linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/mm.h>
  25#include <linux/sched.h>
  26#include <linux/smp.h>
  27#include <linux/spinlock.h>
  28#include <linux/kallsyms.h>
  29#include <linux/bootmem.h>
  30#include <linux/interrupt.h>
  31#include <linux/ptrace.h>
  32#include <linux/kgdb.h>
  33#include <linux/kdebug.h>
  34#include <linux/kprobes.h>
  35#include <linux/notifier.h>
  36#include <linux/kdb.h>
  37#include <linux/irq.h>
  38#include <linux/perf_event.h>
  39
  40#include <asm/addrspace.h>
  41#include <asm/bootinfo.h>
  42#include <asm/branch.h>
  43#include <asm/break.h>
  44#include <asm/cop2.h>
  45#include <asm/cpu.h>
  46#include <asm/cpu-type.h>
  47#include <asm/dsp.h>
  48#include <asm/fpu.h>
  49#include <asm/fpu_emulator.h>
  50#include <asm/idle.h>
  51#include <asm/mips-r2-to-r6-emul.h>
  52#include <asm/mipsregs.h>
  53#include <asm/mipsmtregs.h>
  54#include <asm/module.h>
  55#include <asm/msa.h>
  56#include <asm/pgtable.h>
  57#include <asm/ptrace.h>
  58#include <asm/sections.h>
  59#include <asm/siginfo.h>
  60#include <asm/tlbdebug.h>
  61#include <asm/traps.h>
  62#include <asm/uaccess.h>
  63#include <asm/watch.h>
  64#include <asm/mmu_context.h>
  65#include <asm/types.h>
  66#include <asm/stacktrace.h>
  67#include <asm/uasm.h>
  68
  69extern void check_wait(void);
  70extern asmlinkage void rollback_handle_int(void);
  71extern asmlinkage void handle_int(void);
  72extern u32 handle_tlbl[];
  73extern u32 handle_tlbs[];
  74extern u32 handle_tlbm[];
  75extern asmlinkage void handle_adel(void);
  76extern asmlinkage void handle_ades(void);
  77extern asmlinkage void handle_ibe(void);
  78extern asmlinkage void handle_dbe(void);
  79extern asmlinkage void handle_sys(void);
  80extern asmlinkage void handle_bp(void);
  81extern asmlinkage void handle_ri(void);
  82extern asmlinkage void handle_ri_rdhwr_vivt(void);
  83extern asmlinkage void handle_ri_rdhwr(void);
  84extern asmlinkage void handle_cpu(void);
  85extern asmlinkage void handle_ov(void);
  86extern asmlinkage void handle_tr(void);
  87extern asmlinkage void handle_msa_fpe(void);
  88extern asmlinkage void handle_fpe(void);
  89extern asmlinkage void handle_ftlb(void);
  90extern asmlinkage void handle_msa(void);
  91extern asmlinkage void handle_mdmx(void);
  92extern asmlinkage void handle_watch(void);
  93extern asmlinkage void handle_mt(void);
  94extern asmlinkage void handle_dsp(void);
  95extern asmlinkage void handle_mcheck(void);
  96extern asmlinkage void handle_reserved(void);
  97extern void tlb_do_page_fault_0(void);
  98
  99void (*board_be_init)(void);
 100int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 101void (*board_nmi_handler_setup)(void);
 102void (*board_ejtag_handler_setup)(void);
 103void (*board_bind_eic_interrupt)(int irq, int regset);
 104void (*board_ebase_setup)(void);
 105void(*board_cache_error_setup)(void);
 106
 107static void show_raw_backtrace(unsigned long reg29)
 108{
 109        unsigned long *sp = (unsigned long *)(reg29 & ~3);
 110        unsigned long addr;
 111
 112        printk("Call Trace:");
 113#ifdef CONFIG_KALLSYMS
 114        printk("\n");
 115#endif
 116        while (!kstack_end(sp)) {
 117                unsigned long __user *p =
 118                        (unsigned long __user *)(unsigned long)sp++;
 119                if (__get_user(addr, p)) {
 120                        printk(" (Bad stack address)");
 121                        break;
 122                }
 123                if (__kernel_text_address(addr))
 124                        print_ip_sym(addr);
 125        }
 126        printk("\n");
 127}
 128
 129#ifdef CONFIG_KALLSYMS
 130int raw_show_trace;
 131static int __init set_raw_show_trace(char *str)
 132{
 133        raw_show_trace = 1;
 134        return 1;
 135}
 136__setup("raw_show_trace", set_raw_show_trace);
 137#endif
 138
 139static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 140{
 141        unsigned long sp = regs->regs[29];
 142        unsigned long ra = regs->regs[31];
 143        unsigned long pc = regs->cp0_epc;
 144
 145        if (!task)
 146                task = current;
 147
 148        if (raw_show_trace || !__kernel_text_address(pc)) {
 149                show_raw_backtrace(sp);
 150                return;
 151        }
 152        printk("Call Trace:\n");
 153        do {
 154                print_ip_sym(pc);
 155                pc = unwind_stack(task, &sp, pc, &ra);
 156        } while (pc);
 157        printk("\n");
 158}
 159
 160/*
 161 * This routine abuses get_user()/put_user() to reference pointers
 162 * with at least a bit of error checking ...
 163 */
 164static void show_stacktrace(struct task_struct *task,
 165        const struct pt_regs *regs)
 166{
 167        const int field = 2 * sizeof(unsigned long);
 168        long stackdata;
 169        int i;
 170        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 171
 172        printk("Stack :");
 173        i = 0;
 174        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 175                if (i && ((i % (64 / field)) == 0))
 176                        printk("\n       ");
 177                if (i > 39) {
 178                        printk(" ...");
 179                        break;
 180                }
 181
 182                if (__get_user(stackdata, sp++)) {
 183                        printk(" (Bad stack address)");
 184                        break;
 185                }
 186
 187                printk(" %0*lx", field, stackdata);
 188                i++;
 189        }
 190        printk("\n");
 191        show_backtrace(task, regs);
 192}
 193
 194void show_stack(struct task_struct *task, unsigned long *sp)
 195{
 196        struct pt_regs regs;
 197        mm_segment_t old_fs = get_fs();
 198        if (sp) {
 199                regs.regs[29] = (unsigned long)sp;
 200                regs.regs[31] = 0;
 201                regs.cp0_epc = 0;
 202        } else {
 203                if (task && task != current) {
 204                        regs.regs[29] = task->thread.reg29;
 205                        regs.regs[31] = 0;
 206                        regs.cp0_epc = task->thread.reg31;
 207#ifdef CONFIG_KGDB_KDB
 208                } else if (atomic_read(&kgdb_active) != -1 &&
 209                           kdb_current_regs) {
 210                        memcpy(&regs, kdb_current_regs, sizeof(regs));
 211#endif /* CONFIG_KGDB_KDB */
 212                } else {
 213                        prepare_frametrace(&regs);
 214                }
 215        }
 216        /*
 217         * show_stack() deals exclusively with kernel mode, so be sure to access
 218         * the stack in the kernel (not user) address space.
