linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/fixmap.h>
  26#include <asm/sections.h>
  27#include <asm/setup.h>
  28#include <asm/smp_plat.h>
  29#include <asm/tlb.h>
  30#include <asm/highmem.h>
  31#include <asm/system_info.h>
  32#include <asm/traps.h>
  33#include <asm/procinfo.h>
  34#include <asm/memory.h>
  35
  36#include <asm/mach/arch.h>
  37#include <asm/mach/map.h>
  38#include <asm/mach/pci.h>
  39#include <asm/fixmap.h>
  40
  41#include "fault.h"
  42#include "mm.h"
  43#include "tcm.h"
  44
  45/*
  46 * empty_zero_page is a special page that is used for
  47 * zero-initialized data and COW.
  48 */
  49struct page *empty_zero_page;
  50EXPORT_SYMBOL(empty_zero_page);
  51
  52/*
  53 * The pmd table for the upper-most set of pages.
  54 */
  55pmd_t *top_pmd;
  56
  57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  58
  59#define CPOLICY_UNCACHED        0
  60#define CPOLICY_BUFFERED        1
  61#define CPOLICY_WRITETHROUGH    2
  62#define CPOLICY_WRITEBACK       3
  63#define CPOLICY_WRITEALLOC      4
  64
  65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  66static unsigned int ecc_mask __initdata = 0;
  67pgprot_t pgprot_user;
  68pgprot_t pgprot_kernel;
  69pgprot_t pgprot_hyp_device;
  70pgprot_t pgprot_s2;
  71pgprot_t pgprot_s2_device;
  72
  73EXPORT_SYMBOL(pgprot_user);
  74EXPORT_SYMBOL(pgprot_kernel);
  75
  76struct cachepolicy {
  77        const char      policy[16];
  78        unsigned int    cr_mask;
  79        pmdval_t        pmd;
  80        pteval_t        pte;
  81        pteval_t        pte_s2;
  82};
  83
  84#ifdef CONFIG_ARM_LPAE
  85#define s2_policy(policy)       policy
  86#else
  87#define s2_policy(policy)       0
  88#endif
  89
  90static struct cachepolicy cache_policies[] __initdata = {
  91        {
  92                .policy         = "uncached",
  93                .cr_mask        = CR_W|CR_C,
  94                .pmd            = PMD_SECT_UNCACHED,
  95                .pte            = L_PTE_MT_UNCACHED,
  96                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  97        }, {
  98                .policy         = "buffered",
  99                .cr_mask        = CR_C,
 100                .pmd            = PMD_SECT_BUFFERED,
 101                .pte            = L_PTE_MT_BUFFERABLE,
 102                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
 103        }, {
 104                .policy         = "writethrough",
 105                .cr_mask        = 0,
 106                .pmd            = PMD_SECT_WT,
 107                .pte            = L_PTE_MT_WRITETHROUGH,
 108                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 109        }, {
 110                .policy         = "writeback",
 111                .cr_mask        = 0,
 112                .pmd            = PMD_SECT_WB,
 113                .pte            = L_PTE_MT_WRITEBACK,
 114                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 115        }, {
 116                .policy         = "writealloc",
 117                .cr_mask        = 0,
 118                .pmd            = PMD_SECT_WBWA,
 119                .pte            = L_PTE_MT_WRITEALLOC,
 120                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 121        }
 122};
 123
 124#ifdef CONFIG_CPU_CP15
 125static unsigned long initial_pmd_value __initdata = 0;
 126
 127/*
 128 * Initialise the cache_policy variable with the initial state specified
 129 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 130 * the C code sets the page tables up with the same policy as the head
 131 * assembly code, which avoids an illegal state where the TLBs can get
 132 * confused.  See comments in early_cachepolicy() for more information.
 133 */
 134void __init init_default_cache_policy(unsigned long pmd)
 135{
 136        int i;
 137
 138        initial_pmd_value = pmd;
 139
 140        pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
 141
 142        for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 143                if (cache_policies[i].pmd == pmd) {
 144                        cachepolicy = i;
 145                        break;
 146                }
 147
 148        if (i == ARRAY_SIZE(cache_policies))
 149                pr_err("ERROR: could not find cache policy\n");
 150}
 151
 152/*
 153 * These are useful for identifying cache coherency problems by allowing
 154 * the cache or the cache and writebuffer to be turned off.  (Note: the
 155 * write buffer should not be on and the cache off).
 156 */
 157static int __init early_cachepolicy(char *p)
 158{
 159        int i, selected = -1;
 160
 161        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 162                int len = strlen(cache_policies[i].policy);
 163
 164                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 165                        selected = i;
 166                        break;
 167                }
 168        }
 169
 170        if (selected == -1)
 171                pr_err("ERROR: unknown or unsupported cache policy\n");
 172
 173        /*
 174         * This restriction is partly to do with the way we boot; it is
 175         * unpredictable to have memory mapped using two different sets of
 176         * memory attributes (shared, type, and cache attribs).  We can not
 177         * change these attributes once the initial assembly has setup the
 178         * page tables.
