linux/arch/ia64/lib/do_csum.S
<<
>>
Prefs
   1/*
   2 *
   3 * Optmized version of the standard do_csum() function
   4 *
   5 * Return: a 64bit quantity containing the 16bit Internet checksum
   6 *
   7 * Inputs:
   8 *      in0: address of buffer to checksum (char *)
   9 *      in1: length of the buffer (int)
  10 *
  11 * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
  12 *      Stephane Eranian <eranian@hpl.hp.com>
  13 *
  14 * 02/04/22     Ken Chen <kenneth.w.chen@intel.com>
  15 *              Data locality study on the checksum buffer.
  16 *              More optimization cleanup - remove excessive stop bits.
  17 * 02/04/08     David Mosberger <davidm@hpl.hp.com>
  18 *              More cleanup and tuning.
  19 * 01/04/18     Jun Nakajima <jun.nakajima@intel.com>
  20 *              Clean up and optimize and the software pipeline, loading two
  21 *              back-to-back 8-byte words per loop. Clean up the initialization
  22 *              for the loop. Support the cases where load latency = 1 or 2.
  23 *              Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
  24 */
  25
  26#include <asm/asmmacro.h>
  27
  28//
  29// Theory of operations:
  30//      The goal is to go as quickly as possible to the point where
  31//      we can checksum 16 bytes/loop. Before reaching that point we must
  32//      take care of incorrect alignment of first byte.
  33//
  34//      The code hereafter also takes care of the "tail" part of the buffer
  35//      before entering the core loop, if any. The checksum is a sum so it
  36//      allows us to commute operations. So we do the "head" and "tail"
  37//      first to finish at full speed in the body. Once we get the head and
  38//      tail values, we feed them into the pipeline, very handy initialization.
  39//
  40//      Of course we deal with the special case where the whole buffer fits
  41//      into one 8 byte word. In this case we have only one entry in the pipeline.
  42//
  43//      We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
  44//      possible load latency and also to accommodate for head and tail.
  45//
  46//      The end of the function deals with folding the checksum from 64bits
  47//      down to 16bits taking care of the carry.
  48//
  49//      This version avoids synchronization in the core loop by also using a
  50//      pipeline for the accumulation of the checksum in resultx[] (x=1,2).
  51//
  52//       wordx[] (x=1,2)
  53//      |---|
  54//      |   | 0                 : new value loaded in pipeline
  55//      |---|
  56//      |   | -                 : in transit data
  57//      |---|
  58//      |   | LOAD_LATENCY      : current value to add to checksum
  59//      |---|
  60//      |   | LOAD_LATENCY+1    : previous value added to checksum
  61//      |---|                   (previous iteration)
  62//
  63//      resultx[] (x=1,2)
  64//      |---|
  65//      |   | 0                 : initial value
  66//      |---|
  67//      |   | LOAD_LATENCY-1    : new checksum
  68//      |---|
  69//      |   | LOAD_LATENCY      : previous value of checksum
  70//      |---|
  71//      |   | LOAD_LATENCY+1    : final checksum when out of the loop
  72//      |---|
  73//
  74//
  75//      See RFC1071 "Computing the Internet Checksum" for various techniques for
  76//      calculating the Internet checksum.
  77//
  78// NOT YET DONE:
  79//      - Maybe another algorithm which would take care of the folding at the
  80//        end in a different manner
  81//      - Work with people more knowledgeable than me on the network stack
  82//        to figure out if we could not split the function depending on the
  83//        type of packet or alignment we get. Like the ip_fast_csum() routine
  84//        where we know we have at least 20bytes worth of data to checksum.
  85//      - Do a better job of handling small packets.
  86//      - Note on prefetching: it was found that under various load, i.e. ftp read/write,
  87//        nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
  88//        on the data that buffer points to (partly because the checksum is often preceded by
  89//        a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
  90//        the data is already in the cache.