 219         */
 220        set_fs(KERNEL_DS);
 221        show_stacktrace(task, &regs);
 222        set_fs(old_fs);
 223}
 224
 225static void show_code(unsigned int __user *pc)
 226{
 227        long i;
 228        unsigned short __user *pc16 = NULL;
 229
 230        printk("\nCode:");
 231
 232        if ((unsigned long)pc & 1)
 233                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 234        for(i = -3 ; i < 6 ; i++) {
 235                unsigned int insn;
 236                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 237                        printk(" (Bad address in epc)\n");
 238                        break;
 239                }
 240                printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 241        }
 242}
 243
 244static void __show_regs(const struct pt_regs *regs)
 245{
 246        const int field = 2 * sizeof(unsigned long);
 247        unsigned int cause = regs->cp0_cause;
 248        unsigned int exccode;
 249        int i;
 250
 251        show_regs_print_info(KERN_DEFAULT);
 252
 253        /*
 254         * Saved main processor registers
 255         */
 256        for (i = 0; i < 32; ) {
 257                if ((i % 4) == 0)
 258                        printk("$%2d   :", i);
 259                if (i == 0)
 260                        printk(" %0*lx", field, 0UL);
 261                else if (i == 26 || i == 27)
 262                        printk(" %*s", field, "");
 263                else
 264                        printk(" %0*lx", field, regs->regs[i]);
 265
 266                i++;
 267                if ((i % 4) == 0)
 268                        printk("\n");
 269        }
 270
 271#ifdef CONFIG_CPU_HAS_SMARTMIPS
 272        printk("Acx    : %0*lx\n", field, regs->acx);
 273#endif
 274        printk("Hi    : %0*lx\n", field, regs->hi);
 275        printk("Lo    : %0*lx\n", field, regs->lo);
 276
 277        /*
 278         * Saved cp0 registers
 279         */
 280        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 281               (void *) regs->cp0_epc);
 282        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 283               (void *) regs->regs[31]);
 284
 285        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 286
 287        if (cpu_has_3kex) {
 288                if (regs->cp0_status & ST0_KUO)
 289                        printk("KUo ");
 290                if (regs->cp0_status & ST0_IEO)
 291                        printk("IEo ");
 292                if (regs->cp0_status & ST0_KUP)
 293                        printk("KUp ");
 294                if (regs->cp0_status & ST0_IEP)
 295                        printk("IEp ");
 296                if (regs->cp0_status & ST0_KUC)
 297                        printk("KUc ");
 298                if (regs->cp0_status & ST0_IEC)
 299                        printk("IEc ");
 300        } else if (cpu_has_4kex) {
 301                if (regs->cp0_status & ST0_KX)
 302                        printk("KX ");
 303                if (regs->cp0_status & ST0_SX)
 304                        printk("SX ");
 305                if (regs->cp0_status & ST0_UX)
 306                        printk("UX ");
 307                switch (regs->cp0_status & ST0_KSU) {
 308                case KSU_USER:
 309                        printk("USER ");
 310                        break;
 311                case KSU_SUPERVISOR:
 312                        printk("SUPERVISOR ");
 313                        break;
 314                case KSU_KERNEL:
 315                        printk("KERNEL ");
 316                        break;
 317                default:
 318                        printk("BAD_MODE ");
 319                        break;
 320                }
 321                if (regs->cp0_status & ST0_ERL)
 322                        printk("ERL ");
 323                if (regs->cp0_status & ST0_EXL)
 324                        printk("EXL ");
 325                if (regs->cp0_status & ST0_IE)
 326                        printk("IE ");
 327        }
 328        printk("\n");
 329
 330        exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 331        printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 332
 333        if (1 <= exccode && exccode <= 5)
 334                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 335
 336        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 337               cpu_name_string());
 338}
 339
 340/*
 341 * FIXME: really the generic show_regs should take a const pointer argument.
 342 */
 343void show_regs(struct pt_regs *regs)
 344{
 345        __show_regs((struct pt_regs *)regs);
 346}
 347
 348void show_registers(struct pt_regs *regs)
 349{
 350        const int field = 2 * sizeof(unsigned long);
 351        mm_segment_t old_fs = get_fs();
 352
 353        __show_regs(regs);
 354        print_modules();
 355        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 356               current->comm, current->pid, current_thread_info(), current,
 357              field, current_thread_info()->tp_value);
 358        if (cpu_has_userlocal) {
 359                unsigned long tls;
 360
 361                tls = read_c0_userlocal();
 362                if (tls != current_thread_info()->tp_value)
 363                        printk("*HwTLS: %0*lx\n", field, tls);
 364        }
 365
 366        if (!user_mode(regs))
 367                /* Necessary for getting the correct stack content */
 368                set_fs(KERNEL_DS);
 369        show_stacktrace(current, regs);
 370        show_code((unsigned int __user *) regs->cp0_epc);
 371        printk("\n");
 372        set_fs(old_fs);
 373}
 374
 375static DEFINE_RAW_SPINLOCK(die_lock);
 376
 377void __noreturn die(const char *str, struct pt_regs *regs)
 378{
 379        static int die_counter;
 380        int sig = SIGSEGV;
 381
 382        oops_enter();
 383
 384        if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 385                       SIGSEGV) == NOTIFY_STOP)
 386                sig = 0;
 387
 388        console_verbose();
 389        raw_spin_lock_irq(&die_lock);
 390        bust_spinlocks(1);
 391
 392        printk("%s[#%d]:\n", str, ++die_counter);
 393        show_registers(regs);
 394        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 395        raw_spin_unlock_irq(&die_lock);
 396
 397        oops_exit();
 398
 399        if (in_interrupt())
 400                panic("Fatal exception in interrupt");
 401
 402        if (panic_on_oops) {
 403                printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
 404                ssleep(5);
 405                panic("Fatal exception");
 406        }
 407
 408        if (regs && kexec_should_crash(current))
 409                crash_kexec(regs);
 410
 411        do_exit(sig);
 412}
 413
 414extern struct exception_table_entry __start___dbe_table[];
 415extern struct exception_table_entry __stop___dbe_table[];
 416
 417__asm__(
 418"       .section        __dbe_table, \"a\"\n"
 419"       .previous                       \n");
 420
 421/* Given an address, look for it in the exception tables. */
 422static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 423{
 424        const struct exception_table_entry *e;
 425
 426        e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 427        if (!e)
 428                e = search_module_dbetables(addr);
 429        return e;
 430}
 431
 432asmlinkage void do_be(struct pt_regs *regs)
 433{
 434        const int field = 2 * sizeof(unsigned long);
 435        const struct exception_table_entry *fixup = NULL;
 436        int data = regs->cp0_cause & 4;
 437        int action = MIPS_BE_FATAL;
 438        enum ctx_state prev_state;
 439
 440        prev_state = exception_enter();
 441        /* XXX For now.  Fixme, this searches the wrong table ...  */
 442        if (data && !user_mode(regs))
 443                fixup = search_dbe_tables(exception_epc(regs));
 444
 445        if (fixup)
 446                action = MIPS_BE_FIXUP;
 447
 448        if (board_be_handler)
 449                action = board_be_handler(regs, fixup != NULL);
 450
 451        switch (action) {
 452        case MIPS_BE_DISCARD:
 453                goto out;
 454        case MIPS_BE_FIXUP:
 455                if (fixup) {
 456                        regs->cp0_epc = fixup->nextinsn;
 457                        goto out;
 458                }
 459                break;
 460        default:
 461                break;
 462        }
 463
 464        /*
 465         * Assume it would be too dangerous to continue ...
