction dir, struct dma_attrs *attrs)
1086{
1087        struct dma_map_ops *ops = get_dma_ops(dev);
1088        struct scatterlist *s;
1089
1090        int i;
1091
1092        for_each_sg(sg, s, nents, i)
1093                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1094}
1095
1096/**
1097 * arm_dma_sync_sg_for_cpu
1098 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099 * @sg: list of buffers
1100 * @nents: number of buffers to map (returned from dma_map_sg)
1101 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102 */
1103void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1104                        int nents, enum dma_data_direction dir)
1105{
1106        struct dma_map_ops *ops = get_dma_ops(dev);
1107        struct scatterlist *s;
1108        int i;
1109
1110        for_each_sg(sg, s, nents, i)
1111                ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1112                                         dir);
1113}
1114
1115/**
1116 * arm_dma_sync_sg_for_device
1117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1118 * @sg: list of buffers
1119 * @nents: number of buffers to map (returned from dma_map_sg)
1120 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1121 */
1122void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1123                        int nents, enum dma_data_direction dir)
1124{
1125        struct dma_map_ops *ops = get_dma_ops(dev);
1126        struct scatterlist *s;
1127        int i;
1128
1129        for_each_sg(sg, s, nents, i)
1130                ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1131                                            dir);
1132}
1133
1134/*
1135 * Return whether the given device DMA address mask can be supported
1136 * properly.  For example, if your device can only drive the low 24-bits
1137 * during bus mastering, then you would pass 0x00ffffff as the mask
1138 * to this function.
1139 */
1140int dma_supported(struct device *dev, u64 mask)
1141{
1142        return __dma_supported(dev, mask, false);
1143}
1144EXPORT_SYMBOL(dma_supported);
1145
1146int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1147{
1148        if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1149                return -EIO;
1150
1151        *dev->dma_mask = dma_mask;
1152
1153        return 0;
1154}
1155
1156#define PREALLOC_DMA_DEBUG_ENTRIES      4096
1157
1158static int __init dma_debug_do_init(void)
1159{
1160        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1161        return 0;
1162}
1163fs_initcall(dma_debug_do_init);
1164
1165#ifdef CONFIG_ARM_DMA_USE_IOMMU
1166
1167/* IOMMU */
1168
1169static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1170
1171static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1172                                      size_t size)
1173{
1174        unsigned int order = get_order(size);
1175        unsigned int align = 0;
1176        unsigned int count, start;
1177        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1178        unsigned long flags;
1179        dma_addr_t iova;
1180        int i;
1181
1182        if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1183                order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1184
1185        count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186        align = (1 << order) - 1;
1187
1188        spin_lock_irqsave(&mapping->lock, flags);
1189        for (i = 0; i < mapping->nr_bitmaps; i++) {
1190                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1191                                mapping->bits, 0, count, align);
1192
1193                if (start > mapping->bits)
1194                        continue;
1195
1196                bitmap_set(mapping->bitmaps[i], start, count);
1197                break;
1198        }
1199
1200        /*
1201         * No unused range found. Try to extend the existing mapping
1202         * and perform a second attempt to reserve an IO virtual
1203         * address range of size bytes.
1204         */
1205        if (i == mapping->nr_bitmaps) {
1206                if (extend_iommu_mapping(mapping)) {
1207                        spin_unlock_irqrestore(&mapping->lock, flags);
1208                        return DMA_ERROR_CODE;
1209                }
1210
1211                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1212                                mapping->bits, 0, count, align);
1213
1214                if (start > mapping->bits) {
1215                        spin_unlock_irqrestore(&mapping->lock, flags);
1216                        return DMA_ERROR_CODE;
1217                }
1218
1219                bitmap_set(mapping->bitmaps[i], start, count);
1220        }
1221        spin_unlock_irqrestore(&mapping->lock, flags);
1222
1223        iova = mapping->base + (mapping_size * i);
1224        iova += start << PAGE_SHIFT;
1225
1226        return iova;
1227}
1228
1229static inline void __free_iova(struct dma_iommu_mapping *mapping,
1230                               dma_addr_t addr, size_t size)
1231{
1232        unsigned int start, count;
1233        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1234        unsigned long flags;
1235        dma_addr_t bitmap_base;
1236        u32 bitmap_index;
1237
1238        if (!size)
1239                return;
1240
1241        bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1242        BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1243
1244        bitmap_base = mapping->base + mapping_size * bitmap_index;
1245
1246        start = (addr - bitmap_base) >> PAGE_SHIFT;
1247
1248        if (addr + size > bitmap_base + mapping_size) {
1249                /*
1250                 * The address range to be freed reaches into the iova
1251                 * range of the next bitmap. This should not happen as
1252                 * we don't allow this in __alloc_iova (at the
1253                 * moment).
