linux/arch/blackfin/mm/sram-alloc.c
<<
>>
Prefs
   1/*
   2 * SRAM allocator for Blackfin on-chip memory
   3 *
   4 * Copyright 2004-2009 Analog Devices Inc.
   5 *
   6 * Licensed under the GPL-2 or later.
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/kernel.h>
  11#include <linux/types.h>
  12#include <linux/miscdevice.h>
  13#include <linux/ioport.h>
  14#include <linux/fcntl.h>
  15#include <linux/init.h>
  16#include <linux/poll.h>
  17#include <linux/proc_fs.h>
  18#include <linux/seq_file.h>
  19#include <linux/spinlock.h>
  20#include <linux/rtc.h>
  21#include <linux/slab.h>
  22#include <asm/blackfin.h>
  23#include <asm/mem_map.h>
  24#include "blackfin_sram.h"
  25
  26/* the data structure for L1 scratchpad and DATA SRAM */
  27struct sram_piece {
  28        void *paddr;
  29        int size;
  30        pid_t pid;
  31        struct sram_piece *next;
  32};
  33
  34static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
  35static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
  36static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
  37
  38#if L1_DATA_A_LENGTH != 0
  39static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
  40static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
  41#endif
  42
  43#if L1_DATA_B_LENGTH != 0
  44static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
  45static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
  46#endif
  47
  48#if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
  49static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
  50#endif
  51
  52#if L1_CODE_LENGTH != 0
  53static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
  54static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
  55static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
  56#endif
  57
  58#if L2_LENGTH != 0
  59static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
  60static struct sram_piece free_l2_sram_head, used_l2_sram_head;
  61#endif
  62
  63static struct kmem_cache *sram_piece_cache;
  64
  65/* L1 Scratchpad SRAM initialization function */
  66static void __init l1sram_init(void)
  67{
  68        unsigned int cpu;
  69        unsigned long reserve;
  70
  71#ifdef CONFIG_SMP
  72        reserve = 0;
  73#else
  74        reserve = sizeof(struct l1_scratch_task_info);
  75#endif
  76
  77        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
  78                per_cpu(free_l1_ssram_head, cpu).next =
  79                        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
  80                if (!per_cpu(free_l1_ssram_head, cpu).next) {
  81                        printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
  82                        return;
  83                }
  84
  85                per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
  86                per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
  87                per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
  88                per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
  89
  90                per_cpu(used_l1_ssram_head, cpu).next = NULL;
  91
  92                /* mutex initialize */
  93                spin_lock_init(&per_cpu(l1sram_lock, cpu));
  94                printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
  95                        L1_SCRATCH_LENGTH >> 10);
  96        }
  97}
  98
  99static void __init l1_data_sram_init(void)
 100{
 101#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
 102        unsigned int cpu;
 103#endif
 104#if L1_DATA_A_LENGTH != 0
 105        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 106                per_cpu(free_l1_data_A_sram_head, cpu).next =
 107                        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 108                if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
 109                        printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
 110                        return;
 111                }
 112
 113                per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
 114                        (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
 115                per_cpu(free_l1_data_A_sram_head, cpu).next->size =
 116                        L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
 117                per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
 118                per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
 119
 120                per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
 121
 122                printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
 123                        L1_DATA_A_LENGTH >> 10,
 124                        per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
 125        }
 126#endif
 127#if L1_DATA_B_LENGTH != 0
 128        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 129                per_cpu(free_l1_data_B_sram_head, cpu).next =