 466         */
 467        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 468               data ? "Data" : "Instruction",
 469               field, regs->cp0_epc, field, regs->regs[31]);
 470        if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 471                       SIGBUS) == NOTIFY_STOP)
 472                goto out;
 473
 474        die_if_kernel("Oops", regs);
 475        force_sig(SIGBUS, current);
 476
 477out:
 478        exception_exit(prev_state);
 479}
 480
 481/*
 482 * ll/sc, rdhwr, sync emulation
 483 */
 484
 485#define OPCODE 0xfc000000
 486#define BASE   0x03e00000
 487#define RT     0x001f0000
 488#define OFFSET 0x0000ffff
 489#define LL     0xc0000000
 490#define SC     0xe0000000
 491#define SPEC0  0x00000000
 492#define SPEC3  0x7c000000
 493#define RD     0x0000f800
 494#define FUNC   0x0000003f
 495#define SYNC   0x0000000f
 496#define RDHWR  0x0000003b
 497
 498/*  microMIPS definitions   */
 499#define MM_POOL32A_FUNC 0xfc00ffff
 500#define MM_RDHWR        0x00006b3c
 501#define MM_RS           0x001f0000
 502#define MM_RT           0x03e00000
 503
 504/*
 505 * The ll_bit is cleared by r*_switch.S
 506 */
 507
 508unsigned int ll_bit;
 509struct task_struct *ll_task;
 510
 511static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 512{
 513        unsigned long value, __user *vaddr;
 514        long offset;
 515
 516        /*
 517         * analyse the ll instruction that just caused a ri exception
 518         * and put the referenced address to addr.
 519         */
 520
 521        /* sign extend offset */
 522        offset = opcode & OFFSET;
 523        offset <<= 16;
 524        offset >>= 16;
 525
 526        vaddr = (unsigned long __user *)
 527                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 528
 529        if ((unsigned long)vaddr & 3)
 530                return SIGBUS;
 531        if (get_user(value, vaddr))
 532                return SIGSEGV;
 533
 534        preempt_disable();
 535
 536        if (ll_task == NULL || ll_task == current) {
 537                ll_bit = 1;
 538        } else {
 539                ll_bit = 0;
 540        }
 541        ll_task = current;
 542
 543        preempt_enable();
 544
 545        regs->regs[(opcode & RT) >> 16] = value;
 546
 547        return 0;
 548}
 549
 550static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 551{
 552        unsigned long __user *vaddr;
 553        unsigned long reg;
 554        long offset;
 555
 556        /*
 557         * analyse the sc instruction that just caused a ri exception
 558         * and put the referenced address to addr.
 559         */
 560
 561        /* sign extend offset */
 562        offset = opcode & OFFSET;
 563        offset <<= 16;
 564        offset >>= 16;
 565
 566        vaddr = (unsigned long __user *)
 567                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 568        reg = (opcode & RT) >> 16;
 569
 570        if ((unsigned long)vaddr & 3)
 571                return SIGBUS;
 572
 573        preempt_disable();
 574
 575        if (ll_bit == 0 || ll_task != current) {
 576                regs->regs[reg] = 0;
 577                preempt_enable();
 578                return 0;
 579        }
 580
 581        preempt_enable();
 582
 583        if (put_user(regs->regs[reg], vaddr))
 584                return SIGSEGV;
 585
 586        regs->regs[reg] = 1;
 587
 588        return 0;
 589}
 590
 591/*
 592 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 593 * opcodes are supposed to result in coprocessor unusable exceptions if
 594 * executed on ll/sc-less processors.  That's the theory.  In practice a
 595 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 596 * instead, so we're doing the emulation thing in both exception handlers.
 597 */
 598static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 599{
 600        if ((opcode & OPCODE) == LL) {
 601                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 602                                1, regs, 0);
 603                return simulate_ll(regs, opcode);
 604        }
 605        if ((opcode & OPCODE) == SC) {
 606                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 607                                1, regs, 0);
 608                return simulate_sc(regs, opcode);
 609        }
 610
 611        return -1;                      /* Must be something else ... */
 612}
 613
 614/*
 615 * Simulate trapping 'rdhwr' instructions to provide user accessible
 616 * registers not implemented in hardware.
 617 */
 618static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 619{
 620        struct thread_info *ti = task_thread_info(current);
 621
 622        perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 623                        1, regs, 0);
 624        switch (rd) {
 625        case 0:         /* CPU number */
 626                regs->regs[rt] = smp_processor_id();
 627                return 0;
 628        case 1:         /* SYNCI length */
 629                regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 630                                     current_cpu_data.icache.linesz);
 631                return 0;
 632        case 2:         /* Read count register */
 633                regs->regs[rt] = read_c0_count();
 634                return 0;
 635        case 3:         /* Count register resolution */
 636                switch (current_cpu_type()) {
 637                case CPU_20KC:
 638                case CPU_25KF:
 639                        regs->regs[rt] = 1;
 640                        break;
 641                default:
 642                        regs->regs[rt] = 2;
 643                }
 644                return 0;
 645        case 29:
 646                regs->regs[rt] = ti->tp_value;
 647                return 0;
 648        default:
 649                return -1;
 650        }
 651}
 652
 653static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 654{
 655        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 656                int rd = (opcode & RD) >> 11;
 657                int rt = (opcode & RT) >> 16;
 658
 659                simulate_rdhwr(regs, rd, rt);
 660                return 0;
 661        }
 662
 663        /* Not ours.  */
 664        return -1;
 665}
 666
 667static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 668{
 669        if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 670                int rd = (opcode & MM_RS) >> 16;
 671                int rt = (opcode & MM_RT) >> 21;
 672                simulate_rdhwr(regs, rd, rt);
 673                return 0;
 674        }
 675
 676        /* Not ours.  */
 677        return -1;
 678}
 679
 680static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 681{
 682        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 683                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 684                                1, regs, 0);
 685                return 0;
 686        }
 687
 688        return -1;                      /* Must be something else ... */
 689}
 690
 691asmlinkage void do_ov(struct pt_regs *regs)
 692{
 693        enum ctx_state prev_state;
 694        siginfo_t info = {
 695                .si_signo = SIGFPE,
 696                .si_code = FPE_INTOVF,
 697                .si_addr = (void __user *)regs->cp0_epc,
 698        };
 699
 700        prev_state = exception_enter();
 701        die_if_kernel("Integer overflow", regs);
 702
 703        force_sig_info(SIGFPE, &info, current);
 704        exception_exit(prev_state);
 705}
 706
 707int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 708{
 709        struct siginfo si = { 0 };
 710
 711        switch (sig) {
 712        case 0:
 713                return 0;
 714
 715        case SIGFPE:
 716                si.si_addr = fault_addr;
 717                si.si_signo = sig;
 718                /*
 719                 * Inexact can happen together with Overflow or Underflow.