 179         */
 180        if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 181                pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 182                        cache_policies[cachepolicy].policy);
 183                return 0;
 184        }
 185
 186        if (selected != cachepolicy) {
 187                unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 188                cachepolicy = selected;
 189                flush_cache_all();
 190                set_cr(cr);
 191        }
 192        return 0;
 193}
 194early_param("cachepolicy", early_cachepolicy);
 195
 196static int __init early_nocache(char *__unused)
 197{
 198        char *p = "buffered";
 199        pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 200        early_cachepolicy(p);
 201        return 0;
 202}
 203early_param("nocache", early_nocache);
 204
 205static int __init early_nowrite(char *__unused)
 206{
 207        char *p = "uncached";
 208        pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 209        early_cachepolicy(p);
 210        return 0;
 211}
 212early_param("nowb", early_nowrite);
 213
 214#ifndef CONFIG_ARM_LPAE
 215static int __init early_ecc(char *p)
 216{
 217        if (memcmp(p, "on", 2) == 0)
 218                ecc_mask = PMD_PROTECTION;
 219        else if (memcmp(p, "off", 3) == 0)
 220                ecc_mask = 0;
 221        return 0;
 222}
 223early_param("ecc", early_ecc);
 224#endif
 225
 226#else /* ifdef CONFIG_CPU_CP15 */
 227
 228static int __init early_cachepolicy(char *p)
 229{
 230        pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 231}
 232early_param("cachepolicy", early_cachepolicy);
 233
 234static int __init noalign_setup(char *__unused)
 235{
 236        pr_warn("noalign kernel parameter not supported without cp15\n");
 237}
 238__setup("noalign", noalign_setup);
 239
 240#endif /* ifdef CONFIG_CPU_CP15 / else */
 241
 242#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 243#define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
 244#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 245
 246static struct mem_type mem_types[] = {
 247        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 248                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 249                                  L_PTE_SHARED,
 250                .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
 251                                  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 252                                  L_PTE_SHARED,
 253                .prot_l1        = PMD_TYPE_TABLE,
 254                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 255                .domain         = DOMAIN_IO,
 256        },
 257        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 258                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 259                .prot_l1        = PMD_TYPE_TABLE,
 260                .prot_sect      = PROT_SECT_DEVICE,
 261                .domain         = DOMAIN_IO,
 262        },
 263        [MT_DEVICE_CACHED] = {    /* ioremap_cached */
 264                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 265                .prot_l1        = PMD_TYPE_TABLE,
 266                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 267                .domain         = DOMAIN_IO,
 268        },
 269        [MT_DEVICE_WC] = {      /* ioremap_wc */
 270                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 271                .prot_l1        = PMD_TYPE_TABLE,
 272                .prot_sect      = PROT_SECT_DEVICE,
 273                .domain         = DOMAIN_IO,
 274        },
 275        [MT_UNCACHED] = {
 276                .prot_pte       = PROT_PTE_DEVICE,
 277                .prot_l1        = PMD_TYPE_TABLE,
 278                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 279                .domain         = DOMAIN_IO,
 280        },
 281        [MT_CACHECLEAN] = {
 282                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 283                .domain    = DOMAIN_KERNEL,
 284        },
 285#ifndef CONFIG_ARM_LPAE
 286        [MT_MINICLEAN] = {
 287                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 288                .domain    = DOMAIN_KERNEL,
 289        },
 290#endif
 291        [MT_LOW_VECTORS] = {
 292                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 293                                L_PTE_RDONLY,
 294                .prot_l1   = PMD_TYPE_TABLE,
 295                .domain    = DOMAIN_VECTORS,
 296        },
 297        [MT_HIGH_VECTORS] = {
 298                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 299                                L_PTE_USER | L_PTE_RDONLY,
 300                .prot_l1   = PMD_TYPE_TABLE,
 301                .domain    = DOMAIN_VECTORS,
 302        },
 303        [MT_MEMORY_RWX] = {
 304                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 305                .prot_l1   = PMD_TYPE_TABLE,
 306                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 307                .domain    = DOMAIN_KERNEL,
 308        },
 309        [MT_MEMORY_RW] = {
 310                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 311                             L_PTE_XN,
 312                .prot_l1   = PMD_TYPE_TABLE,
 313                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 314                .domain    = DOMAIN_KERNEL,
 315        },
 316        [MT_ROM] = {
 317                .prot_sect = PMD_TYPE_SECT,
 318                .domain    = DOMAIN_KERNEL,
 319        },
 320        [MT_MEMORY_RWX_NONCACHED] = {
 321                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 322                                L_PTE_MT_BUFFERABLE,
 323                .prot_l1   = PMD_TYPE_TABLE,
 324                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 325                .domain    = DOMAIN_KERNEL,
 326        },
 327        [MT_MEMORY_RW_DTCM] = {
 328                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 329                                L_PTE_XN,
 330                .prot_l1   = PMD_TYPE_TABLE,
 331                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 332                .domain    = DOMAIN_KERNEL,
 333        },
 334        [MT_MEMORY_RWX_ITCM] = {
 335                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 336                .prot_l1   = PMD_TYPE_TABLE,
 337                .domain    = DOMAIN_KERNEL,
 338        },
 339        [MT_MEMORY_RW_SO] = {
 340                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 341                                L_PTE_MT_UNCACHED | L_PTE_XN,
 342                .prot_l1   = PMD_TYPE_TABLE,
 343                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 344                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 345                .domain    = DOMAIN_KERNEL,
 346        },
 347        [MT_MEMORY_DMA_READY] = {
 348                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 349                                L_PTE_XN,
 350                .prot_l1   = PMD_TYPE_TABLE,
 351                .domain    = DOMAIN_KERNEL,
 352        },
 353};
 354
 355const struct mem_type *get_mem_type(unsigned int type)
 356{
 357        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 358}
 359EXPORT_SYMBOL(get_mem_type);
 360
 361static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 362
 363static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 364        __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 365
 366static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 367{
 368        return &bm_pte[pte_index(addr)];
 369}
 370
 371static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 372{
 373        return pte_offset_kernel(dir, addr);
 374}
 375
 376static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 377{
 378        pgd_t *pgd = pgd_offset_k(addr);
 379        pud_t *pud = pud_offset(pgd, addr);
 380        pmd_t *pmd = pmd_offset(pud, addr);
 381
 382        return pmd;
 383}
 384
 385void __init early_fixmap_init(void)
 386{
 387        pmd_t *pmd;
 388
 389        /*
 390         * The early fixmap range spans multiple pmds, for which
 391         * we are not prepared:
 392         */
 393        BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 394                     != FIXADDR_TOP >> PMD_SHIFT);
 395
 396        pmd = fixmap_pmd(FIXADDR_TOP);
 397        pmd_populate_kernel(&init_mm, pmd, bm_pte);
 398
 399        pte_offset_fixmap = pte_offset_early_fixmap;
 400}
 401
 402/*
 403 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 404 * As a result, this can only be called with preemption disabled, as under
 405 * stop_machine().
 406 */
 407void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 408{
 409        unsigned long vaddr = __fix_to_virt(idx);
 410        pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 411
 412        /* Make sure fixmap region does not exceed available allocation. */
 413        BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 414                     FIXADDR_END);
 415        BUG_ON(idx >= __end_of_fixed_addresses);
 416
 417        if (pgprot_val(prot))
 418                set_pte_at(NULL, vaddr, pte,
 419                        pfn_pte(phys >> PAGE_SHIFT, prot));
 420        else
 421                pte_clear(NULL, vaddr, pte);
 422        local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 423}
 424
 425/*
 426 * Adjust the PMD section entries according to the CPU in use.