 130                        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 131                if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
 132                        printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
 133                        return;
 134                }
 135
 136                per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
 137                        (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
 138                per_cpu(free_l1_data_B_sram_head, cpu).next->size =
 139                        L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
 140                per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
 141                per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
 142
 143                per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
 144
 145                printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
 146                        L1_DATA_B_LENGTH >> 10,
 147                        per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
 148                /* mutex initialize */
 149        }
 150#endif
 151
 152#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
 153        for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
 154                spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
 155#endif
 156}
 157
 158static void __init l1_inst_sram_init(void)
 159{
 160#if L1_CODE_LENGTH != 0
 161        unsigned int cpu;
 162        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 163                per_cpu(free_l1_inst_sram_head, cpu).next =
 164                        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 165                if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
 166                        printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
 167                        return;
 168                }
 169
 170                per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
 171                        (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
 172                per_cpu(free_l1_inst_sram_head, cpu).next->size =
 173                        L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
 174                per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
 175                per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
 176
 177                per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
 178
 179                printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
 180                        L1_CODE_LENGTH >> 10,
 181                        per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
 182
 183                /* mutex initialize */
 184                spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
 185        }
 186#endif
 187}
 188
 189#ifdef __ADSPBF60x__
 190static irqreturn_t l2_ecc_err(int irq, void *dev_id)
 191{
 192        int status;
 193
 194        printk(KERN_ERR "L2 ecc error happened\n");
 195        status = bfin_read32(L2CTL0_STAT);
 196        if (status & 0x1)
 197                printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
 198                        bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
 199        if (status & 0x2)
 200                printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
 201                        bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
 202
 203        status = status >> 8;
 204        if (status)
 205                printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
 206                        status, bfin_read32(L2CTL0_ERRADDR0 + status));
 207
 208        panic("L2 Ecc error");
 209        return IRQ_HANDLED;
 210}
 211#endif
 212
 213static void __init l2_sram_init(void)
 214{
 215#if L2_LENGTH != 0
 216
 217#ifdef __ADSPBF60x__
 218        int ret;
 219
 220        ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
 221                        NULL);
 222        if (unlikely(ret < 0)) {
 223                printk(KERN_INFO "Fail to request l2 ecc error interrupt");
 224                return;
 225        }
 226#endif
 227
 228        free_l2_sram_head.next =
 229                kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 230        if (!free_l2_sram_head.next) {
 231                printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
 232                return;
 233        }
 234
 235        free_l2_sram_head.next->paddr =
 236                (void *)L2_START + (_ebss_l2 - _stext_l2);
 237        free_l2_sram_head.next->size =
 238                L2_LENGTH - (_ebss_l2 - _stext_l2);
 239        free_l2_sram_head.next->pid = 0;
 240        free_l2_sram_head.next->next = NULL;
 241
 242        used_l2_sram_head.next = NULL;
 243
 244        printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
 245                L2_LENGTH >> 10,
 246                free_l2_sram_head.next->size >> 10);
 247
 248        /* mutex initialize */
 249        spin_lock_init(&l2_sram_lock);
 250#endif
 251}
 252
 253static int __init bfin_sram_init(void)
