linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44#include <linux/slab.h>
  45#include <linux/cpu.h>
  46
  47#include <asm/errno.h>
  48#include <asm/intrinsics.h>
  49#include <asm/page.h>
  50#include <asm/perfmon.h>
  51#include <asm/processor.h>
  52#include <asm/signal.h>
  53#include <asm/uaccess.h>
  54#include <asm/delay.h>
  55
  56#ifdef CONFIG_PERFMON
  57/*
  58 * perfmon context state
  59 */
  60#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  61#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  62#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  63#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  64
  65#define PFM_INVALID_ACTIVATION  (~0UL)
  66
  67#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  68#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  69
  70/*
  71 * depth of message queue
  72 */
  73#define PFM_MAX_MSGS            32
  74#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  75
  76/*
  77 * type of a PMU register (bitmask).
  78 * bitmask structure:
  79 *      bit0   : register implemented
  80 *      bit1   : end marker
  81 *      bit2-3 : reserved
  82 *      bit4   : pmc has pmc.pm
  83 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  84 *      bit6-7 : register type
  85 *      bit8-31: reserved
  86 */
  87#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  88#define PFM_REG_IMPL            0x1 /* register implemented */
  89#define PFM_REG_END             0x2 /* end marker */
  90#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  91#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  92#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  93#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  94#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  95
  96#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  97#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  98
  99#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 100
 101/* i assumed unsigned */
 102#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 103#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 104
 105/* XXX: these assume that register i is implemented */
 106#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 108#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 109#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 110
 111#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 112#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 113#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 114#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 115
 116#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 117#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 118
 119#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 120#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 121#define PFM_CTX_TASK(h)         (h)->ctx_task
 122
 123#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 124
 125/* XXX: does not support more than 64 PMDs */
 126#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 127#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 128
 129#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 130
 131#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 133#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 134#define PFM_CODE_RR     0       /* requesting code range restriction */
 135#define PFM_DATA_RR     1       /* requestion data range restriction */
 136
 137#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 138#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 139#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 140
 141#define RDEP(x) (1UL<<(x))
 142
 143/*
 144 * context protection macros
 145 * in SMP:
 146 *      - we need to protect against CPU concurrency (spin_lock)
 147 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 148 * in UP:
 149 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 150 *
 151 * spin_lock_irqsave()/spin_unlock_irqrestore():
 152 *      in SMP: local_irq_disable + spin_lock
 153 *      in UP : local_irq_disable
 154 *
 155 * spin_lock()/spin_lock():
 156 *      in UP : removed automatically
 157 *      in SMP: protect against context accesses from other CPU. interrupts
 158 *              are not masked. This is useful for the PMU interrupt handler
 159 *              because we know we will not get PMU concurrency in that code.
 160 */
 161#define PROTECT_CTX(c, f) \
 162        do {  \
 163                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 164                spin_lock_irqsave(&(c)->ctx_lock, f); \
 165                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 166        } while(0)
 167
 168#define UNPROTECT_CTX(c, f) \
 169        do { \
 170                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 171                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 172        } while(0)
 173
 174#define PROTECT_CTX_NOPRINT(c, f) \
 175        do {  \
 176                spin_lock_irqsave(&(c)->ctx_lock, f); \
 177        } while(0)
 178
 179
 180#define UNPROTECT_CTX_NOPRINT(c, f) \
 181        do { \
 182                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 183        } while(0)
 184
 185
 186#define PROTECT_CTX_NOIRQ(c) \
 187        do {  \
 188                spin_lock(&(c)->ctx_lock); \
 189        } while(0)
 190
 191#define UNPROTECT_CTX_NOIRQ(c) \
 192        do { \
 193                spin_unlock(&(c)->ctx_lock); \
 194        } while(0)
 195
 196
 197#ifdef CONFIG_SMP
 198
 199#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 200#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 201#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 202
 203#else /* !CONFIG_SMP */
 204#define SET_ACTIVATION(t)       do {} while(0)
 205#define GET_ACTIVATION(t)       do {} while(0)
 206#define INC_ACTIVATION(t)       do {} while(0)
 207#endif /* CONFIG_SMP */
 208
 209#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 210#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 211#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 212
 213#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 214#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 215
 216#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 217
 218/*
 219 * cmp0 must be the value of pmc0
 220 */
 221#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 222
 223#define PFMFS_MAGIC 0xa0b4d889
 224
 225/*
 226 * debugging
 227 */
 228#define PFM_DEBUGGING 1
 229#ifdef PFM_DEBUGGING
 230#define DPRINT(a) \
 231        do { \
 232                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 233        } while (0)
 234
 235#define DPRINT_ovfl(a) \
 236        do { \
 237                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 238        } while (0)
 239#endif
 240
 241/*
 242 * 64-bit software counter structure
 243 *
 244 * the next_reset_type is applied to the next call to pfm_reset_regs()
 245 */
 246typedef struct {
 247        unsigned long   val;            /* virtual 64bit counter value */
 248        unsigned long   lval;           /* last reset value */
 249        unsigned long   long_reset;     /* reset value on sampling overflow */
 250        unsigned long   short_reset;    /* reset value on overflow */
 251        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 252        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 253        unsigned long   seed;           /* seed for random-number generator */
 254        unsigned long   mask;           /* mask for random-number generator */
 255        unsigned int    flags;          /* notify/do not notify */
 256        unsigned long   eventid;        /* overflow event identifier */
 257} pfm_counter_t;
 258
 259/*
 260 * context flags
 261 */
 262typedef struct {
 263        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 264        unsigned int system:1;          /* do system wide monitoring */
 265        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 266        unsigned int is_sampling:1;     /* true if using a custom format */
 267        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 268        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 269        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 270        unsigned int no_msg:1;          /* no message sent on overflow */
 271        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 272        unsigned int reserved:22;
 273} pfm_context_flags_t;
 274
 275#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 276#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 277#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 278
 279
 280/*
 281 * perfmon context: encapsulates all the state of a monitoring session
 282 */
 283
 284typedef struct pfm_context {
 285        spinlock_t              ctx_lock;               /* context protection */
 286
 287        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 288        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 289
 290        struct task_struct      *ctx_task;              /* task to which context is attached */
 291
 292        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 293
 294        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 295
 296        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 297        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 298        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 299
 300        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 301        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 302        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 303
 304        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 305
 306        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 307        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 308        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 309        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 310
 311        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 312
 313        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 314        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 315
 316        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 317
 318        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 319        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 320        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 321
 322        int                     ctx_fd;                 /* file descriptor used my this context */
 323        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 324
 325        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 326        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 327        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 328        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 329
 330        wait_queue_head_t       ctx_msgq_wait;
 331        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 332        int                     ctx_msgq_head;
 333        int                     ctx_msgq_tail;
 334        struct fasync_struct    *ctx_async_queue;
 335
 336        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 337} pfm_context_t;
 338
 339/*
 340 * magic number used to verify that structure is really
 341 * a perfmon context
 342 */
 343#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 344
 345#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 346
 347#ifdef CONFIG_SMP
 348#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 349#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 350#else
 351#define SET_LAST_CPU(ctx, v)    do {} while(0)
 352#define GET_LAST_CPU(ctx)       do {} while(0)
 353#endif
 354
 355
 356#define ctx_fl_block            ctx_flags.block
 357#define ctx_fl_system           ctx_flags.system
 358#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 359#define ctx_fl_is_sampling      ctx_flags.is_sampling
 360#define ctx_fl_excl_idle        ctx_flags.excl_idle
 361#define ctx_fl_going_zombie     ctx_flags.going_zombie
 362#define ctx_fl_trap_reason      ctx_flags.trap_reason
 363#define ctx_fl_no_msg           ctx_flags.no_msg
 364#define ctx_fl_can_restart      ctx_flags.can_restart
 365
 366#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 367#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 368
 369/*
 370 * global information about all sessions
 371 * mostly used to synchronize between system wide and per-process
 372 */
 373typedef struct {
 374        spinlock_t              pfs_lock;                  /* lock the structure */
 375
 376        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 377        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 378        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 379        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 380        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 381} pfm_session_t;
 382
 383/*
 384 * information about a PMC or PMD.
 385 * dep_pmd[]: a bitmask of dependent PMD registers
 386 * dep_pmc[]: a bitmask of dependent PMC registers
 387 */
 388typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 389typedef struct {
 390        unsigned int            type;
 391        int                     pm_pos;
 392        unsigned long           default_value;  /* power-on default value */
 393        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 394        pfm_reg_check_t         read_check;
 395        pfm_reg_check_t         write_check;
 396        unsigned long           dep_pmd[4];
 397        unsigned long           dep_pmc[4];
 398} pfm_reg_desc_t;
 399
 400/* assume cnum is a valid monitor */
 401#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 402
 403/*
 404 * This structure is initialized at boot time and contains
 405 * a description of the PMU main characteristics.
 406 *
 407 * If the probe function is defined, detection is based
 408 * on its return value: 
 409 *      - 0 means recognized PMU
 410 *      - anything else means not supported
 411 * When the probe function is not defined, then the pmu_family field
 412 * is used and it must match the host CPU family such that:
 413 *      - cpu->family & config->pmu_family != 0
 414 */
 415typedef struct {
 416        unsigned long  ovfl_val;        /* overflow value for counters */
 417
 418        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 419        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 420
 421        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 422        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 423        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 424        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 425
 426        char          *pmu_name;        /* PMU family name */
 427        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 428        unsigned int  flags;            /* pmu specific flags */
 429        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 430        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 431        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 432        int           (*probe)(void);   /* customized probe routine */
 433        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 434} pmu_config_t;
 435/*
 436 * PMU specific flags
 437 */
 438#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 439
 440/*
 441 * debug register related type definitions
 442 */
 443typedef struct {
 444        unsigned long ibr_mask:56;
 445        unsigned long ibr_plm:4;
 446        unsigned long ibr_ig:3;
 447        unsigned long ibr_x:1;
 448} ibr_mask_reg_t;
 449
 450typedef struct {
 451        unsigned long dbr_mask:56;
 452        unsigned long dbr_plm:4;
 453        unsigned long dbr_ig:2;
 454        unsigned long dbr_w:1;
 455        unsigned long dbr_r:1;
 456} dbr_mask_reg_t;
 457
 458typedef union {
 459        unsigned long  val;
 460        ibr_mask_reg_t ibr;
 461        dbr_mask_reg_t dbr;
 462} dbreg_t;
 463
 464
 465/*
 466 * perfmon command descriptions
 467 */
 468typedef struct {
 469        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 470        char            *cmd_name;
 471        int             cmd_flags;
 472        unsigned int    cmd_narg;
 473        size_t          cmd_argsize;
 474        int             (*cmd_getsize)(void *arg, size_t *sz);
 475} pfm_cmd_desc_t;
 476
 477#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 478#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 479#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 480#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 481
 482
 483#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 484#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 485#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 486#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 487#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 488
 489#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 490
 491typedef struct {
 492        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 493        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 494        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 495        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 497        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 498        unsigned long pfm_smpl_handler_calls;
 499        unsigned long pfm_smpl_handler_cycles;
 500        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 501} pfm_stats_t;
 502
 503/*
 504 * perfmon internal variables
 505 */
 506static pfm_stats_t              pfm_stats[NR_CPUS];
 507static pfm_session_t            pfm_sessions;   /* global sessions information */
 508
 509static DEFINE_SPINLOCK(pfm_alt_install_check);
 510static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 511
 512static struct proc_dir_entry    *perfmon_dir;
 513static pfm_uuid_t               pfm_null_uuid = {0,};
 514
 515static spinlock_t               pfm_buffer_fmt_lock;
 516static LIST_HEAD(pfm_buffer_fmt_list);
 517
 518static pmu_config_t             *pmu_conf;
 519
 520/* sysctl() controls */
 521pfm_sysctl_t pfm_sysctl;
 522EXPORT_SYMBOL(pfm_sysctl);
 523
 524static struct ctl_table pfm_ctl_table[] = {
 525        {
 526                .procname       = "debug",
 527                .data           = &pfm_sysctl.debug,
 528                .maxlen         = sizeof(int),
 529                .mode           = 0666,
 530                .proc_handler   = proc_dointvec,
 531        },
 532        {
 533                .procname       = "debug_ovfl",
 534                .data           = &pfm_sysctl.debug_ovfl,
 535                .maxlen         = sizeof(int),
 536                .mode           = 0666,
 537                .proc_handler   = proc_dointvec,
 538        },
 539        {
 540                .procname       = "fastctxsw",
 541                .data           = &pfm_sysctl.fastctxsw,
 542                .maxlen         = sizeof(int),
 543                .mode           = 0600,
 544                .proc_handler   = proc_dointvec,
 545        },
 546        {
 547                .procname       = "expert_mode",
 548                .data           = &pfm_sysctl.expert_mode,
 549                .maxlen         = sizeof(int),
 550                .mode           = 0600,
 551                .proc_handler   = proc_dointvec,
 552        },
 553        {}
 554};
 555static struct ctl_table pfm_sysctl_dir[] = {
 556        {
 557                .procname       = "perfmon",
 558                .mode           = 0555,
 559                .child          = pfm_ctl_table,
 560        },
 561        {}
 562};
 563static struct ctl_table pfm_sysctl_root[] = {
 564        {
 565                .procname       = "kernel",
 566                .mode           = 0555,
 567                .child          = pfm_sysctl_dir,
 568        },
 569        {}
 570};
 571static struct ctl_table_header *pfm_sysctl_header;
 572
 573static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 574
 575#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 576#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 577
 578static inline void
 579pfm_put_task(struct task_struct *task)
 580{
 581        if (task != current) put_task_struct(task);
 582}
 583
 584static inline void
 585pfm_reserve_page(unsigned long a)
 586{
 587        SetPageReserved(vmalloc_to_page((void *)a));
 588}
 589static inline void
 590pfm_unreserve_page(unsigned long a)
 591{
 592        ClearPageReserved(vmalloc_to_page((void*)a));
 593}
 594
 595static inline unsigned long
 596pfm_protect_ctx_ctxsw(pfm_context_t *x)
 597{
 598        spin_lock(&(x)->ctx_lock);
 599        return 0UL;
 600}
 601
 602static inline void
 603pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 604{
 605        spin_unlock(&(x)->ctx_lock);
 606}
 607
 608/* forward declaration */
 609static const struct dentry_operations pfmfs_dentry_operations;
 610
 611static struct dentry *
 612pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 613{
 614        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 615                        PFMFS_MAGIC);
 616}
 617
 618static struct file_system_type pfm_fs_type = {
 619        .name     = "pfmfs",
 620        .mount    = pfmfs_mount,
 621        .kill_sb  = kill_anon_super,
 622};
 623MODULE_ALIAS_FS("pfmfs");
 624
 625DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 626DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 627DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 628DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 629EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 630
 631
 632/* forward declaration */
 633static const struct file_operations pfm_file_ops;
 634
 635/*
 636 * forward declarations
 637 */
 638#ifndef CONFIG_SMP
 639static void pfm_lazy_save_regs (struct task_struct *ta);
 640#endif
 641
 642void dump_pmu_state(const char *);
 643static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 644
 645#include "perfmon_itanium.h"
 646#include "perfmon_mckinley.h"
 647#include "perfmon_montecito.h"
 648#include "perfmon_generic.h"
 649
 650static pmu_config_t *pmu_confs[]={
 651        &pmu_conf_mont,
 652        &pmu_conf_mck,
 653        &pmu_conf_ita,
 654        &pmu_conf_gen, /* must be last */
 655        NULL
 656};
 657
 658
 659static int pfm_end_notify_user(pfm_context_t *ctx);
 660
 661static inline void
 662pfm_clear_psr_pp(void)
 663{
 664        ia64_rsm(IA64_PSR_PP);
 665        ia64_srlz_i();
 666}
 667
 668static inline void
 669pfm_set_psr_pp(void)
 670{
 671        ia64_ssm(IA64_PSR_PP);
 672        ia64_srlz_i();
 673}
 674
 675static inline void
 676pfm_clear_psr_up(void)
 677{
 678        ia64_rsm(IA64_PSR_UP);
 679        ia64_srlz_i();
 680}
 681
 682static inline void
 683pfm_set_psr_up(void)
 684{
 685        ia64_ssm(IA64_PSR_UP);
 686        ia64_srlz_i();
 687}
 688
 689static inline unsigned long
 690pfm_get_psr(void)
 691{
 692        unsigned long tmp;
 693        tmp = ia64_getreg(_IA64_REG_PSR);
 694        ia64_srlz_i();
 695        return tmp;
 696}
 697
 698static inline void
 699pfm_set_psr_l(unsigned long val)
 700{
 701        ia64_setreg(_IA64_REG_PSR_L, val);
 702        ia64_srlz_i();
 703}
 704
 705static inline void
 706pfm_freeze_pmu(void)
 707{
 708        ia64_set_pmc(0,1UL);
 709        ia64_srlz_d();
 710}
 711
 712static inline void
 713pfm_unfreeze_pmu(void)
 714{
 715        ia64_set_pmc(0,0UL);
 716        ia64_srlz_d();
 717}
 718
 719static inline void
 720pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 721{
 722        int i;
 723
 724        for (i=0; i < nibrs; i++) {
 725                ia64_set_ibr(i, ibrs[i]);
 726                ia64_dv_serialize_instruction();
 727        }
 728        ia64_srlz_i();
 729}
 730
 731static inline void
 732pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 733{
 734        int i;
 735
 736        for (i=0; i < ndbrs; i++) {
 737                ia64_set_dbr(i, dbrs[i]);
 738                ia64_dv_serialize_data();
 739        }
 740        ia64_srlz_d();
 741}
 742
 743/*
 744 * PMD[i] must be a counter. no check is made
 745 */
 746static inline unsigned long
 747pfm_read_soft_counter(pfm_context_t *ctx, int i)
 748{
 749        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 750}
 751
 752/*
 753 * PMD[i] must be a counter. no check is made
 754 */
 755static inline void
 756pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 757{
 758        unsigned long ovfl_val = pmu_conf->ovfl_val;
 759
 760        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 761        /*
 762         * writing to unimplemented part is ignore, so we do not need to
 763         * mask off top part
 764         */
 765        ia64_set_pmd(i, val & ovfl_val);
 766}
 767
 768static pfm_msg_t *
 769pfm_get_new_msg(pfm_context_t *ctx)
 770{
 771        int idx, next;
 772
 773        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 774
 775        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 776        if (next == ctx->ctx_msgq_head) return NULL;
 777
 778        idx =   ctx->ctx_msgq_tail;
 779        ctx->ctx_msgq_tail = next;
 780
 781        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 782
 783        return ctx->ctx_msgq+idx;
 784}
 785
 786static pfm_msg_t *
 787pfm_get_next_msg(pfm_context_t *ctx)
 788{
 789        pfm_msg_t *msg;
 790
 791        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 792
 793        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 794
 795        /*
 796         * get oldest message
 797         */
 798        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 799
 800        /*
 801         * and move forward
 802         */
 803        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 804
 805        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 806
 807        return msg;
 808}
 809
 810static void
 811pfm_reset_msgq(pfm_context_t *ctx)
 812{
 813        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 814        DPRINT(("ctx=%p msgq reset\n", ctx));
 815}
 816
 817static void *
 818pfm_rvmalloc(unsigned long size)
 819{
 820        void *mem;
 821        unsigned long addr;
 822
 823        size = PAGE_ALIGN(size);
 824        mem  = vzalloc(size);
 825        if (mem) {
 826                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 827                addr = (unsigned long)mem;
 828                while (size > 0) {
 829                        pfm_reserve_page(addr);
 830                        addr+=PAGE_SIZE;
 831                        size-=PAGE_SIZE;
 832                }
 833        }
 834        return mem;
 835}
 836
 837static void
 838pfm_rvfree(void *mem, unsigned long size)
 839{
 840        unsigned long addr;
 841
 842        if (mem) {
 843                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 844                addr = (unsigned long) mem;
 845                while ((long) size > 0) {
 846                        pfm_unreserve_page(addr);
 847                        addr+=PAGE_SIZE;
 848                        size-=PAGE_SIZE;
 849                }
 850                vfree(mem);
 851        }
 852        return;
 853}
 854
 855static pfm_context_t *
 856pfm_context_alloc(int ctx_flags)
 857{
 858        pfm_context_t *ctx;
 859
 860        /* 
 861         * allocate context descriptor 
 862         * must be able to free with interrupts disabled
 863         */
 864        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 865        if (ctx) {
 866                DPRINT(("alloc ctx @%p\n", ctx));
 867
 868                /*
 869                 * init context protection lock
 870                 */
 871                spin_lock_init(&ctx->ctx_lock);
 872
 873                /*
 874                 * context is unloaded
 875                 */
 876                ctx->ctx_state = PFM_CTX_UNLOADED;
 877
 878                /*
 879                 * initialization of context's flags
 880                 */
 881                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 882                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 883                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 884                /*
 885                 * will move to set properties
 886                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 887                 */
 888
 889                /*
 890                 * init restart semaphore to locked
 891                 */
 892                init_completion(&ctx->ctx_restart_done);
 893
 894                /*
 895                 * activation is used in SMP only
 896                 */
 897                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 898                SET_LAST_CPU(ctx, -1);
 899
 900                /*
 901                 * initialize notification message queue
 902                 */
 903                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 904                init_waitqueue_head(&ctx->ctx_msgq_wait);
 905                init_waitqueue_head(&ctx->ctx_zombieq);
 906
 907        }
 908        return ctx;
 909}
 910
 911static void
 912pfm_context_free(pfm_context_t *ctx)
 913{
 914        if (ctx) {
 915                DPRINT(("free ctx @%p\n", ctx));
 916                kfree(ctx);
 917        }
 918}
 919
 920static void
 921pfm_mask_monitoring(struct task_struct *task)
 922{
 923        pfm_context_t *ctx = PFM_GET_CTX(task);
 924        unsigned long mask, val, ovfl_mask;
 925        int i;
 926
 927        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 928
 929        ovfl_mask = pmu_conf->ovfl_val;
 930        /*
 931         * monitoring can only be masked as a result of a valid
 932         * counter overflow. In UP, it means that the PMU still
 933         * has an owner. Note that the owner can be different
 934         * from the current task. However the PMU state belongs
 935         * to the owner.