  91//
  92
  93#define saved_pfs       r11
  94#define hmask           r16
  95#define tmask           r17
  96#define first1          r18
  97#define firstval        r19
  98#define firstoff        r20
  99#define last            r21
 100#define lastval         r22
 101#define lastoff         r23
 102#define saved_lc        r24
 103#define saved_pr        r25
 104#define tmp1            r26
 105#define tmp2            r27
 106#define tmp3            r28
 107#define carry1          r29
 108#define carry2          r30
 109#define first2          r31
 110
 111#define buf             in0
 112#define len             in1
 113
 114#define LOAD_LATENCY    2       // XXX fix me
 115
 116#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
 117# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
 118#endif
 119
 120#define PIPE_DEPTH                      (LOAD_LATENCY+2)
 121#define ELD     p[LOAD_LATENCY]         // end of load
 122#define ELD_1   p[LOAD_LATENCY+1]       // and next stage
 123
 124// unsigned long do_csum(unsigned char *buf,long len)
 125
 126GLOBAL_ENTRY(do_csum)
 127        .prologue
 128        .save ar.pfs, saved_pfs
 129        alloc saved_pfs=ar.pfs,2,16,0,16
 130        .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
 131        .rotp p[PIPE_DEPTH], pC1[2], pC2[2]
 132        mov ret0=r0             // in case we have zero length
 133        cmp.lt p0,p6=r0,len     // check for zero length or negative (32bit len)
 134        ;;
 135        add tmp1=buf,len        // last byte's address
 136        .save pr, saved_pr
 137        mov saved_pr=pr         // preserve predicates (rotation)
 138(p6)    br.ret.spnt.many rp     // return if zero or negative length
 139
 140        mov hmask=-1            // initialize head mask
 141        tbit.nz p15,p0=buf,0    // is buf an odd address?
 142        and first1=-8,buf       // 8-byte align down address of first1 element
 143
 144        and firstoff=7,buf      // how many bytes off for first1 element
 145        mov tmask=-1            // initialize tail mask
 146
 147        ;;
 148        adds tmp2=-1,tmp1       // last-1
 149        and lastoff=7,tmp1      // how many bytes off for last element
 150        ;;
 151        sub tmp1=8,lastoff      // complement to lastoff
 152        and last=-8,tmp2        // address of word containing last byte
 153        ;;
 154        sub tmp3=last,first1    // tmp3=distance from first1 to last
 155        .save ar.lc, saved_lc
 156        mov saved_lc=ar.lc      // save lc
 157        cmp.eq p8,p9=last,first1        // everything fits in one word ?
 158
 159        ld8 firstval=[first1],8 // load, ahead of time, "first1" word
 160        and tmp1=7, tmp1        // make sure that if tmp1==8 -> tmp1=0
 161        shl tmp2=firstoff,3     // number of bits
 162        ;;
 163(p9)    ld8 lastval=[last]      // load, ahead of time, "last" word, if needed
 164        shl tmp1=tmp1,3         // number of bits
 165(p9)    adds tmp3=-8,tmp3       // effectively loaded
 166        ;;
 167(p8)    mov lastval=r0          // we don't need lastval if first1==last
 168        shl hmask=hmask,tmp2    // build head mask, mask off [0,first1off[
 169        shr.u tmask=tmask,tmp1  // build tail mask, mask off ]8,lastoff]
 170        ;;
 171        .body
 172#define count tmp3
 173
 174(p8)    and hmask=hmask,tmask   // apply tail mask to head mask if 1 word only
 175(p9)    and word2[0]=lastval,tmask      // mask last it as appropriate
 176        shr.u count=count,3     // how many 8-byte?
 177        ;;
 178        // If count is odd, finish this 8-byte word so that we can
 179        // load two back-to-back 8-byte words per loop thereafter.
 180        and word1[0]=firstval,hmask     // and mask it as appropriate
 181        tbit.nz p10,p11=count,0         // if (count is odd)
 182        ;;
 183(p8)    mov result1[0]=word1[0]
 184(p9)    add result1[0]=word1[0],word2[0]
 185        ;;
 186        cmp.ltu p6,p0=result1[0],word1[0]       // check the carry
 187        cmp.eq.or.andcm p8,p0=0,count           // exit if zero 8-byte
 188        ;;
 189(p6)    adds result1[0]=1,result1[0]
 190(p8)    br.cond.dptk .do_csum_exit      // if (within an 8-byte word)
 191(p11)   br.cond.dptk .do_csum16         // if (count is even)
 192
 193        // Here count is odd.
 194        ld8 word1[1]=[first1],8         // load an 8-byte word
 195        cmp.eq p9,p10=1,count           // if (count == 1)
 196        adds count=-1,count             // loaded an 8-byte word
 197        ;;
 198        add result1[0]=result1[0],word1[1]
 199        ;;
 200        cmp.ltu p6,p0=result1[0],word1[1]
 201        ;;
 202(p6)    adds result1[0]=1,result1[0]
 203(p9)    br.cond.sptk .do_csum_exit      // if (count == 1) exit
 204        // Fall through to calculate the checksum, feeding result1[0] as
 205        // the initial value in result1[0].