 254{
 255        sram_piece_cache = kmem_cache_create("sram_piece_cache",
 256                                sizeof(struct sram_piece),
 257                                0, SLAB_PANIC, NULL);
 258
 259        l1sram_init();
 260        l1_data_sram_init();
 261        l1_inst_sram_init();
 262        l2_sram_init();
 263
 264        return 0;
 265}
 266pure_initcall(bfin_sram_init);
 267
 268/* SRAM allocate function */
 269static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
 270                struct sram_piece *pused_head)
 271{
 272        struct sram_piece *pslot, *plast, *pavail;
 273
 274        if (size <= 0 || !pfree_head || !pused_head)
 275                return NULL;
 276
 277        /* Align the size */
 278        size = (size + 3) & ~3;
 279
 280        pslot = pfree_head->next;
 281        plast = pfree_head;
 282
 283        /* search an available piece slot */
 284        while (pslot != NULL && size > pslot->size) {
 285                plast = pslot;
 286                pslot = pslot->next;
 287        }
 288
 289        if (!pslot)
 290                return NULL;
 291
 292        if (pslot->size == size) {
 293                plast->next = pslot->next;
 294                pavail = pslot;
 295        } else {
 296                /* use atomic so our L1 allocator can be used atomically */
 297                pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
 298
 299                if (!pavail)
 300                        return NULL;
 301
 302                pavail->paddr = pslot->paddr;
 303                pavail->size = size;
 304                pslot->paddr += size;
 305                pslot->size -= size;
 306        }
 307
 308        pavail->pid = current->pid;
 309
 310        pslot = pused_head->next;
 311        plast = pused_head;
 312
 313        /* insert new piece into used piece list !!! */
 314        while (pslot != NULL && pavail->paddr < pslot->paddr) {
 315                plast = pslot;
 316                pslot = pslot->next;
 317        }
 318
 319        pavail->next = pslot;
 320        plast->next = pavail;
 321
 322        return pavail->paddr;
 323}
 324
 325/* Allocate the largest available block.  */
 326static void *_sram_alloc_max(struct sram_piece *pfree_head,
 327                                struct sram_piece *pused_head,
 328                                unsigned long *psize)
 329{
 330        struct sram_piece *pslot, *pmax;
 331
 332        if (!pfree_head || !pused_head)
 333                return NULL;
 334
 335        pmax = pslot = pfree_head->next;
 336
 337        /* search an available piece slot */
 338        while (pslot != NULL) {
 339                if (pslot->size > pmax->size)
 340                        pmax = pslot;
 341                pslot = pslot->next;
 342        }
 343
 344        if (!pmax)
 345                return NULL;
 346
 347        *psize = pmax->size;
 348
 349        return _sram_alloc(*psize, pfree_head, pused_head);
 350}
 351
 352/* SRAM free function */
 353static int _sram_free(const void *addr,
 354                        struct sram_piece *pfree_head,
 355                        struct sram_piece *pused_head)
 356{
 357        struct sram_piece *pslot, *plast, *pavail;
 358
 359        if (!pfree_head || !pused_head)
 360                return -1;
 361
 362        /* search the relevant memory slot */
 363        pslot = pused_head->next;
 364        plast = pused_head;
 365
 366        /* search an available piece slot */
 367        while (pslot != NULL && pslot->paddr != addr) {
 368                plast = pslot;
 369                pslot = pslot->next;
 370        }
 371
 372        if (!pslot)
 373                return -1;
 374
 375        plast->next = pslot->next;
 376        pavail = pslot;
 377        pavail->pid = 0;
 378
 379        /* insert free pieces back to the free list */
 380        pslot = pfree_head->next;
 381        plast = pfree_head;
 382
 383        while (pslot != NULL && addr > pslot->paddr) {
 384                plast = pslot;
 385                pslot = pslot->next;
 386        }
 387
 388        if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
 389                plast->size += pavail->size;
 390                kmem_cache_free(sram_piece_cache, pavail);
 391        } else {
 392                pavail->next = plast->next;
 393                plast->next = pavail;
 394                plast = pavail;
 395        }
 396
 397        if (pslot && plast->paddr + plast->size == pslot->paddr) {
 398                plast->size += pslot->size;
 399                plast->next = pslot->next;
 400                kmem_cache_free(sram_piece_cache, pslot);
 401        }
 402
 403        return 0;
 404}
 405
 406int sram_free(const void *addr)
 407{
 408
 409#if L1_CODE_LENGTH != 0
 410        if (addr >= (void *)get_l1_code_start()
 411                 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
 412                return l1_inst_sram_free(addr);
 413        else
 414#endif
 415#if L1_DATA_A_LENGTH != 0