1254                 */
1255                BUG();
1256        } else
1257                count = size >> PAGE_SHIFT;
1258
1259        spin_lock_irqsave(&mapping->lock, flags);
1260        bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1261        spin_unlock_irqrestore(&mapping->lock, flags);
1262}
1263
1264/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1265static const int iommu_order_array[] = { 9, 8, 4, 0 };
1266
1267static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1268                                          gfp_t gfp, struct dma_attrs *attrs)
1269{
1270        struct page **pages;
1271        int count = size >> PAGE_SHIFT;
1272        int array_size = count * sizeof(struct page *);
1273        int i = 0;
1274        int order_idx = 0;
1275
1276        if (array_size <= PAGE_SIZE)
1277                pages = kzalloc(array_size, GFP_KERNEL);
1278        else
1279                pages = vzalloc(array_size);
1280        if (!pages)
1281                return NULL;
1282
1283        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1284        {
1285                unsigned long order = get_order(size);
1286                struct page *page;
1287
1288                page = dma_alloc_from_contiguous(dev, count, order);
1289                if (!page)
1290                        goto error;
1291
1292                __dma_clear_buffer(page, size);
1293
1294                for (i = 0; i < count; i++)
1295                        pages[i] = page + i;
1296
1297                return pages;
1298        }
1299
1300        /* Go straight to 4K chunks if caller says it's OK. */
1301        if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1302                order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1303
1304        /*
1305         * IOMMU can map any pages, so himem can also be used here
1306         */
1307        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1308
1309        while (count) {
1310                int j, order;
1311
1312                order = iommu_order_array[order_idx];
1313
1314                /* Drop down when we get small */
1315                if (__fls(count) < order) {
1316                        order_idx++;
1317                        continue;
1318                }
1319
1320                if (order) {
1321                        /* See if it's easy to allocate a high-order chunk */
1322                        pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1323
1324                        /* Go down a notch at first sign of pressure */
1325                        if (!pages[i]) {
1326                                order_idx++;
1327                                continue;
1328                        }
1329                } else {
1330                        pages[i] = alloc_pages(gfp, 0);
1331                        if (!pages[i])
1332                                goto error;
1333                }
1334
1335                if (order) {
1336                        split_page(pages[i], order);
1337                        j = 1 << order;
1338                        while (--j)
1339                                pages[i + j] = pages[i] + j;
1340                }
1341
1342                __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1343                i += 1 << order;
1344                count -= 1 << order;
1345        }
1346
1347        return pages;
1348error:
1349        while (i--)
1350                if (pages[i])
1351                        __free_pages(pages[i], 0);
1352        kvfree(pages);
1353        return NULL;
1354}
1355
1356static int __iommu_free_buffer(struct device *dev, struct page **pages,
1357                               size_t size, struct dma_attrs *attrs)
1358{
1359        int count = size >> PAGE_SHIFT;
1360        int i;
1361
1362        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1363                dma_release_from_contiguous(dev, pages[0], count);
1364        } else {
1365                for (i = 0; i < count; i++)
1366                        if (pages[i])
1367                                __free_pages(pages[i], 0);
1368        }
1369
1370        kvfree(pages);
1371        return 0;
1372}
1373
1374/*
1375 * Create a CPU mapping for a specified pages
1376 */
1377static void *
1378__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1379                    const void *caller)
1380{
1381        return dma_common_pages_remap(pages, size,
1382                        VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1383}
1384
1385/*
1386 * Create a mapping in device IO address space for specified pages
1387 */
1388static dma_addr_t
1389__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1390{
1391        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1392        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1393        dma_addr_t dma_addr, iova;
1394        int i;
1395
1396        dma_addr = __alloc_iova(mapping, size);
1397        if (dma_addr == DMA_ERROR_CODE)
1398                return dma_addr;
1399
1400        iova = dma_addr;
1401        for (i = 0; i < count; ) {
1402                int ret;
1403
1404                unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1405                phys_addr_t phys = page_to_phys(pages[i]);
1406                unsigned int len, j;
1407
1408                for (j = i + 1; j < count; j++, next_pfn++)
1409                        if (page_to_pfn(pages[j]) != next_pfn)
1410                                break;
1411
1412                len = (j - i) << PAGE_SHIFT;