 936         * In SMP, a valid overflow only happens when task is
 937         * current. Therefore if we come here, we know that
 938         * the PMU state belongs to the current task, therefore
 939         * we can access the live registers.
 940         *
 941         * So in both cases, the live register contains the owner's
 942         * state. We can ONLY touch the PMU registers and NOT the PSR.
 943         *
 944         * As a consequence to this call, the ctx->th_pmds[] array
 945         * contains stale information which must be ignored
 946         * when context is reloaded AND monitoring is active (see
 947         * pfm_restart).
 948         */
 949        mask = ctx->ctx_used_pmds[0];
 950        for (i = 0; mask; i++, mask>>=1) {
 951                /* skip non used pmds */
 952                if ((mask & 0x1) == 0) continue;
 953                val = ia64_get_pmd(i);
 954
 955                if (PMD_IS_COUNTING(i)) {
 956                        /*
 957                         * we rebuild the full 64 bit value of the counter
 958                         */
 959                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 960                } else {
 961                        ctx->ctx_pmds[i].val = val;
 962                }
 963                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 964                        i,
 965                        ctx->ctx_pmds[i].val,
 966                        val & ovfl_mask));
 967        }
 968        /*
 969         * mask monitoring by setting the privilege level to 0
 970         * we cannot use psr.pp/psr.up for this, it is controlled by
 971         * the user
 972         *
 973         * if task is current, modify actual registers, otherwise modify
 974         * thread save state, i.e., what will be restored in pfm_load_regs()
 975         */
 976        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 977        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 978                if ((mask & 0x1) == 0UL) continue;
 979                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 980                ctx->th_pmcs[i] &= ~0xfUL;
 981                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 982        }
 983        /*
 984         * make all of this visible
 985         */
 986        ia64_srlz_d();
 987}
 988
 989/*
 990 * must always be done with task == current
 991 *
 992 * context must be in MASKED state when calling
 993 */
 994static void
 995pfm_restore_monitoring(struct task_struct *task)
 996{
 997        pfm_context_t *ctx = PFM_GET_CTX(task);
 998        unsigned long mask, ovfl_mask;
 999        unsigned long psr, val;
1000        int i, is_system;
1001
1002        is_system = ctx->ctx_fl_system;
1003        ovfl_mask = pmu_conf->ovfl_val;
1004
1005        if (task != current) {
1006                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007                return;
1008        }
1009        if (ctx->ctx_state != PFM_CTX_MASKED) {
1010                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012                return;
1013        }
1014        psr = pfm_get_psr();
1015        /*
1016         * monitoring is masked via the PMC.
1017         * As we restore their value, we do not want each counter to
1018         * restart right away. We stop monitoring using the PSR,
1019         * restore the PMC (and PMD) and then re-establish the psr
1020         * as it was. Note that there can be no pending overflow at
1021         * this point, because monitoring was MASKED.
1022         *
1023         * system-wide session are pinned and self-monitoring
1024         */
1025        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026                /* disable dcr pp */
1027                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028                pfm_clear_psr_pp();
1029        } else {
1030                pfm_clear_psr_up();
1031        }
1032        /*
1033         * first, we restore the PMD
1034         */
1035        mask = ctx->ctx_used_pmds[0];
1036        for (i = 0; mask; i++, mask>>=1) {
1037                /* skip non used pmds */
1038                if ((mask & 0x1) == 0) continue;
1039
1040                if (PMD_IS_COUNTING(i)) {
1041                        /*
1042                         * we split the 64bit value according to
1043                         * counter width
1044                         */
1045                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1046                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047                } else {
1048                        val = ctx->ctx_pmds[i].val;
1049                }
1050                ia64_set_pmd(i, val);
1051
1052                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053                        i,
1054                        ctx->ctx_pmds[i].val,
1055                        val));
1056        }
1057        /*
1058         * restore the PMCs
1059         */
1060        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062                if ((mask & 0x1) == 0UL) continue;
1063                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064                ia64_set_pmc(i, ctx->th_pmcs[i]);
1065                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1067        }
1068        ia64_srlz_d();
1069
1070        /*
1071         * must restore DBR/IBR because could be modified while masked
1072         * XXX: need to optimize 
1073         */
1074        if (ctx->ctx_fl_using_dbreg) {
1075                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077        }
1078
1079        /*
1080         * now restore PSR
1081         */
1082        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083                /* enable dcr pp */
1084                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085                ia64_srlz_i();
1086        }
1087        pfm_set_psr_l(psr);
1088}
1089
1090static inline void
1091pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092{
1093        int i;
1094
1095        ia64_srlz_d();
1096
1097        for (i=0; mask; i++, mask>>=1) {
1098                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099        }
1100}
1101
1102/*
1103 * reload from thread state (used for ctxw only)
1104 */
1105static inline void
1106pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108        int i;
1109        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110
1111        for (i=0; mask; i++, mask>>=1) {
1112                if ((mask & 0x1) == 0) continue;
1113                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114                ia64_set_pmd(i, val);
1115        }
1116        ia64_srlz_d();
1117}
1118
1119/*
1120 * propagate PMD from context to thread-state
1121 */
1122static inline void
1123pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124{
1125        unsigned long ovfl_val = pmu_conf->ovfl_val;
1126        unsigned long mask = ctx->ctx_all_pmds[0];
1127        unsigned long val;
1128        int i;
1129
1130        DPRINT(("mask=0x%lx\n", mask));
1131
1132        for (i=0; mask; i++, mask>>=1) {
1133
1134                val = ctx->ctx_pmds[i].val;
1135
1136                /*
1137                 * We break up the 64 bit value into 2 pieces
1138                 * the lower bits go to the machine state in the
1139                 * thread (will be reloaded on ctxsw in).
1140                 * The upper part stays in the soft-counter.
1141                 */
1142                if (PMD_IS_COUNTING(i)) {
1143                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144                         val &= ovfl_val;
1145                }
1146                ctx->th_pmds[i] = val;
1147
1148                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149                        i,
1150                        ctx->th_pmds[i],
1151                        ctx->ctx_pmds[i].val));
1152        }
1153}
1154
1155/*
1156 * propagate PMC from context to thread-state
1157 */
1158static inline void
1159pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160{
1161        unsigned long mask = ctx->ctx_all_pmcs[0];
1162        int i;
1163
1164        DPRINT(("mask=0x%lx\n", mask));
1165
1166        for (i=0; mask; i++, mask>>=1) {
1167                /* masking 0 with ovfl_val yields 0 */
1168                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170        }
1171}
1172
1173
1174
1175static inline void
1176pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177{
1178        int i;
1179
1180        for (i=0; mask; i++, mask>>=1) {
1181                if ((mask & 0x1) == 0) continue;
1182                ia64_set_pmc(i, pmcs[i]);
1183        }
1184        ia64_srlz_d();
1185}
1186
1187static inline int
1188pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189{
1190        return memcmp(a, b, sizeof(pfm_uuid_t));
1191}
1192
1193static inline int
1194pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195{
1196        int ret = 0;
1197        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198        return ret;
1199}
1200
1201static inline int
1202pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203{
1204        int ret = 0;
1205        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206        return ret;
1207}
1208
1209
1210static inline int
1211pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212                     int cpu, void *arg)
1213{
1214        int ret = 0;
1215        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216        return ret;
1217}
1218
1219static inline int
1220pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221                     int cpu, void *arg)
1222{
1223        int ret = 0;
1224        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225        return ret;
1226}
1227
1228static inline int
1229pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230{
1231        int ret = 0;
1232        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233        return ret;
1234}
1235
1236static inline int
1237pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238{
1239        int ret = 0;
1240        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241        return ret;
1242}
1243
1244static pfm_buffer_fmt_t *
1245__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246{
1247        struct list_head * pos;
1248        pfm_buffer_fmt_t * entry;
1249
1250        list_for_each(pos, &pfm_buffer_fmt_list) {
1251                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253                        return entry;
1254        }
1255        return NULL;
1256}
1257 
1258/*
1259 * find a buffer format based on its uuid
1260 */
1261static pfm_buffer_fmt_t *
1262pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263{
1264        pfm_buffer_fmt_t * fmt;
1265        spin_lock(&pfm_buffer_fmt_lock);
1266        fmt = __pfm_find_buffer_fmt(uuid);
1267        spin_unlock(&pfm_buffer_fmt_lock);
1268        return fmt;
1269}
1270 
1271int
1272pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273{
1274        int ret = 0;
1275
1276        /* some sanity checks */
1277        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278
1279        /* we need at least a handler */
1280        if (fmt->fmt_handler == NULL) return -EINVAL;
1281
1282        /*
1283         * XXX: need check validity of fmt_arg_size
1284         */
1285
1286        spin_lock(&pfm_buffer_fmt_lock);
1287
1288        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290                ret = -EBUSY;
1291                goto out;
1292        } 
1293        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295
1296out:
1297        spin_unlock(&pfm_buffer_fmt_lock);
1298        return ret;
1299}
1300EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301
1302int
1303pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304{
1305        pfm_buffer_fmt_t *fmt;
1306        int ret = 0;
1307
1308        spin_lock(&pfm_buffer_fmt_lock);
1309
1310        fmt = __pfm_find_buffer_fmt(uuid);
1311        if (!fmt) {
1312                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313                ret = -EINVAL;
1314                goto out;
1315        }
1316        list_del_init(&fmt->fmt_list);
1317        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318
1319out:
1320        spin_unlock(&pfm_buffer_fmt_lock);
1321        return ret;
1322
1323}
1324EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325
1326static int
1327pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328{
1329        unsigned long flags;
1330        /*
1331         * validity checks on cpu_mask have been done upstream
1332         */
1333        LOCK_PFS(flags);
1334
1335        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336                pfm_sessions.pfs_sys_sessions,
1337                pfm_sessions.pfs_task_sessions,
1338                pfm_sessions.pfs_sys_use_dbregs,
1339                is_syswide,
1340                cpu));
1341
1342        if (is_syswide) {
1343                /*
1344                 * cannot mix system wide and per-task sessions
1345                 */
1346                if (pfm_sessions.pfs_task_sessions > 0UL) {
1347                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348                                pfm_sessions.pfs_task_sessions));
1349                        goto abort;
1350                }
1351
1352                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356                pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358                pfm_sessions.pfs_sys_sessions++ ;
1359
1360        } else {
1361                if (pfm_sessions.pfs_sys_sessions) goto abort;
1362                pfm_sessions.pfs_task_sessions++;
1363        }
1364
1365        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366                pfm_sessions.pfs_sys_sessions,
1367                pfm_sessions.pfs_task_sessions,
1368                pfm_sessions.pfs_sys_use_dbregs,
1369                is_syswide,
1370                cpu));
1371
1372        /*
1373         * Force idle() into poll mode
1374         */
1375        cpu_idle_poll_ctrl(true);
1376
1377        UNLOCK_PFS(flags);
1378
1379        return 0;
1380
1381error_conflict:
1382        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384                cpu));
1385abort:
1386        UNLOCK_PFS(flags);
1387
1388        return -EBUSY;
1389
1390}
1391
1392static int
1393pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394{
1395        unsigned long flags;
1396        /*
1397         * validity checks on cpu_mask have been done upstream
1398         */
1399        LOCK_PFS(flags);
1400
1401        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402                pfm_sessions.pfs_sys_sessions,
1403                pfm_sessions.pfs_task_sessions,
1404                pfm_sessions.pfs_sys_use_dbregs,
1405                is_syswide,
1406                cpu));
1407
1408
1409        if (is_syswide) {
1410                pfm_sessions.pfs_sys_session[cpu] = NULL;
1411                /*
1412                 * would not work with perfmon+more than one bit in cpu_mask
1413                 */
1414                if (ctx && ctx->ctx_fl_using_dbreg) {
1415                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417                        } else {
1418                                pfm_sessions.pfs_sys_use_dbregs--;
1419                        }
1420                }
1421                pfm_sessions.pfs_sys_sessions--;
1422        } else {
1423                pfm_sessions.pfs_task_sessions--;
1424        }
1425        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426                pfm_sessions.pfs_sys_sessions,
1427                pfm_sessions.pfs_task_sessions,
1428                pfm_sessions.pfs_sys_use_dbregs,
1429                is_syswide,
1430                cpu));
1431
1432        /* Undo forced polling. Last session reenables pal_halt */
1433        cpu_idle_poll_ctrl(false);
1434
1435        UNLOCK_PFS(flags);
1436
1437        return 0;
1438}
1439
1440/*
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1444 */
1445static int
1446pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447{
1448        struct task_struct *task = current;
1449        int r;
1450
1451        /* sanity checks */
1452        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454                return -EINVAL;
1455        }
1456
1457        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459        /*
1460         * does the actual unmapping
1461         */
1462        r = vm_munmap((unsigned long)vaddr, size);
1463
1464        if (r !=0) {
1465                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466        }
1467
1468        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469
1470        return 0;
1471}
1472
1473/*
1474 * free actual physical storage used by sampling buffer
1475 */
1476#if 0
1477static int
1478pfm_free_smpl_buffer(pfm_context_t *ctx)
1479{
1480        pfm_buffer_fmt_t *fmt;
1481
1482        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483
1484        /*
1485         * we won't use the buffer format anymore
1486         */
1487        fmt = ctx->ctx_buf_fmt;
1488
1489        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490                ctx->ctx_smpl_hdr,
1491                ctx->ctx_smpl_size,
1492                ctx->ctx_smpl_vaddr));
1493
1494        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495
1496        /*
1497         * free the buffer
1498         */
1499        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500
1501        ctx->ctx_smpl_hdr  = NULL;
1502        ctx->ctx_smpl_size = 0UL;
1503
1504        return 0;
1505
1506invalid_free:
1507        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508        return -EINVAL;
1509}
1510#endif
1511
1512static inline void
1513pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514{
1515        if (fmt == NULL) return;
1516
1517        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518
1519}
1520
1521/*
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526 */
1527static struct vfsmount *pfmfs_mnt __read_mostly;
1528
1529static int __init
1530init_pfm_fs(void)
1531{
1532        int err = register_filesystem(&pfm_fs_type);
1533        if (!err) {
1534                pfmfs_mnt = kern_mount(&pfm_fs_type);
1535                err = PTR_ERR(pfmfs_mnt);
1536                if (IS_ERR(pfmfs_mnt))
1537                        unregister_filesystem(&pfm_fs_type);
1538                else
1539                        err = 0;
1540        }
1541        return err;
1542}
1543
1544static ssize_t
1545pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546{
1547        pfm_context_t *ctx;
1548        pfm_msg_t *msg;
1549        ssize_t ret;
1550        unsigned long flags;
1551        DECLARE_WAITQUEUE(wait, current);
1552        if (PFM_IS_FILE(filp) == 0) {
1553                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554                return -EINVAL;
1555        }
1556
1557        ctx = filp->private_data;
1558        if (ctx == NULL) {
1559                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560                return -EINVAL;
1561        }
1562
1563        /*
1564         * check even when there is no message
1565         */
1566        if (size < sizeof(pfm_msg_t)) {
1567                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568                return -EINVAL;
1569        }
1570
1571        PROTECT_CTX(ctx, flags);
1572
1573        /*
1574         * put ourselves on the wait queue
1575         */
1576        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578
1579        for(;;) {
1580                /*
1581                 * check wait queue
1582                 */
1583
1584                set_current_state(TASK_INTERRUPTIBLE);
1585
1586                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587
1588                ret = 0;
1589                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590
1591                UNPROTECT_CTX(ctx, flags);
1592
1593                /*
1594                 * check non-blocking read
1595                 */
1596                ret = -EAGAIN;
1597                if(filp->f_flags & O_NONBLOCK) break;
1598
1599                /*
1600                 * check pending signals
1601                 */
1602                if(signal_pending(current)) {
1603                        ret = -EINTR;
1604                        break;
1605                }
1606                /*
1607                 * no message, so wait
1608                 */
1609                schedule();
1610
1611                PROTECT_CTX(ctx, flags);
1612        }
1613        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614        set_current_state(TASK_RUNNING);
1615        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616
1617        if (ret < 0) goto abort;
1618
1619        ret = -EINVAL;
1620        msg = pfm_get_next_msg(ctx);
1621        if (msg == NULL) {
1622                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623                goto abort_locked;
1624        }
1625
1626        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627
1628        ret = -EFAULT;
1629        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630
1631abort_locked:
1632        UNPROTECT_CTX(ctx, flags);
1633abort:
1634        return ret;
1635}
1636
1637static ssize_t
1638pfm_write(struct file *file, const char __user *ubuf,
1639                          size_t size, loff_t *ppos)
1640{
1641        DPRINT(("pfm_write called\n"));
1642        return -EINVAL;
1643}
1644
1645static unsigned int
1646pfm_poll(struct file *filp, poll_table * wait)
1647{
1648        pfm_context_t *ctx;
1649        unsigned long flags;
1650        unsigned int mask = 0;
1651
1652        if (PFM_IS_FILE(filp) == 0) {
1653                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654                return 0;
1655        }
1656
1657        ctx = filp->private_data;
1658        if (ctx == NULL) {
1659                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660                return 0;
1661        }
1662
1663
1664        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665
1666        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667
1668        PROTECT_CTX(ctx, flags);
1669
1670        if (PFM_CTXQ_EMPTY(ctx) == 0)
1671                mask =  POLLIN | POLLRDNORM;
1672
1673        UNPROTECT_CTX(ctx, flags);
1674
1675        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676
1677        return mask;
1678}
1679
1680static long
1681pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682{
1683        DPRINT(("pfm_ioctl called\n"));
1684        return -EINVAL;
1685}
1686
1687/*
1688 * interrupt cannot be masked when coming here
1689 */
1690static inline int
1691pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692{
1693        int ret;
1694
1695        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696
1697        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698                task_pid_nr(current),
1699                fd,
1700                on,
1701                ctx->ctx_async_queue, ret));
1702
1703        return ret;
1704}
1705
1706static int
1707pfm_fasync(int fd, struct file *filp, int on)
1708{
1709        pfm_context_t *ctx;
1710        int ret;
1711
1712        if (PFM_IS_FILE(filp) == 0) {
1713                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714                return -EBADF;
1715        }
1716
1717        ctx = filp->private_data;
1718        if (ctx == NULL) {
1719                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720                return -EBADF;
1721        }
1722        /*
1723         * we cannot mask interrupts during this call because this may
1724         * may go to sleep if memory is not readily avalaible.
1725         *
1726         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727         * done in caller. Serialization of this function is ensured by caller.
1728         */
1729        ret = pfm_do_fasync(fd, filp, ctx, on);
1730
1731
1732        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733                fd,
1734                on,
1735                ctx->ctx_async_queue, ret));
1736
1737        return ret;
1738}
1739
1740#ifdef CONFIG_SMP
1741/*
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1745 */
1746static void
1747pfm_syswide_force_stop(void *info)
1748{
1749        pfm_context_t   *ctx = (pfm_context_t *)info;
1750        struct pt_regs *regs = task_pt_regs(current);
1751        struct task_struct *owner;
1752        unsigned long flags;
1753        int ret;
1754
1755        if (ctx->ctx_cpu != smp_processor_id()) {
1756                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757                        ctx->ctx_cpu,
1758                        smp_processor_id());
1759                return;
1760        }
1761        owner = GET_PMU_OWNER();
1762        if (owner != ctx->ctx_task) {
1763                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764                        smp_processor_id(),
1765                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766                return;
1767        }
1768        if (GET_PMU_CTX() != ctx) {
1769                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770                        smp_processor_id(),
1771                        GET_PMU_CTX(), ctx);
1772                return;
1773        }
1774
1775        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776        /*
1777         * the context is already protected in pfm_close(), we simply
1778         * need to mask interrupts to avoid a PMU interrupt race on
1779         * this CPU
1780         */
1781        local_irq_save(flags);
1782
1783        ret = pfm_context_unload(ctx, NULL, 0, regs);
1784        if (ret) {
1785                DPRINT(("context_unload returned %d\n", ret));
1786        }
1787
1788        /*
1789         * unmask interrupts, PMU interrupts are now spurious here
1790         */
1791        local_irq_restore(flags);
1792}
1793
1794static void
1795pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796{
1797        int ret;
1798
1799        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802}
1803#endif /* CONFIG_SMP */
1804
1805/*
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1808 */
1809static int
1810pfm_flush(struct file *filp, fl_owner_t id)
1811{
1812        pfm_context_t *ctx;
1813        struct task_struct *task;
1814        struct pt_regs *regs;
1815        unsigned long flags;
1816        unsigned long smpl_buf_size = 0UL;
1817        void *smpl_buf_vaddr = NULL;
1818        int state, is_system;
1819
1820        if (PFM_IS_FILE(filp) == 0) {
1821                DPRINT(("bad magic for\n"));
1822                return -EBADF;
1823        }
1824
1825        ctx = filp->private_data;
1826        if (ctx == NULL) {
1827                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828                return -EBADF;
1829        }
1830
1831        /*
1832         * remove our file from the async queue, if we use this mode.
1833         * This can be done without the context being protected. We come
1834         * here when the context has become unreachable by other tasks.