 427 */
 428static void __init build_mem_type_table(void)
 429{
 430        struct cachepolicy *cp;
 431        unsigned int cr = get_cr();
 432        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 433        pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 434        int cpu_arch = cpu_architecture();
 435        int i;
 436
 437        if (cpu_arch < CPU_ARCH_ARMv6) {
 438#if defined(CONFIG_CPU_DCACHE_DISABLE)
 439                if (cachepolicy > CPOLICY_BUFFERED)
 440                        cachepolicy = CPOLICY_BUFFERED;
 441#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 442                if (cachepolicy > CPOLICY_WRITETHROUGH)
 443                        cachepolicy = CPOLICY_WRITETHROUGH;
 444#endif
 445        }
 446        if (cpu_arch < CPU_ARCH_ARMv5) {
 447                if (cachepolicy >= CPOLICY_WRITEALLOC)
 448                        cachepolicy = CPOLICY_WRITEBACK;
 449                ecc_mask = 0;
 450        }
 451
 452        if (is_smp()) {
 453                if (cachepolicy != CPOLICY_WRITEALLOC) {
 454                        pr_warn("Forcing write-allocate cache policy for SMP\n");
 455                        cachepolicy = CPOLICY_WRITEALLOC;
 456                }
 457                if (!(initial_pmd_value & PMD_SECT_S)) {
 458                        pr_warn("Forcing shared mappings for SMP\n");
 459                        initial_pmd_value |= PMD_SECT_S;
 460                }
 461        }
 462
 463        /*
 464         * Strip out features not present on earlier architectures.
 465         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 466         * without extended page tables don't have the 'Shared' bit.
 467         */
 468        if (cpu_arch < CPU_ARCH_ARMv5)
 469                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 470                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 471        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 472                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 473                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 474
 475        /*
 476         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 477         * "update-able on write" bit on ARM610).  However, Xscale and
 478         * Xscale3 require this bit to be cleared.
 479         */
 480        if (cpu_is_xscale_family()) {
 481                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 482                        mem_types[i].prot_sect &= ~PMD_BIT4;
 483                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 484                }
 485        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 486                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 487                        if (mem_types[i].prot_l1)
 488                                mem_types[i].prot_l1 |= PMD_BIT4;
 489                        if (mem_types[i].prot_sect)
 490                                mem_types[i].prot_sect |= PMD_BIT4;
 491                }
 492        }
 493
 494        /*
 495         * Mark the device areas according to the CPU/architecture.
 496         */
 497        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 498                if (!cpu_is_xsc3()) {
 499                        /*
 500                         * Mark device regions on ARMv6+ as execute-never
 501                         * to prevent speculative instruction fetches.
 502                         */
 503                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 504                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 505                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 506                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 507
 508                        /* Also setup NX memory mapping */
 509                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 510                }
 511                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 512                        /*
 513                         * For ARMv7 with TEX remapping,
 514                         * - shared device is SXCB=1100
 515                         * - nonshared device is SXCB=0100
 516                         * - write combine device mem is SXCB=0001
 517                         * (Uncached Normal memory)
 518                         */
 519                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 520                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 521                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 522                } else if (cpu_is_xsc3()) {
 523                        /*
 524                         * For Xscale3,
 525                         * - shared device is TEXCB=00101
 526                         * - nonshared device is TEXCB=01000
 527                         * - write combine device mem is TEXCB=00100
 528                         * (Inner/Outer Uncacheable in xsc3 parlance)
 529                         */
 530                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 531                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 532                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 533                } else {
 534                        /*
 535                         * For ARMv6 and ARMv7 without TEX remapping,
 536                         * - shared device is TEXCB=00001
 537                         * - nonshared device is TEXCB=01000
 538                         * - write combine device mem is TEXCB=00100
 539                         * (Uncached Normal in ARMv6 parlance).
 540                         */
 541                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 542                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 543                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 544                }
 545        } else {
 546                /*
 547                 * On others, write combining is "Uncached/Buffered"
 548                 */
 549                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 550        }
 551
 552        /*
 553         * Now deal with the memory-type mappings
 554         */
 555        cp = &cache_policies[cachepolicy];
 556        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 557        s2_pgprot = cp->pte_s2;
 558        hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 559        s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 560
 561#ifndef CONFIG_ARM_LPAE
 562        /*
 563         * We don't use domains on ARMv6 (since this causes problems with
 564         * v6/v7 kernels), so we must use a separate memory type for user
 565         * r/o, kernel r/w to map the vectors page.
 566         */
 567        if (cpu_arch == CPU_ARCH_ARMv6)
 568                vecs_pgprot |= L_PTE_MT_VECTORS;
 569
 570        /*
 571         * Check is it with support for the PXN bit
 572         * in the Short-descriptor translation table format descriptors.
 573         */
 574        if (cpu_arch == CPU_ARCH_ARMv7 &&
 575                (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 576                user_pmd_table |= PMD_PXNTABLE;
 577        }
 578#endif
 579
 580        /*
 581         * ARMv6 and above have extended page tables.
 582         */
 583        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 584#ifndef CONFIG_ARM_LPAE
 585                /*
 586                 * Mark cache clean areas and XIP ROM read only
 587                 * from SVC mode and no access from userspace.
 588                 */
 589                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 590                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 591                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 592#endif
 593
 594                /*
 595                 * If the initial page tables were created with the S bit
 596                 * set, then we need to do the same here for the same
 597                 * reasons given in early_cachepolicy().
 598                 */
 599                if (initial_pmd_value & PMD_SECT_S) {
 600                        user_pgprot |= L_PTE_SHARED;
 601                        kern_pgprot |= L_PTE_SHARED;
 602                        vecs_pgprot |= L_PTE_SHARED;
 603                        s2_pgprot |= L_PTE_SHARED;
 604                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 605                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 606                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 607                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 608                        mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 609                        mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 610                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 611                        mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 612                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 613                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 614                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 615                }
 616        }
 617
 618        /*
 619         * Non-cacheable Normal - intended for memory areas that must
 620         * not cause dirty cache line writebacks when used
 621         */
 622        if (cpu_arch >= CPU_ARCH_ARMv6) {
 623                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 624                        /* Non-cacheable Normal is XCB = 001 */
 625                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 626                                PMD_SECT_BUFFERED;
 627                } else {
 628                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 629                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 630                                PMD_SECT_TEX(1);
 631                }
 632        } else {
 633                mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 634        }
 635
 636#ifdef CONFIG_ARM_LPAE
 637        /*
 638         * Do not generate access flag faults for the kernel mappings.