1413                ret = iommu_map(mapping->domain, iova, phys, len,
1414                                IOMMU_READ|IOMMU_WRITE);
1415                if (ret < 0)
1416                        goto fail;
1417                iova += len;
1418                i = j;
1419        }
1420        return dma_addr;
1421fail:
1422        iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1423        __free_iova(mapping, dma_addr, size);
1424        return DMA_ERROR_CODE;
1425}
1426
1427static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1428{
1429        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1430
1431        /*
1432         * add optional in-page offset from iova to size and align
1433         * result to page size
1434         */
1435        size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1436        iova &= PAGE_MASK;
1437
1438        iommu_unmap(mapping->domain, iova, size);
1439        __free_iova(mapping, iova, size);
1440        return 0;
1441}
1442
1443static struct page **__atomic_get_pages(void *addr)
1444{
1445        struct page *page;
1446        phys_addr_t phys;
1447
1448        phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1449        page = phys_to_page(phys);
1450
1451        return (struct page **)page;
1452}
1453
1454static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1455{
1456        struct vm_struct *area;
1457
1458        if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1459                return __atomic_get_pages(cpu_addr);
1460
1461        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1462                return cpu_addr;
1463
1464        area = find_vm_area(cpu_addr);
1465        if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1466                return area->pages;
1467        return NULL;
1468}
1469
1470static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1471                                  dma_addr_t *handle)
1472{
1473        struct page *page;
1474        void *addr;
1475
1476        addr = __alloc_from_pool(size, &page);
1477        if (!addr)
1478                return NULL;
1479
1480        *handle = __iommu_create_mapping(dev, &page, size);
1481        if (*handle == DMA_ERROR_CODE)
1482                goto err_mapping;
1483
1484        return addr;
1485
1486err_mapping:
1487        __free_from_pool(addr, size);
1488        return NULL;
1489}
1490
1491static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1492                                dma_addr_t handle, size_t size)
1493{
1494        __iommu_remove_mapping(dev, handle, size);
1495        __free_from_pool(cpu_addr, size);
1496}
1497
1498static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1499            dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1500{
1501        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1502        struct page **pages;
1503        void *addr = NULL;
1504
1505        *handle = DMA_ERROR_CODE;
1506        size = PAGE_ALIGN(size);
1507
1508        if (!gfpflags_allow_blocking(gfp))
1509                return __iommu_alloc_atomic(dev, size, handle);
1510
1511        /*
1512         * Following is a work-around (a.k.a. hack) to prevent pages
1513         * with __GFP_COMP being passed to split_page() which cannot
1514         * handle them.  The real problem is that this flag probably
1515         * should be 0 on ARM as it is not supported on this
1516         * platform; see CONFIG_HUGETLBFS.
1517         */
1518        gfp &= ~(__GFP_COMP);
1519
1520        pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1521        if (!pages)
1522                return NULL;
1523
1524        *handle = __iommu_create_mapping(dev, pages, size);
1525        if (*handle == DMA_ERROR_CODE)
1526                goto err_buffer;
1527
1528        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1529                return pages;
1530
1531        addr = __iommu_alloc_remap(pages, size, gfp, prot,
1532                                   __builtin_return_address(0));
1533        if (!addr)
1534                goto err_mapping;
1535
1536        return addr;
1537
1538err_mapping:
1539        __iommu_remove_mapping(dev, *handle, size);
1540err_buffer:
1541        __iommu_free_buffer(dev, pages, size, attrs);
1542        return NULL;
1543}
1544
1545static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1546                    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1547                    struct dma_attrs *attrs)
1548{
1549        unsigned long uaddr = vma->vm_start;
1550        unsigned long usize = vma->vm_end - vma->vm_start;
1551        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1552        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1553        unsigned long off = vma->vm_pgoff;
1554
1555        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1556
1557        if (!pages)
1558                return -ENXIO;
1559
1560        if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1561                return -ENXIO;
1562
1563        pages += off;
1564
1565        do {
1566                int ret = vm_insert_page(vma, uaddr, *pages++);
1567                if (ret) {
1568                        pr_err("Remapping memory failed: %d\n", ret);
1569                        return ret;
1570                }
1571                uaddr += PAGE_SIZE;
1572                usize -= PAGE_SIZE;
1573        } while (usize > 0);
1574
1575        return 0;
1576}
1577
1578/*
1579 * free a page as defined by the above mapping.