1835         *
1836         * We may still have active monitoring at this point and we may
1837         * end up in pfm_overflow_handler(). However, fasync_helper()
1838         * operates with interrupts disabled and it cleans up the
1839         * queue. If the PMU handler is called prior to entering
1840         * fasync_helper() then it will send a signal. If it is
1841         * invoked after, it will find an empty queue and no
1842         * signal will be sent. In both case, we are safe
1843         */
1844        PROTECT_CTX(ctx, flags);
1845
1846        state     = ctx->ctx_state;
1847        is_system = ctx->ctx_fl_system;
1848
1849        task = PFM_CTX_TASK(ctx);
1850        regs = task_pt_regs(task);
1851
1852        DPRINT(("ctx_state=%d is_current=%d\n",
1853                state,
1854                task == current ? 1 : 0));
1855
1856        /*
1857         * if state == UNLOADED, then task is NULL
1858         */
1859
1860        /*
1861         * we must stop and unload because we are losing access to the context.
1862         */
1863        if (task == current) {
1864#ifdef CONFIG_SMP
1865                /*
1866                 * the task IS the owner but it migrated to another CPU: that's bad
1867                 * but we must handle this cleanly. Unfortunately, the kernel does
1868                 * not provide a mechanism to block migration (while the context is loaded).
1869                 *
1870                 * We need to release the resource on the ORIGINAL cpu.
1871                 */
1872                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873
1874                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875                        /*
1876                         * keep context protected but unmask interrupt for IPI
1877                         */
1878                        local_irq_restore(flags);
1879
1880                        pfm_syswide_cleanup_other_cpu(ctx);
1881
1882                        /*
1883                         * restore interrupt masking
1884                         */
1885                        local_irq_save(flags);
1886
1887                        /*
1888                         * context is unloaded at this point
1889                         */
1890                } else
1891#endif /* CONFIG_SMP */
1892                {
1893
1894                        DPRINT(("forcing unload\n"));
1895                        /*
1896                        * stop and unload, returning with state UNLOADED
1897                        * and session unreserved.
1898                        */
1899                        pfm_context_unload(ctx, NULL, 0, regs);
1900
1901                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902                }
1903        }
1904
1905        /*
1906         * remove virtual mapping, if any, for the calling task.
1907         * cannot reset ctx field until last user is calling close().
1908         *
1909         * ctx_smpl_vaddr must never be cleared because it is needed
1910         * by every task with access to the context
1911         *
1912         * When called from do_exit(), the mm context is gone already, therefore
1913         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914         * do anything here
1915         */
1916        if (ctx->ctx_smpl_vaddr && current->mm) {
1917                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918                smpl_buf_size  = ctx->ctx_smpl_size;
1919        }
1920
1921        UNPROTECT_CTX(ctx, flags);
1922
1923        /*
1924         * if there was a mapping, then we systematically remove it
1925         * at this point. Cannot be done inside critical section
1926         * because some VM function reenables interrupts.
1927         *
1928         */
1929        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930
1931        return 0;
1932}
1933/*
1934 * called either on explicit close() or from exit_files(). 
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1937 *
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1939 * (fput()),i.e, last task to access the file. Nobody else can access the 
1940 * file at this point.
1941 *
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1944 *
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context. 
1947 */
1948static int
1949pfm_close(struct inode *inode, struct file *filp)
1950{
1951        pfm_context_t *ctx;
1952        struct task_struct *task;
1953        struct pt_regs *regs;
1954        DECLARE_WAITQUEUE(wait, current);
1955        unsigned long flags;
1956        unsigned long smpl_buf_size = 0UL;
1957        void *smpl_buf_addr = NULL;
1958        int free_possible = 1;
1959        int state, is_system;
1960
1961        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962
1963        if (PFM_IS_FILE(filp) == 0) {
1964                DPRINT(("bad magic\n"));
1965                return -EBADF;
1966        }
1967        
1968        ctx = filp->private_data;
1969        if (ctx == NULL) {
1970                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971                return -EBADF;
1972        }
1973
1974        PROTECT_CTX(ctx, flags);
1975
1976        state     = ctx->ctx_state;
1977        is_system = ctx->ctx_fl_system;
1978
1979        task = PFM_CTX_TASK(ctx);
1980        regs = task_pt_regs(task);
1981
1982        DPRINT(("ctx_state=%d is_current=%d\n", 
1983                state,
1984                task == current ? 1 : 0));
1985
1986        /*
1987         * if task == current, then pfm_flush() unloaded the context
1988         */
1989        if (state == PFM_CTX_UNLOADED) goto doit;
1990
1991        /*
1992         * context is loaded/masked and task != current, we need to
1993         * either force an unload or go zombie
1994         */
1995
1996        /*
1997         * The task is currently blocked or will block after an overflow.
1998         * we must force it to wakeup to get out of the
1999         * MASKED state and transition to the unloaded state by itself.
2000         *
2001         * This situation is only possible for per-task mode
2002         */
2003        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004
2005                /*
2006                 * set a "partial" zombie state to be checked
2007                 * upon return from down() in pfm_handle_work().
2008                 *
2009                 * We cannot use the ZOMBIE state, because it is checked
2010                 * by pfm_load_regs() which is called upon wakeup from down().
2011                 * In such case, it would free the context and then we would
2012                 * return to pfm_handle_work() which would access the
2013                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014                 * but visible to pfm_handle_work().
2015                 *
2016                 * For some window of time, we have a zombie context with
2017                 * ctx_state = MASKED  and not ZOMBIE
2018                 */
2019                ctx->ctx_fl_going_zombie = 1;
2020
2021                /*
2022                 * force task to wake up from MASKED state
2023                 */
2024                complete(&ctx->ctx_restart_done);
2025
2026                DPRINT(("waking up ctx_state=%d\n", state));
2027
2028                /*
2029                 * put ourself to sleep waiting for the other
2030                 * task to report completion
2031                 *
2032                 * the context is protected by mutex, therefore there
2033                 * is no risk of being notified of completion before
2034                 * begin actually on the waitq.
2035                 */
2036                set_current_state(TASK_INTERRUPTIBLE);
2037                add_wait_queue(&ctx->ctx_zombieq, &wait);
2038
2039                UNPROTECT_CTX(ctx, flags);
2040
2041                /*
2042                 * XXX: check for signals :
2043                 *      - ok for explicit close
2044                 *      - not ok when coming from exit_files()
2045                 */
2046                schedule();
2047
2048
2049                PROTECT_CTX(ctx, flags);
2050
2051
2052                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053                set_current_state(TASK_RUNNING);
2054
2055                /*
2056                 * context is unloaded at this point
2057                 */
2058                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059        }
2060        else if (task != current) {
2061#ifdef CONFIG_SMP
2062                /*
2063                 * switch context to zombie state
2064                 */
2065                ctx->ctx_state = PFM_CTX_ZOMBIE;
2066
2067                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068                /*
2069                 * cannot free the context on the spot. deferred until
2070                 * the task notices the ZOMBIE state
2071                 */
2072                free_possible = 0;
2073#else
2074                pfm_context_unload(ctx, NULL, 0, regs);
2075#endif
2076        }
2077
2078doit:
2079        /* reload state, may have changed during  opening of critical section */
2080        state = ctx->ctx_state;
2081
2082        /*
2083         * the context is still attached to a task (possibly current)
2084         * we cannot destroy it right now
2085         */
2086
2087        /*
2088         * we must free the sampling buffer right here because
2089         * we cannot rely on it being cleaned up later by the
2090         * monitored task. It is not possible to free vmalloc'ed
2091         * memory in pfm_load_regs(). Instead, we remove the buffer
2092         * now. should there be subsequent PMU overflow originally
2093         * meant for sampling, the will be converted to spurious
2094         * and that's fine because the monitoring tools is gone anyway.
2095         */
2096        if (ctx->ctx_smpl_hdr) {
2097                smpl_buf_addr = ctx->ctx_smpl_hdr;
2098                smpl_buf_size = ctx->ctx_smpl_size;
2099                /* no more sampling */
2100                ctx->ctx_smpl_hdr = NULL;
2101                ctx->ctx_fl_is_sampling = 0;
2102        }
2103
2104        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105                state,
2106                free_possible,
2107                smpl_buf_addr,
2108                smpl_buf_size));
2109
2110        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111
2112        /*
2113         * UNLOADED that the session has already been unreserved.
2114         */
2115        if (state == PFM_CTX_ZOMBIE) {
2116                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117        }
2118
2119        /*
2120         * disconnect file descriptor from context must be done
2121         * before we unlock.
2122         */
2123        filp->private_data = NULL;
2124
2125        /*
2126         * if we free on the spot, the context is now completely unreachable
2127         * from the callers side. The monitored task side is also cut, so we
2128         * can freely cut.
2129         *
2130         * If we have a deferred free, only the caller side is disconnected.
2131         */
2132        UNPROTECT_CTX(ctx, flags);
2133
2134        /*
2135         * All memory free operations (especially for vmalloc'ed memory)
2136         * MUST be done with interrupts ENABLED.
2137         */
2138        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139
2140        /*
2141         * return the memory used by the context
2142         */
2143        if (free_possible) pfm_context_free(ctx);
2144
2145        return 0;
2146}
2147
2148static const struct file_operations pfm_file_ops = {
2149        .llseek         = no_llseek,
2150        .read           = pfm_read,
2151        .write          = pfm_write,
2152        .poll           = pfm_poll,
2153        .unlocked_ioctl = pfm_ioctl,
2154        .fasync         = pfm_fasync,
2155        .release        = pfm_close,
2156        .flush          = pfm_flush
2157};
2158
2159static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2160{
2161        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2162                             d_inode(dentry)->i_ino);
2163}
2164
2165static const struct dentry_operations pfmfs_dentry_operations = {
2166        .d_delete = always_delete_dentry,
2167        .d_dname = pfmfs_dname,
2168};
2169
2170
2171static struct file *
2172pfm_alloc_file(pfm_context_t *ctx)
2173{
2174        struct file *file;
2175        struct inode *inode;
2176        struct path path;
2177        struct qstr this = { .name = "" };
2178
2179        /*
2180         * allocate a new inode
2181         */
2182        inode = new_inode(pfmfs_mnt->mnt_sb);
2183        if (!inode)
2184                return ERR_PTR(-ENOMEM);
2185
2186        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2187
2188        inode->i_mode = S_IFCHR|S_IRUGO;
2189        inode->i_uid  = current_fsuid();
2190        inode->i_gid  = current_fsgid();
2191
2192        /*
2193         * allocate a new dcache entry
2194         */
2195        path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2196        if (!path.dentry) {
2197                iput(inode);
2198                return ERR_PTR(-ENOMEM);
2199        }
2200        path.mnt = mntget(pfmfs_mnt);
2201
2202        d_add(path.dentry, inode);
2203
2204        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2205        if (IS_ERR(file)) {
2206                path_put(&path);
2207                return file;
2208        }
2209
2210        file->f_flags = O_RDONLY;
2211        file->private_data = ctx;
2212
2213        return file;
2214}
2215
2216static int
2217pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2218{
2219        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2220
2221        while (size > 0) {
2222                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2223
2224
2225                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2226                        return -ENOMEM;
2227
2228                addr  += PAGE_SIZE;
2229                buf   += PAGE_SIZE;
2230                size  -= PAGE_SIZE;
2231        }
2232        return 0;
2233}
2234
2235/*
2236 * allocate a sampling buffer and remaps it into the user address space of the task
2237 */
2238static int
2239pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2240{
2241        struct mm_struct *mm = task->mm;
2242        struct vm_area_struct *vma = NULL;
2243        unsigned long size;
2244        void *smpl_buf;
2245
2246
2247        /*
2248         * the fixed header + requested size and align to page boundary
2249         */
2250        size = PAGE_ALIGN(rsize);
2251
2252        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2253
2254        /*
2255         * check requested size to avoid Denial-of-service attacks
2256         * XXX: may have to refine this test
2257         * Check against address space limit.
2258         *
2259         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2260         *      return -ENOMEM;
2261         */
2262        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2263                return -ENOMEM;
2264
2265        /*
2266         * We do the easy to undo allocations first.
2267         *
2268         * pfm_rvmalloc(), clears the buffer, so there is no leak
2269         */
2270        smpl_buf = pfm_rvmalloc(size);
2271        if (smpl_buf == NULL) {
2272                DPRINT(("Can't allocate sampling buffer\n"));
2273                return -ENOMEM;
2274        }
2275
2276        DPRINT(("smpl_buf @%p\n", smpl_buf));
2277
2278        /* allocate vma */
2279        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2280        if (!vma) {
2281                DPRINT(("Cannot allocate vma\n"));
2282                goto error_kmem;
2283        }
2284        INIT_LIST_HEAD(&vma->anon_vma_chain);
2285
2286        /*
2287         * partially initialize the vma for the sampling buffer
2288         */
2289        vma->vm_mm           = mm;
2290        vma->vm_file         = get_file(filp);
2291        vma->vm_flags        = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2292        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2293
2294        /*
2295         * Now we have everything we need and we can initialize
2296         * and connect all the data structures
2297         */
2298
2299        ctx->ctx_smpl_hdr   = smpl_buf;
2300        ctx->ctx_smpl_size  = size; /* aligned size */
2301
2302        /*
2303         * Let's do the difficult operations next.
2304         *
2305         * now we atomically find some area in the address space and
2306         * remap the buffer in it.
2307         */
2308        down_write(&task->mm->mmap_sem);
2309
2310        /* find some free area in address space, must have mmap sem held */
2311        vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2312        if (IS_ERR_VALUE(vma->vm_start)) {
2313                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2314                up_write(&task->mm->mmap_sem);
2315                goto error;
2316        }
2317        vma->vm_end = vma->vm_start + size;
2318        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319
2320        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2321
2322        /* can only be applied to current task, need to have the mm semaphore held when called */
2323        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2324                DPRINT(("Can't remap buffer\n"));
2325                up_write(&task->mm->mmap_sem);
2326                goto error;
2327        }
2328
2329        /*
2330         * now insert the vma in the vm list for the process, must be
2331         * done with mmap lock held
2332         */
2333        insert_vm_struct(mm, vma);
2334
2335        vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2336        up_write(&task->mm->mmap_sem);
2337
2338        /*
2339         * keep track of user level virtual address
2340         */
2341        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2342        *(unsigned long *)user_vaddr = vma->vm_start;
2343
2344        return 0;
2345
2346error:
2347        kmem_cache_free(vm_area_cachep, vma);
2348error_kmem:
2349        pfm_rvfree(smpl_buf, size);
2350
2351        return -ENOMEM;
2352}
2353
2354/*
2355 * XXX: do something better here
2356 */
2357static int
2358pfm_bad_permissions(struct task_struct *task)
2359{
2360        const struct cred *tcred;
2361        kuid_t uid = current_uid();
2362        kgid_t gid = current_gid();
2363        int ret;
2364
2365        rcu_read_lock();
2366        tcred = __task_cred(task);
2367
2368        /* inspired by ptrace_attach() */
2369        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2370                from_kuid(&init_user_ns, uid),
2371                from_kgid(&init_user_ns, gid),
2372                from_kuid(&init_user_ns, tcred->euid),
2373                from_kuid(&init_user_ns, tcred->suid),
2374                from_kuid(&init_user_ns, tcred->uid),
2375                from_kgid(&init_user_ns, tcred->egid),
2376                from_kgid(&init_user_ns, tcred->sgid)));
2377
2378        ret = ((!uid_eq(uid, tcred->euid))
2379               || (!uid_eq(uid, tcred->suid))
2380               || (!uid_eq(uid, tcred->uid))
2381               || (!gid_eq(gid, tcred->egid))
2382               || (!gid_eq(gid, tcred->sgid))
2383               || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2384
2385        rcu_read_unlock();
2386        return ret;
2387}
2388
2389static int
2390pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2391{
2392        int ctx_flags;
2393
2394        /* valid signal */
2395
2396        ctx_flags = pfx->ctx_flags;
2397
2398        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2399
2400                /*
2401                 * cannot block in this mode
2402                 */
2403                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2404                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2405                        return -EINVAL;
2406                }
2407        } else {
2408        }
2409        /* probably more to add here */
2410
2411        return 0;
2412}
2413
2414static int
2415pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2416                     unsigned int cpu, pfarg_context_t *arg)
2417{
2418        pfm_buffer_fmt_t *fmt = NULL;
2419        unsigned long size = 0UL;
2420        void *uaddr = NULL;
2421        void *fmt_arg = NULL;
2422        int ret = 0;
2423#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2424
2425        /* invoke and lock buffer format, if found */
2426        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2427        if (fmt == NULL) {
2428                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2429                return -EINVAL;
2430        }
2431
2432        /*
2433         * buffer argument MUST be contiguous to pfarg_context_t
2434         */
2435        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2436
2437        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2438
2439        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2440
2441        if (ret) goto error;
2442
2443        /* link buffer format and context */
2444        ctx->ctx_buf_fmt = fmt;
2445        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2446
2447        /*
2448         * check if buffer format wants to use perfmon buffer allocation/mapping service
2449         */
2450        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2451        if (ret) goto error;
2452
2453        if (size) {
2454                /*
2455                 * buffer is always remapped into the caller's address space
2456                 */
2457                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2458                if (ret) goto error;
2459
2460                /* keep track of user address of buffer */
2461                arg->ctx_smpl_vaddr = uaddr;
2462        }
2463        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2464
2465error:
2466        return ret;
2467}
2468
2469static void
2470pfm_reset_pmu_state(pfm_context_t *ctx)
2471{
2472        int i;
2473
2474        /*
2475         * install reset values for PMC.
2476         */
2477        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2478                if (PMC_IS_IMPL(i) == 0) continue;
2479                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2480                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2481        }
2482        /*
2483         * PMD registers are set to 0UL when the context in memset()
2484         */
2485
2486        /*
2487         * On context switched restore, we must restore ALL pmc and ALL pmd even
2488         * when they are not actively used by the task. In UP, the incoming process
2489         * may otherwise pick up left over PMC, PMD state from the previous process.
2490         * As opposed to PMD, stale PMC can cause harm to the incoming
2491         * process because they may change what is being measured.
2492         * Therefore, we must systematically reinstall the entire
2493         * PMC state. In SMP, the same thing is possible on the
2494         * same CPU but also on between 2 CPUs.
2495         *
2496         * The problem with PMD is information leaking especially
2497         * to user level when psr.sp=0
2498         *
2499         * There is unfortunately no easy way to avoid this problem
2500         * on either UP or SMP. This definitively slows down the
2501         * pfm_load_regs() function.
2502         */
2503
2504         /*
2505          * bitmask of all PMCs accessible to this context
2506          *
2507          * PMC0 is treated differently.
2508          */
2509        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2510
2511        /*
2512         * bitmask of all PMDs that are accessible to this context
2513         */
2514        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2515
2516        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2517
2518        /*
2519         * useful in case of re-enable after disable
2520         */
2521        ctx->ctx_used_ibrs[0] = 0UL;
2522        ctx->ctx_used_dbrs[0] = 0UL;
2523}
2524
2525static int
2526pfm_ctx_getsize(void *arg, size_t *sz)
2527{
2528        pfarg_context_t *req = (pfarg_context_t *)arg;
2529        pfm_buffer_fmt_t *fmt;
2530
2531        *sz = 0;
2532
2533        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2534
2535        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2536        if (fmt == NULL) {
2537                DPRINT(("cannot find buffer format\n"));
2538                return -EINVAL;
2539        }
2540        /* get just enough to copy in user parameters */
2541        *sz = fmt->fmt_arg_size;
2542        DPRINT(("arg_size=%lu\n", *sz));
2543
2544        return 0;
2545}
2546
2547
2548
2549/*
2550 * cannot attach if :
2551 *      - kernel task
2552 *      - task not owned by caller
2553 *      - task incompatible with context mode
2554 */
2555static int
2556pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2557{
2558        /*
2559         * no kernel task or task not owner by caller
2560         */
2561        if (task->mm == NULL) {
2562                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2563                return -EPERM;
2564        }
2565        if (pfm_bad_permissions(task)) {
2566                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2567                return -EPERM;
2568        }
2569        /*
2570         * cannot block in self-monitoring mode
2571         */
2572        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2573                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2574                return -EINVAL;
2575        }
2576
2577        if (task->exit_state == EXIT_ZOMBIE) {
2578                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2579                return -EBUSY;
2580        }
2581
2582        /*
2583         * always ok for self
2584         */
2585        if (task == current) return 0;
2586
2587        if (!task_is_stopped_or_traced(task)) {
2588                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2589                return -EBUSY;
2590        }
2591        /*
2592         * make sure the task is off any CPU
2593         */
2594        wait_task_inactive(task, 0);
2595
2596        /* more to come... */
2597
2598        return 0;
2599}
2600
2601static int
2602pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2603{
2604        struct task_struct *p = current;
2605        int ret;
2606
2607        /* XXX: need to add more checks here */
2608        if (pid < 2) return -EPERM;
2609
2610        if (pid != task_pid_vnr(current)) {
2611
2612                read_lock(&tasklist_lock);
2613
2614                p = find_task_by_vpid(pid);
2615
2616                /* make sure task cannot go away while we operate on it */
2617                if (p) get_task_struct(p);
2618
2619                read_unlock(&tasklist_lock);
2620
2621                if (p == NULL) return -ESRCH;
2622        }
2623
2624        ret = pfm_task_incompatible(ctx, p);
2625        if (ret == 0) {
2626                *task = p;
2627        } else if (p != current) {
2628                pfm_put_task(p);
2629        }
2630        return ret;
2631}
2632
2633
2634
2635static int
2636pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2637{
2638        pfarg_context_t *req = (pfarg_context_t *)arg;
2639        struct file *filp;
2640        struct path path;
2641        int ctx_flags;
2642        int fd;
2643        int ret;
2644
2645        /* let's check the arguments first */
2646        ret = pfarg_is_sane(current, req);
2647        if (ret < 0)
2648                return ret;
2649
2650        ctx_flags = req->ctx_flags;
2651
2652        ret = -ENOMEM;
2653
2654        fd = get_unused_fd_flags(0);
2655        if (fd < 0)
2656                return fd;
2657
2658        ctx = pfm_context_alloc(ctx_flags);
2659        if (!ctx)
2660                goto error;
2661
2662        filp = pfm_alloc_file(ctx);
2663        if (IS_ERR(filp)) {
2664                ret = PTR_ERR(filp);
2665                goto error_file;
2666        }
2667
2668        req->ctx_fd = ctx->ctx_fd = fd;
2669
2670        /*
2671         * does the user want to sample?