 639         */
 640        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 641                mem_types[i].prot_pte |= PTE_EXT_AF;
 642                if (mem_types[i].prot_sect)
 643                        mem_types[i].prot_sect |= PMD_SECT_AF;
 644        }
 645        kern_pgprot |= PTE_EXT_AF;
 646        vecs_pgprot |= PTE_EXT_AF;
 647
 648        /*
 649         * Set PXN for user mappings
 650         */
 651        user_pgprot |= PTE_EXT_PXN;
 652#endif
 653
 654        for (i = 0; i < 16; i++) {
 655                pteval_t v = pgprot_val(protection_map[i]);
 656                protection_map[i] = __pgprot(v | user_pgprot);
 657        }
 658
 659        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 660        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 661
 662        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 663        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 664                                 L_PTE_DIRTY | kern_pgprot);
 665        pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 666        pgprot_s2_device  = __pgprot(s2_device_pgprot);
 667        pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 668
 669        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 670        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 671        mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 672        mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 673        mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 674        mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 675        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 676        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 677        mem_types[MT_ROM].prot_sect |= cp->pmd;
 678
 679        switch (cp->pmd) {
 680        case PMD_SECT_WT:
 681                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 682                break;
 683        case PMD_SECT_WB:
 684        case PMD_SECT_WBWA:
 685                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 686                break;
 687        }
 688        pr_info("Memory policy: %sData cache %s\n",
 689                ecc_mask ? "ECC enabled, " : "", cp->policy);
 690
 691        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 692                struct mem_type *t = &mem_types[i];
 693                if (t->prot_l1)
 694                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 695                if (t->prot_sect)
 696                        t->prot_sect |= PMD_DOMAIN(t->domain);
 697        }
 698}
 699
 700#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 701pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 702                              unsigned long size, pgprot_t vma_prot)
 703{
 704        if (!pfn_valid(pfn))
 705                return pgprot_noncached(vma_prot);
 706        else if (file->f_flags & O_SYNC)
 707                return pgprot_writecombine(vma_prot);
 708        return vma_prot;
 709}
 710EXPORT_SYMBOL(phys_mem_access_prot);
 711#endif
 712
 713#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 714
 715static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 716{
 717        void *ptr = __va(memblock_alloc(sz, align));
 718        memset(ptr, 0, sz);
 719        return ptr;
 720}
 721
 722static void __init *early_alloc(unsigned long sz)
 723{
 724        return early_alloc_aligned(sz, sz);
 725}
 726
 727static void *__init late_alloc(unsigned long sz)
 728{
 729        void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
 730
 731        BUG_ON(!ptr);
 732        return ptr;
 733}
 734
 735static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 736                                unsigned long prot,
 737                                void *(*alloc)(unsigned long sz))
 738{
 739        if (pmd_none(*pmd)) {
 740                pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 741                __pmd_populate(pmd, __pa(pte), prot);
 742        }
 743        BUG_ON(pmd_bad(*pmd));
 744        return pte_offset_kernel(pmd, addr);
 745}
 746
 747static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 748                                      unsigned long prot)
 749{
 750        return arm_pte_alloc(pmd, addr, prot, early_alloc);
 751}
 752
 753static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 754                                  unsigned long end, unsigned long pfn,
 755                                  const struct mem_type *type,
 756                                  void *(*alloc)(unsigned long sz),
 757                                  bool ng)
 758{
 759        pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 760        do {
 761                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 762                            ng ? PTE_EXT_NG : 0);
 763                pfn++;
 764        } while (pte++, addr += PAGE_SIZE, addr != end);
 765}
 766
 767static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 768                        unsigned long end, phys_addr_t phys,
 769                        const struct mem_type *type, bool ng)
 770{
 771        pmd_t *p = pmd;
 772
 773#ifndef CONFIG_ARM_LPAE
 774        /*
 775         * In classic MMU format, puds and pmds are folded in to
 776         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 777         * group of L1 entries making up one logical pointer to
 778         * an L2 table (2MB), where as PMDs refer to the individual
 779         * L1 entries (1MB). Hence increment to get the correct
 780         * offset for odd 1MB sections.
 781         * (See arch/arm/include/asm/pgtable-2level.h)
 782         */
 783        if (addr & SECTION_SIZE)
 784                pmd++;
 785#endif
 786        do {
 787                *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 788                phys += SECTION_SIZE;
 789        } while (pmd++, addr += SECTION_SIZE, addr != end);
 790
 791        flush_pmd_entry(p);
 792}
 793
 794static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 795                                      unsigned long end, phys_addr_t phys,
 796                                      const struct mem_type *type,
 797                                      void *(*alloc)(unsigned long sz), bool ng)
 798{
 799        pmd_t *pmd = pmd_offset(pud, addr);
 800        unsigned long next;
 801
 802        do {
 803                /*
 804                 * With LPAE, we must loop over to map
 805                 * all the pmds for the given range.
 806                 */
 807                next = pmd_addr_end(addr, end);
 808
 809                /*
 810                 * Try a section mapping - addr, next and phys must all be
 811                 * aligned to a section boundary.