1580 * Must not be called with IRQs disabled.
1581 */
1582void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1583                          dma_addr_t handle, struct dma_attrs *attrs)
1584{
1585        struct page **pages;
1586        size = PAGE_ALIGN(size);
1587
1588        if (__in_atomic_pool(cpu_addr, size)) {
1589                __iommu_free_atomic(dev, cpu_addr, handle, size);
1590                return;
1591        }
1592
1593        pages = __iommu_get_pages(cpu_addr, attrs);
1594        if (!pages) {
1595                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1596                return;
1597        }
1598
1599        if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1600                dma_common_free_remap(cpu_addr, size,
1601                        VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1602        }
1603
1604        __iommu_remove_mapping(dev, handle, size);
1605        __iommu_free_buffer(dev, pages, size, attrs);
1606}
1607
1608static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1609                                 void *cpu_addr, dma_addr_t dma_addr,
1610                                 size_t size, struct dma_attrs *attrs)
1611{
1612        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1613        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1614
1615        if (!pages)
1616                return -ENXIO;
1617
1618        return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1619                                         GFP_KERNEL);
1620}
1621
1622static int __dma_direction_to_prot(enum dma_data_direction dir)
1623{
1624        int prot;
1625
1626        switch (dir) {
1627        case DMA_BIDIRECTIONAL:
1628                prot = IOMMU_READ | IOMMU_WRITE;
1629                break;
1630        case DMA_TO_DEVICE:
1631                prot = IOMMU_READ;
1632                break;
1633        case DMA_FROM_DEVICE:
1634                prot = IOMMU_WRITE;
1635                break;
1636        default:
1637                prot = 0;
1638        }
1639
1640        return prot;
1641}
1642
1643/*
1644 * Map a part of the scatter-gather list into contiguous io address space
1645 */
1646static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1647                          size_t size, dma_addr_t *handle,
1648                          enum dma_data_direction dir, struct dma_attrs *attrs,
1649                          bool is_coherent)
1650{
1651        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1652        dma_addr_t iova, iova_base;
1653        int ret = 0;
1654        unsigned int count;
1655        struct scatterlist *s;
1656        int prot;
1657
1658        size = PAGE_ALIGN(size);
1659        *handle = DMA_ERROR_CODE;
1660
1661        iova_base = iova = __alloc_iova(mapping, size);
1662        if (iova == DMA_ERROR_CODE)
1663                return -ENOMEM;
1664
1665        for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1666                phys_addr_t phys = page_to_phys(sg_page(s));
1667                unsigned int len = PAGE_ALIGN(s->offset + s->length);
1668
1669                if (!is_coherent &&
1670                        !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1671                        __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1672
1673                prot = __dma_direction_to_prot(dir);
1674
1675                ret = iommu_map(mapping->domain, iova, phys, len, prot);
1676                if (ret < 0)
1677                        goto fail;
1678                count += len >> PAGE_SHIFT;
1679                iova += len;
1680        }
1681        *handle = iova_base;
1682
1683        return 0;
1684fail:
1685        iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1686        __free_iova(mapping, iova_base, size);
1687        return ret;
1688}
1689
1690static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1691                     enum dma_data_direction dir, struct dma_attrs *attrs,
1692                     bool is_coherent)
1693{
1694        struct scatterlist *s = sg, *dma = sg, *start = sg;
1695        int i, count = 0;
1696        unsigned int offset = s->offset;
1697        unsigned int size = s->offset + s->length;
1698        unsigned int max = dma_get_max_seg_size(dev);
1699
1700        for (i = 1; i < nents; i++) {
1701                s = sg_next(s);
1702
1703                s->dma_address = DMA_ERROR_CODE;
1704                s->dma_length = 0;
1705
1706                if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1707                        if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1708                            dir, attrs, is_coherent) < 0)
1709                                goto bad_mapping;
1710
1711                        dma->dma_address += offset;
1712                        dma->dma_length = size - offset;
1713
1714                        size = offset = s->offset;
1715                        start = s;
1716                        dma = sg_next(dma);
1717                        count += 1;
1718                }
1719                size += s->length;
1720        }
1721        if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1722                is_coherent) < 0)
1723                goto bad_mapping;
1724
1725        dma->dma_address += offset;
1726        dma->dma_length = size - offset;
1727
1728        return count+1;
1729
1730bad_mapping:
1731        for_each_sg(sg, s, count, i)
1732                __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1733        return 0;
1734}
1735
1736/**
1737 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1738 * @dev: valid struct device pointer
1739 * @sg: list of buffers
1740 * @nents: number of buffers to map
1741 * @dir: DMA transfer direction
1742 *
1743 * Map a set of i/o coherent buffers described by scatterlist in streaming
1744 * mode for DMA. The scatter gather list elements are merged together (if
1745 * possible) and tagged with the appropriate dma address and length. They are
1746 * obtained via sg_dma_{address,length}.