2672         */
2673        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2674                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2675                if (ret)
2676                        goto buffer_error;
2677        }
2678
2679        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2680                ctx,
2681                ctx_flags,
2682                ctx->ctx_fl_system,
2683                ctx->ctx_fl_block,
2684                ctx->ctx_fl_excl_idle,
2685                ctx->ctx_fl_no_msg,
2686                ctx->ctx_fd));
2687
2688        /*
2689         * initialize soft PMU state
2690         */
2691        pfm_reset_pmu_state(ctx);
2692
2693        fd_install(fd, filp);
2694
2695        return 0;
2696
2697buffer_error:
2698        path = filp->f_path;
2699        put_filp(filp);
2700        path_put(&path);
2701
2702        if (ctx->ctx_buf_fmt) {
2703                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2704        }
2705error_file:
2706        pfm_context_free(ctx);
2707
2708error:
2709        put_unused_fd(fd);
2710        return ret;
2711}
2712
2713static inline unsigned long
2714pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2715{
2716        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2717        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2718        extern unsigned long carta_random32 (unsigned long seed);
2719
2720        if (reg->flags & PFM_REGFL_RANDOM) {
2721                new_seed = carta_random32(old_seed);
2722                val -= (old_seed & mask);       /* counter values are negative numbers! */
2723                if ((mask >> 32) != 0)
2724                        /* construct a full 64-bit random value: */
2725                        new_seed |= carta_random32(old_seed >> 32) << 32;
2726                reg->seed = new_seed;
2727        }
2728        reg->lval = val;
2729        return val;
2730}
2731
2732static void
2733pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2734{
2735        unsigned long mask = ovfl_regs[0];
2736        unsigned long reset_others = 0UL;
2737        unsigned long val;
2738        int i;
2739
2740        /*
2741         * now restore reset value on sampling overflowed counters
2742         */
2743        mask >>= PMU_FIRST_COUNTER;
2744        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2745
2746                if ((mask & 0x1UL) == 0UL) continue;
2747
2748                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2749                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2750
2751                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2752        }
2753
2754        /*
2755         * Now take care of resetting the other registers
2756         */
2757        for(i = 0; reset_others; i++, reset_others >>= 1) {
2758
2759                if ((reset_others & 0x1) == 0) continue;
2760
2761                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2762
2763                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2764                          is_long_reset ? "long" : "short", i, val));
2765        }
2766}
2767
2768static void
2769pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2770{
2771        unsigned long mask = ovfl_regs[0];
2772        unsigned long reset_others = 0UL;
2773        unsigned long val;
2774        int i;
2775
2776        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2777
2778        if (ctx->ctx_state == PFM_CTX_MASKED) {
2779                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2780                return;
2781        }
2782
2783        /*
2784         * now restore reset value on sampling overflowed counters
2785         */
2786        mask >>= PMU_FIRST_COUNTER;
2787        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2788
2789                if ((mask & 0x1UL) == 0UL) continue;
2790
2791                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2792                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2793
2794                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2795
2796                pfm_write_soft_counter(ctx, i, val);
2797        }
2798
2799        /*
2800         * Now take care of resetting the other registers
2801         */
2802        for(i = 0; reset_others; i++, reset_others >>= 1) {
2803
2804                if ((reset_others & 0x1) == 0) continue;
2805
2806                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2807
2808                if (PMD_IS_COUNTING(i)) {
2809                        pfm_write_soft_counter(ctx, i, val);
2810                } else {
2811                        ia64_set_pmd(i, val);
2812                }
2813                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2814                          is_long_reset ? "long" : "short", i, val));
2815        }
2816        ia64_srlz_d();
2817}
2818
2819static int
2820pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2821{
2822        struct task_struct *task;
2823        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2824        unsigned long value, pmc_pm;
2825        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2826        unsigned int cnum, reg_flags, flags, pmc_type;
2827        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2828        int is_monitor, is_counting, state;
2829        int ret = -EINVAL;
2830        pfm_reg_check_t wr_func;
2831#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2832
2833        state     = ctx->ctx_state;
2834        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2835        is_system = ctx->ctx_fl_system;
2836        task      = ctx->ctx_task;
2837        impl_pmds = pmu_conf->impl_pmds[0];
2838
2839        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2840
2841        if (is_loaded) {
2842                /*
2843                 * In system wide and when the context is loaded, access can only happen
2844                 * when the caller is running on the CPU being monitored by the session.
2845                 * It does not have to be the owner (ctx_task) of the context per se.
2846                 */
2847                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2848                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2849                        return -EBUSY;
2850                }
2851                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2852        }
2853        expert_mode = pfm_sysctl.expert_mode; 
2854
2855        for (i = 0; i < count; i++, req++) {
2856
2857                cnum       = req->reg_num;
2858                reg_flags  = req->reg_flags;
2859                value      = req->reg_value;
2860                smpl_pmds  = req->reg_smpl_pmds[0];
2861                reset_pmds = req->reg_reset_pmds[0];
2862                flags      = 0;
2863
2864
2865                if (cnum >= PMU_MAX_PMCS) {
2866                        DPRINT(("pmc%u is invalid\n", cnum));
2867                        goto error;
2868                }
2869
2870                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2871                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2872                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2873                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2874
2875                /*
2876                 * we reject all non implemented PMC as well
2877                 * as attempts to modify PMC[0-3] which are used
2878                 * as status registers by the PMU
2879                 */
2880                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2881                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2882                        goto error;
2883                }
2884                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2885                /*
2886                 * If the PMC is a monitor, then if the value is not the default:
2887                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2888                 *      - per-task           : PMCx.pm=0 (user monitor)
2889                 */
2890                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2891                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2892                                cnum,
2893                                pmc_pm,
2894                                is_system));
2895                        goto error;
2896                }
2897
2898                if (is_counting) {
2899                        /*
2900                         * enforce generation of overflow interrupt. Necessary on all
2901                         * CPUs.
2902                         */
2903                        value |= 1 << PMU_PMC_OI;
2904
2905                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2906                                flags |= PFM_REGFL_OVFL_NOTIFY;
2907                        }
2908
2909                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2910
2911                        /* verify validity of smpl_pmds */
2912                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2913                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2914                                goto error;
2915                        }
2916
2917                        /* verify validity of reset_pmds */
2918                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2919                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2920                                goto error;
2921                        }
2922                } else {
2923                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2924                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2925                                goto error;
2926                        }
2927                        /* eventid on non-counting monitors are ignored */
2928                }
2929
2930                /*
2931                 * execute write checker, if any
2932                 */
2933                if (likely(expert_mode == 0 && wr_func)) {
2934                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2935                        if (ret) goto error;
2936                        ret = -EINVAL;
2937                }
2938
2939                /*
2940                 * no error on this register
2941                 */
2942                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2943
2944                /*
2945                 * Now we commit the changes to the software state
2946                 */
2947
2948                /*
2949                 * update overflow information
2950                 */
2951                if (is_counting) {
2952                        /*
2953                         * full flag update each time a register is programmed
2954                         */
2955                        ctx->ctx_pmds[cnum].flags = flags;
2956
2957                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2958                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2959                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2960
2961                        /*
2962                         * Mark all PMDS to be accessed as used.
2963                         *
2964                         * We do not keep track of PMC because we have to
2965                         * systematically restore ALL of them.
2966                         *
2967                         * We do not update the used_monitors mask, because
2968                         * if we have not programmed them, then will be in
2969                         * a quiescent state, therefore we will not need to
2970                         * mask/restore then when context is MASKED.
2971                         */
2972                        CTX_USED_PMD(ctx, reset_pmds);
2973                        CTX_USED_PMD(ctx, smpl_pmds);
2974                        /*
2975                         * make sure we do not try to reset on
2976                         * restart because we have established new values
2977                         */
2978                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2979                }
2980                /*
2981                 * Needed in case the user does not initialize the equivalent
2982                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2983                 * possible leak here.
2984                 */
2985                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2986
2987                /*
2988                 * keep track of the monitor PMC that we are using.
2989                 * we save the value of the pmc in ctx_pmcs[] and if
2990                 * the monitoring is not stopped for the context we also
2991                 * place it in the saved state area so that it will be
2992                 * picked up later by the context switch code.
2993                 *
2994                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2995                 *
2996                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2997                 * monitoring needs to be stopped.
2998                 */
2999                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3000
3001                /*
3002                 * update context state
3003                 */
3004                ctx->ctx_pmcs[cnum] = value;
3005
3006                if (is_loaded) {
3007                        /*
3008                         * write thread state
3009                         */
3010                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3011
3012                        /*
3013                         * write hardware register if we can
3014                         */
3015                        if (can_access_pmu) {
3016                                ia64_set_pmc(cnum, value);
3017                        }
3018#ifdef CONFIG_SMP
3019                        else {
3020                                /*
3021                                 * per-task SMP only here
3022                                 *
3023                                 * we are guaranteed that the task is not running on the other CPU,
3024                                 * we indicate that this PMD will need to be reloaded if the task
3025                                 * is rescheduled on the CPU it ran last on.
3026                                 */
3027                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3028                        }
3029#endif
3030                }
3031
3032                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3033                          cnum,
3034                          value,
3035                          is_loaded,
3036                          can_access_pmu,
3037                          flags,
3038                          ctx->ctx_all_pmcs[0],
3039                          ctx->ctx_used_pmds[0],
3040                          ctx->ctx_pmds[cnum].eventid,
3041                          smpl_pmds,
3042                          reset_pmds,
3043                          ctx->ctx_reload_pmcs[0],
3044                          ctx->ctx_used_monitors[0],
3045                          ctx->ctx_ovfl_regs[0]));
3046        }
3047
3048        /*
3049         * make sure the changes are visible
3050         */
3051        if (can_access_pmu) ia64_srlz_d();
3052
3053        return 0;
3054error:
3055        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3056        return ret;
3057}
3058
3059static int
3060pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3061{
3062        struct task_struct *task;
3063        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3064        unsigned long value, hw_value, ovfl_mask;
3065        unsigned int cnum;
3066        int i, can_access_pmu = 0, state;
3067        int is_counting, is_loaded, is_system, expert_mode;
3068        int ret = -EINVAL;
3069        pfm_reg_check_t wr_func;
3070
3071
3072        state     = ctx->ctx_state;
3073        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3074        is_system = ctx->ctx_fl_system;
3075        ovfl_mask = pmu_conf->ovfl_val;
3076        task      = ctx->ctx_task;
3077
3078        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3079
3080        /*
3081         * on both UP and SMP, we can only write to the PMC when the task is
3082         * the owner of the local PMU.
3083         */
3084        if (likely(is_loaded)) {
3085                /*
3086                 * In system wide and when the context is loaded, access can only happen
3087                 * when the caller is running on the CPU being monitored by the session.
3088                 * It does not have to be the owner (ctx_task) of the context per se.
3089                 */
3090                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3091                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3092                        return -EBUSY;
3093                }
3094                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3095        }
3096        expert_mode = pfm_sysctl.expert_mode; 
3097
3098        for (i = 0; i < count; i++, req++) {
3099
3100                cnum  = req->reg_num;
3101                value = req->reg_value;
3102
3103                if (!PMD_IS_IMPL(cnum)) {
3104                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3105                        goto abort_mission;
3106                }
3107                is_counting = PMD_IS_COUNTING(cnum);
3108                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3109
3110                /*
3111                 * execute write checker, if any
3112                 */
3113                if (unlikely(expert_mode == 0 && wr_func)) {
3114                        unsigned long v = value;
3115
3116                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3117                        if (ret) goto abort_mission;
3118
3119                        value = v;
3120                        ret   = -EINVAL;
3121                }
3122
3123                /*
3124                 * no error on this register
3125                 */
3126                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3127
3128                /*
3129                 * now commit changes to software state
3130                 */
3131                hw_value = value;
3132
3133                /*
3134                 * update virtualized (64bits) counter
3135                 */
3136                if (is_counting) {
3137                        /*
3138                         * write context state
3139                         */
3140                        ctx->ctx_pmds[cnum].lval = value;
3141
3142                        /*
3143                         * when context is load we use the split value
3144                         */
3145                        if (is_loaded) {
3146                                hw_value = value &  ovfl_mask;
3147                                value    = value & ~ovfl_mask;
3148                        }
3149                }
3150                /*
3151                 * update reset values (not just for counters)
3152                 */
3153                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3154                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3155
3156                /*
3157                 * update randomization parameters (not just for counters)
3158                 */
3159                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3160                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3161
3162                /*
3163                 * update context value
3164                 */
3165                ctx->ctx_pmds[cnum].val  = value;
3166
3167                /*
3168                 * Keep track of what we use
3169                 *
3170                 * We do not keep track of PMC because we have to
3171                 * systematically restore ALL of them.
3172                 */
3173                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3174
3175                /*
3176                 * mark this PMD register used as well
3177                 */
3178                CTX_USED_PMD(ctx, RDEP(cnum));
3179
3180                /*
3181                 * make sure we do not try to reset on
3182                 * restart because we have established new values
3183                 */
3184                if (is_counting && state == PFM_CTX_MASKED) {
3185                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3186                }
3187
3188                if (is_loaded) {
3189                        /*
3190                         * write thread state
3191                         */
3192                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3193
3194                        /*
3195                         * write hardware register if we can
3196                         */
3197                        if (can_access_pmu) {
3198                                ia64_set_pmd(cnum, hw_value);
3199                        } else {
3200#ifdef CONFIG_SMP
3201                                /*
3202                                 * we are guaranteed that the task is not running on the other CPU,
3203                                 * we indicate that this PMD will need to be reloaded if the task
3204                                 * is rescheduled on the CPU it ran last on.
3205                                 */
3206                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3207#endif
3208                        }
3209                }
3210
3211                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3212                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3213                        cnum,
3214                        value,
3215                        is_loaded,
3216                        can_access_pmu,
3217                        hw_value,
3218                        ctx->ctx_pmds[cnum].val,
3219                        ctx->ctx_pmds[cnum].short_reset,
3220                        ctx->ctx_pmds[cnum].long_reset,
3221                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3222                        ctx->ctx_pmds[cnum].seed,
3223                        ctx->ctx_pmds[cnum].mask,
3224                        ctx->ctx_used_pmds[0],
3225                        ctx->ctx_pmds[cnum].reset_pmds[0],
3226                        ctx->ctx_reload_pmds[0],
3227                        ctx->ctx_all_pmds[0],
3228                        ctx->ctx_ovfl_regs[0]));
3229        }
3230
3231        /*
3232         * make changes visible
3233         */
3234        if (can_access_pmu) ia64_srlz_d();
3235
3236        return 0;
3237
3238abort_mission:
3239        /*
3240         * for now, we have only one possibility for error
3241         */
3242        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3243        return ret;
3244}
3245
3246/*
3247 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3248 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3249 * interrupt is delivered during the call, it will be kept pending until we leave, making
3250 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3251 * guaranteed to return consistent data to the user, it may simply be old. It is not
3252 * trivial to treat the overflow while inside the call because you may end up in
3253 * some module sampling buffer code causing deadlocks.
3254 */
3255static int
3256pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3257{
3258        struct task_struct *task;
3259        unsigned long val = 0UL, lval, ovfl_mask, sval;
3260        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3261        unsigned int cnum, reg_flags = 0;
3262        int i, can_access_pmu = 0, state;
3263        int is_loaded, is_system, is_counting, expert_mode;
3264        int ret = -EINVAL;
3265        pfm_reg_check_t rd_func;
3266
3267        /*
3268         * access is possible when loaded only for
3269         * self-monitoring tasks or in UP mode
3270         */
3271
3272        state     = ctx->ctx_state;
3273        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3274        is_system = ctx->ctx_fl_system;
3275        ovfl_mask = pmu_conf->ovfl_val;
3276        task      = ctx->ctx_task;
3277
3278        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3279
3280        if (likely(is_loaded)) {
3281                /*
3282                 * In system wide and when the context is loaded, access can only happen
3283                 * when the caller is running on the CPU being monitored by the session.
3284                 * It does not have to be the owner (ctx_task) of the context per se.
3285                 */
3286                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3287                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3288                        return -EBUSY;
3289                }
3290                /*
3291                 * this can be true when not self-monitoring only in UP
3292                 */
3293                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3294
3295                if (can_access_pmu) ia64_srlz_d();
3296        }
3297        expert_mode = pfm_sysctl.expert_mode; 
3298
3299        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3300                is_loaded,
3301                can_access_pmu,
3302                state));
3303
3304        /*
3305         * on both UP and SMP, we can only read the PMD from the hardware register when
3306         * the task is the owner of the local PMU.
3307         */
3308
3309        for (i = 0; i < count; i++, req++) {
3310
3311                cnum        = req->reg_num;
3312                reg_flags   = req->reg_flags;
3313
3314                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3315                /*
3316                 * we can only read the register that we use. That includes
3317                 * the one we explicitly initialize AND the one we want included
3318                 * in the sampling buffer (smpl_regs).
3319                 *
3320                 * Having this restriction allows optimization in the ctxsw routine
3321                 * without compromising security (leaks)
3322                 */
3323                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3324
3325                sval        = ctx->ctx_pmds[cnum].val;
3326                lval        = ctx->ctx_pmds[cnum].lval;
3327                is_counting = PMD_IS_COUNTING(cnum);
3328
3329                /*
3330                 * If the task is not the current one, then we check if the
3331                 * PMU state is still in the local live register due to lazy ctxsw.
3332                 * If true, then we read directly from the registers.
3333                 */
3334                if (can_access_pmu){
3335                        val = ia64_get_pmd(cnum);
3336                } else {
3337                        /*
3338                         * context has been saved
3339                         * if context is zombie, then task does not exist anymore.
3340                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3341                         */
3342                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3343                }
3344                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3345
3346                if (is_counting) {
3347                        /*
3348                         * XXX: need to check for overflow when loaded
3349                         */
3350                        val &= ovfl_mask;
3351                        val += sval;
3352                }
3353
3354                /*
3355                 * execute read checker, if any
3356                 */
3357                if (unlikely(expert_mode == 0 && rd_func)) {
3358                        unsigned long v = val;
3359                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3360                        if (ret) goto error;
3361                        val = v;
3362                        ret = -EINVAL;
3363                }
3364
3365                PFM_REG_RETFLAG_SET(reg_flags, 0);
3366
3367                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3368
3369                /*
3370                 * update register return value, abort all if problem during copy.
3371                 * we only modify the reg_flags field. no check mode is fine because
3372                 * access has been verified upfront in sys_perfmonctl().
3373                 */
3374                req->reg_value            = val;
3375                req->reg_flags            = reg_flags;
3376                req->reg_last_reset_val   = lval;
3377        }
3378
3379        return 0;
3380
3381error:
3382        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3383        return ret;
3384}
3385
3386int
3387pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3388{
3389        pfm_context_t *ctx;
3390
3391        if (req == NULL) return -EINVAL;
3392
3393        ctx = GET_PMU_CTX();
3394
3395        if (ctx == NULL) return -EINVAL;
3396
3397        /*
3398         * for now limit to current task, which is enough when calling
3399         * from overflow handler
3400         */
3401        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3402
3403        return pfm_write_pmcs(ctx, req, nreq, regs);
3404}
3405EXPORT_SYMBOL(pfm_mod_write_pmcs);
3406
3407int
3408pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3409{
3410        pfm_context_t *ctx;
3411
3412        if (req == NULL) return -EINVAL;
3413
3414        ctx = GET_PMU_CTX();
3415
3416        if (ctx == NULL) return -EINVAL;
3417
3418        /*
3419         * for now limit to current task, which is enough when calling
3420         * from overflow handler
3421         */
3422        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3423
3424        return pfm_read_pmds(ctx, req, nreq, regs);
3425}
3426EXPORT_SYMBOL(pfm_mod_read_pmds);
3427
3428/*
3429 * Only call this function when a process it trying to
3430 * write the debug registers (reading is always allowed)
3431 */
3432int
3433pfm_use_debug_registers(struct task_struct *task)
3434{
3435        pfm_context_t *ctx = task->thread.pfm_context;
3436        unsigned long flags;
3437        int ret = 0;
3438
3439        if (pmu_conf->use_rr_dbregs == 0) return 0;
3440
3441        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3442
3443        /*
3444         * do it only once
3445         */
3446        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3447
3448        /*
3449         * Even on SMP, we do not need to use an atomic here because
3450         * the only way in is via ptrace() and this is possible only when the
3451         * process is stopped. Even in the case where the ctxsw out is not totally
3452         * completed by the time we come here, there is no way the 'stopped' process
3453         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3454         * So this is always safe.
3455         */
3456        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3457
3458        LOCK_PFS(flags);
3459
3460        /*
3461         * We cannot allow setting breakpoints when system wide monitoring
3462         * sessions are using the debug registers.