 812                 */
 813                if (type->prot_sect &&
 814                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 815                        __map_init_section(pmd, addr, next, phys, type, ng);
 816                } else {
 817                        alloc_init_pte(pmd, addr, next,
 818                                       __phys_to_pfn(phys), type, alloc, ng);
 819                }
 820
 821                phys += next - addr;
 822
 823        } while (pmd++, addr = next, addr != end);
 824}
 825
 826static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 827                                  unsigned long end, phys_addr_t phys,
 828                                  const struct mem_type *type,
 829                                  void *(*alloc)(unsigned long sz), bool ng)
 830{
 831        pud_t *pud = pud_offset(pgd, addr);
 832        unsigned long next;
 833
 834        do {
 835                next = pud_addr_end(addr, end);
 836                alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 837                phys += next - addr;
 838        } while (pud++, addr = next, addr != end);
 839}
 840
 841#ifndef CONFIG_ARM_LPAE
 842static void __init create_36bit_mapping(struct mm_struct *mm,
 843                                        struct map_desc *md,
 844                                        const struct mem_type *type,
 845                                        bool ng)
 846{
 847        unsigned long addr, length, end;
 848        phys_addr_t phys;
 849        pgd_t *pgd;
 850
 851        addr = md->virtual;
 852        phys = __pfn_to_phys(md->pfn);
 853        length = PAGE_ALIGN(md->length);
 854
 855        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 856                pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 857                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 858                return;
 859        }
 860
 861        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 862         *      Since domain assignments can in fact be arbitrary, the
 863         *      'domain == 0' check below is required to insure that ARMv6
 864         *      supersections are only allocated for domain 0 regardless
 865         *      of the actual domain assignments in use.
 866         */
 867        if (type->domain) {
 868                pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 869                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 870                return;
 871        }
 872
 873        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 874                pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 875                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 876                return;
 877        }
 878
 879        /*
 880         * Shift bits [35:32] of address into bits [23:20] of PMD
 881         * (See ARMv6 spec).
 882         */
 883        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 884
 885        pgd = pgd_offset(mm, addr);
 886        end = addr + length;
 887        do {
 888                pud_t *pud = pud_offset(pgd, addr);
 889                pmd_t *pmd = pmd_offset(pud, addr);
 890                int i;
 891
 892                for (i = 0; i < 16; i++)
 893                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 894                                       (ng ? PMD_SECT_nG : 0));
 895
 896                addr += SUPERSECTION_SIZE;
 897                phys += SUPERSECTION_SIZE;
 898                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 899        } while (addr != end);
 900}
 901#endif  /* !CONFIG_ARM_LPAE */
 902
 903static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 904                                    void *(*alloc)(unsigned long sz),
 905                                    bool ng)
 906{
 907        unsigned long addr, length, end;
 908        phys_addr_t phys;
 909        const struct mem_type *type;
 910        pgd_t *pgd;
 911
 912        type = &mem_types[md->type];
 913
 914#ifndef CONFIG_ARM_LPAE
 915        /*
 916         * Catch 36-bit addresses
 917         */
 918        if (md->pfn >= 0x100000) {
 919                create_36bit_mapping(mm, md, type, ng);
 920                return;
 921        }
 922#endif
 923
 924        addr = md->virtual & PAGE_MASK;
 925        phys = __pfn_to_phys(md->pfn);
 926        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 927
 928        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 929                pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 930                        (long long)__pfn_to_phys(md->pfn), addr);
 931                return;
 932        }
 933
 934        pgd = pgd_offset(mm, addr);
 935        end = addr + length;
 936        do {
 937                unsigned long next = pgd_addr_end(addr, end);
 938
 939                alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
 940
 941                phys += next - addr;
 942                addr = next;
 943        } while (pgd++, addr != end);
 944}
 945
 946/*
 947 * Create the page directory entries and any necessary
 948 * page tables for the mapping specified by `md'.  We
 949 * are able to cope here with varying sizes and address
 950 * offsets, and we take full advantage of sections and
 951 * supersections.
 952 */
 953static void __init create_mapping(struct map_desc *md)
 954{
 955        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 956                pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 957                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 958                return;
 959        }
 960
 961        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 962            md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 963            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 964                pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 965                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 966        }
 967
 968        __create_mapping(&init_mm, md, early_alloc, false);
 969}
 970
 971void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 972                                bool ng)
 973{
 974#ifdef CONFIG_ARM_LPAE
 975        pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 976        if (WARN_ON(!pud))
 977                return;
 978        pmd_alloc(mm, pud, 0);
 979#endif
 980        __create_mapping(mm, md, late_alloc, ng);
 981}
 982
 983/*
 984 * Create the architecture specific mappings
 985 */
 986void __init iotable_init(struct map_desc *io_desc, int nr)
 987{
 988        struct map_desc *md;
 989        struct vm_struct *vm;
 990        struct static_vm *svm;
 991
 992        if (!nr)
 993                return;
 994
 995        svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 996
 997        for (md = io_desc; nr; md++, nr--) {
 998                create_mapping(md);
 999
1000                vm = &svm->vm;
1001                vm->addr = (void *)(md->virtual & PAGE_MASK);
1002                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1003                vm->phys_addr = __pfn_to_phys(md->pfn);
1004                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1005                vm->flags |= VM_ARM_MTYPE(md->type);
1006                vm->caller = iotable_init;
1007                add_static_vm_early(svm++);
1008        }
1009}
1010
1011void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1012                                  void *caller)
1013{
1014        struct vm_struct *vm;
1015        struct static_vm *svm;
1016
1017        svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1018
1019        vm = &svm->vm;
1020        vm->addr = (void *)addr;
1021        vm->size = size;
1022        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1023        vm->caller = caller;
1024        add_static_vm_early(svm);
1025}
1026
1027#ifndef CONFIG_ARM_LPAE
1028
1029/*
1030 * The Linux PMD is made of two consecutive section entries covering 2MB
1031 * (see definition in include/asm/pgtable-2level.h).  However a call to
1032 * create_mapping() may optimize static mappings by using individual
1033 * 1MB section mappings.  This leaves the actual PMD potentially half
1034 * initialized if the top or bottom section entry isn't used, leaving it
1035 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1036 * the virtual space left free by that unused section entry.
1037 *
1038 * Let's avoid the issue by inserting dummy vm entries covering the unused
1039 * PMD halves once the static mappings are in place.
1040 */
1041
1042static void __init pmd_empty_section_gap(unsigned long addr)
1043{
1044        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1045}
1046
1047static void __init fill_pmd_gaps(void)
1048{
1049        struct static_vm *svm;
1050        struct vm_struct *vm;
1051        unsigned long addr, next = 0;
1052        pmd_t *pmd;
1053
1054        list_for_each_entry(svm, &static_vmlist, list) {
1055                vm = &svm->vm;
1056                addr = (unsigned long)vm->addr;
1057                if (addr < next)
1058                        continue;
1059
1060                /*
1061                 * Check if this vm starts on an odd section boundary.