1747 */
1748int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1749                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1750{
1751        return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1752}
1753
1754/**
1755 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1756 * @dev: valid struct device pointer
1757 * @sg: list of buffers
1758 * @nents: number of buffers to map
1759 * @dir: DMA transfer direction
1760 *
1761 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1762 * The scatter gather list elements are merged together (if possible) and
1763 * tagged with the appropriate dma address and length. They are obtained via
1764 * sg_dma_{address,length}.
1765 */
1766int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1767                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1768{
1769        return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1770}
1771
1772static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1773                int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1774                bool is_coherent)
1775{
1776        struct scatterlist *s;
1777        int i;
1778
1779        for_each_sg(sg, s, nents, i) {
1780                if (sg_dma_len(s))
1781                        __iommu_remove_mapping(dev, sg_dma_address(s),
1782                                               sg_dma_len(s));
1783                if (!is_coherent &&
1784                    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1785                        __dma_page_dev_to_cpu(sg_page(s), s->offset,
1786                                              s->length, dir);
1787        }
1788}
1789
1790/**
1791 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1792 * @dev: valid struct device pointer
1793 * @sg: list of buffers
1794 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1795 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1796 *
1797 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1798 * rules concerning calls here are the same as for dma_unmap_single().
1799 */
1800void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1801                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1802{
1803        __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1804}
1805
1806/**
1807 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1808 * @dev: valid struct device pointer
1809 * @sg: list of buffers
1810 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1811 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1812 *
1813 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1814 * rules concerning calls here are the same as for dma_unmap_single().
1815 */
1816void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1817                        enum dma_data_direction dir, struct dma_attrs *attrs)
1818{
1819        __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1820}
1821
1822/**
1823 * arm_iommu_sync_sg_for_cpu
1824 * @dev: valid struct device pointer
1825 * @sg: list of buffers
1826 * @nents: number of buffers to map (returned from dma_map_sg)
1827 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1828 */
1829void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1830                        int nents, enum dma_data_direction dir)
1831{
1832        struct scatterlist *s;
1833        int i;
1834
1835        for_each_sg(sg, s, nents, i)
1836                __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1837
1838}
1839
1840/**
1841 * arm_iommu_sync_sg_for_device
1842 * @dev: valid struct device pointer
1843 * @sg: list of buffers
1844 * @nents: number of buffers to map (returned from dma_map_sg)
1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1846 */
1847void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1848                        int nents, enum dma_data_direction dir)
1849{
1850        struct scatterlist *s;
1851        int i;
1852
1853        for_each_sg(sg, s, nents, i)
1854                __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1855}
1856
1857
1858/**
1859 * arm_coherent_iommu_map_page
1860 * @dev: valid struct device pointer
1861 * @page: page that buffer resides in
1862 * @offset: offset into page for start of buffer
1863 * @size: size of buffer to map
1864 * @dir: DMA transfer direction
1865 *
1866 * Coherent IOMMU aware version of arm_dma_map_page()
1867 */
1868static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1869             unsigned long offset, size_t size, enum dma_data_direction dir,
1870             struct dma_attrs *attrs)
1871{
1872        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1873        dma_addr_t dma_addr;
1874        int ret, prot, len = PAGE_ALIGN(size + offset);
1875
1876        dma_addr = __alloc_iova(mapping, len);
1877        if (dma_addr == DMA_ERROR_CODE)
1878                return dma_addr;
1879
1880        prot = __dma_direction_to_prot(dir);