3463         */
3464        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3465                ret = -1;
3466        else
3467                pfm_sessions.pfs_ptrace_use_dbregs++;
3468
3469        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3470                  pfm_sessions.pfs_ptrace_use_dbregs,
3471                  pfm_sessions.pfs_sys_use_dbregs,
3472                  task_pid_nr(task), ret));
3473
3474        UNLOCK_PFS(flags);
3475
3476        return ret;
3477}
3478
3479/*
3480 * This function is called for every task that exits with the
3481 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3482 * able to use the debug registers for debugging purposes via
3483 * ptrace(). Therefore we know it was not using them for
3484 * performance monitoring, so we only decrement the number
3485 * of "ptraced" debug register users to keep the count up to date
3486 */
3487int
3488pfm_release_debug_registers(struct task_struct *task)
3489{
3490        unsigned long flags;
3491        int ret;
3492
3493        if (pmu_conf->use_rr_dbregs == 0) return 0;
3494
3495        LOCK_PFS(flags);
3496        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3497                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3498                ret = -1;
3499        }  else {
3500                pfm_sessions.pfs_ptrace_use_dbregs--;
3501                ret = 0;
3502        }
3503        UNLOCK_PFS(flags);
3504
3505        return ret;
3506}
3507
3508static int
3509pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3510{
3511        struct task_struct *task;
3512        pfm_buffer_fmt_t *fmt;
3513        pfm_ovfl_ctrl_t rst_ctrl;
3514        int state, is_system;
3515        int ret = 0;
3516
3517        state     = ctx->ctx_state;
3518        fmt       = ctx->ctx_buf_fmt;
3519        is_system = ctx->ctx_fl_system;
3520        task      = PFM_CTX_TASK(ctx);
3521
3522        switch(state) {
3523                case PFM_CTX_MASKED:
3524                        break;
3525                case PFM_CTX_LOADED: 
3526                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3527                        /* fall through */
3528                case PFM_CTX_UNLOADED:
3529                case PFM_CTX_ZOMBIE:
3530                        DPRINT(("invalid state=%d\n", state));
3531                        return -EBUSY;
3532                default:
3533                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3534                        return -EINVAL;
3535        }
3536
3537        /*
3538         * In system wide and when the context is loaded, access can only happen
3539         * when the caller is running on the CPU being monitored by the session.
3540         * It does not have to be the owner (ctx_task) of the context per se.
3541         */
3542        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3543                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3544                return -EBUSY;
3545        }
3546
3547        /* sanity check */
3548        if (unlikely(task == NULL)) {
3549                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3550                return -EINVAL;
3551        }
3552
3553        if (task == current || is_system) {
3554
3555                fmt = ctx->ctx_buf_fmt;
3556
3557                DPRINT(("restarting self %d ovfl=0x%lx\n",
3558                        task_pid_nr(task),
3559                        ctx->ctx_ovfl_regs[0]));
3560
3561                if (CTX_HAS_SMPL(ctx)) {
3562
3563                        prefetch(ctx->ctx_smpl_hdr);
3564
3565                        rst_ctrl.bits.mask_monitoring = 0;
3566                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3567
3568                        if (state == PFM_CTX_LOADED)
3569                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3570                        else
3571                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3572                } else {
3573                        rst_ctrl.bits.mask_monitoring = 0;
3574                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3575                }
3576
3577                if (ret == 0) {
3578                        if (rst_ctrl.bits.reset_ovfl_pmds)
3579                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3580
3581                        if (rst_ctrl.bits.mask_monitoring == 0) {
3582                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3583
3584                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3585                        } else {
3586                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3587
3588                                // cannot use pfm_stop_monitoring(task, regs);
3589                        }
3590                }
3591                /*
3592                 * clear overflowed PMD mask to remove any stale information
3593                 */
3594                ctx->ctx_ovfl_regs[0] = 0UL;
3595
3596                /*
3597                 * back to LOADED state
3598                 */
3599                ctx->ctx_state = PFM_CTX_LOADED;
3600
3601                /*
3602                 * XXX: not really useful for self monitoring
3603                 */
3604                ctx->ctx_fl_can_restart = 0;
3605
3606                return 0;
3607        }
3608
3609        /* 
3610         * restart another task
3611         */
3612
3613        /*
3614         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3615         * one is seen by the task.
3616         */
3617        if (state == PFM_CTX_MASKED) {
3618                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3619                /*
3620                 * will prevent subsequent restart before this one is
3621                 * seen by other task
3622                 */
3623                ctx->ctx_fl_can_restart = 0;
3624        }
3625
3626        /*
3627         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3628         * the task is blocked or on its way to block. That's the normal
3629         * restart path. If the monitoring is not masked, then the task
3630         * can be actively monitoring and we cannot directly intervene.
3631         * Therefore we use the trap mechanism to catch the task and
3632         * force it to reset the buffer/reset PMDs.
3633         *
3634         * if non-blocking, then we ensure that the task will go into
3635         * pfm_handle_work() before returning to user mode.
3636         *
3637         * We cannot explicitly reset another task, it MUST always
3638         * be done by the task itself. This works for system wide because
3639         * the tool that is controlling the session is logically doing 
3640         * "self-monitoring".
3641         */
3642        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3643                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3644                complete(&ctx->ctx_restart_done);
3645        } else {
3646                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3647
3648                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3649
3650                PFM_SET_WORK_PENDING(task, 1);
3651
3652                set_notify_resume(task);
3653
3654                /*
3655                 * XXX: send reschedule if task runs on another CPU
3656                 */
3657        }
3658        return 0;
3659}
3660
3661static int
3662pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3663{
3664        unsigned int m = *(unsigned int *)arg;
3665
3666        pfm_sysctl.debug = m == 0 ? 0 : 1;
3667
3668        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3669
3670        if (m == 0) {
3671                memset(pfm_stats, 0, sizeof(pfm_stats));
3672                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3673        }
3674        return 0;
3675}
3676
3677/*
3678 * arg can be NULL and count can be zero for this function
3679 */
3680static int
3681pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3682{
3683        struct thread_struct *thread = NULL;
3684        struct task_struct *task;
3685        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3686        unsigned long flags;
3687        dbreg_t dbreg;
3688        unsigned int rnum;
3689        int first_time;
3690        int ret = 0, state;
3691        int i, can_access_pmu = 0;
3692        int is_system, is_loaded;
3693
3694        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3695
3696        state     = ctx->ctx_state;
3697        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3698        is_system = ctx->ctx_fl_system;
3699        task      = ctx->ctx_task;
3700
3701        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3702
3703        /*
3704         * on both UP and SMP, we can only write to the PMC when the task is
3705         * the owner of the local PMU.
3706         */
3707        if (is_loaded) {
3708                thread = &task->thread;
3709                /*
3710                 * In system wide and when the context is loaded, access can only happen
3711                 * when the caller is running on the CPU being monitored by the session.
3712                 * It does not have to be the owner (ctx_task) of the context per se.
3713                 */
3714                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3715                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3716                        return -EBUSY;
3717                }
3718                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3719        }
3720
3721        /*
3722         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3723         * ensuring that no real breakpoint can be installed via this call.
3724         *
3725         * IMPORTANT: regs can be NULL in this function
3726         */
3727
3728        first_time = ctx->ctx_fl_using_dbreg == 0;
3729
3730        /*
3731         * don't bother if we are loaded and task is being debugged
3732         */
3733        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3734                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3735                return -EBUSY;
3736        }
3737
3738        /*
3739         * check for debug registers in system wide mode
3740         *
3741         * If though a check is done in pfm_context_load(),
3742         * we must repeat it here, in case the registers are
3743         * written after the context is loaded
3744         */
3745        if (is_loaded) {
3746                LOCK_PFS(flags);
3747
3748                if (first_time && is_system) {
3749                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3750                                ret = -EBUSY;
3751                        else
3752                                pfm_sessions.pfs_sys_use_dbregs++;
3753                }
3754                UNLOCK_PFS(flags);
3755        }
3756
3757        if (ret != 0) return ret;
3758
3759        /*
3760         * mark ourself as user of the debug registers for
3761         * perfmon purposes.
3762         */
3763        ctx->ctx_fl_using_dbreg = 1;
3764
3765        /*
3766         * clear hardware registers to make sure we don't
3767         * pick up stale state.
3768         *
3769         * for a system wide session, we do not use
3770         * thread.dbr, thread.ibr because this process
3771         * never leaves the current CPU and the state
3772         * is shared by all processes running on it
3773         */
3774        if (first_time && can_access_pmu) {
3775                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3776                for (i=0; i < pmu_conf->num_ibrs; i++) {
3777                        ia64_set_ibr(i, 0UL);
3778                        ia64_dv_serialize_instruction();
3779                }
3780                ia64_srlz_i();
3781                for (i=0; i < pmu_conf->num_dbrs; i++) {
3782                        ia64_set_dbr(i, 0UL);
3783                        ia64_dv_serialize_data();
3784                }
3785                ia64_srlz_d();
3786        }
3787
3788        /*
3789         * Now install the values into the registers
3790         */
3791        for (i = 0; i < count; i++, req++) {
3792
3793                rnum      = req->dbreg_num;
3794                dbreg.val = req->dbreg_value;
3795
3796                ret = -EINVAL;
3797
3798                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3799                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3800                                  rnum, dbreg.val, mode, i, count));
3801
3802                        goto abort_mission;
3803                }
3804
3805                /*
3806                 * make sure we do not install enabled breakpoint
3807                 */
3808                if (rnum & 0x1) {
3809                        if (mode == PFM_CODE_RR)
3810                                dbreg.ibr.ibr_x = 0;
3811                        else
3812                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3813                }
3814
3815                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3816
3817                /*
3818                 * Debug registers, just like PMC, can only be modified
3819                 * by a kernel call. Moreover, perfmon() access to those
3820                 * registers are centralized in this routine. The hardware
3821                 * does not modify the value of these registers, therefore,
3822                 * if we save them as they are written, we can avoid having
3823                 * to save them on context switch out. This is made possible
3824                 * by the fact that when perfmon uses debug registers, ptrace()
3825                 * won't be able to modify them concurrently.
3826                 */
3827                if (mode == PFM_CODE_RR) {
3828                        CTX_USED_IBR(ctx, rnum);
3829
3830                        if (can_access_pmu) {
3831                                ia64_set_ibr(rnum, dbreg.val);
3832                                ia64_dv_serialize_instruction();
3833                        }
3834
3835                        ctx->ctx_ibrs[rnum] = dbreg.val;
3836
3837                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3838                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3839                } else {
3840                        CTX_USED_DBR(ctx, rnum);
3841
3842                        if (can_access_pmu) {
3843                                ia64_set_dbr(rnum, dbreg.val);
3844                                ia64_dv_serialize_data();
3845                        }
3846                        ctx->ctx_dbrs[rnum] = dbreg.val;
3847
3848                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3849                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3850                }
3851        }
3852
3853        return 0;
3854
3855abort_mission:
3856        /*
3857         * in case it was our first attempt, we undo the global modifications
3858         */
3859        if (first_time) {
3860                LOCK_PFS(flags);
3861                if (ctx->ctx_fl_system) {
3862                        pfm_sessions.pfs_sys_use_dbregs--;
3863                }
3864                UNLOCK_PFS(flags);
3865                ctx->ctx_fl_using_dbreg = 0;
3866        }
3867        /*
3868         * install error return flag
3869         */
3870        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3871
3872        return ret;
3873}
3874
3875static int
3876pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3877{
3878        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3879}
3880
3881static int
3882pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3883{
3884        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3885}
3886
3887int
3888pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3889{
3890        pfm_context_t *ctx;
3891
3892        if (req == NULL) return -EINVAL;
3893
3894        ctx = GET_PMU_CTX();
3895
3896        if (ctx == NULL) return -EINVAL;
3897
3898        /*
3899         * for now limit to current task, which is enough when calling
3900         * from overflow handler
3901         */
3902        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3903
3904        return pfm_write_ibrs(ctx, req, nreq, regs);
3905}
3906EXPORT_SYMBOL(pfm_mod_write_ibrs);
3907
3908int
3909pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3910{
3911        pfm_context_t *ctx;
3912
3913        if (req == NULL) return -EINVAL;
3914
3915        ctx = GET_PMU_CTX();
3916
3917        if (ctx == NULL) return -EINVAL;
3918
3919        /*
3920         * for now limit to current task, which is enough when calling
3921         * from overflow handler
3922         */
3923        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3924
3925        return pfm_write_dbrs(ctx, req, nreq, regs);
3926}
3927EXPORT_SYMBOL(pfm_mod_write_dbrs);
3928
3929
3930static int
3931pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3932{
3933        pfarg_features_t *req = (pfarg_features_t *)arg;
3934
3935        req->ft_version = PFM_VERSION;
3936        return 0;
3937}
3938
3939static int
3940pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3941{
3942        struct pt_regs *tregs;
3943        struct task_struct *task = PFM_CTX_TASK(ctx);
3944        int state, is_system;
3945
3946        state     = ctx->ctx_state;
3947        is_system = ctx->ctx_fl_system;
3948
3949        /*
3950         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3951         */
3952        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3953
3954        /*
3955         * In system wide and when the context is loaded, access can only happen
3956         * when the caller is running on the CPU being monitored by the session.
3957         * It does not have to be the owner (ctx_task) of the context per se.
3958         */
3959        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3960                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3961                return -EBUSY;
3962        }
3963        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3964                task_pid_nr(PFM_CTX_TASK(ctx)),
3965                state,
3966                is_system));
3967        /*
3968         * in system mode, we need to update the PMU directly
3969         * and the user level state of the caller, which may not
3970         * necessarily be the creator of the context.
3971         */
3972        if (is_system) {
3973                /*
3974                 * Update local PMU first
3975                 *
3976                 * disable dcr pp
3977                 */
3978                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3979                ia64_srlz_i();
3980
3981                /*
3982                 * update local cpuinfo
3983                 */
3984                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3985
3986                /*
3987                 * stop monitoring, does srlz.i
3988                 */
3989                pfm_clear_psr_pp();
3990
3991                /*
3992                 * stop monitoring in the caller
3993                 */
3994                ia64_psr(regs)->pp = 0;
3995
3996                return 0;
3997        }
3998        /*
3999         * per-task mode
4000         */
4001
4002        if (task == current) {
4003                /* stop monitoring  at kernel level */
4004                pfm_clear_psr_up();
4005
4006                /*
4007                 * stop monitoring at the user level
4008                 */
4009                ia64_psr(regs)->up = 0;
4010        } else {
4011                tregs = task_pt_regs(task);
4012
4013                /*
4014                 * stop monitoring at the user level
4015                 */
4016                ia64_psr(tregs)->up = 0;
4017
4018                /*
4019                 * monitoring disabled in kernel at next reschedule
4020                 */
4021                ctx->ctx_saved_psr_up = 0;
4022                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4023        }
4024        return 0;
4025}
4026
4027
4028static int
4029pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4030{
4031        struct pt_regs *tregs;
4032        int state, is_system;
4033
4034        state     = ctx->ctx_state;
4035        is_system = ctx->ctx_fl_system;
4036
4037        if (state != PFM_CTX_LOADED) return -EINVAL;
4038
4039        /*
4040         * In system wide and when the context is loaded, access can only happen
4041         * when the caller is running on the CPU being monitored by the session.
4042         * It does not have to be the owner (ctx_task) of the context per se.
4043         */
4044        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4045                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4046                return -EBUSY;
4047        }
4048
4049        /*
4050         * in system mode, we need to update the PMU directly
4051         * and the user level state of the caller, which may not
4052         * necessarily be the creator of the context.
4053         */
4054        if (is_system) {
4055
4056                /*
4057                 * set user level psr.pp for the caller
4058                 */
4059                ia64_psr(regs)->pp = 1;
4060
4061                /*
4062                 * now update the local PMU and cpuinfo
4063                 */
4064                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4065
4066                /*
4067                 * start monitoring at kernel level
4068                 */
4069                pfm_set_psr_pp();
4070
4071                /* enable dcr pp */
4072                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4073                ia64_srlz_i();
4074
4075                return 0;
4076        }
4077
4078        /*
4079         * per-process mode
4080         */
4081
4082        if (ctx->ctx_task == current) {
4083
4084                /* start monitoring at kernel level */
4085                pfm_set_psr_up();
4086
4087                /*
4088                 * activate monitoring at user level
4089                 */
4090                ia64_psr(regs)->up = 1;
4091
4092        } else {
4093                tregs = task_pt_regs(ctx->ctx_task);
4094
4095                /*
4096                 * start monitoring at the kernel level the next
4097                 * time the task is scheduled
4098                 */
4099                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4100
4101                /*
4102                 * activate monitoring at user level
4103                 */
4104                ia64_psr(tregs)->up = 1;
4105        }
4106        return 0;
4107}
4108
4109static int
4110pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4111{
4112        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4113        unsigned int cnum;
4114        int i;
4115        int ret = -EINVAL;
4116
4117        for (i = 0; i < count; i++, req++) {
4118
4119                cnum = req->reg_num;
4120
4121                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4122
4123                req->reg_value = PMC_DFL_VAL(cnum);
4124
4125                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4126
4127                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4128        }
4129        return 0;
4130
4131abort_mission:
4132        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4133        return ret;
4134}
4135
4136static int
4137pfm_check_task_exist(pfm_context_t *ctx)
4138{
4139        struct task_struct *g, *t;
4140        int ret = -ESRCH;
4141
4142        read_lock(&tasklist_lock);
4143
4144        do_each_thread (g, t) {
4145                if (t->thread.pfm_context == ctx) {
4146                        ret = 0;
4147                        goto out;
4148                }
4149        } while_each_thread (g, t);
4150out:
4151        read_unlock(&tasklist_lock);
4152
4153        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4154
4155        return ret;
4156}
4157
4158static int
4159pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4160{
4161        struct task_struct *task;
4162        struct thread_struct *thread;
4163        struct pfm_context_t *old;
4164        unsigned long flags;
4165#ifndef CONFIG_SMP
4166        struct task_struct *owner_task = NULL;
4167#endif
4168        pfarg_load_t *req = (pfarg_load_t *)arg;
4169        unsigned long *pmcs_source, *pmds_source;
4170        int the_cpu;
4171        int ret = 0;
4172        int state, is_system, set_dbregs = 0;
4173
4174        state     = ctx->ctx_state;
4175        is_system = ctx->ctx_fl_system;
4176        /*
4177         * can only load from unloaded or terminated state
4178         */
4179        if (state != PFM_CTX_UNLOADED) {
4180                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4181                        req->load_pid,
4182                        ctx->ctx_state));
4183                return -EBUSY;
4184        }
4185
4186        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4187
4188        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4189                DPRINT(("cannot use blocking mode on self\n"));
4190                return -EINVAL;
4191        }
4192
4193        ret = pfm_get_task(ctx, req->load_pid, &task);
4194        if (ret) {
4195                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4196                return ret;
4197        }
4198
4199        ret = -EINVAL;
4200
4201        /*
4202         * system wide is self monitoring only
4203         */
4204        if (is_system && task != current) {
4205                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4206                        req->load_pid));
4207                goto error;
4208        }
4209
4210        thread = &task->thread;
4211
4212        ret = 0;
4213        /*
4214         * cannot load a context which is using range restrictions,
4215         * into a task that is being debugged.
4216         */
4217        if (ctx->ctx_fl_using_dbreg) {
4218                if (thread->flags & IA64_THREAD_DBG_VALID) {
4219                        ret = -EBUSY;
4220                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4221                        goto error;
4222                }
4223                LOCK_PFS(flags);
4224
4225                if (is_system) {
4226                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4227                                DPRINT(("cannot load [%d] dbregs in use\n",
4228                                                        task_pid_nr(task)));
4229                                ret = -EBUSY;
4230                        } else {
4231                                pfm_sessions.pfs_sys_use_dbregs++;
4232                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4233                                set_dbregs = 1;
4234                        }
4235                }
4236
4237                UNLOCK_PFS(flags);
4238
4239                if (ret) goto error;
4240        }
4241
4242        /*
4243         * SMP system-wide monitoring implies self-monitoring.
4244         *
4245         * The programming model expects the task to
4246         * be pinned on a CPU throughout the session.
4247         * Here we take note of the current CPU at the
4248         * time the context is loaded. No call from
4249         * another CPU will be allowed.
4250         *
4251         * The pinning via shed_setaffinity()
4252         * must be done by the calling task prior
4253         * to this call.
4254         *
4255         * systemwide: keep track of CPU this session is supposed to run on
4256         */
4257        the_cpu = ctx->ctx_cpu = smp_processor_id();
4258
4259        ret = -EBUSY;
4260        /*
4261         * now reserve the session
4262         */
4263        ret = pfm_reserve_session(current, is_system, the_cpu);
4264        if (ret) goto error;
4265
4266        /*
4267         * task is necessarily stopped at this point.
4268         *
4269         * If the previous context was zombie, then it got removed in
4270         * pfm_save_regs(). Therefore we should not see it here.