 206        //
 207        // Calculate the checksum loading two 8-byte words per loop.
 208        //
 209.do_csum16:
 210        add first2=8,first1
 211        shr.u count=count,1     // we do 16 bytes per loop
 212        ;;
 213        adds count=-1,count
 214        mov carry1=r0
 215        mov carry2=r0
 216        brp.loop.imp 1f,2f
 217        ;;
 218        mov ar.ec=PIPE_DEPTH
 219        mov ar.lc=count // set lc
 220        mov pr.rot=1<<16
 221        // result1[0] must be initialized in advance.
 222        mov result2[0]=r0
 223        ;;
 224        .align 32
 2251:
 226(ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
 227(pC1[1])adds carry1=1,carry1
 228(ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
 229(pC2[1])adds carry2=1,carry2
 230(ELD)   add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
 231(ELD)   add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
 2322:
 233(p[0])  ld8 word1[0]=[first1],16
 234(p[0])  ld8 word2[0]=[first2],16
 235        br.ctop.sptk 1b
 236        ;;
 237        // Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
 238(pC1[1])adds carry1=1,carry1    // since we miss the last one
 239(pC2[1])adds carry2=1,carry2
 240        ;;
 241        add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
 242        add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
 243        ;;
 244        cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
 245        cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
 246        ;;
 247(p6)    adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
 248(p7)    adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
 249        ;;
 250        add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
 251        ;;
 252        cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
 253        ;;
 254(p6)    adds result1[0]=1,result1[0]
 255        ;;
 256.do_csum_exit:
 257        //
 258        // now fold 64 into 16 bits taking care of carry
 259        // that's not very good because it has lots of sequentiality
 260        //
 261        mov tmp3=0xffff
 262        zxt4 tmp1=result1[0]
 263        shr.u tmp2=result1[0],32
 264        ;;
 265        add result1[0]=tmp1,tmp2
 266        ;;
 267        and tmp1=result1[0],tmp3
 268        shr.u tmp2=result1[0],16
 269        ;;
 270        add result1[0]=tmp1,tmp2
 271        ;;
 272        and tmp1=result1[0],tmp3
 273        shr.u tmp2=result1[0],16
 274        ;;
 275        add result1[0]=tmp1,tmp2
 276        ;;
 277        and tmp1=result1[0],tmp3
 278        shr.u tmp2=result1[0],16
 279        ;;
 280        add ret0=tmp1,tmp2
 281        mov pr=saved_pr,0xffffffffffff0000
 282        ;;
 283        // if buf was odd then swap bytes
 284        mov ar.pfs=saved_pfs            // restore ar.ec
 285(p15)   mux1 ret0=ret0,@rev             // reverse word
 286        ;;
 287        mov ar.lc=saved_lc
 288(p15)   shr.u ret0=ret0,64-16   // + shift back to position = swap bytes
 289        br.ret.sptk.many rp
 290
 291//      I (Jun Nakajima) wrote an equivalent code (see below), but it was
 292//      not much better than the original. So keep the original there so that
 293//      someone else can challenge.
 294//
 295//      shr.u word1[0]=result1[0],32
 296//      zxt4 result1[0]=result1[0]
 297//      ;;
 298//      add result1[0]=result1[0],word1[0]
 299//      ;;
 300//      zxt2 result2[0]=result1[0]
 301//      extr.u word1[0]=result1[0],16,16
 302//      shr.u carry1=result1[0],32
 303//      ;;
 304//      add result2[0]=result2[0],word1[0]
 305//      ;;
 306//      add result2[0]=result2[0],carry1
 307//      ;;
 308//      extr.u ret0=result2[0],16,16
 309//      ;;
 310//      add ret0=ret0,result2[0]
 311//      ;;
 312//      zxt2 ret0=ret0
 313//      mov ar.pfs=saved_pfs             // restore ar.ec
 314//      mov pr=saved_pr,0xffffffffffff0000
 315//      ;;
 316//      // if buf was odd then swap bytes
 317//      mov ar.lc=saved_lc
 318//(p15) mux1 ret0=ret0,@rev             // reverse word
 319//      ;;
 320//(p15) shr.u ret0=ret0,64-16   // + shift back to position = swap bytes
 321//      br.ret.sptk.many rp
 322
 323END(do_csum)
 324