 416        if (addr >= (void *)get_l1_data_a_start()
 417                 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
 418                return l1_data_A_sram_free(addr);
 419        else
 420#endif
 421#if L1_DATA_B_LENGTH != 0
 422        if (addr >= (void *)get_l1_data_b_start()
 423                 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
 424                return l1_data_B_sram_free(addr);
 425        else
 426#endif
 427#if L2_LENGTH != 0
 428        if (addr >= (void *)L2_START
 429                 && addr < (void *)(L2_START + L2_LENGTH))
 430                return l2_sram_free(addr);
 431        else
 432#endif
 433                return -1;
 434}
 435EXPORT_SYMBOL(sram_free);
 436
 437void *l1_data_A_sram_alloc(size_t size)
 438{
 439#if L1_DATA_A_LENGTH != 0
 440        unsigned long flags;
 441        void *addr;
 442        unsigned int cpu;
 443
 444        cpu = smp_processor_id();
 445        /* add mutex operation */
 446        spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 447
 448        addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
 449                        &per_cpu(used_l1_data_A_sram_head, cpu));
 450
 451        /* add mutex operation */
 452        spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 453
 454        pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
 455                 (long unsigned int)addr, size);
 456
 457        return addr;
 458#else
 459        return NULL;
 460#endif
 461}
 462EXPORT_SYMBOL(l1_data_A_sram_alloc);
 463
 464int l1_data_A_sram_free(const void *addr)
 465{
 466#if L1_DATA_A_LENGTH != 0
 467        unsigned long flags;
 468        int ret;
 469        unsigned int cpu;
 470
 471        cpu = smp_processor_id();
 472        /* add mutex operation */
 473        spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 474
 475        ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
 476                        &per_cpu(used_l1_data_A_sram_head, cpu));
 477
 478        /* add mutex operation */
 479        spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 480
 481        return ret;
 482#else
 483        return -1;
 484#endif
 485}
 486EXPORT_SYMBOL(l1_data_A_sram_free);
 487
 488void *l1_data_B_sram_alloc(size_t size)
 489{
 490#if L1_DATA_B_LENGTH != 0
 491        unsigned long flags;
 492        void *addr;
 493        unsigned int cpu;
 494
 495        cpu = smp_processor_id();
 496        /* add mutex operation */
 497        spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 498
 499        addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
 500                        &per_cpu(used_l1_data_B_sram_head, cpu));
 501
 502        /* add mutex operation */
 503        spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 504
 505        pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
 506                 (long unsigned int)addr, size);
 507
 508        return addr;
 509#else
 510        return NULL;
 511#endif
 512}
 513EXPORT_SYMBOL(l1_data_B_sram_alloc);
 514
 515int l1_data_B_sram_free(const void *addr)
 516{
 517#if L1_DATA_B_LENGTH != 0
 518        unsigned long flags;
 519        int ret;
 520        unsigned int cpu;
 521
 522        cpu = smp_processor_id();
 523        /* add mutex operation */
 524        spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 525
 526        ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
 527                        &per_cpu(used_l1_data_B_sram_head, cpu));
 528
 529        /* add mutex operation */
 530        spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 531
 532        return ret;
 533#else
 534        return -1;
 535#endif
 536}
 537EXPORT_SYMBOL(l1_data_B_sram_free);
 538
 539void *l1_data_sram_alloc(size_t size)
 540{
 541        void *addr = l1_data_A_sram_alloc(size);
 542
 543        if (!addr)
 544                addr = l1_data_B_sram_alloc(size);
 545
 546        return addr;
 547}
 548EXPORT_SYMBOL(l1_data_sram_alloc);
 549
 550void *l1_data_sram_zalloc(size_t size)
 551{
 552        void *addr = l1_data_sram_alloc(size);
 553
 554        if (addr)
 555                memset(addr, 0x00, size);
 556
 557        return addr;
 558}
 559EXPORT_SYMBOL(l1_data_sram_zalloc);
 560
 561int l1_data_sram_free(const void *addr)
 562{
 563        int ret;
 564        ret = l1_data_A_sram_free(addr);
 565        if (ret == -1)
 566                ret = l1_data_B_sram_free(addr);
 567        return ret;
 568}
 569EXPORT_SYMBOL(l1_data_sram_free);
 570
 571void *l1_inst_sram_alloc(size_t size)
 572{
 573#if L1_CODE_LENGTH != 0
 574        unsigned long flags;
 575        void *addr;
 576        unsigned int cpu;
 577
 578        cpu = smp_processor_id();
 579        /* add mutex operation */
 580        spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
 581
 582        addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
 583                        &per_cpu(used_l1_inst_sram_head, cpu));
 584
 585        /* add mutex operation */
 586        spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