4271         * If we see a context, then this is an active context
4272         *
4273         * XXX: needs to be atomic
4274         */
4275        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4276                thread->pfm_context, ctx));
4277
4278        ret = -EBUSY;
4279        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4280        if (old != NULL) {
4281                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4282                goto error_unres;
4283        }
4284
4285        pfm_reset_msgq(ctx);
4286
4287        ctx->ctx_state = PFM_CTX_LOADED;
4288
4289        /*
4290         * link context to task
4291         */
4292        ctx->ctx_task = task;
4293
4294        if (is_system) {
4295                /*
4296                 * we load as stopped
4297                 */
4298                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4299                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4300
4301                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4302        } else {
4303                thread->flags |= IA64_THREAD_PM_VALID;
4304        }
4305
4306        /*
4307         * propagate into thread-state
4308         */
4309        pfm_copy_pmds(task, ctx);
4310        pfm_copy_pmcs(task, ctx);
4311
4312        pmcs_source = ctx->th_pmcs;
4313        pmds_source = ctx->th_pmds;
4314
4315        /*
4316         * always the case for system-wide
4317         */
4318        if (task == current) {
4319
4320                if (is_system == 0) {
4321
4322                        /* allow user level control */
4323                        ia64_psr(regs)->sp = 0;
4324                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4325
4326                        SET_LAST_CPU(ctx, smp_processor_id());
4327                        INC_ACTIVATION();
4328                        SET_ACTIVATION(ctx);
4329#ifndef CONFIG_SMP
4330                        /*
4331                         * push the other task out, if any
4332                         */
4333                        owner_task = GET_PMU_OWNER();
4334                        if (owner_task) pfm_lazy_save_regs(owner_task);
4335#endif
4336                }
4337                /*
4338                 * load all PMD from ctx to PMU (as opposed to thread state)
4339                 * restore all PMC from ctx to PMU
4340                 */
4341                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4342                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4343
4344                ctx->ctx_reload_pmcs[0] = 0UL;
4345                ctx->ctx_reload_pmds[0] = 0UL;
4346
4347                /*
4348                 * guaranteed safe by earlier check against DBG_VALID
4349                 */
4350                if (ctx->ctx_fl_using_dbreg) {
4351                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4352                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4353                }
4354                /*
4355                 * set new ownership
4356                 */
4357                SET_PMU_OWNER(task, ctx);
4358
4359                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4360        } else {
4361                /*
4362                 * when not current, task MUST be stopped, so this is safe
4363                 */
4364                regs = task_pt_regs(task);
4365
4366                /* force a full reload */
4367                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4368                SET_LAST_CPU(ctx, -1);
4369
4370                /* initial saved psr (stopped) */
4371                ctx->ctx_saved_psr_up = 0UL;
4372                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4373        }
4374
4375        ret = 0;
4376
4377error_unres:
4378        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4379error:
4380        /*
4381         * we must undo the dbregs setting (for system-wide)
4382         */
4383        if (ret && set_dbregs) {
4384                LOCK_PFS(flags);
4385                pfm_sessions.pfs_sys_use_dbregs--;
4386                UNLOCK_PFS(flags);
4387        }
4388        /*
4389         * release task, there is now a link with the context
4390         */
4391        if (is_system == 0 && task != current) {
4392                pfm_put_task(task);
4393
4394                if (ret == 0) {
4395                        ret = pfm_check_task_exist(ctx);
4396                        if (ret) {
4397                                ctx->ctx_state = PFM_CTX_UNLOADED;
4398                                ctx->ctx_task  = NULL;
4399                        }
4400                }
4401        }
4402        return ret;
4403}
4404
4405/*
4406 * in this function, we do not need to increase the use count
4407 * for the task via get_task_struct(), because we hold the
4408 * context lock. If the task were to disappear while having
4409 * a context attached, it would go through pfm_exit_thread()
4410 * which also grabs the context lock  and would therefore be blocked
4411 * until we are here.
4412 */
4413static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4414
4415static int
4416pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4417{
4418        struct task_struct *task = PFM_CTX_TASK(ctx);
4419        struct pt_regs *tregs;
4420        int prev_state, is_system;
4421        int ret;
4422
4423        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4424
4425        prev_state = ctx->ctx_state;
4426        is_system  = ctx->ctx_fl_system;
4427
4428        /*
4429         * unload only when necessary
4430         */
4431        if (prev_state == PFM_CTX_UNLOADED) {
4432                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4433                return 0;
4434        }
4435
4436        /*
4437         * clear psr and dcr bits
4438         */
4439        ret = pfm_stop(ctx, NULL, 0, regs);
4440        if (ret) return ret;
4441
4442        ctx->ctx_state = PFM_CTX_UNLOADED;
4443
4444        /*
4445         * in system mode, we need to update the PMU directly
4446         * and the user level state of the caller, which may not
4447         * necessarily be the creator of the context.
4448         */
4449        if (is_system) {
4450
4451                /*
4452                 * Update cpuinfo
4453                 *
4454                 * local PMU is taken care of in pfm_stop()
4455                 */
4456                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4457                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4458
4459                /*
4460                 * save PMDs in context
4461                 * release ownership
4462                 */
4463                pfm_flush_pmds(current, ctx);
4464
4465                /*
4466                 * at this point we are done with the PMU
4467                 * so we can unreserve the resource.
4468                 */
4469                if (prev_state != PFM_CTX_ZOMBIE) 
4470                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4471
4472                /*
4473                 * disconnect context from task
4474                 */
4475                task->thread.pfm_context = NULL;
4476                /*
4477                 * disconnect task from context
4478                 */
4479                ctx->ctx_task = NULL;
4480
4481                /*
4482                 * There is nothing more to cleanup here.
4483                 */
4484                return 0;
4485        }
4486
4487        /*
4488         * per-task mode
4489         */
4490        tregs = task == current ? regs : task_pt_regs(task);
4491
4492        if (task == current) {
4493                /*
4494                 * cancel user level control
4495                 */
4496                ia64_psr(regs)->sp = 1;
4497
4498                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4499        }
4500        /*
4501         * save PMDs to context
4502         * release ownership
4503         */
4504        pfm_flush_pmds(task, ctx);
4505
4506        /*
4507         * at this point we are done with the PMU
4508         * so we can unreserve the resource.
4509         *
4510         * when state was ZOMBIE, we have already unreserved.
4511         */
4512        if (prev_state != PFM_CTX_ZOMBIE) 
4513                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4514
4515        /*
4516         * reset activation counter and psr
4517         */
4518        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4519        SET_LAST_CPU(ctx, -1);
4520
4521        /*
4522         * PMU state will not be restored
4523         */
4524        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4525
4526        /*
4527         * break links between context and task
4528         */
4529        task->thread.pfm_context  = NULL;
4530        ctx->ctx_task             = NULL;
4531
4532        PFM_SET_WORK_PENDING(task, 0);
4533
4534        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4535        ctx->ctx_fl_can_restart  = 0;
4536        ctx->ctx_fl_going_zombie = 0;
4537
4538        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4539
4540        return 0;
4541}
4542
4543
4544/*
4545 * called only from exit_thread(): task == current
4546 * we come here only if current has a context attached (loaded or masked)
4547 */
4548void
4549pfm_exit_thread(struct task_struct *task)
4550{
4551        pfm_context_t *ctx;
4552        unsigned long flags;
4553        struct pt_regs *regs = task_pt_regs(task);
4554        int ret, state;
4555        int free_ok = 0;
4556
4557        ctx = PFM_GET_CTX(task);
4558
4559        PROTECT_CTX(ctx, flags);
4560
4561        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4562
4563        state = ctx->ctx_state;
4564        switch(state) {
4565                case PFM_CTX_UNLOADED:
4566                        /*
4567                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4568                         * be in unloaded state
4569                         */
4570                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4571                        break;
4572                case PFM_CTX_LOADED:
4573                case PFM_CTX_MASKED:
4574                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4575                        if (ret) {
4576                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4577                        }
4578                        DPRINT(("ctx unloaded for current state was %d\n", state));
4579
4580                        pfm_end_notify_user(ctx);
4581                        break;
4582                case PFM_CTX_ZOMBIE:
4583                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4584                        if (ret) {
4585                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4586                        }
4587                        free_ok = 1;
4588                        break;
4589                default:
4590                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4591                        break;
4592        }
4593        UNPROTECT_CTX(ctx, flags);
4594
4595        { u64 psr = pfm_get_psr();
4596          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4597          BUG_ON(GET_PMU_OWNER());
4598          BUG_ON(ia64_psr(regs)->up);
4599          BUG_ON(ia64_psr(regs)->pp);
4600        }
4601
4602        /*
4603         * All memory free operations (especially for vmalloc'ed memory)
4604         * MUST be done with interrupts ENABLED.
4605         */
4606        if (free_ok) pfm_context_free(ctx);
4607}
4608
4609/*
4610 * functions MUST be listed in the increasing order of their index (see permfon.h)
4611 */
4612#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4613#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4614#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4615#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4616#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4617
4618static pfm_cmd_desc_t pfm_cmd_tab[]={
4619/* 0  */PFM_CMD_NONE,
4620/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4621/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4622/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4624/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4625/* 6  */PFM_CMD_NONE,
4626/* 7  */PFM_CMD_NONE,
4627/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4628/* 9  */PFM_CMD_NONE,
4629/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4630/* 11 */PFM_CMD_NONE,
4631/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4632/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4633/* 14 */PFM_CMD_NONE,
4634/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4635/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4636/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4637/* 18 */PFM_CMD_NONE,
4638/* 19 */PFM_CMD_NONE,
4639/* 20 */PFM_CMD_NONE,
4640/* 21 */PFM_CMD_NONE,
4641/* 22 */PFM_CMD_NONE,
4642/* 23 */PFM_CMD_NONE,
4643/* 24 */PFM_CMD_NONE,
4644/* 25 */PFM_CMD_NONE,
4645/* 26 */PFM_CMD_NONE,
4646/* 27 */PFM_CMD_NONE,
4647/* 28 */PFM_CMD_NONE,
4648/* 29 */PFM_CMD_NONE,
4649/* 30 */PFM_CMD_NONE,
4650/* 31 */PFM_CMD_NONE,
4651/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4652/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4653};
4654#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4655
4656static int
4657pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4658{
4659        struct task_struct *task;
4660        int state, old_state;
4661
4662recheck:
4663        state = ctx->ctx_state;
4664        task  = ctx->ctx_task;
4665
4666        if (task == NULL) {
4667                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4668                return 0;
4669        }
4670
4671        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4672                ctx->ctx_fd,
4673                state,
4674                task_pid_nr(task),
4675                task->state, PFM_CMD_STOPPED(cmd)));
4676
4677        /*
4678         * self-monitoring always ok.
4679         *
4680         * for system-wide the caller can either be the creator of the
4681         * context (to one to which the context is attached to) OR
4682         * a task running on the same CPU as the session.
4683         */
4684        if (task == current || ctx->ctx_fl_system) return 0;
4685
4686        /*
4687         * we are monitoring another thread
4688         */
4689        switch(state) {
4690                case PFM_CTX_UNLOADED:
4691                        /*
4692                         * if context is UNLOADED we are safe to go
4693                         */
4694                        return 0;
4695                case PFM_CTX_ZOMBIE:
4696                        /*
4697                         * no command can operate on a zombie context
4698                         */
4699                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4700                        return -EINVAL;
4701                case PFM_CTX_MASKED:
4702                        /*
4703                         * PMU state has been saved to software even though
4704                         * the thread may still be running.
4705                         */
4706                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4707        }
4708
4709        /*
4710         * context is LOADED or MASKED. Some commands may need to have 
4711         * the task stopped.
4712         *
4713         * We could lift this restriction for UP but it would mean that
4714         * the user has no guarantee the task would not run between
4715         * two successive calls to perfmonctl(). That's probably OK.
4716         * If this user wants to ensure the task does not run, then
4717         * the task must be stopped.
4718         */
4719        if (PFM_CMD_STOPPED(cmd)) {
4720                if (!task_is_stopped_or_traced(task)) {
4721                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4722                        return -EBUSY;
4723                }
4724                /*
4725                 * task is now stopped, wait for ctxsw out
4726                 *
4727                 * This is an interesting point in the code.
4728                 * We need to unprotect the context because
4729                 * the pfm_save_regs() routines needs to grab
4730                 * the same lock. There are danger in doing
4731                 * this because it leaves a window open for
4732                 * another task to get access to the context
4733                 * and possibly change its state. The one thing
4734                 * that is not possible is for the context to disappear
4735                 * because we are protected by the VFS layer, i.e.,
4736                 * get_fd()/put_fd().
4737                 */
4738                old_state = state;
4739
4740                UNPROTECT_CTX(ctx, flags);
4741
4742                wait_task_inactive(task, 0);
4743
4744                PROTECT_CTX(ctx, flags);
4745
4746                /*
4747                 * we must recheck to verify if state has changed
4748                 */
4749                if (ctx->ctx_state != old_state) {
4750                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4751                        goto recheck;
4752                }
4753        }
4754        return 0;
4755}
4756
4757/*
4758 * system-call entry point (must return long)
4759 */
4760asmlinkage long
4761sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4762{
4763        struct fd f = {NULL, 0};
4764        pfm_context_t *ctx = NULL;
4765        unsigned long flags = 0UL;
4766        void *args_k = NULL;
4767        long ret; /* will expand int return types */
4768        size_t base_sz, sz, xtra_sz = 0;
4769        int narg, completed_args = 0, call_made = 0, cmd_flags;
4770        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4771        int (*getsize)(void *arg, size_t *sz);
4772#define PFM_MAX_ARGSIZE 4096
4773
4774        /*
4775         * reject any call if perfmon was disabled at initialization
4776         */
4777        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4778
4779        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4780                DPRINT(("invalid cmd=%d\n", cmd));
4781                return -EINVAL;
4782        }
4783
4784        func      = pfm_cmd_tab[cmd].cmd_func;
4785        narg      = pfm_cmd_tab[cmd].cmd_narg;
4786        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4787        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4788        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4789
4790        if (unlikely(func == NULL)) {
4791                DPRINT(("invalid cmd=%d\n", cmd));
4792                return -EINVAL;
4793        }
4794
4795        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4796                PFM_CMD_NAME(cmd),
4797                cmd,
4798                narg,
4799                base_sz,
4800                count));
4801
4802        /*
4803         * check if number of arguments matches what the command expects
4804         */
4805        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4806                return -EINVAL;
4807
4808restart_args:
4809        sz = xtra_sz + base_sz*count;
4810        /*
4811         * limit abuse to min page size
4812         */
4813        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4814                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4815                return -E2BIG;
4816        }
4817
4818        /*
4819         * allocate default-sized argument buffer
4820         */
4821        if (likely(count && args_k == NULL)) {
4822                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4823                if (args_k == NULL) return -ENOMEM;
4824        }
4825
4826        ret = -EFAULT;
4827
4828        /*
4829         * copy arguments
4830         *
4831         * assume sz = 0 for command without parameters
4832         */
4833        if (sz && copy_from_user(args_k, arg, sz)) {
4834                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4835                goto error_args;
4836        }
4837
4838        /*
4839         * check if command supports extra parameters
4840         */
4841        if (completed_args == 0 && getsize) {
4842                /*
4843                 * get extra parameters size (based on main argument)
4844                 */
4845                ret = (*getsize)(args_k, &xtra_sz);
4846                if (ret) goto error_args;
4847
4848                completed_args = 1;
4849
4850                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4851
4852                /* retry if necessary */
4853                if (likely(xtra_sz)) goto restart_args;
4854        }
4855
4856        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4857
4858        ret = -EBADF;
4859
4860        f = fdget(fd);
4861        if (unlikely(f.file == NULL)) {
4862                DPRINT(("invalid fd %d\n", fd));
4863                goto error_args;
4864        }
4865        if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4866                DPRINT(("fd %d not related to perfmon\n", fd));
4867                goto error_args;
4868        }
4869
4870        ctx = f.file->private_data;
4871        if (unlikely(ctx == NULL)) {
4872                DPRINT(("no context for fd %d\n", fd));
4873                goto error_args;
4874        }
4875        prefetch(&ctx->ctx_state);
4876
4877        PROTECT_CTX(ctx, flags);
4878
4879        /*
4880         * check task is stopped
4881         */
4882        ret = pfm_check_task_state(ctx, cmd, flags);
4883        if (unlikely(ret)) goto abort_locked;
4884
4885skip_fd:
4886        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4887
4888        call_made = 1;
4889
4890abort_locked:
4891        if (likely(ctx)) {
4892                DPRINT(("context unlocked\n"));
4893                UNPROTECT_CTX(ctx, flags);
4894        }
4895
4896        /* copy argument back to user, if needed */
4897        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4898
4899error_args:
4900        if (f.file)
4901                fdput(f);
4902
4903        kfree(args_k);
4904
4905        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4906
4907        return ret;
4908}
4909
4910static void
4911pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4912{
4913        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4914        pfm_ovfl_ctrl_t rst_ctrl;
4915        int state;
4916        int ret = 0;
4917
4918        state = ctx->ctx_state;
4919        /*
4920         * Unlock sampling buffer and reset index atomically
4921         * XXX: not really needed when blocking
4922         */
4923        if (CTX_HAS_SMPL(ctx)) {
4924
4925                rst_ctrl.bits.mask_monitoring = 0;
4926                rst_ctrl.bits.reset_ovfl_pmds = 0;
4927
4928                if (state == PFM_CTX_LOADED)
4929                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4930                else
4931                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4932        } else {
4933                rst_ctrl.bits.mask_monitoring = 0;
4934                rst_ctrl.bits.reset_ovfl_pmds = 1;
4935        }
4936
4937        if (ret == 0) {
4938                if (rst_ctrl.bits.reset_ovfl_pmds) {
4939                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4940                }
4941                if (rst_ctrl.bits.mask_monitoring == 0) {
4942                        DPRINT(("resuming monitoring\n"));
4943                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4944                } else {
4945                        DPRINT(("stopping monitoring\n"));
4946                        //pfm_stop_monitoring(current, regs);
4947                }
4948                ctx->ctx_state = PFM_CTX_LOADED;
4949        }
4950}
4951
4952/*
4953 * context MUST BE LOCKED when calling
4954 * can only be called for current
4955 */
4956static void
4957pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4958{
4959        int ret;
4960
4961        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4962
4963        ret = pfm_context_unload(ctx, NULL, 0, regs);
4964        if (ret) {
4965                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4966        }
4967
4968        /*
4969         * and wakeup controlling task, indicating we are now disconnected
4970         */
4971        wake_up_interruptible(&ctx->ctx_zombieq);
4972
4973        /*
4974         * given that context is still locked, the controlling
4975         * task will only get access when we return from
4976         * pfm_handle_work().
4977         */
4978}
4979
4980static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4981
4982 /*
4983  * pfm_handle_work() can be called with interrupts enabled
4984  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4985  * call may sleep, therefore we must re-enable interrupts
4986  * to avoid deadlocks. It is safe to do so because this function
4987  * is called ONLY when returning to user level (pUStk=1), in which case
4988  * there is no risk of kernel stack overflow due to deep
4989  * interrupt nesting.
4990  */
4991void
4992pfm_handle_work(void)
4993{
4994        pfm_context_t *ctx;
4995        struct pt_regs *regs;
4996        unsigned long flags, dummy_flags;
4997        unsigned long ovfl_regs;
4998        unsigned int reason;
4999        int ret;
5000
5001        ctx = PFM_GET_CTX(current);
5002        if (ctx == NULL) {
5003                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5004                        task_pid_nr(current));
5005                return;
5006        }
5007
5008        PROTECT_CTX(ctx, flags);
5009
5010        PFM_SET_WORK_PENDING(current, 0);
5011
5012        regs = task_pt_regs(current);
5013
5014        /*
5015         * extract reason for being here and clear
5016         */
5017        reason = ctx->ctx_fl_trap_reason;
5018        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5019        ovfl_regs = ctx->ctx_ovfl_regs[0];
5020
5021        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5022
5023        /*
5024         * must be done before we check for simple-reset mode
5025         */
5026        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5027                goto do_zombie;
5028
5029        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5030        if (reason == PFM_TRAP_REASON_RESET)
5031                goto skip_blocking;
5032
5033        /*
5034         * restore interrupt mask to what it was on entry.
5035         * Could be enabled/diasbled.
5036         */
5037        UNPROTECT_CTX(ctx, flags);
5038
5039        /*
5040         * force interrupt enable because of down_interruptible()
5041         */
5042        local_irq_enable();
5043
5044        DPRINT(("before block sleeping\n"));
5045
5046        /*
5047         * may go through without blocking on SMP systems
5048         * if restart has been received already by the time we call down()
5049         */
5050        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5051
5052        DPRINT(("after block sleeping ret=%d\n", ret));
5053
5054        /*
5055         * lock context and mask interrupts again
5056         * We save flags into a dummy because we may have
5057         * altered interrupts mask compared to entry in this
5058         * function.
5059         */
5060        PROTECT_CTX(ctx, dummy_flags);
5061
5062        /*
5063         * we need to read the ovfl_regs only after wake-up
5064         * because we may have had pfm_write_pmds() in between
5065         * and that can changed PMD values and therefore 
5066         * ovfl_regs is reset for these new PMD values.
5067         */
5068        ovfl_regs = ctx->ctx_ovfl_regs[0];
5069
5070        if (ctx->ctx_fl_going_zombie) {
5071do_zombie:
5072                DPRINT(("context is zombie, bailing out\n"));
5073                pfm_context_force_terminate(ctx, regs);
5074                goto nothing_to_do;
5075        }
5076        /*
5077         * in case of interruption of down() we don't restart anything
5078         */
5079        if (ret < 0)
5080                goto nothing_to_do;
5081
5082skip_blocking:
5083        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5084        ctx->ctx_ovfl_regs[0] = 0UL;
5085
5086nothing_to_do:
5087        /*
5088         * restore flags as they were upon entry
5089         */
5090        UNPROTECT_CTX(ctx, flags);
5091}
5092
5093static int
5094pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5095{
5096        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5097                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5098                return 0;
5099        }
5100
5101        DPRINT(("waking up somebody\n"));
5102
5103        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5104
5105        /*
5106         * safe, we are not in intr handler, nor in ctxsw when
5107         * we come here
5108         */
5109        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5110
5111        return 0;
5112}
5113
5114static int
5115pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5116{
5117        pfm_msg_t *msg = NULL;
5118
5119        if (ctx->ctx_fl_no_msg == 0) {
5120                msg = pfm_get_new_msg(ctx);
5121                if (msg == NULL) {
5122                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5123                        return -1;
5124                }
5125
5126                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5127                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5128                msg->pfm_ovfl_msg.msg_active_set   = 0;
5129                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5130                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5131                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5132                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5133                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5134        }
5135
5136        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5137                msg,
5138                ctx->ctx_fl_no_msg,
5139                ctx->ctx_fd,
5140                ovfl_pmds));
5141
5142        return pfm_notify_user(ctx, msg);
5143}
5144
5145static int
5146pfm_end_notify_user(pfm_context_t *ctx)
5147{
5148        pfm_msg_t *msg;
5149
5150        msg = pfm_get_new_msg(ctx);
5151        if (msg == NULL) {
5152                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5153                return -1;
5154        }
5155        /* no leak */
5156        memset(msg, 0, sizeof(*msg));
5157
5158        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5159        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5160        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5161
5162        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5163                msg,
5164                ctx->ctx_fl_no_msg,
5165                ctx->ctx_fd));
5166
5167        return pfm_notify_user(ctx, msg);
5168}
5169
5170/*
5171 * main overflow processing routine.