 720                 * Respect the mask to deliver the correct exception.
 721                 */
 722                fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
 723                         (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
 724                if (fcr31 & FPU_CSR_INV_X)
 725                        si.si_code = FPE_FLTINV;
 726                else if (fcr31 & FPU_CSR_DIV_X)
 727                        si.si_code = FPE_FLTDIV;
 728                else if (fcr31 & FPU_CSR_OVF_X)
 729                        si.si_code = FPE_FLTOVF;
 730                else if (fcr31 & FPU_CSR_UDF_X)
 731                        si.si_code = FPE_FLTUND;
 732                else if (fcr31 & FPU_CSR_INE_X)
 733                        si.si_code = FPE_FLTRES;
 734                else
 735                        si.si_code = __SI_FAULT;
 736                force_sig_info(sig, &si, current);
 737                return 1;
 738
 739        case SIGBUS:
 740                si.si_addr = fault_addr;
 741                si.si_signo = sig;
 742                si.si_code = BUS_ADRERR;
 743                force_sig_info(sig, &si, current);
 744                return 1;
 745
 746        case SIGSEGV:
 747                si.si_addr = fault_addr;
 748                si.si_signo = sig;
 749                down_read(&current->mm->mmap_sem);
 750                if (find_vma(current->mm, (unsigned long)fault_addr))
 751                        si.si_code = SEGV_ACCERR;
 752                else
 753                        si.si_code = SEGV_MAPERR;
 754                up_read(&current->mm->mmap_sem);
 755                force_sig_info(sig, &si, current);
 756                return 1;
 757
 758        default:
 759                force_sig(sig, current);
 760                return 1;
 761        }
 762}
 763
 764static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 765                       unsigned long old_epc, unsigned long old_ra)
 766{
 767        union mips_instruction inst = { .word = opcode };
 768        void __user *fault_addr;
 769        unsigned long fcr31;
 770        int sig;
 771
 772        /* If it's obviously not an FP instruction, skip it */
 773        switch (inst.i_format.opcode) {
 774        case cop1_op:
 775        case cop1x_op:
 776        case lwc1_op:
 777        case ldc1_op:
 778        case swc1_op:
 779        case sdc1_op:
 780                break;
 781
 782        default:
 783                return -1;
 784        }
 785
 786        /*
 787         * do_ri skipped over the instruction via compute_return_epc, undo
 788         * that for the FPU emulator.
 789         */
 790        regs->cp0_epc = old_epc;
 791        regs->regs[31] = old_ra;
 792
 793        /* Save the FP context to struct thread_struct */
 794        lose_fpu(1);
 795
 796        /* Run the emulator */
 797        sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 798                                       &fault_addr);
 799        fcr31 = current->thread.fpu.fcr31;
 800
 801        /*
 802         * We can't allow the emulated instruction to leave any of
 803         * the cause bits set in $fcr31.
 804         */
 805        current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 806
 807        /* Restore the hardware register state */
 808        own_fpu(1);
 809
 810        /* Send a signal if required.  */
 811        process_fpemu_return(sig, fault_addr, fcr31);
 812
 813        return 0;
 814}
 815
 816/*
 817 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 818 */
 819asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 820{
 821        enum ctx_state prev_state;
 822        void __user *fault_addr;
 823        int sig;
 824
 825        prev_state = exception_enter();
 826        if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 827                       SIGFPE) == NOTIFY_STOP)
 828                goto out;
 829
 830        /* Clear FCSR.Cause before enabling interrupts */
 831        write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
 832        local_irq_enable();
 833
 834        die_if_kernel("FP exception in kernel code", regs);
 835
 836        if (fcr31 & FPU_CSR_UNI_X) {
 837                /*
 838                 * Unimplemented operation exception.  If we've got the full
 839                 * software emulator on-board, let's use it...
 840                 *
 841                 * Force FPU to dump state into task/thread context.  We're
 842                 * moving a lot of data here for what is probably a single
 843                 * instruction, but the alternative is to pre-decode the FP
 844                 * register operands before invoking the emulator, which seems
 845                 * a bit extreme for what should be an infrequent event.
 846                 */
 847                /* Ensure 'resume' not overwrite saved fp context again. */
 848                lose_fpu(1);
 849
 850                /* Run the emulator */
 851                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 852                                               &fault_addr);
 853                fcr31 = current->thread.fpu.fcr31;
 854
 855                /*
 856                 * We can't allow the emulated instruction to leave any of
 857                 * the cause bits set in $fcr31.
 858                 */
 859                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 860
 861                /* Restore the hardware register state */
 862                own_fpu(1);     /* Using the FPU again.  */
 863        } else {
 864                sig = SIGFPE;
 865                fault_addr = (void __user *) regs->cp0_epc;
 866        }
 867
 868        /* Send a signal if required.  */
 869        process_fpemu_return(sig, fault_addr, fcr31);
 870
 871out:
 872        exception_exit(prev_state);
 873}
 874
 875void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
 876        const char *str)
 877{
 878        siginfo_t info = { 0 };
 879        char b[40];
 880
 881#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 882        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 883                         SIGTRAP) == NOTIFY_STOP)
 884                return;
 885#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 886
 887        if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 888                       SIGTRAP) == NOTIFY_STOP)
 889                return;
 890
 891        /*
 892         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 893         * insns, even for trap and break codes that indicate arithmetic
 894         * failures.  Weird ...
 895         * But should we continue the brokenness???  --macro
 896         */
 897        switch (code) {
 898        case BRK_OVERFLOW:
 899        case BRK_DIVZERO:
 900                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 901                die_if_kernel(b, regs);
 902                if (code == BRK_DIVZERO)
 903                        info.si_code = FPE_INTDIV;
 904                else
 905                        info.si_code = FPE_INTOVF;
 906                info.si_signo = SIGFPE;
 907                info.si_addr = (void __user *) regs->cp0_epc;
 908                force_sig_info(SIGFPE, &info, current);
 909                break;
 910        case BRK_BUG:
 911                die_if_kernel("Kernel bug detected", regs);
 912                force_sig(SIGTRAP, current);
 913                break;
 914        case BRK_MEMU:
 915                /*
 916                 * This breakpoint code is used by the FPU emulator to retake
 917                 * control of the CPU after executing the instruction from the
 918                 * delay slot of an emulated branch.