 587
 588        pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
 589                 (long unsigned int)addr, size);
 590
 591        return addr;
 592#else
 593        return NULL;
 594#endif
 595}
 596EXPORT_SYMBOL(l1_inst_sram_alloc);
 597
 598int l1_inst_sram_free(const void *addr)
 599{
 600#if L1_CODE_LENGTH != 0
 601        unsigned long flags;
 602        int ret;
 603        unsigned int cpu;
 604
 605        cpu = smp_processor_id();
 606        /* add mutex operation */
 607        spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
 608
 609        ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
 610                        &per_cpu(used_l1_inst_sram_head, cpu));
 611
 612        /* add mutex operation */
 613        spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
 614
 615        return ret;
 616#else
 617        return -1;
 618#endif
 619}
 620EXPORT_SYMBOL(l1_inst_sram_free);
 621
 622/* L1 Scratchpad memory allocate function */
 623void *l1sram_alloc(size_t size)
 624{
 625        unsigned long flags;
 626        void *addr;
 627        unsigned int cpu;
 628
 629        cpu = smp_processor_id();
 630        /* add mutex operation */
 631        spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 632
 633        addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
 634                        &per_cpu(used_l1_ssram_head, cpu));
 635
 636        /* add mutex operation */
 637        spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 638
 639        return addr;
 640}
 641
 642/* L1 Scratchpad memory allocate function */
 643void *l1sram_alloc_max(size_t *psize)
 644{
 645        unsigned long flags;
 646        void *addr;
 647        unsigned int cpu;
 648
 649        cpu = smp_processor_id();
 650        /* add mutex operation */
 651        spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 652
 653        addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
 654                        &per_cpu(used_l1_ssram_head, cpu), psize);
 655
 656        /* add mutex operation */
 657        spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 658
 659        return addr;
 660}
 661
 662/* L1 Scratchpad memory free function */
 663int l1sram_free(const void *addr)
 664{
 665        unsigned long flags;
 666        int ret;
 667        unsigned int cpu;
 668
 669        cpu = smp_processor_id();
 670        /* add mutex operation */
 671        spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 672
 673        ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
 674                        &per_cpu(used_l1_ssram_head, cpu));
 675
 676        /* add mutex operation */
 677        spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 678
 679        return ret;
 680}
 681
 682void *l2_sram_alloc(size_t size)
 683{
 684#if L2_LENGTH != 0
 685        unsigned long flags;
 686        void *addr;
 687
 688        /* add mutex operation */
 689        spin_lock_irqsave(&l2_sram_lock, flags);
 690
 691        addr = _sram_alloc(size, &free_l2_sram_head,
 692                        &used_l2_sram_head);
 693
 694        /* add mutex operation */
 695        spin_unlock_irqrestore(&l2_sram_lock, flags);
 696
 697        pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
 698                 (long unsigned int)addr, size);
 699
 700        return addr;
 701#else
 702        return NULL;
 703#endif
 704}
 705EXPORT_SYMBOL(l2_sram_alloc);
 706
 707void *l2_sram_zalloc(size_t size)
 708{
 709        void *addr = l2_sram_alloc(size);
 710
 711        if (addr)
 712                memset(addr, 0x00, size);
 713
 714        return addr;
 715}
 716EXPORT_SYMBOL(l2_sram_zalloc);
 717
 718int l2_sram_free(const void *addr)
 719{
 720#if L2_LENGTH != 0
 721        unsigned long flags;
 722        int ret;
 723
 724        /* add mutex operation */
 725        spin_lock_irqsave(&l2_sram_lock, flags);
 726
 727        ret = _sram_free(addr, &free_l2_sram_head,
 728                        &used_l2_sram_head);
 729
 730        /* add mutex operation */
 731        spin_unlock_irqrestore(&l2_sram_lock, flags);
 732
 733        return ret;
 734#else
 735        return -1;
 736#endif
 737}
 738EXPORT_SYMBOL(l2_sram_free);
 739
 740int sram_free_with_lsl(const void *addr)
 741{
 742        struct sram_list_struct *lsl, **tmp;
 743        struct mm_struct *mm = current->mm;
 744        int ret = -1;
 745
 746        for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
 747                if ((*tmp)->addr == addr) {
 748                        lsl = *tmp;
 749                        ret = sram_free(addr);
 750                        *tmp = lsl->next;
 751                        kfree(lsl);
 752                        break;
 753                }
 754
 755        return ret;
 756}
 757EXPORT_SYMBOL(sram_free_with_lsl);
 758
 759/* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
 760 * tracked.  These are designed for userspace so that when a process exits,
 761 * we can safely reap their resources.