5172 * it can be called from the interrupt path or explicitly during the context switch code
5173 */
5174static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5175                                unsigned long pmc0, struct pt_regs *regs)
5176{
5177        pfm_ovfl_arg_t *ovfl_arg;
5178        unsigned long mask;
5179        unsigned long old_val, ovfl_val, new_val;
5180        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5181        unsigned long tstamp;
5182        pfm_ovfl_ctrl_t ovfl_ctrl;
5183        unsigned int i, has_smpl;
5184        int must_notify = 0;
5185
5186        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5187
5188        /*
5189         * sanity test. Should never happen
5190         */
5191        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5192
5193        tstamp   = ia64_get_itc();
5194        mask     = pmc0 >> PMU_FIRST_COUNTER;
5195        ovfl_val = pmu_conf->ovfl_val;
5196        has_smpl = CTX_HAS_SMPL(ctx);
5197
5198        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5199                     "used_pmds=0x%lx\n",
5200                        pmc0,
5201                        task ? task_pid_nr(task): -1,
5202                        (regs ? regs->cr_iip : 0),
5203                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5204                        ctx->ctx_used_pmds[0]));
5205
5206
5207        /*
5208         * first we update the virtual counters
5209         * assume there was a prior ia64_srlz_d() issued
5210         */
5211        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5212
5213                /* skip pmd which did not overflow */
5214                if ((mask & 0x1) == 0) continue;
5215
5216                /*
5217                 * Note that the pmd is not necessarily 0 at this point as qualified events
5218                 * may have happened before the PMU was frozen. The residual count is not
5219                 * taken into consideration here but will be with any read of the pmd via
5220                 * pfm_read_pmds().
5221                 */
5222                old_val              = new_val = ctx->ctx_pmds[i].val;
5223                new_val             += 1 + ovfl_val;
5224                ctx->ctx_pmds[i].val = new_val;
5225
5226                /*
5227                 * check for overflow condition
5228                 */
5229                if (likely(old_val > new_val)) {
5230                        ovfl_pmds |= 1UL << i;
5231                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5232                }
5233
5234                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5235                        i,
5236                        new_val,
5237                        old_val,
5238                        ia64_get_pmd(i) & ovfl_val,
5239                        ovfl_pmds,
5240                        ovfl_notify));
5241        }
5242
5243        /*
5244         * there was no 64-bit overflow, nothing else to do
5245         */
5246        if (ovfl_pmds == 0UL) return;
5247
5248        /* 
5249         * reset all control bits
5250         */
5251        ovfl_ctrl.val = 0;
5252        reset_pmds    = 0UL;
5253
5254        /*
5255         * if a sampling format module exists, then we "cache" the overflow by 
5256         * calling the module's handler() routine.
5257         */
5258        if (has_smpl) {
5259                unsigned long start_cycles, end_cycles;
5260                unsigned long pmd_mask;
5261                int j, k, ret = 0;
5262                int this_cpu = smp_processor_id();
5263
5264                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5265                ovfl_arg = &ctx->ctx_ovfl_arg;
5266
5267                prefetch(ctx->ctx_smpl_hdr);
5268
5269                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5270
5271                        mask = 1UL << i;
5272
5273                        if ((pmd_mask & 0x1) == 0) continue;
5274
5275                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5276                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5277                        ovfl_arg->active_set    = 0;
5278                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5279                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5280
5281                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5282                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5283                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5284
5285                        /*
5286                         * copy values of pmds of interest. Sampling format may copy them
5287                         * into sampling buffer.
5288                         */
5289                        if (smpl_pmds) {
5290                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5291                                        if ((smpl_pmds & 0x1) == 0) continue;
5292                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5293                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5294                                }
5295                        }
5296
5297                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5298
5299                        start_cycles = ia64_get_itc();
5300
5301                        /*
5302                         * call custom buffer format record (handler) routine
5303                         */
5304                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5305
5306                        end_cycles = ia64_get_itc();
5307
5308                        /*
5309                         * For those controls, we take the union because they have
5310                         * an all or nothing behavior.
5311                         */
5312                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5313                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5314                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5315                        /*
5316                         * build the bitmask of pmds to reset now
5317                         */
5318                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5319
5320                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5321                }
5322                /*
5323                 * when the module cannot handle the rest of the overflows, we abort right here
5324                 */
5325                if (ret && pmd_mask) {
5326                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5327                                pmd_mask<<PMU_FIRST_COUNTER));
5328                }
5329                /*
5330                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5331                 */
5332                ovfl_pmds &= ~reset_pmds;
5333        } else {
5334                /*
5335                 * when no sampling module is used, then the default
5336                 * is to notify on overflow if requested by user
5337                 */
5338                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5339                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5340                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5341                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5342                /*
5343                 * if needed, we reset all overflowed pmds
5344                 */
5345                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5346        }
5347
5348        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5349
5350        /*
5351         * reset the requested PMD registers using the short reset values
5352         */
5353        if (reset_pmds) {
5354                unsigned long bm = reset_pmds;
5355                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5356        }
5357
5358        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5359                /*
5360                 * keep track of what to reset when unblocking
5361                 */
5362                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5363
5364                /*
5365                 * check for blocking context 
5366                 */
5367                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5368
5369                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5370
5371                        /*
5372                         * set the perfmon specific checking pending work for the task
5373                         */
5374                        PFM_SET_WORK_PENDING(task, 1);
5375
5376                        /*
5377                         * when coming from ctxsw, current still points to the
5378                         * previous task, therefore we must work with task and not current.
5379                         */
5380                        set_notify_resume(task);
5381                }
5382                /*
5383                 * defer until state is changed (shorten spin window). the context is locked
5384                 * anyway, so the signal receiver would come spin for nothing.
5385                 */
5386                must_notify = 1;
5387        }
5388
5389        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5390                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5391                        PFM_GET_WORK_PENDING(task),
5392                        ctx->ctx_fl_trap_reason,
5393                        ovfl_pmds,
5394                        ovfl_notify,
5395                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5396        /*
5397         * in case monitoring must be stopped, we toggle the psr bits
5398         */
5399        if (ovfl_ctrl.bits.mask_monitoring) {
5400                pfm_mask_monitoring(task);
5401                ctx->ctx_state = PFM_CTX_MASKED;
5402                ctx->ctx_fl_can_restart = 1;
5403        }
5404
5405        /*
5406         * send notification now
5407         */
5408        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5409
5410        return;
5411
5412sanity_check:
5413        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5414                        smp_processor_id(),
5415                        task ? task_pid_nr(task) : -1,
5416                        pmc0);
5417        return;
5418
5419stop_monitoring:
5420        /*
5421         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5422         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5423         * come here as zombie only if the task is the current task. In which case, we
5424         * can access the PMU  hardware directly.
5425         *
5426         * Note that zombies do have PM_VALID set. So here we do the minimal.
5427         *
5428         * In case the context was zombified it could not be reclaimed at the time
5429         * the monitoring program exited. At this point, the PMU reservation has been
5430         * returned, the sampiing buffer has been freed. We must convert this call
5431         * into a spurious interrupt. However, we must also avoid infinite overflows
5432         * by stopping monitoring for this task. We can only come here for a per-task
5433         * context. All we need to do is to stop monitoring using the psr bits which
5434         * are always task private. By re-enabling secure montioring, we ensure that
5435         * the monitored task will not be able to re-activate monitoring.
5436         * The task will eventually be context switched out, at which point the context
5437         * will be reclaimed (that includes releasing ownership of the PMU).
5438         *
5439         * So there might be a window of time where the number of per-task session is zero
5440         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5441         * context. This is safe because if a per-task session comes in, it will push this one
5442         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5443         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5444         * also push our zombie context out.
5445         *
5446         * Overall pretty hairy stuff....
5447         */
5448        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5449        pfm_clear_psr_up();
5450        ia64_psr(regs)->up = 0;
5451        ia64_psr(regs)->sp = 1;
5452        return;
5453}
5454
5455static int
5456pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5457{
5458        struct task_struct *task;
5459        pfm_context_t *ctx;
5460        unsigned long flags;
5461        u64 pmc0;
5462        int this_cpu = smp_processor_id();
5463        int retval = 0;
5464
5465        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5466
5467        /*
5468         * srlz.d done before arriving here
5469         */
5470        pmc0 = ia64_get_pmc(0);
5471
5472        task = GET_PMU_OWNER();
5473        ctx  = GET_PMU_CTX();
5474
5475        /*
5476         * if we have some pending bits set
5477         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5478         */
5479        if (PMC0_HAS_OVFL(pmc0) && task) {
5480                /*
5481                 * we assume that pmc0.fr is always set here
5482                 */
5483
5484                /* sanity check */
5485                if (!ctx) goto report_spurious1;
5486
5487                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5488                        goto report_spurious2;
5489
5490                PROTECT_CTX_NOPRINT(ctx, flags);
5491
5492                pfm_overflow_handler(task, ctx, pmc0, regs);
5493
5494                UNPROTECT_CTX_NOPRINT(ctx, flags);
5495
5496        } else {
5497                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5498                retval = -1;
5499        }
5500        /*
5501         * keep it unfrozen at all times
5502         */
5503        pfm_unfreeze_pmu();
5504
5505        return retval;
5506
5507report_spurious1:
5508        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5509                this_cpu, task_pid_nr(task));
5510        pfm_unfreeze_pmu();
5511        return -1;
5512report_spurious2:
5513        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5514                this_cpu, 
5515                task_pid_nr(task));
5516        pfm_unfreeze_pmu();
5517        return -1;
5518}
5519
5520static irqreturn_t
5521pfm_interrupt_handler(int irq, void *arg)
5522{
5523        unsigned long start_cycles, total_cycles;
5524        unsigned long min, max;
5525        int this_cpu;
5526        int ret;
5527        struct pt_regs *regs = get_irq_regs();
5528
5529        this_cpu = get_cpu();
5530        if (likely(!pfm_alt_intr_handler)) {
5531                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5532                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5533
5534                start_cycles = ia64_get_itc();
5535
5536                ret = pfm_do_interrupt_handler(arg, regs);
5537
5538                total_cycles = ia64_get_itc();
5539
5540                /*
5541                 * don't measure spurious interrupts
5542                 */
5543                if (likely(ret == 0)) {
5544                        total_cycles -= start_cycles;
5545
5546                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5547                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5548
5549                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5550                }
5551        }
5552        else {
5553                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5554        }
5555
5556        put_cpu();
5557        return IRQ_HANDLED;
5558}
5559
5560/*
5561 * /proc/perfmon interface, for debug only
5562 */
5563
5564#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5565
5566static void *
5567pfm_proc_start(struct seq_file *m, loff_t *pos)
5568{
5569        if (*pos == 0) {
5570                return PFM_PROC_SHOW_HEADER;
5571        }
5572
5573        while (*pos <= nr_cpu_ids) {
5574                if (cpu_online(*pos - 1)) {
5575                        return (void *)*pos;
5576                }
5577                ++*pos;
5578        }
5579        return NULL;
5580}
5581
5582static void *
5583pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5584{
5585        ++*pos;
5586        return pfm_proc_start(m, pos);
5587}
5588
5589static void
5590pfm_proc_stop(struct seq_file *m, void *v)
5591{
5592}
5593
5594static void
5595pfm_proc_show_header(struct seq_file *m)
5596{
5597        struct list_head * pos;
5598        pfm_buffer_fmt_t * entry;
5599        unsigned long flags;
5600
5601        seq_printf(m,
5602                "perfmon version           : %u.%u\n"
5603                "model                     : %s\n"
5604                "fastctxsw                 : %s\n"
5605                "expert mode               : %s\n"
5606                "ovfl_mask                 : 0x%lx\n"
5607                "PMU flags                 : 0x%x\n",
5608                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5609                pmu_conf->pmu_name,
5610                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5611                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5612                pmu_conf->ovfl_val,
5613                pmu_conf->flags);
5614
5615        LOCK_PFS(flags);
5616
5617        seq_printf(m,
5618                "proc_sessions             : %u\n"
5619                "sys_sessions              : %u\n"
5620                "sys_use_dbregs            : %u\n"
5621                "ptrace_use_dbregs         : %u\n",
5622                pfm_sessions.pfs_task_sessions,
5623                pfm_sessions.pfs_sys_sessions,
5624                pfm_sessions.pfs_sys_use_dbregs,
5625                pfm_sessions.pfs_ptrace_use_dbregs);
5626
5627        UNLOCK_PFS(flags);
5628
5629        spin_lock(&pfm_buffer_fmt_lock);
5630
5631        list_for_each(pos, &pfm_buffer_fmt_list) {
5632                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5633                seq_printf(m, "format                    : %16phD %s\n",
5634                           entry->fmt_uuid, entry->fmt_name);
5635        }
5636        spin_unlock(&pfm_buffer_fmt_lock);
5637
5638}
5639
5640static int
5641pfm_proc_show(struct seq_file *m, void *v)
5642{
5643        unsigned long psr;
5644        unsigned int i;
5645        int cpu;
5646
5647        if (v == PFM_PROC_SHOW_HEADER) {
5648                pfm_proc_show_header(m);
5649                return 0;
5650        }
5651
5652        /* show info for CPU (v - 1) */
5653
5654        cpu = (long)v - 1;
5655        seq_printf(m,
5656                "CPU%-2d overflow intrs      : %lu\n"
5657                "CPU%-2d overflow cycles     : %lu\n"
5658                "CPU%-2d overflow min        : %lu\n"
5659                "CPU%-2d overflow max        : %lu\n"
5660                "CPU%-2d smpl handler calls  : %lu\n"
5661                "CPU%-2d smpl handler cycles : %lu\n"
5662                "CPU%-2d spurious intrs      : %lu\n"
5663                "CPU%-2d replay   intrs      : %lu\n"
5664                "CPU%-2d syst_wide           : %d\n"
5665                "CPU%-2d dcr_pp              : %d\n"
5666                "CPU%-2d exclude idle        : %d\n"
5667                "CPU%-2d owner               : %d\n"
5668                "CPU%-2d context             : %p\n"
5669                "CPU%-2d activations         : %lu\n",
5670                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5671                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5672                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5673                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5674                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5675                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5676                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5677                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5678                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5679                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5680                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5681                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5682                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5683                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5684
5685        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5686
5687                psr = pfm_get_psr();
5688
5689                ia64_srlz_d();
5690
5691                seq_printf(m, 
5692                        "CPU%-2d psr                 : 0x%lx\n"
5693                        "CPU%-2d pmc0                : 0x%lx\n", 
5694                        cpu, psr,
5695                        cpu, ia64_get_pmc(0));
5696
5697                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5698                        if (PMC_IS_COUNTING(i) == 0) continue;
5699                        seq_printf(m, 
5700                                "CPU%-2d pmc%u                : 0x%lx\n"
5701                                "CPU%-2d pmd%u                : 0x%lx\n", 
5702                                cpu, i, ia64_get_pmc(i),
5703                                cpu, i, ia64_get_pmd(i));
5704                }
5705        }
5706        return 0;
5707}
5708
5709const struct seq_operations pfm_seq_ops = {
5710        .start =        pfm_proc_start,
5711        .next =         pfm_proc_next,
5712        .stop =         pfm_proc_stop,
5713        .show =         pfm_proc_show
5714};
5715
5716static int
5717pfm_proc_open(struct inode *inode, struct file *file)
5718{
5719        return seq_open(file, &pfm_seq_ops);
5720}
5721
5722
5723/*
5724 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5725 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5726 * is active or inactive based on mode. We must rely on the value in
5727 * local_cpu_data->pfm_syst_info
5728 */
5729void
5730pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5731{
5732        struct pt_regs *regs;
5733        unsigned long dcr;
5734        unsigned long dcr_pp;
5735
5736        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5737
5738        /*
5739         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5740         * on every CPU, so we can rely on the pid to identify the idle task.
5741         */
5742        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5743                regs = task_pt_regs(task);
5744                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5745                return;
5746        }
5747        /*
5748         * if monitoring has started
5749         */
5750        if (dcr_pp) {
5751                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5752                /*
5753                 * context switching in?
5754                 */
5755                if (is_ctxswin) {
5756                        /* mask monitoring for the idle task */
5757                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5758                        pfm_clear_psr_pp();
5759                        ia64_srlz_i();
5760                        return;
5761                }
5762                /*
5763                 * context switching out
5764                 * restore monitoring for next task
5765                 *
5766                 * Due to inlining this odd if-then-else construction generates
5767                 * better code.
5768                 */
5769                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5770                pfm_set_psr_pp();
5771                ia64_srlz_i();
5772        }
5773}
5774
5775#ifdef CONFIG_SMP
5776
5777static void
5778pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5779{
5780        struct task_struct *task = ctx->ctx_task;
5781
5782        ia64_psr(regs)->up = 0;
5783        ia64_psr(regs)->sp = 1;
5784
5785        if (GET_PMU_OWNER() == task) {
5786                DPRINT(("cleared ownership for [%d]\n",
5787                                        task_pid_nr(ctx->ctx_task)));
5788                SET_PMU_OWNER(NULL, NULL);
5789        }
5790
5791        /*
5792         * disconnect the task from the context and vice-versa
5793         */
5794        PFM_SET_WORK_PENDING(task, 0);
5795
5796        task->thread.pfm_context  = NULL;
5797        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5798
5799        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5800}
5801
5802
5803/*
5804 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5805 */
5806void
5807pfm_save_regs(struct task_struct *task)
5808{
5809        pfm_context_t *ctx;
5810        unsigned long flags;
5811        u64 psr;
5812
5813
5814        ctx = PFM_GET_CTX(task);
5815        if (ctx == NULL) return;
5816
5817        /*
5818         * we always come here with interrupts ALREADY disabled by
5819         * the scheduler. So we simply need to protect against concurrent
5820         * access, not CPU concurrency.
5821         */
5822        flags = pfm_protect_ctx_ctxsw(ctx);
5823
5824        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5825                struct pt_regs *regs = task_pt_regs(task);
5826
5827                pfm_clear_psr_up();
5828
5829                pfm_force_cleanup(ctx, regs);
5830
5831                BUG_ON(ctx->ctx_smpl_hdr);
5832
5833                pfm_unprotect_ctx_ctxsw(ctx, flags);
5834
5835                pfm_context_free(ctx);
5836                return;
5837        }
5838
5839        /*
5840         * save current PSR: needed because we modify it
5841         */
5842        ia64_srlz_d();
5843        psr = pfm_get_psr();
5844
5845        BUG_ON(psr & (IA64_PSR_I));
5846
5847        /*
5848         * stop monitoring:
5849         * This is the last instruction which may generate an overflow
5850         *
5851         * We do not need to set psr.sp because, it is irrelevant in kernel.
5852         * It will be restored from ipsr when going back to user level
5853         */
5854        pfm_clear_psr_up();
5855
5856        /*
5857         * keep a copy of psr.up (for reload)
5858         */
5859        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5860
5861        /*
5862         * release ownership of this PMU.
5863         * PM interrupts are masked, so nothing
5864         * can happen.
5865         */
5866        SET_PMU_OWNER(NULL, NULL);
5867
5868        /*
5869         * we systematically save the PMD as we have no
5870         * guarantee we will be schedule at that same
5871         * CPU again.
5872         */
5873        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5874
5875        /*
5876         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5877         * we will need it on the restore path to check
5878         * for pending overflow.
5879         */
5880        ctx->th_pmcs[0] = ia64_get_pmc(0);
5881
5882        /*
5883         * unfreeze PMU if had pending overflows
5884         */
5885        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5886
5887        /*
5888         * finally, allow context access.
5889         * interrupts will still be masked after this call.
5890         */
5891        pfm_unprotect_ctx_ctxsw(ctx, flags);
5892}
5893
5894#else /* !CONFIG_SMP */
5895void
5896pfm_save_regs(struct task_struct *task)
5897{
5898        pfm_context_t *ctx;
5899        u64 psr;
5900
5901        ctx = PFM_GET_CTX(task);
5902        if (ctx == NULL) return;
5903
5904        /*
5905         * save current PSR: needed because we modify it
5906         */
5907        psr = pfm_get_psr();
5908
5909        BUG_ON(psr & (IA64_PSR_I));
5910
5911        /*
5912         * stop monitoring:
5913         * This is the last instruction which may generate an overflow
5914         *
5915         * We do not need to set psr.sp because, it is irrelevant in kernel.
5916         * It will be restored from ipsr when going back to user level
5917         */
5918        pfm_clear_psr_up();
5919
5920        /*
5921         * keep a copy of psr.up (for reload)
5922         */
5923        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5924}
5925
5926static void
5927pfm_lazy_save_regs (struct task_struct *task)
5928{
5929        pfm_context_t *ctx;
5930        unsigned long flags;
5931
5932        { u64 psr  = pfm_get_psr();
5933          BUG_ON(psr & IA64_PSR_UP);
5934        }
5935
5936        ctx = PFM_GET_CTX(task);
5937
5938        /*
5939         * we need to mask PMU overflow here to
5940         * make sure that we maintain pmc0 until
5941         * we save it. overflow interrupts are
5942         * treated as spurious if there is no
5943         * owner.
5944         *
5945         * XXX: I don't think this is necessary
5946         */
5947        PROTECT_CTX(ctx,flags);
5948
5949        /*
5950         * release ownership of this PMU.
5951         * must be done before we save the registers.
5952         *
5953         * after this call any PMU interrupt is treated
5954         * as spurious.