 919                 *
 920                 * Terminate if exception was recognized as a delay slot return
 921                 * otherwise handle as normal.
 922                 */
 923                if (do_dsemulret(regs))
 924                        return;
 925
 926                die_if_kernel("Math emu break/trap", regs);
 927                force_sig(SIGTRAP, current);
 928                break;
 929        default:
 930                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 931                die_if_kernel(b, regs);
 932                if (si_code) {
 933                        info.si_signo = SIGTRAP;
 934                        info.si_code = si_code;
 935                        force_sig_info(SIGTRAP, &info, current);
 936                } else {
 937                        force_sig(SIGTRAP, current);
 938                }
 939        }
 940}
 941
 942asmlinkage void do_bp(struct pt_regs *regs)
 943{
 944        unsigned long epc = msk_isa16_mode(exception_epc(regs));
 945        unsigned int opcode, bcode;
 946        enum ctx_state prev_state;
 947        mm_segment_t seg;
 948
 949        seg = get_fs();
 950        if (!user_mode(regs))
 951                set_fs(KERNEL_DS);
 952
 953        prev_state = exception_enter();
 954        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
 955        if (get_isa16_mode(regs->cp0_epc)) {
 956                u16 instr[2];
 957
 958                if (__get_user(instr[0], (u16 __user *)epc))
 959                        goto out_sigsegv;
 960
 961                if (!cpu_has_mmips) {
 962                        /* MIPS16e mode */
 963                        bcode = (instr[0] >> 5) & 0x3f;
 964                } else if (mm_insn_16bit(instr[0])) {
 965                        /* 16-bit microMIPS BREAK */
 966                        bcode = instr[0] & 0xf;
 967                } else {
 968                        /* 32-bit microMIPS BREAK */
 969                        if (__get_user(instr[1], (u16 __user *)(epc + 2)))
 970                                goto out_sigsegv;
 971                        opcode = (instr[0] << 16) | instr[1];
 972                        bcode = (opcode >> 6) & ((1 << 20) - 1);
 973                }
 974        } else {
 975                if (__get_user(opcode, (unsigned int __user *)epc))
 976                        goto out_sigsegv;
 977                bcode = (opcode >> 6) & ((1 << 20) - 1);
 978        }
 979
 980        /*
 981         * There is the ancient bug in the MIPS assemblers that the break
 982         * code starts left to bit 16 instead to bit 6 in the opcode.
 983         * Gas is bug-compatible, but not always, grrr...
 984         * We handle both cases with a simple heuristics.  --macro
 985         */
 986        if (bcode >= (1 << 10))
 987                bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
 988
 989        /*
 990         * notify the kprobe handlers, if instruction is likely to
 991         * pertain to them.
 992         */
 993        switch (bcode) {
 994        case BRK_UPROBE:
 995                if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
 996                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
 997                        goto out;
 998                else
 999                        break;
1000        case BRK_UPROBE_XOL:
1001                if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1002                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1003                        goto out;
1004                else
1005                        break;
1006        case BRK_KPROBE_BP:
1007                if (notify_die(DIE_BREAK, "debug", regs, bcode,
1008                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009                        goto out;
1010                else
1011                        break;
1012        case BRK_KPROBE_SSTEPBP:
1013                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1014                               current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015                        goto out;
1016                else
1017                        break;
1018        default:
1019                break;
1020        }
1021
1022        do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1023
1024out:
1025        set_fs(seg);
1026        exception_exit(prev_state);
1027        return;
1028
1029out_sigsegv:
1030        force_sig(SIGSEGV, current);
1031        goto out;
1032}
1033
1034asmlinkage void do_tr(struct pt_regs *regs)
1035{
1036        u32 opcode, tcode = 0;
1037        enum ctx_state prev_state;
1038        u16 instr[2];
1039        mm_segment_t seg;
1040        unsigned long epc = msk_isa16_mode(exception_epc(regs));
1041
1042        seg = get_fs();
1043        if (!user_mode(regs))
1044                set_fs(get_ds());
1045
1046        prev_state = exception_enter();
1047        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1048        if (get_isa16_mode(regs->cp0_epc)) {
1049                if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1050                    __get_user(instr[1], (u16 __user *)(epc + 2)))
1051                        goto out_sigsegv;
1052                opcode = (instr[0] << 16) | instr[1];
1053                /* Immediate versions don't provide a code.  */
1054                if (!(opcode & OPCODE))
1055                        tcode = (opcode >> 12) & ((1 << 4) - 1);
1056        } else {
1057                if (__get_user(opcode, (u32 __user *)epc))
1058                        goto out_sigsegv;
1059                /* Immediate versions don't provide a code.  */
1060                if (!(opcode & OPCODE))
1061                        tcode = (opcode >> 6) & ((1 << 10) - 1);
1062        }
1063
1064        do_trap_or_bp(regs, tcode, 0, "Trap");
1065
1066out:
1067        set_fs(seg);
1068        exception_exit(prev_state);
1069        return;
1070
1071out_sigsegv:
1072        force_sig(SIGSEGV, current);
1073        goto out;
1074}
1075
1076asmlinkage void do_ri(struct pt_regs *regs)
1077{
1078        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1079        unsigned long old_epc = regs->cp0_epc;
1080        unsigned long old31 = regs->regs[31];
1081        enum ctx_state prev_state;
1082        unsigned int opcode = 0;
1083        int status = -1;
1084
1085        /*
1086         * Avoid any kernel code. Just emulate the R2 instruction
1087         * as quickly as possible.
1088         */
1089        if (mipsr2_emulation && cpu_has_mips_r6 &&
1090            likely(user_mode(regs)) &&
1091            likely(get_user(opcode, epc) >= 0)) {
1092                unsigned long fcr31 = 0;
1093
1094                status = mipsr2_decoder(regs, opcode, &fcr31);
1095                switch (status) {
1096                case 0:
1097                case SIGEMT:
1098                        task_thread_info(current)->r2_emul_return = 1;
1099                        return;
1100                case SIGILL:
1101                        goto no_r2_instr;
1102                default:
1103                        process_fpemu_return(status,
1104                                             &current->thread.cp0_baduaddr,
1105                                             fcr31);
1106                        task_thread_info(current)->r2_emul_return = 1;
1107                        return;
1108                }
1109        }
1110
1111no_r2_instr:
1112
1113        prev_state = exception_enter();
1114        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1115
1116        if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1117                       SIGILL) == NOTIFY_STOP)
1118                goto out;
1119
1120        die_if_kernel("Reserved instruction in kernel code", regs);
1121
1122        if (unlikely(compute_return_epc(regs) < 0))
1123                goto out;
1124
1125        if (!get_isa16_mode(regs->cp0_epc)) {
1126                if (unlikely(get_user(opcode, epc) < 0))
1127                        status = SIGSEGV;
1128
1129                if (!cpu_has_llsc && status < 0)
1130                        status = simulate_llsc(regs, opcode);
1131
1132                if (status < 0)
1133                        status = simulate_rdhwr_normal(regs, opcode);
1134
1135                if (status < 0)
1136                        status = simulate_sync(regs, opcode);
1137
1138                if (status < 0)
1139                        status = simulate_fp(regs, opcode, old_epc, old31);
1140        } else if (cpu_has_mmips) {
1141                unsigned short mmop[2] = { 0 };
1142
1143                if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1144                        status = SIGSEGV;
1145                if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1146                        status = SIGSEGV;
1147                opcode = mmop[0];
1148                opcode = (opcode << 16) | mmop[1];
1149
1150                if (status < 0)
1151                        status = simulate_rdhwr_mm(regs, opcode);
1152        }
1153
1154        if (status < 0)
1155                status = SIGILL;
1156
1157        if (unlikely(status > 0)) {
1158                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1159                regs->regs[31] = old31;
1160                force_sig(status, current);
1161        }
1162
1163out:
1164        exception_exit(prev_state);
1165}
1166
1167/*
1168 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1169 * emulated more than some threshold number of instructions, force migration to
1170 * a "CPU" that has FP support.