1062                 * If so and the first section entry for this PMD is free
1063                 * then we block the corresponding virtual address.
1064                 */
1065                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1066                        pmd = pmd_off_k(addr);
1067                        if (pmd_none(*pmd))
1068                                pmd_empty_section_gap(addr & PMD_MASK);
1069                }
1070
1071                /*
1072                 * Then check if this vm ends on an odd section boundary.
1073                 * If so and the second section entry for this PMD is empty
1074                 * then we block the corresponding virtual address.
1075                 */
1076                addr += vm->size;
1077                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1078                        pmd = pmd_off_k(addr) + 1;
1079                        if (pmd_none(*pmd))
1080                                pmd_empty_section_gap(addr);
1081                }
1082
1083                /* no need to look at any vm entry until we hit the next PMD */
1084                next = (addr + PMD_SIZE - 1) & PMD_MASK;
1085        }
1086}
1087
1088#else
1089#define fill_pmd_gaps() do { } while (0)
1090#endif
1091
1092#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1093static void __init pci_reserve_io(void)
1094{
1095        struct static_vm *svm;
1096
1097        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1098        if (svm)
1099                return;
1100
1101        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1102}
1103#else
1104#define pci_reserve_io() do { } while (0)
1105#endif
1106
1107#ifdef CONFIG_DEBUG_LL
1108void __init debug_ll_io_init(void)
1109{
1110        struct map_desc map;
1111
1112        debug_ll_addr(&map.pfn, &map.virtual);
1113        if (!map.pfn || !map.virtual)
1114                return;
1115        map.pfn = __phys_to_pfn(map.pfn);
1116        map.virtual &= PAGE_MASK;
1117        map.length = PAGE_SIZE;
1118        map.type = MT_DEVICE;
1119        iotable_init(&map, 1);
1120}
1121#endif
1122
1123static void * __initdata vmalloc_min =
1124        (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1125
1126/*
1127 * vmalloc=size forces the vmalloc area to be exactly 'size'
1128 * bytes. This can be used to increase (or decrease) the vmalloc
1129 * area - the default is 240m.
1130 */
1131static int __init early_vmalloc(char *arg)
1132{
1133        unsigned long vmalloc_reserve = memparse(arg, NULL);
1134
1135        if (vmalloc_reserve < SZ_16M) {
1136                vmalloc_reserve = SZ_16M;
1137                pr_warn("vmalloc area too small, limiting to %luMB\n",
1138                        vmalloc_reserve >> 20);
1139        }
1140
1141        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1142                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1143                pr_warn("vmalloc area is too big, limiting to %luMB\n",
1144                        vmalloc_reserve >> 20);
1145        }
1146
1147        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1148        return 0;
1149}
1150early_param("vmalloc", early_vmalloc);
1151
1152phys_addr_t arm_lowmem_limit __initdata = 0;
1153
1154void __init sanity_check_meminfo(void)
1155{
1156        phys_addr_t memblock_limit = 0;
1157        int highmem = 0;
1158        phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1159        struct memblock_region *reg;
1160        bool should_use_highmem = false;
1161
1162        for_each_memblock(memory, reg) {
1163                phys_addr_t block_start = reg->base;
1164                phys_addr_t block_end = reg->base + reg->size;
1165                phys_addr_t size_limit = reg->size;
1166
1167                if (reg->base >= vmalloc_limit)
1168                        highmem = 1;
1169                else
1170                        size_limit = vmalloc_limit - reg->base;
1171
1172
1173                if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1174
1175                        if (highmem) {
1176                                pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1177                                          &block_start, &block_end);
1178                                memblock_remove(reg->base, reg->size);
1179                                should_use_highmem = true;
1180                                continue;
1181                        }
1182
1183                        if (reg->size > size_limit) {
1184                                phys_addr_t overlap_size = reg->size - size_limit;
1185
1186                                pr_notice("Truncating RAM at %pa-%pa to -%pa",
1187                                          &block_start, &block_end, &vmalloc_limit);
1188                                memblock_remove(vmalloc_limit, overlap_size);
1189                                block_end = vmalloc_limit;
1190                                should_use_highmem = true;
1191                        }
1192                }
1193
1194                if (!highmem) {
1195                        if (block_end > arm_lowmem_limit) {
1196                                if (reg->size > size_limit)
1197                                        arm_lowmem_limit = vmalloc_limit;
1198                                else
1199                                        arm_lowmem_limit = block_end;
1200                        }
1201
1202                        /*
1203                         * Find the first non-pmd-aligned page, and point
1204                         * memblock_limit at it. This relies on rounding the
1205                         * limit down to be pmd-aligned, which happens at the
1206                         * end of this function.
1207                         *
1208                         * With this algorithm, the start or end of almost any
1209                         * bank can be non-pmd-aligned. The only exception is
1210                         * that the start of the bank 0 must be section-
1211                         * aligned, since otherwise memory would need to be
1212                         * allocated when mapping the start of bank 0, which
1213                         * occurs before any free memory is mapped.
1214                         */
1215                        if (!memblock_limit) {
1216                                if (!IS_ALIGNED(block_start, PMD_SIZE))
1217                                        memblock_limit = block_start;
1218                                else if (!IS_ALIGNED(block_end, PMD_SIZE))
1219                                        memblock_limit = arm_lowmem_limit;
1220                        }
1221
1222                }
1223        }
1224
1225        if (should_use_highmem)
1226                pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1227
1228        high_memory = __va(arm_lowmem_limit - 1) + 1;
1229
1230        /*
1231         * Round the memblock limit down to a pmd size.  This
1232         * helps to ensure that we will allocate memory from the
1233         * last full pmd, which should be mapped.
1234         */
1235        if (memblock_limit)
1236                memblock_limit = round_down(memblock_limit, PMD_SIZE);
1237        if (!memblock_limit)
1238                memblock_limit = arm_lowmem_limit;
1239
1240        memblock_set_current_limit(memblock_limit);
1241}
1242
1243static inline void prepare_page_table(void)
1244{
1245        unsigned long addr;
1246        phys_addr_t end;
1247
1248        /*
1249         * Clear out all the mappings below the kernel image.