1881
1882        ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1883        if (ret < 0)
1884                goto fail;
1885
1886        return dma_addr + offset;
1887fail:
1888        __free_iova(mapping, dma_addr, len);
1889        return DMA_ERROR_CODE;
1890}
1891
1892/**
1893 * arm_iommu_map_page
1894 * @dev: valid struct device pointer
1895 * @page: page that buffer resides in
1896 * @offset: offset into page for start of buffer
1897 * @size: size of buffer to map
1898 * @dir: DMA transfer direction
1899 *
1900 * IOMMU aware version of arm_dma_map_page()
1901 */
1902static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1903             unsigned long offset, size_t size, enum dma_data_direction dir,
1904             struct dma_attrs *attrs)
1905{
1906        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1907                __dma_page_cpu_to_dev(page, offset, size, dir);
1908
1909        return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1910}
1911
1912/**
1913 * arm_coherent_iommu_unmap_page
1914 * @dev: valid struct device pointer
1915 * @handle: DMA address of buffer
1916 * @size: size of buffer (same as passed to dma_map_page)
1917 * @dir: DMA transfer direction (same as passed to dma_map_page)
1918 *
1919 * Coherent IOMMU aware version of arm_dma_unmap_page()
1920 */
1921static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1922                size_t size, enum dma_data_direction dir,
1923                struct dma_attrs *attrs)
1924{
1925        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926        dma_addr_t iova = handle & PAGE_MASK;
1927        int offset = handle & ~PAGE_MASK;
1928        int len = PAGE_ALIGN(size + offset);
1929
1930        if (!iova)
1931                return;
1932
1933        iommu_unmap(mapping->domain, iova, len);
1934        __free_iova(mapping, iova, len);
1935}
1936
1937/**
1938 * arm_iommu_unmap_page
1939 * @dev: valid struct device pointer
1940 * @handle: DMA address of buffer
1941 * @size: size of buffer (same as passed to dma_map_page)
1942 * @dir: DMA transfer direction (same as passed to dma_map_page)
1943 *
1944 * IOMMU aware version of arm_dma_unmap_page()
1945 */
1946static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1947                size_t size, enum dma_data_direction dir,
1948                struct dma_attrs *attrs)
1949{
1950        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1951        dma_addr_t iova = handle & PAGE_MASK;
1952        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1953        int offset = handle & ~PAGE_MASK;
1954        int len = PAGE_ALIGN(size + offset);
1955
1956        if (!iova)
1957                return;
1958
1959        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1960                __dma_page_dev_to_cpu(page, offset, size, dir);
1961
1962        iommu_unmap(mapping->domain, iova, len);
1963        __free_iova(mapping, iova, len);
1964}
1965
1966static void arm_iommu_sync_single_for_cpu(struct device *dev,
1967                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1968{
1969        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1970        dma_addr_t iova = handle & PAGE_MASK;
1971        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1972        unsigned int offset = handle & ~PAGE_MASK;
1973
1974        if (!iova)
1975                return;
1976
1977        __dma_page_dev_to_cpu(page, offset, size, dir);
1978}
1979
1980static void arm_iommu_sync_single_for_device(struct device *dev,
1981                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1982{
1983        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1984        dma_addr_t iova = handle & PAGE_MASK;
1985        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1986        unsigned int offset = handle & ~PAGE_MASK;
1987
1988        if (!iova)
1989                return;
1990
1991        __dma_page_cpu_to_dev(page, offset, size, dir);
1992}
1993
1994struct dma_map_ops iommu_ops = {
1995        .alloc          = arm_iommu_alloc_attrs,
1996        .free           = arm_iommu_free_attrs,
1997        .mmap           = arm_iommu_mmap_attrs,
1998        .get_sgtable    = arm_iommu_get_sgtable,
1999
2000        .map_page               = arm_iommu_map_page,
2001        .unmap_page             = arm_iommu_unmap_page,
2002        .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
2003        .sync_single_for_device = arm_iommu_sync_single_for_device,
2004
2005        .map_sg                 = arm_iommu_map_sg,
2006        .unmap_sg               = arm_iommu_unmap_sg,
2007        .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
2008        .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
2009
2010        .set_dma_mask           = arm_dma_set_mask,
2011};
2012
2013struct dma_map_ops iommu_coherent_ops = {