 762 */
 763void *sram_alloc_with_lsl(size_t size, unsigned long flags)
 764{
 765        void *addr = NULL;
 766        struct sram_list_struct *lsl = NULL;
 767        struct mm_struct *mm = current->mm;
 768
 769        lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
 770        if (!lsl)
 771                return NULL;
 772
 773        if (flags & L1_INST_SRAM)
 774                addr = l1_inst_sram_alloc(size);
 775
 776        if (addr == NULL && (flags & L1_DATA_A_SRAM))
 777                addr = l1_data_A_sram_alloc(size);
 778
 779        if (addr == NULL && (flags & L1_DATA_B_SRAM))
 780                addr = l1_data_B_sram_alloc(size);
 781
 782        if (addr == NULL && (flags & L2_SRAM))
 783                addr = l2_sram_alloc(size);
 784
 785        if (addr == NULL) {
 786                kfree(lsl);
 787                return NULL;
 788        }
 789        lsl->addr = addr;
 790        lsl->length = size;
 791        lsl->next = mm->context.sram_list;
 792        mm->context.sram_list = lsl;
 793        return addr;
 794}
 795EXPORT_SYMBOL(sram_alloc_with_lsl);
 796
 797#ifdef CONFIG_PROC_FS
 798/* Once we get a real allocator, we'll throw all of this away.
 799 * Until then, we need some sort of visibility into the L1 alloc.
 800 */
 801/* Need to keep line of output the same.  Currently, that is 44 bytes
 802 * (including newline).
 803 */
 804static int _sram_proc_show(struct seq_file *m, const char *desc,
 805                struct sram_piece *pfree_head,
 806                struct sram_piece *pused_head)
 807{
 808        struct sram_piece *pslot;
 809
 810        if (!pfree_head || !pused_head)
 811                return -1;
 812
 813        seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
 814
 815        /* search the relevant memory slot */
 816        pslot = pused_head->next;
 817
 818        while (pslot != NULL) {
 819                seq_printf(m, "%p-%p %10i %5i %-10s\n",
 820                        pslot->paddr, pslot->paddr + pslot->size,
 821                        pslot->size, pslot->pid, "ALLOCATED");
 822
 823                pslot = pslot->next;
 824        }
 825
 826        pslot = pfree_head->next;
 827
 828        while (pslot != NULL) {
 829                seq_printf(m, "%p-%p %10i %5i %-10s\n",
 830                        pslot->paddr, pslot->paddr + pslot->size,
 831                        pslot->size, pslot->pid, "FREE");
 832
 833                pslot = pslot->next;
 834        }
 835
 836        return 0;
 837}
 838static int sram_proc_show(struct seq_file *m, void *v)
 839{
 840        unsigned int cpu;
 841
 842        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 843                if (_sram_proc_show(m, "Scratchpad",
 844                        &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
 845                        goto not_done;
 846#if L1_DATA_A_LENGTH != 0
 847                if (_sram_proc_show(m, "L1 Data A",
 848                        &per_cpu(free_l1_data_A_sram_head, cpu),
 849                        &per_cpu(used_l1_data_A_sram_head, cpu)))
 850                        goto not_done;
 851#endif
 852#if L1_DATA_B_LENGTH != 0
 853                if (_sram_proc_show(m, "L1 Data B",
 854                        &per_cpu(free_l1_data_B_sram_head, cpu),
 855                        &per_cpu(used_l1_data_B_sram_head, cpu)))
 856                        goto not_done;
 857#endif
 858#if L1_CODE_LENGTH != 0
 859                if (_sram_proc_show(m, "L1 Instruction",
 860                        &per_cpu(free_l1_inst_sram_head, cpu),
 861                        &per_cpu(used_l1_inst_sram_head, cpu)))
 862                        goto not_done;
 863#endif
 864        }
 865#if L2_LENGTH != 0
 866        if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
 867                goto not_done;
 868#endif
 869 not_done:
 870        return 0;
 871}
 872
 873static int sram_proc_open(struct inode *inode, struct file *file)
 874{
 875        return single_open(file, sram_proc_show, NULL);
 876}
 877
 878static const struct file_operations sram_proc_ops = {
 879        .open           = sram_proc_open,
 880        .read           = seq_read,
 881        .llseek         = seq_lseek,
 882        .release        = single_release,
 883};
 884
 885static int __init sram_proc_init(void)
 886{
 887        struct proc_dir_entry *ptr;
 888
 889        ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
 890        if (!ptr) {
 891                printk(KERN_WARNING "unable to create /proc/sram\n");
 892                return -1;
 893        }
 894        return 0;
 895}
 896late_initcall(sram_proc_init);
 897#endif
 898