5955         */
5956        SET_PMU_OWNER(NULL, NULL);
5957
5958        /*
5959         * save all the pmds we use
5960         */
5961        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5962
5963        /*
5964         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5965         * it is needed to check for pended overflow
5966         * on the restore path
5967         */
5968        ctx->th_pmcs[0] = ia64_get_pmc(0);
5969
5970        /*
5971         * unfreeze PMU if had pending overflows
5972         */
5973        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5974
5975        /*
5976         * now get can unmask PMU interrupts, they will
5977         * be treated as purely spurious and we will not
5978         * lose any information
5979         */
5980        UNPROTECT_CTX(ctx,flags);
5981}
5982#endif /* CONFIG_SMP */
5983
5984#ifdef CONFIG_SMP
5985/*
5986 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5987 */
5988void
5989pfm_load_regs (struct task_struct *task)
5990{
5991        pfm_context_t *ctx;
5992        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5993        unsigned long flags;
5994        u64 psr, psr_up;
5995        int need_irq_resend;
5996
5997        ctx = PFM_GET_CTX(task);
5998        if (unlikely(ctx == NULL)) return;
5999
6000        BUG_ON(GET_PMU_OWNER());
6001
6002        /*
6003         * possible on unload
6004         */
6005        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6006
6007        /*
6008         * we always come here with interrupts ALREADY disabled by
6009         * the scheduler. So we simply need to protect against concurrent
6010         * access, not CPU concurrency.
6011         */
6012        flags = pfm_protect_ctx_ctxsw(ctx);
6013        psr   = pfm_get_psr();
6014
6015        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6016
6017        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6018        BUG_ON(psr & IA64_PSR_I);
6019
6020        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6021                struct pt_regs *regs = task_pt_regs(task);
6022
6023                BUG_ON(ctx->ctx_smpl_hdr);
6024
6025                pfm_force_cleanup(ctx, regs);
6026
6027                pfm_unprotect_ctx_ctxsw(ctx, flags);
6028
6029                /*
6030                 * this one (kmalloc'ed) is fine with interrupts disabled
6031                 */
6032                pfm_context_free(ctx);
6033
6034                return;
6035        }
6036
6037        /*
6038         * we restore ALL the debug registers to avoid picking up
6039         * stale state.
6040         */
6041        if (ctx->ctx_fl_using_dbreg) {
6042                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6043                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6044        }
6045        /*
6046         * retrieve saved psr.up
6047         */
6048        psr_up = ctx->ctx_saved_psr_up;
6049
6050        /*
6051         * if we were the last user of the PMU on that CPU,
6052         * then nothing to do except restore psr
6053         */
6054        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6055
6056                /*
6057                 * retrieve partial reload masks (due to user modifications)
6058                 */
6059                pmc_mask = ctx->ctx_reload_pmcs[0];
6060                pmd_mask = ctx->ctx_reload_pmds[0];
6061
6062        } else {
6063                /*
6064                 * To avoid leaking information to the user level when psr.sp=0,
6065                 * we must reload ALL implemented pmds (even the ones we don't use).
6066                 * In the kernel we only allow PFM_READ_PMDS on registers which
6067                 * we initialized or requested (sampling) so there is no risk there.
6068                 */
6069                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6070
6071                /*
6072                 * ALL accessible PMCs are systematically reloaded, unused registers
6073                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6074                 * up stale configuration.
6075                 *
6076                 * PMC0 is never in the mask. It is always restored separately.
6077                 */
6078                pmc_mask = ctx->ctx_all_pmcs[0];
6079        }
6080        /*
6081         * when context is MASKED, we will restore PMC with plm=0
6082         * and PMD with stale information, but that's ok, nothing
6083         * will be captured.
6084         *
6085         * XXX: optimize here
6086         */
6087        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6088        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6089
6090        /*
6091         * check for pending overflow at the time the state
6092         * was saved.
6093         */
6094        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6095                /*
6096                 * reload pmc0 with the overflow information
6097                 * On McKinley PMU, this will trigger a PMU interrupt
6098                 */
6099                ia64_set_pmc(0, ctx->th_pmcs[0]);
6100                ia64_srlz_d();
6101                ctx->th_pmcs[0] = 0UL;
6102
6103                /*
6104                 * will replay the PMU interrupt
6105                 */
6106                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6107
6108                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6109        }
6110
6111        /*
6112         * we just did a reload, so we reset the partial reload fields
6113         */
6114        ctx->ctx_reload_pmcs[0] = 0UL;
6115        ctx->ctx_reload_pmds[0] = 0UL;
6116
6117        SET_LAST_CPU(ctx, smp_processor_id());
6118
6119        /*
6120         * dump activation value for this PMU
6121         */
6122        INC_ACTIVATION();
6123        /*
6124         * record current activation for this context
6125         */
6126        SET_ACTIVATION(ctx);
6127
6128        /*
6129         * establish new ownership. 
6130         */
6131        SET_PMU_OWNER(task, ctx);
6132
6133        /*
6134         * restore the psr.up bit. measurement
6135         * is active again.
6136         * no PMU interrupt can happen at this point
6137         * because we still have interrupts disabled.
6138         */
6139        if (likely(psr_up)) pfm_set_psr_up();
6140
6141        /*
6142         * allow concurrent access to context
6143         */
6144        pfm_unprotect_ctx_ctxsw(ctx, flags);
6145}
6146#else /*  !CONFIG_SMP */
6147/*
6148 * reload PMU state for UP kernels
6149 * in 2.5 we come here with interrupts disabled
6150 */
6151void
6152pfm_load_regs (struct task_struct *task)
6153{
6154        pfm_context_t *ctx;
6155        struct task_struct *owner;
6156        unsigned long pmd_mask, pmc_mask;
6157        u64 psr, psr_up;
6158        int need_irq_resend;
6159
6160        owner = GET_PMU_OWNER();
6161        ctx   = PFM_GET_CTX(task);
6162        psr   = pfm_get_psr();
6163
6164        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6165        BUG_ON(psr & IA64_PSR_I);
6166
6167        /*
6168         * we restore ALL the debug registers to avoid picking up
6169         * stale state.
6170         *
6171         * This must be done even when the task is still the owner
6172         * as the registers may have been modified via ptrace()
6173         * (not perfmon) by the previous task.
6174         */
6175        if (ctx->ctx_fl_using_dbreg) {
6176                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6177                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6178        }
6179
6180        /*
6181         * retrieved saved psr.up
6182         */
6183        psr_up = ctx->ctx_saved_psr_up;
6184        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6185
6186        /*
6187         * short path, our state is still there, just
6188         * need to restore psr and we go
6189         *
6190         * we do not touch either PMC nor PMD. the psr is not touched
6191         * by the overflow_handler. So we are safe w.r.t. to interrupt
6192         * concurrency even without interrupt masking.
6193         */
6194        if (likely(owner == task)) {
6195                if (likely(psr_up)) pfm_set_psr_up();
6196                return;
6197        }
6198
6199        /*
6200         * someone else is still using the PMU, first push it out and
6201         * then we'll be able to install our stuff !
6202         *
6203         * Upon return, there will be no owner for the current PMU
6204         */
6205        if (owner) pfm_lazy_save_regs(owner);
6206
6207        /*
6208         * To avoid leaking information to the user level when psr.sp=0,
6209         * we must reload ALL implemented pmds (even the ones we don't use).
6210         * In the kernel we only allow PFM_READ_PMDS on registers which
6211         * we initialized or requested (sampling) so there is no risk there.
6212         */
6213        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6214
6215        /*
6216         * ALL accessible PMCs are systematically reloaded, unused registers
6217         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6218         * up stale configuration.
6219         *
6220         * PMC0 is never in the mask. It is always restored separately
6221         */
6222        pmc_mask = ctx->ctx_all_pmcs[0];
6223
6224        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6225        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6226
6227        /*
6228         * check for pending overflow at the time the state
6229         * was saved.
6230         */
6231        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6232                /*
6233                 * reload pmc0 with the overflow information
6234                 * On McKinley PMU, this will trigger a PMU interrupt
6235                 */
6236                ia64_set_pmc(0, ctx->th_pmcs[0]);
6237                ia64_srlz_d();
6238
6239                ctx->th_pmcs[0] = 0UL;
6240
6241                /*
6242                 * will replay the PMU interrupt
6243                 */
6244                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6245
6246                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6247        }
6248
6249        /*
6250         * establish new ownership. 
6251         */
6252        SET_PMU_OWNER(task, ctx);
6253
6254        /*
6255         * restore the psr.up bit. measurement
6256         * is active again.
6257         * no PMU interrupt can happen at this point
6258         * because we still have interrupts disabled.
6259         */
6260        if (likely(psr_up)) pfm_set_psr_up();
6261}
6262#endif /* CONFIG_SMP */
6263
6264/*
6265 * this function assumes monitoring is stopped
6266 */
6267static void
6268pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6269{
6270        u64 pmc0;
6271        unsigned long mask2, val, pmd_val, ovfl_val;
6272        int i, can_access_pmu = 0;
6273        int is_self;
6274
6275        /*
6276         * is the caller the task being monitored (or which initiated the
6277         * session for system wide measurements)
6278         */
6279        is_self = ctx->ctx_task == task ? 1 : 0;
6280
6281        /*
6282         * can access PMU is task is the owner of the PMU state on the current CPU
6283         * or if we are running on the CPU bound to the context in system-wide mode
6284         * (that is not necessarily the task the context is attached to in this mode).
6285         * In system-wide we always have can_access_pmu true because a task running on an
6286         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6287         */
6288        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6289        if (can_access_pmu) {
6290                /*
6291                 * Mark the PMU as not owned
6292                 * This will cause the interrupt handler to do nothing in case an overflow
6293                 * interrupt was in-flight
6294                 * This also guarantees that pmc0 will contain the final state
6295                 * It virtually gives us full control on overflow processing from that point
6296                 * on.
6297                 */
6298                SET_PMU_OWNER(NULL, NULL);
6299                DPRINT(("releasing ownership\n"));
6300
6301                /*
6302                 * read current overflow status:
6303                 *
6304                 * we are guaranteed to read the final stable state
6305                 */
6306                ia64_srlz_d();
6307                pmc0 = ia64_get_pmc(0); /* slow */
6308
6309                /*
6310                 * reset freeze bit, overflow status information destroyed
6311                 */
6312                pfm_unfreeze_pmu();
6313        } else {
6314                pmc0 = ctx->th_pmcs[0];
6315                /*
6316                 * clear whatever overflow status bits there were
6317                 */
6318                ctx->th_pmcs[0] = 0;
6319        }
6320        ovfl_val = pmu_conf->ovfl_val;
6321        /*
6322         * we save all the used pmds
6323         * we take care of overflows for counting PMDs
6324         *
6325         * XXX: sampling situation is not taken into account here
6326         */
6327        mask2 = ctx->ctx_used_pmds[0];
6328
6329        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6330
6331        for (i = 0; mask2; i++, mask2>>=1) {
6332
6333                /* skip non used pmds */
6334                if ((mask2 & 0x1) == 0) continue;
6335
6336                /*
6337                 * can access PMU always true in system wide mode
6338                 */
6339                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6340
6341                if (PMD_IS_COUNTING(i)) {
6342                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6343                                task_pid_nr(task),
6344                                i,
6345                                ctx->ctx_pmds[i].val,
6346                                val & ovfl_val));
6347
6348                        /*
6349                         * we rebuild the full 64 bit value of the counter
6350                         */
6351                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6352
6353                        /*
6354                         * now everything is in ctx_pmds[] and we need
6355                         * to clear the saved context from save_regs() such that
6356                         * pfm_read_pmds() gets the correct value
6357                         */
6358                        pmd_val = 0UL;
6359
6360                        /*
6361                         * take care of overflow inline
6362                         */
6363                        if (pmc0 & (1UL << i)) {
6364                                val += 1 + ovfl_val;
6365                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6366                        }
6367                }
6368
6369                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6370
6371                if (is_self) ctx->th_pmds[i] = pmd_val;
6372
6373                ctx->ctx_pmds[i].val = val;
6374        }
6375}
6376
6377static struct irqaction perfmon_irqaction = {
6378        .handler = pfm_interrupt_handler,
6379        .name    = "perfmon"
6380};
6381
6382static void
6383pfm_alt_save_pmu_state(void *data)
6384{
6385        struct pt_regs *regs;
6386
6387        regs = task_pt_regs(current);
6388
6389        DPRINT(("called\n"));
6390
6391        /*
6392         * should not be necessary but
6393         * let's take not risk
6394         */
6395        pfm_clear_psr_up();
6396        pfm_clear_psr_pp();
6397        ia64_psr(regs)->pp = 0;
6398
6399        /*
6400         * This call is required
6401         * May cause a spurious interrupt on some processors
6402         */
6403        pfm_freeze_pmu();
6404
6405        ia64_srlz_d();
6406}
6407
6408void
6409pfm_alt_restore_pmu_state(void *data)
6410{
6411        struct pt_regs *regs;
6412
6413        regs = task_pt_regs(current);
6414
6415        DPRINT(("called\n"));
6416
6417        /*
6418         * put PMU back in state expected
6419         * by perfmon
6420         */
6421        pfm_clear_psr_up();
6422        pfm_clear_psr_pp();
6423        ia64_psr(regs)->pp = 0;
6424
6425        /*
6426         * perfmon runs with PMU unfrozen at all times
6427         */
6428        pfm_unfreeze_pmu();
6429
6430        ia64_srlz_d();
6431}
6432
6433int
6434pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6435{
6436        int ret, i;
6437        int reserve_cpu;
6438
6439        /* some sanity checks */
6440        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6441
6442        /* do the easy test first */
6443        if (pfm_alt_intr_handler) return -EBUSY;
6444
6445        /* one at a time in the install or remove, just fail the others */
6446        if (!spin_trylock(&pfm_alt_install_check)) {
6447                return -EBUSY;
6448        }
6449
6450        /* reserve our session */
6451        for_each_online_cpu(reserve_cpu) {
6452                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6453                if (ret) goto cleanup_reserve;
6454        }
6455
6456        /* save the current system wide pmu states */
6457        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6458        if (ret) {
6459                DPRINT(("on_each_cpu() failed: %d\n", ret));
6460                goto cleanup_reserve;
6461        }
6462
6463        /* officially change to the alternate interrupt handler */
6464        pfm_alt_intr_handler = hdl;
6465
6466        spin_unlock(&pfm_alt_install_check);
6467
6468        return 0;
6469
6470cleanup_reserve:
6471        for_each_online_cpu(i) {
6472                /* don't unreserve more than we reserved */
6473                if (i >= reserve_cpu) break;
6474
6475                pfm_unreserve_session(NULL, 1, i);
6476        }
6477
6478        spin_unlock(&pfm_alt_install_check);
6479
6480        return ret;
6481}
6482EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6483
6484int
6485pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6486{
6487        int i;
6488        int ret;
6489
6490        if (hdl == NULL) return -EINVAL;
6491
6492        /* cannot remove someone else's handler! */
6493        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6494
6495        /* one at a time in the install or remove, just fail the others */
6496        if (!spin_trylock(&pfm_alt_install_check)) {
6497                return -EBUSY;
6498        }
6499
6500        pfm_alt_intr_handler = NULL;
6501
6502        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6503        if (ret) {
6504                DPRINT(("on_each_cpu() failed: %d\n", ret));
6505        }
6506
6507        for_each_online_cpu(i) {
6508                pfm_unreserve_session(NULL, 1, i);
6509        }
6510
6511        spin_unlock(&pfm_alt_install_check);
6512
6513        return 0;
6514}
6515EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6516
6517/*
6518 * perfmon initialization routine, called from the initcall() table
6519 */
6520static int init_pfm_fs(void);
6521
6522static int __init
6523pfm_probe_pmu(void)
6524{
6525        pmu_config_t **p;
6526        int family;
6527
6528        family = local_cpu_data->family;
6529        p      = pmu_confs;
6530
6531        while(*p) {
6532                if ((*p)->probe) {
6533                        if ((*p)->probe() == 0) goto found;
6534                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6535                        goto found;
6536                }
6537                p++;
6538        }
6539        return -1;
6540found:
6541        pmu_conf = *p;
6542        return 0;
6543}
6544
6545static const struct file_operations pfm_proc_fops = {
6546        .open           = pfm_proc_open,
6547        .read           = seq_read,
6548        .llseek         = seq_lseek,
6549        .release        = seq_release,
6550};
6551
6552int __init
6553pfm_init(void)
6554{
6555        unsigned int n, n_counters, i;
6556
6557        printk("perfmon: version %u.%u IRQ %u\n",
6558                PFM_VERSION_MAJ,
6559                PFM_VERSION_MIN,
6560                IA64_PERFMON_VECTOR);
6561
6562        if (pfm_probe_pmu()) {
6563                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6564                                local_cpu_data->family);
6565                return -ENODEV;
6566        }
6567
6568        /*
6569         * compute the number of implemented PMD/PMC from the
6570         * description tables
6571         */
6572        n = 0;
6573        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6574                if (PMC_IS_IMPL(i) == 0) continue;
6575                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6576                n++;
6577        }
6578        pmu_conf->num_pmcs = n;
6579
6580        n = 0; n_counters = 0;
6581        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6582                if (PMD_IS_IMPL(i) == 0) continue;
6583                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6584                n++;
6585                if (PMD_IS_COUNTING(i)) n_counters++;
6586        }
6587        pmu_conf->num_pmds      = n;
6588        pmu_conf->num_counters  = n_counters;
6589
6590        /*
6591         * sanity checks on the number of debug registers
6592         */
6593        if (pmu_conf->use_rr_dbregs) {
6594                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6595                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6596                        pmu_conf = NULL;
6597                        return -1;
6598                }
6599                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6600                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6601                        pmu_conf = NULL;
6602                        return -1;
6603                }
6604        }
6605
6606        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6607               pmu_conf->pmu_name,
6608               pmu_conf->num_pmcs,
6609               pmu_conf->num_pmds,
6610               pmu_conf->num_counters,
6611               ffz(pmu_conf->ovfl_val));
6612
6613        /* sanity check */
6614        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6615                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6616                pmu_conf = NULL;
6617                return -1;
6618        }
6619
6620        /*
6621         * create /proc/perfmon (mostly for debugging purposes)
6622         */
6623        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6624        if (perfmon_dir == NULL) {
6625                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6626                pmu_conf = NULL;
6627                return -1;
6628        }
6629
6630        /*
6631         * create /proc/sys/kernel/perfmon (for debugging purposes)
6632         */
6633        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6634
6635        /*
6636         * initialize all our spinlocks
6637         */
6638        spin_lock_init(&pfm_sessions.pfs_lock);
6639        spin_lock_init(&pfm_buffer_fmt_lock);
6640
6641        init_pfm_fs();
6642
6643        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6644
6645        return 0;
6646}
6647
6648__initcall(pfm_init);
6649
6650/*
6651 * this function is called before pfm_init()
6652 */
6653void
6654pfm_init_percpu (void)
6655{
6656        static int first_time=1;
6657        /*
6658         * make sure no measurement is active
6659         * (may inherit programmed PMCs from EFI).
6660         */
6661        pfm_clear_psr_pp();
6662        pfm_clear_psr_up();
6663
6664        /*
6665         * we run with the PMU not frozen at all times
6666         */
6667        pfm_unfreeze_pmu();
6668
6669        if (first_time) {
6670                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6671                first_time=0;
6672        }
6673
6674        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6675        ia64_srlz_d();
6676}
6677
6678/*
6679 * used for debug purposes only
6680 */
6681void
6682dump_pmu_state(const char *from)
6683{
6684        struct task_struct *task;
6685        struct pt_regs *regs;
6686        pfm_context_t *ctx;
6687        unsigned long psr, dcr, info, flags;
6688        int i, this_cpu;
6689
6690        local_irq_save(flags);
6691
6692        this_cpu = smp_processor_id();
6693        regs     = task_pt_regs(current);
6694        info     = PFM_CPUINFO_GET();
6695        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6696
6697        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6698                local_irq_restore(flags);
6699                return;
6700        }
6701
6702        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6703                this_cpu, 
6704                from, 
6705                task_pid_nr(current),
6706                regs->cr_iip,
6707                current->comm);
6708
6709        task = GET_PMU_OWNER();
6710        ctx  = GET_PMU_CTX();
6711
6712        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6713
6714        psr = pfm_get_psr();
6715
6716        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6717                this_cpu,
6718                ia64_get_pmc(0),
6719                psr & IA64_PSR_PP ? 1 : 0,
6720                psr & IA64_PSR_UP ? 1 : 0,
6721                dcr & IA64_DCR_PP ? 1 : 0,
6722                info,
6723                ia64_psr(regs)->up,
6724                ia64_psr(regs)->pp);
6725
6726        ia64_psr(regs)->up = 0;
6727        ia64_psr(regs)->pp = 0;
6728
6729        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6730                if (PMC_IS_IMPL(i) == 0) continue;
6731                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6732        }
6733
6734        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6735                if (PMD_IS_IMPL(i) == 0) continue;
6736                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6737        }
6738
6739        if (ctx) {
6740                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6741                                this_cpu,
6742                                ctx->ctx_state,
6743                                ctx->ctx_smpl_vaddr,
6744                                ctx->ctx_smpl_hdr,
6745                                ctx->ctx_msgq_head,
6746                                ctx->ctx_msgq_tail,
6747                                ctx->ctx_saved_psr_up);
6748        }
6749        local_irq_restore(flags);
6750}
6751
6752/*
6753 * called from process.c:copy_thread(). task is new child.
6754 */
6755void
6756pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6757{
6758        struct thread_struct *thread;
6759
6760        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6761
6762        thread = &task->thread;
6763
6764        /*
6765         * cut links inherited from parent (current)
6766         */
6767        thread->pfm_context = NULL;
6768
6769        PFM_SET_WORK_PENDING(task, 0);
6770
6771        /*
6772         * the psr bits are already set properly in copy_threads()
6773         */
6774}
6775#else  /* !CONFIG_PERFMON */
6776asmlinkage long
6777sys_perfmonctl (int fd, int cmd, void *arg, int count)
6778{
6779        return -ENOSYS;
6780}
6781#endif /* CONFIG_PERFMON */
6782