2014        .alloc          = arm_iommu_alloc_attrs,
2015        .free           = arm_iommu_free_attrs,
2016        .mmap           = arm_iommu_mmap_attrs,
2017        .get_sgtable    = arm_iommu_get_sgtable,
2018
2019        .map_page       = arm_coherent_iommu_map_page,
2020        .unmap_page     = arm_coherent_iommu_unmap_page,
2021
2022        .map_sg         = arm_coherent_iommu_map_sg,
2023        .unmap_sg       = arm_coherent_iommu_unmap_sg,
2024
2025        .set_dma_mask   = arm_dma_set_mask,
2026};
2027
2028/**
2029 * arm_iommu_create_mapping
2030 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2031 * @base: start address of the valid IO address space
2032 * @size: maximum size of the valid IO address space
2033 *
2034 * Creates a mapping structure which holds information about used/unused
2035 * IO address ranges, which is required to perform memory allocation and
2036 * mapping with IOMMU aware functions.
2037 *
2038 * The client device need to be attached to the mapping with
2039 * arm_iommu_attach_device function.
2040 */
2041struct dma_iommu_mapping *
2042arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2043{
2044        unsigned int bits = size >> PAGE_SHIFT;
2045        unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2046        struct dma_iommu_mapping *mapping;
2047        int extensions = 1;
2048        int err = -ENOMEM;
2049
2050        /* currently only 32-bit DMA address space is supported */
2051        if (size > DMA_BIT_MASK(32) + 1)
2052                return ERR_PTR(-ERANGE);
2053
2054        if (!bitmap_size)
2055                return ERR_PTR(-EINVAL);
2056
2057        if (bitmap_size > PAGE_SIZE) {
2058                extensions = bitmap_size / PAGE_SIZE;
2059                bitmap_size = PAGE_SIZE;
2060        }
2061
2062        mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2063        if (!mapping)
2064                goto err;
2065
2066        mapping->bitmap_size = bitmap_size;
2067        mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2068                                GFP_KERNEL);
2069        if (!mapping->bitmaps)
2070                goto err2;
2071
2072        mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2073        if (!mapping->bitmaps[0])
2074                goto err3;
2075
2076        mapping->nr_bitmaps = 1;
2077        mapping->extensions = extensions;
2078        mapping->base = base;
2079        mapping->bits = BITS_PER_BYTE * bitmap_size;
2080
2081        spin_lock_init(&mapping->lock);
2082
2083        mapping->domain = iommu_domain_alloc(bus);
2084        if (!mapping->domain)
2085                goto err4;
2086
2087        kref_init(&mapping->kref);
2088        return mapping;
2089err4:
2090        kfree(mapping->bitmaps[0]);
2091err3:
2092        kfree(mapping->bitmaps);
2093err2:
2094        kfree(mapping);
2095err:
2096        return ERR_PTR(err);
2097}
2098EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2099
2100static void release_iommu_mapping(struct kref *kref)
2101{
2102        int i;
2103        struct dma_iommu_mapping *mapping =
2104                container_of(kref, struct dma_iommu_mapping, kref);
2105
2106        iommu_domain_free(mapping->domain);
2107        for (i = 0; i < mapping->nr_bitmaps; i++)
2108                kfree(mapping->bitmaps[i]);
2109        kfree(mapping->bitmaps);
2110        kfree(mapping);
2111}
2112
2113static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2114{
2115        int next_bitmap;
2116
2117        if (mapping->nr_bitmaps >= mapping->extensions)
2118                return -EINVAL;
2119
2120        next_bitmap = mapping->nr_bitmaps;
2121        mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2122                                                GFP_ATOMIC);
2123        if (!mapping->bitmaps[next_bitmap])
2124                return -ENOMEM;
2125
2126        mapping->nr_bitmaps++;
2127
2128        return 0;
2129}
2130
2131void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2132{
2133        if (mapping)
2134                kref_put(&mapping->kref, release_iommu_mapping);
2135}
2136EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2137
2138static int __arm_iommu_attach_device(struct device *dev,
2139                                     struct dma_iommu_mapping *mapping)
2140{
2141        int err;
2142
2143        err = iommu_attach_device(mapping->domain, dev);
2144        if (err)
2145                return err;
2146
2147        kref_get(&mapping->kref);
2148        to_dma_iommu_mapping(dev) = mapping;
2149
2150        pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2151        return 0;
2152}
2153
2154/**
2155 * arm_iommu_attach_device
2156 * @dev: valid struct device pointer
2157 * @mapping: io address space mapping structure (returned from
2158 *      arm_iommu_create_mapping)
2159 *
2160 * Attaches specified io address space mapping to the provided device.