1171 */
1172static void mt_ase_fp_affinity(void)
1173{
1174#ifdef CONFIG_MIPS_MT_FPAFF
1175        if (mt_fpemul_threshold > 0 &&
1176             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1177                /*
1178                 * If there's no FPU present, or if the application has already
1179                 * restricted the allowed set to exclude any CPUs with FPUs,
1180                 * we'll skip the procedure.
1181                 */
1182                if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1183                        cpumask_t tmask;
1184
1185                        current->thread.user_cpus_allowed
1186                                = current->cpus_allowed;
1187                        cpumask_and(&tmask, &current->cpus_allowed,
1188                                    &mt_fpu_cpumask);
1189                        set_cpus_allowed_ptr(current, &tmask);
1190                        set_thread_flag(TIF_FPUBOUND);
1191                }
1192        }
1193#endif /* CONFIG_MIPS_MT_FPAFF */
1194}
1195
1196/*
1197 * No lock; only written during early bootup by CPU 0.
1198 */
1199static RAW_NOTIFIER_HEAD(cu2_chain);
1200
1201int __ref register_cu2_notifier(struct notifier_block *nb)
1202{
1203        return raw_notifier_chain_register(&cu2_chain, nb);
1204}
1205
1206int cu2_notifier_call_chain(unsigned long val, void *v)
1207{
1208        return raw_notifier_call_chain(&cu2_chain, val, v);
1209}
1210
1211static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1212        void *data)
1213{
1214        struct pt_regs *regs = data;
1215
1216        die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1217                              "instruction", regs);
1218        force_sig(SIGILL, current);
1219
1220        return NOTIFY_OK;
1221}
1222
1223static int wait_on_fp_mode_switch(atomic_t *p)
1224{
1225        /*
1226         * The FP mode for this task is currently being switched. That may
1227         * involve modifications to the format of this tasks FP context which
1228         * make it unsafe to proceed with execution for the moment. Instead,
1229         * schedule some other task.
1230         */
1231        schedule();
1232        return 0;
1233}
1234
1235static int enable_restore_fp_context(int msa)
1236{
1237        int err, was_fpu_owner, prior_msa;
1238
1239        /*
1240         * If an FP mode switch is currently underway, wait for it to
1241         * complete before proceeding.
1242         */
1243        wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1244                         wait_on_fp_mode_switch, TASK_KILLABLE);
1245
1246        if (!used_math()) {
1247                /* First time FP context user. */
1248                preempt_disable();
1249                err = init_fpu();
1250                if (msa && !err) {
1251                        enable_msa();
1252                        _init_msa_upper();
1253                        set_thread_flag(TIF_USEDMSA);
1254                        set_thread_flag(TIF_MSA_CTX_LIVE);
1255                }
1256                preempt_enable();
1257                if (!err)
1258                        set_used_math();
1259                return err;
1260        }
1261
1262        /*
1263         * This task has formerly used the FP context.
1264         *
1265         * If this thread has no live MSA vector context then we can simply
1266         * restore the scalar FP context. If it has live MSA vector context
1267         * (that is, it has or may have used MSA since last performing a
1268         * function call) then we'll need to restore the vector context. This
1269         * applies even if we're currently only executing a scalar FP
1270         * instruction. This is because if we were to later execute an MSA
1271         * instruction then we'd either have to:
1272         *
1273         *  - Restore the vector context & clobber any registers modified by
1274         *    scalar FP instructions between now & then.
1275         *
1276         * or
1277         *
1278         *  - Not restore the vector context & lose the most significant bits
1279         *    of all vector registers.
1280         *
1281         * Neither of those options is acceptable. We cannot restore the least
1282         * significant bits of the registers now & only restore the most
1283         * significant bits later because the most significant bits of any
1284         * vector registers whose aliased FP register is modified now will have
1285         * been zeroed. We'd have no way to know that when restoring the vector
1286         * context & thus may load an outdated value for the most significant
1287         * bits of a vector register.
1288         */
1289        if (!msa && !thread_msa_context_live())
1290                return own_fpu(1);
1291
1292        /*
1293         * This task is using or has previously used MSA. Thus we require
1294         * that Status.FR == 1.
1295         */
1296        preempt_disable();
1297        was_fpu_owner = is_fpu_owner();
1298        err = own_fpu_inatomic(0);
1299        if (err)
1300                goto out;
1301
1302        enable_msa();
1303        write_msa_csr(current->thread.fpu.msacsr);
1304        set_thread_flag(TIF_USEDMSA);
1305
1306        /*
1307         * If this is the first time that the task is using MSA and it has
1308         * previously used scalar FP in this time slice then we already nave
1309         * FP context which we shouldn't clobber. We do however need to clear
1310         * the upper 64b of each vector register so that this task has no
1311         * opportunity to see data left behind by another.
1312         */
1313        prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1314        if (!prior_msa && was_fpu_owner) {
1315                _init_msa_upper();
1316
1317                goto out;
1318        }
1319
1320        if (!prior_msa) {
1321                /*
1322                 * Restore the least significant 64b of each vector register
1323                 * from the existing scalar FP context.
1324                 */
1325                _restore_fp(current);
1326
1327                /*
1328                 * The task has not formerly used MSA, so clear the upper 64b
1329                 * of each vector register such that it cannot see data left
1330                 * behind by another task.