1250         */
1251        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1252                pmd_clear(pmd_off_k(addr));
1253
1254#ifdef CONFIG_XIP_KERNEL
1255        /* The XIP kernel is mapped in the module area -- skip over it */
1256        addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1257#endif
1258        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1259                pmd_clear(pmd_off_k(addr));
1260
1261        /*
1262         * Find the end of the first block of lowmem.
1263         */
1264        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1265        if (end >= arm_lowmem_limit)
1266                end = arm_lowmem_limit;
1267
1268        /*
1269         * Clear out all the kernel space mappings, except for the first
1270         * memory bank, up to the vmalloc region.
1271         */
1272        for (addr = __phys_to_virt(end);
1273             addr < VMALLOC_START; addr += PMD_SIZE)
1274                pmd_clear(pmd_off_k(addr));
1275}
1276
1277#ifdef CONFIG_ARM_LPAE
1278/* the first page is reserved for pgd */
1279#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1280                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1281#else
1282#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1283#endif
1284
1285/*
1286 * Reserve the special regions of memory
1287 */
1288void __init arm_mm_memblock_reserve(void)
1289{
1290        /*
1291         * Reserve the page tables.  These are already in use,
1292         * and can only be in node 0.
1293         */
1294        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1295
1296#ifdef CONFIG_SA1111
1297        /*
1298         * Because of the SA1111 DMA bug, we want to preserve our
1299         * precious DMA-able memory...
1300         */
1301        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1302#endif
1303}
1304
1305/*
1306 * Set up the device mappings.  Since we clear out the page tables for all
1307 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1308 * device mappings.  This means earlycon can be used to debug this function
1309 * Any other function or debugging method which may touch any device _will_
1310 * crash the kernel.
1311 */
1312static void __init devicemaps_init(const struct machine_desc *mdesc)
1313{
1314        struct map_desc map;
1315        unsigned long addr;
1316        void *vectors;
1317
1318        /*
1319         * Allocate the vector page early.
1320         */
1321        vectors = early_alloc(PAGE_SIZE * 2);
1322
1323        early_trap_init(vectors);
1324
1325        /*
1326         * Clear page table except top pmd used by early fixmaps
1327         */
1328        for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1329                pmd_clear(pmd_off_k(addr));
1330
1331        /*
1332         * Map the kernel if it is XIP.
1333         * It is always first in the modulearea.
1334         */
1335#ifdef CONFIG_XIP_KERNEL
1336        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1337        map.virtual = MODULES_VADDR;
1338        map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1339        map.type = MT_ROM;
1340        create_mapping(&map);
1341#endif
1342
1343        /*
1344         * Map the cache flushing regions.
1345         */
1346#ifdef FLUSH_BASE
1347        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1348        map.virtual = FLUSH_BASE;
1349        map.length = SZ_1M;
1350        map.type = MT_CACHECLEAN;
1351        create_mapping(&map);
1352#endif
1353#ifdef FLUSH_BASE_MINICACHE
1354        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1355        map.virtual = FLUSH_BASE_MINICACHE;
1356        map.length = SZ_1M;
1357        map.type = MT_MINICLEAN;
1358        create_mapping(&map);
1359#endif
1360
1361        /*
1362         * Create a mapping for the machine vectors at the high-vectors
1363         * location (0xffff0000).  If we aren't using high-vectors, also
1364         * create a mapping at the low-vectors virtual address.
1365         */
1366        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1367        map.virtual = 0xffff0000;
1368        map.length = PAGE_SIZE;
1369#ifdef CONFIG_KUSER_HELPERS
1370        map.type = MT_HIGH_VECTORS;
1371#else
1372        map.type = MT_LOW_VECTORS;
1373#endif
1374        create_mapping(&map);
1375
1376        if (!vectors_high()) {
1377                map.virtual = 0;
1378                map.length = PAGE_SIZE * 2;
1379                map.type = MT_LOW_VECTORS;
1380                create_mapping(&map);
1381        }
1382
1383        /* Now create a kernel read-only mapping */
1384        map.pfn += 1;
1385        map.virtual = 0xffff0000 + PAGE_SIZE;
1386        map.length = PAGE_SIZE;
1387        map.type = MT_LOW_VECTORS;
1388        create_mapping(&map);
1389
1390        /*
1391         * Ask the machine support to map in the statically mapped devices.
1392         */
1393        if (mdesc->map_io)
1394                mdesc->map_io();
1395        else
1396                debug_ll_io_init();
1397        fill_pmd_gaps();
1398
1399        /* Reserve fixed i/o space in VMALLOC region */
1400        pci_reserve_io();
1401
1402        /*
1403         * Finally flush the caches and tlb to ensure that we're in a
1404         * consistent state wrt the writebuffer.  This also ensures that
1405         * any write-allocated cache lines in the vector page are written
1406         * back.  After this point, we can start to touch devices again.