2161 * This replaces the dma operations (dma_map_ops pointer) with the
2162 * IOMMU aware version.
2163 *
2164 * More than one client might be attached to the same io address space
2165 * mapping.
2166 */
2167int arm_iommu_attach_device(struct device *dev,
2168                            struct dma_iommu_mapping *mapping)
2169{
2170        int err;
2171
2172        err = __arm_iommu_attach_device(dev, mapping);
2173        if (err)
2174                return err;
2175
2176        set_dma_ops(dev, &iommu_ops);
2177        return 0;
2178}
2179EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2180
2181static void __arm_iommu_detach_device(struct device *dev)
2182{
2183        struct dma_iommu_mapping *mapping;
2184
2185        mapping = to_dma_iommu_mapping(dev);
2186        if (!mapping) {
2187                dev_warn(dev, "Not attached\n");
2188                return;
2189        }
2190
2191        iommu_detach_device(mapping->domain, dev);
2192        kref_put(&mapping->kref, release_iommu_mapping);
2193        to_dma_iommu_mapping(dev) = NULL;
2194
2195        pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2196}
2197
2198/**
2199 * arm_iommu_detach_device
2200 * @dev: valid struct device pointer
2201 *
2202 * Detaches the provided device from a previously attached map.
2203 * This voids the dma operations (dma_map_ops pointer)
2204 */
2205void arm_iommu_detach_device(struct device *dev)
2206{
2207        __arm_iommu_detach_device(dev);
2208        set_dma_ops(dev, NULL);
2209}
2210EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2211
2212static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2213{
2214        return coherent ? &iommu_coherent_ops : &iommu_ops;
2215}
2216
2217static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2218                                    struct iommu_ops *iommu)
2219{
2220        struct dma_iommu_mapping *mapping;
2221
2222        if (!iommu)
2223                return false;
2224
2225        mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2226        if (IS_ERR(mapping)) {
2227                pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2228                                size, dev_name(dev));
2229                return false;
2230        }
2231
2232        if (__arm_iommu_attach_device(dev, mapping)) {
2233                pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2234                                dev_name(dev));
2235                arm_iommu_release_mapping(mapping);
2236                return false;
2237        }
2238
2239        return true;
2240}
2241
2242static void arm_teardown_iommu_dma_ops(struct device *dev)
2243{
2244        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2245
2246        if (!mapping)
2247                return;
2248
2249        __arm_iommu_detach_device(dev);
2250        arm_iommu_release_mapping(mapping);
2251}
2252
2253#else
2254
2255static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2256                                    struct iommu_ops *iommu)
2257{
2258        return false;
2259}
2260
2261static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2262
2263#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2264
2265#endif  /* CONFIG_ARM_DMA_USE_IOMMU */
2266
2267static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2268{
2269        return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2270}
2271
2272void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2273                        struct iommu_ops *iommu, bool coherent)
2274{
2275        struct dma_map_ops *dma_ops;
2276
2277        dev->archdata.dma_coherent = coherent;
2278        if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2279                dma_ops = arm_get_iommu_dma_map_ops(coherent);
2280        else
2281                dma_ops = arm_get_dma_map_ops(coherent);
2282
2283        set_dma_ops(dev, dma_ops);
2284}
2285
2286void arch_teardown_dma_ops(struct device *dev)
2287{
2288        arm_teardown_iommu_dma_ops(dev);
2289}
2290