1331                 */
1332                _init_msa_upper();
1333        } else {
1334                /* We need to restore the vector context. */
1335                restore_msa(current);
1336
1337                /* Restore the scalar FP control & status register */
1338                if (!was_fpu_owner)
1339                        write_32bit_cp1_register(CP1_STATUS,
1340                                                 current->thread.fpu.fcr31);
1341        }
1342
1343out:
1344        preempt_enable();
1345
1346        return 0;
1347}
1348
1349asmlinkage void do_cpu(struct pt_regs *regs)
1350{
1351        enum ctx_state prev_state;
1352        unsigned int __user *epc;
1353        unsigned long old_epc, old31;
1354        void __user *fault_addr;
1355        unsigned int opcode;
1356        unsigned long fcr31;
1357        unsigned int cpid;
1358        int status, err;
1359        unsigned long __maybe_unused flags;
1360        int sig;
1361
1362        prev_state = exception_enter();
1363        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1364
1365        if (cpid != 2)
1366                die_if_kernel("do_cpu invoked from kernel context!", regs);
1367
1368        switch (cpid) {
1369        case 0:
1370                epc = (unsigned int __user *)exception_epc(regs);
1371                old_epc = regs->cp0_epc;
1372                old31 = regs->regs[31];
1373                opcode = 0;
1374                status = -1;
1375
1376                if (unlikely(compute_return_epc(regs) < 0))
1377                        break;
1378
1379                if (!get_isa16_mode(regs->cp0_epc)) {
1380                        if (unlikely(get_user(opcode, epc) < 0))
1381                                status = SIGSEGV;
1382
1383                        if (!cpu_has_llsc && status < 0)
1384                                status = simulate_llsc(regs, opcode);
1385                }
1386
1387                if (status < 0)
1388                        status = SIGILL;
1389
1390                if (unlikely(status > 0)) {
1391                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1392                        regs->regs[31] = old31;
1393                        force_sig(status, current);
1394                }
1395
1396                break;
1397
1398        case 3:
1399                /*
1400                 * The COP3 opcode space and consequently the CP0.Status.CU3
1401                 * bit and the CP0.Cause.CE=3 encoding have been removed as
1402                 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1403                 * up the space has been reused for COP1X instructions, that
1404                 * are enabled by the CP0.Status.CU1 bit and consequently
1405                 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1406                 * exceptions.  Some FPU-less processors that implement one
1407                 * of these ISAs however use this code erroneously for COP1X
1408                 * instructions.  Therefore we redirect this trap to the FP
1409                 * emulator too.
1410                 */
1411                if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1412                        force_sig(SIGILL, current);
1413                        break;
1414                }
1415                /* Fall through.  */
1416
1417        case 1:
1418                err = enable_restore_fp_context(0);
1419
1420                if (raw_cpu_has_fpu && !err)
1421                        break;
1422
1423                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1424                                               &fault_addr);
1425                fcr31 = current->thread.fpu.fcr31;
1426
1427                /*
1428                 * We can't allow the emulated instruction to leave
1429                 * any of the cause bits set in $fcr31.
1430                 */
1431                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1432
1433                /* Send a signal if required.  */
1434                if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1435                        mt_ase_fp_affinity();
1436
1437                break;
1438
1439        case 2:
1440                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1441                break;
1442        }
1443
1444        exception_exit(prev_state);
1445}
1446
1447asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1448{
1449        enum ctx_state prev_state;
1450
1451        prev_state = exception_enter();
1452        current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1453        if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1454                       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1455                goto out;
1456
1457        /* Clear MSACSR.Cause before enabling interrupts */
1458        write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1459        local_irq_enable();
1460
1461        die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1462        force_sig(SIGFPE, current);
1463out:
1464        exception_exit(prev_state);
1465}
1466
1467asmlinkage void do_msa(struct pt_regs *regs)
1468{
1469        enum ctx_state prev_state;
1470        int err;
1471
1472        prev_state = exception_enter();
1473
1474        if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1475                force_sig(SIGILL, current);
1476                goto out;
1477        }
1478
1479        die_if_kernel("do_msa invoked from kernel context!", regs);
1480
1481        err = enable_restore_fp_context(1);
1482        if (err)
1483                force_sig(SIGILL, current);
1484out:
1485        exception_exit(prev_state);
1486}
1487
1488asmlinkage void do_mdmx(struct pt_regs *regs)
1489{
1490        enum ctx_state prev_state;
1491
1492        prev_state = exception_enter();
1493        force_sig(SIGILL, current);
1494        exception_exit(prev_state);
1495}
1496
1497/*
1498 * Called with interrupts disabled.
1499 */
1500asmlinkage void do_watch(struct pt_regs *regs)
1501{
1502        siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1503        enum ctx_state prev_state;
1504        u32 cause;
1505
1506        prev_state = exception_enter();
1507        /*
1508         * Clear WP (bit 22) bit of cause register so we don't loop
1509         * forever.
1510         */
1511        cause = read_c0_cause();
1512        cause &= ~(1 << 22);
1513        write_c0_cause(cause);
1514
1515        /*
1516         * If the current thread has the watch registers loaded, save
1517         * their values and send SIGTRAP.  Otherwise another thread
1518         * left the registers set, clear them and continue.
1519         */
1520        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1521                mips_read_watch_registers();
1522                local_irq_enable();
1523                force_sig_info(SIGTRAP, &info, current);
1524        } else {
1525                mips_clear_watch_registers();
1526                local_irq_enable();
1527        }
1528        exception_exit(prev_state);
1529}
1530
1531asmlinkage void do_mcheck(struct pt_regs *regs)
1532{
1533        int multi_match = regs->cp0_status & ST0_TS;
1534        enum ctx_state prev_state;
1535        mm_segment_t old_fs = get_fs();
1536
1537        prev_state = exception_enter();
1538        show_regs(regs);
1539
1540        if (multi_match) {
1541                dump_tlb_regs();
1542                pr_info("\n");
1543                dump_tlb_all();
1544        }
1545
1546        if (!user_mode(regs))
1547                set_fs(KERNEL_DS);
1548
1549        show_code((unsigned int __user *) regs->cp0_epc);
1550
1551        set_fs(old_fs);
1552
1553        /*
1554         * Some chips may have other causes of machine check (e.g. SB1
1555         * graduation timer)
1556         */
1557        panic("Caught Machine Check exception - %scaused by multiple "
1558              "matching entries in the TLB.",
1559              (multi_match) ? "" : "not ");
1560}
1561
1562asmlinkage void do_mt(struct pt_regs *regs)
1563{
1564        int subcode;
1565
1566        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1567                        >> VPECONTROL_EXCPT_SHIFT;
1568        switch (subcode) {
1569        case 0:
1570                printk(KERN_DEBUG "Thread Underflow\n");
1571                break;
1572        case 1:
1573                printk(KERN_DEBUG "Thread Overflow\n");
1574                break;
1575        case 2:
1576                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1577                break;
1578        case 3:
1579                printk(KERN_DEBUG "Gating Storage Exception\n");
1580                break;
1581        case 4:
1582                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1583                break;
1584        case 5:
1585                printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1586                break;
1587        default:
1588                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1589                        subcode);
1590                break;
1591        }
1592        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1593
1594        force_sig(SIGILL, current);
1595}
1596
1597
1598asmlinkage void do_dsp(struct pt_regs *regs)
1599{
1600        if (cpu_has_dsp)
1601                panic("Unexpected DSP exception");
1602
1603        force_sig(SIGILL, current);
1604}
1605
1606asmlinkage void do_reserved(struct pt_regs *regs)
1607{
1608        /*
1609         * Game over - no way to handle this if it ever occurs.  Most probably
1610         * caused by a new unknown cpu type or after another deadly
1611         * hard/software error.