1407         */
1408        local_flush_tlb_all();
1409        flush_cache_all();
1410
1411        /* Enable asynchronous aborts */
1412        early_abt_enable();
1413}
1414
1415static void __init kmap_init(void)
1416{
1417#ifdef CONFIG_HIGHMEM
1418        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1419                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1420#endif
1421
1422        early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1423                        _PAGE_KERNEL_TABLE);
1424}
1425
1426static void __init map_lowmem(void)
1427{
1428        struct memblock_region *reg;
1429#ifdef CONFIG_XIP_KERNEL
1430        phys_addr_t kernel_x_start = round_down(__pa(_sdata), SECTION_SIZE);
1431#else
1432        phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1433#endif
1434        phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1435
1436        /* Map all the lowmem memory banks. */
1437        for_each_memblock(memory, reg) {
1438                phys_addr_t start = reg->base;
1439                phys_addr_t end = start + reg->size;
1440                struct map_desc map;
1441
1442                if (memblock_is_nomap(reg))
1443                        continue;
1444
1445                if (end > arm_lowmem_limit)
1446                        end = arm_lowmem_limit;
1447                if (start >= end)
1448                        break;
1449
1450                if (end < kernel_x_start) {
1451                        map.pfn = __phys_to_pfn(start);
1452                        map.virtual = __phys_to_virt(start);
1453                        map.length = end - start;
1454                        map.type = MT_MEMORY_RWX;
1455
1456                        create_mapping(&map);
1457                } else if (start >= kernel_x_end) {
1458                        map.pfn = __phys_to_pfn(start);
1459                        map.virtual = __phys_to_virt(start);
1460                        map.length = end - start;
1461                        map.type = MT_MEMORY_RW;
1462
1463                        create_mapping(&map);
1464                } else {
1465                        /* This better cover the entire kernel */
1466                        if (start < kernel_x_start) {
1467                                map.pfn = __phys_to_pfn(start);
1468                                map.virtual = __phys_to_virt(start);
1469                                map.length = kernel_x_start - start;
1470                                map.type = MT_MEMORY_RW;
1471
1472                                create_mapping(&map);
1473                        }
1474
1475                        map.pfn = __phys_to_pfn(kernel_x_start);
1476                        map.virtual = __phys_to_virt(kernel_x_start);
1477                        map.length = kernel_x_end - kernel_x_start;
1478                        map.type = MT_MEMORY_RWX;
1479
1480                        create_mapping(&map);
1481
1482                        if (kernel_x_end < end) {
1483                                map.pfn = __phys_to_pfn(kernel_x_end);
1484                                map.virtual = __phys_to_virt(kernel_x_end);
1485                                map.length = end - kernel_x_end;
1486                                map.type = MT_MEMORY_RW;
1487
1488                                create_mapping(&map);
1489                        }
1490                }
1491        }
1492}
1493
1494#ifdef CONFIG_ARM_PV_FIXUP
1495extern unsigned long __atags_pointer;
1496typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1497pgtables_remap lpae_pgtables_remap_asm;
1498
1499/*
1500 * early_paging_init() recreates boot time page table setup, allowing machines
1501 * to switch over to a high (>4G) address space on LPAE systems
1502 */
1503void __init early_paging_init(const struct machine_desc *mdesc)
1504{
1505        pgtables_remap *lpae_pgtables_remap;
1506        unsigned long pa_pgd;
1507        unsigned int cr, ttbcr;
1508        long long offset;
1509        void *boot_data;
1510
1511        if (!mdesc->pv_fixup)
1512                return;
1513
1514        offset = mdesc->pv_fixup();
1515        if (offset == 0)
1516                return;
1517
1518        /*
1519         * Get the address of the remap function in the 1:1 identity
1520         * mapping setup by the early page table assembly code.  We
1521         * must get this prior to the pv update.  The following barrier
1522         * ensures that this is complete before we fixup any P:V offsets.
1523         */
1524        lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1525        pa_pgd = __pa(swapper_pg_dir);
1526        boot_data = __va(__atags_pointer);
1527        barrier();
1528
1529        pr_info("Switching physical address space to 0x%08llx\n",
1530                (u64)PHYS_OFFSET + offset);
1531
1532        /* Re-set the phys pfn offset, and the pv offset */
1533        __pv_offset += offset;
1534        __pv_phys_pfn_offset += PFN_DOWN(offset);
1535
1536        /* Run the patch stub to update the constants */
1537        fixup_pv_table(&__pv_table_begin,
1538                (&__pv_table_end - &__pv_table_begin) << 2);
1539
1540        /*
1541         * We changing not only the virtual to physical mapping, but also
1542         * the physical addresses used to access memory.  We need to flush
1543         * all levels of cache in the system with caching disabled to
1544         * ensure that all data is written back, and nothing is prefetched
1545         * into the caches.  We also need to prevent the TLB walkers
1546         * allocating into the caches too.  Note that this is ARMv7 LPAE
1547         * specific.
1548         */
1549        cr = get_cr();
1550        set_cr(cr & ~(CR_I | CR_C));
1551        asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1552        asm volatile("mcr p15, 0, %0, c2, c0, 2"
1553                : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1554        flush_cache_all();
1555
1556        /*
1557         * Fixup the page tables - this must be in the idmap region as
1558         * we need to disable the MMU to do this safely, and hence it
1559         * needs to be assembly.  It's fairly simple, as we're using the
1560         * temporary tables setup by the initial assembly code.
1561         */
1562        lpae_pgtables_remap(offset, pa_pgd, boot_data);
1563
1564        /* Re-enable the caches and cacheable TLB walks */
1565        asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1566        set_cr(cr);
1567}
1568
1569#else
1570
1571void __init early_paging_init(const struct machine_desc *mdesc)
1572{
1573        long long offset;
1574
1575        if (!mdesc->pv_fixup)
1576                return;
1577
1578        offset = mdesc->pv_fixup();
1579        if (offset == 0)
1580                return;
1581
1582        pr_crit("Physical address space modification is only to support Keystone2.\n");
1583        pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1584        pr_crit("feature. Your kernel may crash now, have a good day.\n");
1585        add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1586}
1587
1588#endif
1589
1590static void __init early_fixmap_shutdown(void)
1591{
1592        int i;
1593        unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1594
1595        pte_offset_fixmap = pte_offset_late_fixmap;
1596        pmd_clear(fixmap_pmd(va));
1597        local_flush_tlb_kernel_page(va);
1598
1599        for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1600                pte_t *pte;
1601                struct map_desc map;
1602
1603                map.virtual = fix_to_virt(i);
1604                pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1605
1606                /* Only i/o device mappings are supported ATM */
1607                if (pte_none(*pte) ||
1608                    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1609                        continue;
1610
1611                map.pfn = pte_pfn(*pte);
1612                map.type = MT_DEVICE;
1613                map.length = PAGE_SIZE;
1614
1615                create_mapping(&map);
1616        }
1617}
1618
1619/*
1620 * paging_init() sets up the page tables, initialises the zone memory
1621 * maps, and sets up the zero page, bad page and bad page tables.
1622 */
1623void __init paging_init(const struct machine_desc *mdesc)
1624{
1625        void *zero_page;
1626
1627        build_mem_type_table();
1628        prepare_page_table();
1629        map_lowmem();
1630        memblock_set_current_limit(arm_lowmem_limit);
1631        dma_contiguous_remap();
1632        early_fixmap_shutdown();
1633        devicemaps_init(mdesc);
1634        kmap_init();
1635        tcm_init();
1636
1637        top_pmd = pmd_off_k(0xffff0000);
1638
1639        /* allocate the zero page. */
1640        zero_page = early_alloc(PAGE_SIZE);
1641
1642        bootmem_init();
1643
1644        empty_zero_page = virt_to_page(zero_page);
1645        __flush_dcache_page(NULL, empty_zero_page);
1646}
1647