1612         */
1613        show_regs(regs);
1614        panic("Caught reserved exception %ld - should not happen.",
1615              (regs->cp0_cause & 0x7f) >> 2);
1616}
1617
1618static int __initdata l1parity = 1;
1619static int __init nol1parity(char *s)
1620{
1621        l1parity = 0;
1622        return 1;
1623}
1624__setup("nol1par", nol1parity);
1625static int __initdata l2parity = 1;
1626static int __init nol2parity(char *s)
1627{
1628        l2parity = 0;
1629        return 1;
1630}
1631__setup("nol2par", nol2parity);
1632
1633/*
1634 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1635 * it different ways.
1636 */
1637static inline void parity_protection_init(void)
1638{
1639        switch (current_cpu_type()) {
1640        case CPU_24K:
1641        case CPU_34K:
1642        case CPU_74K:
1643        case CPU_1004K:
1644        case CPU_1074K:
1645        case CPU_INTERAPTIV:
1646        case CPU_PROAPTIV:
1647        case CPU_P5600:
1648        case CPU_QEMU_GENERIC:
1649        case CPU_I6400:
1650                {
1651#define ERRCTL_PE       0x80000000
1652#define ERRCTL_L2P      0x00800000
1653                        unsigned long errctl;
1654                        unsigned int l1parity_present, l2parity_present;
1655
1656                        errctl = read_c0_ecc();
1657                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1658
1659                        /* probe L1 parity support */
1660                        write_c0_ecc(errctl | ERRCTL_PE);
1661                        back_to_back_c0_hazard();
1662                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1663
1664                        /* probe L2 parity support */
1665                        write_c0_ecc(errctl|ERRCTL_L2P);
1666                        back_to_back_c0_hazard();
1667                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1668
1669                        if (l1parity_present && l2parity_present) {
1670                                if (l1parity)
1671                                        errctl |= ERRCTL_PE;
1672                                if (l1parity ^ l2parity)
1673                                        errctl |= ERRCTL_L2P;
1674                        } else if (l1parity_present) {
1675                                if (l1parity)
1676                                        errctl |= ERRCTL_PE;
1677                        } else if (l2parity_present) {
1678                                if (l2parity)
1679                                        errctl |= ERRCTL_L2P;
1680                        } else {
1681                                /* No parity available */
1682                        }
1683
1684                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1685
1686                        write_c0_ecc(errctl);
1687                        back_to_back_c0_hazard();
1688                        errctl = read_c0_ecc();
1689                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1690
1691                        if (l1parity_present)
1692                                printk(KERN_INFO "Cache parity protection %sabled\n",
1693                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1694
1695                        if (l2parity_present) {
1696                                if (l1parity_present && l1parity)
1697                                        errctl ^= ERRCTL_L2P;
1698                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1699                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1700                        }
1701                }
1702                break;
1703
1704        case CPU_5KC:
1705        case CPU_5KE:
1706        case CPU_LOONGSON1:
1707                write_c0_ecc(0x80000000);
1708                back_to_back_c0_hazard();
1709                /* Set the PE bit (bit 31) in the c0_errctl register. */
1710                printk(KERN_INFO "Cache parity protection %sabled\n",
1711                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1712                break;
1713        case CPU_20KC:
1714        case CPU_25KF:
1715                /* Clear the DE bit (bit 16) in the c0_status register. */
1716                printk(KERN_INFO "Enable cache parity protection for "
1717                       "MIPS 20KC/25KF CPUs.\n");
1718                clear_c0_status(ST0_DE);
1719                break;
1720        default:
1721                break;
1722        }
1723}
1724
1725asmlinkage void cache_parity_error(void)
1726{
1727        const int field = 2 * sizeof(unsigned long);
1728        unsigned int reg_val;
1729
1730        /* For the moment, report the problem and hang. */
1731        printk("Cache error exception:\n");
1732        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1733        reg_val = read_c0_cacheerr();
1734        printk("c0_cacheerr == %08x\n", reg_val);
1735
1736        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1737               reg_val & (1<<30) ? "secondary" : "primary",
1738               reg_val & (1<<31) ? "data" : "insn");
1739        if ((cpu_has_mips_r2_r6) &&
1740            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1741                pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1742                        reg_val & (1<<29) ? "ED " : "",
1743                        reg_val & (1<<28) ? "ET " : "",
1744                        reg_val & (1<<27) ? "ES " : "",
1745                        reg_val & (1<<26) ? "EE " : "",
1746                        reg_val & (1<<25) ? "EB " : "",
1747                        reg_val & (1<<24) ? "EI " : "",
1748                        reg_val & (1<<23) ? "E1 " : "",
1749                        reg_val & (1<<22) ? "E0 " : "");
1750        } else {
1751                pr_err("Error bits: %s%s%s%s%s%s%s\n",
1752                        reg_val & (1<<29) ? "ED " : "",
1753                        reg_val & (1<<28) ? "ET " : "",
1754                        reg_val & (1<<26) ? "EE " : "",
1755                        reg_val & (1<<25) ? "EB " : "",
1756                        reg_val & (1<<24) ? "EI " : "",
1757                        reg_val & (1<<23) ? "E1 " : "",
1758                        reg_val & (1<<22) ? "E0 " : "");
1759        }
1760        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1761
1762#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1763        if (reg_val & (1<<22))
1764                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1765
1766        if (reg_val & (1<<23))
1767                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1768#endif
1769
1770        panic("Can't handle the cache error!");
1771}
1772
1773asmlinkage void do_ftlb(void)
1774{
1775        const int field = 2 * sizeof(unsigned long);
1776        unsigned int reg_val;
1777
1778        /* For the moment, report the problem and hang. */
1779        if ((cpu_has_mips_r2_r6) &&
1780            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1781                pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1782                       read_c0_ecc());
1783                pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1784                reg_val = read_c0_cacheerr();
1785                pr_err("c0_cacheerr == %08x\n", reg_val);
1786
1787                if ((reg_val & 0xc0000000) == 0xc0000000) {
1788                        pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1789                } else {
1790                        pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1791                               reg_val & (1<<30) ? "secondary" : "primary",
1792                               reg_val & (1<<31) ? "data" : "insn");
1793                }
1794        } else {
1795                pr_err("FTLB error exception\n");
1796        }
1797        /* Just print the cacheerr bits for now */
1798        cache_parity_error();
1799}
1800
1801/*
1802 * SDBBP EJTAG debug exception handler.
1803 * We skip the instruction and return to the next instruction.
1804 */
1805void ejtag_exception_handler(struct pt_regs *regs)
1806{
1807        const int field = 2 * sizeof(unsigned long);
1808        unsigned long depc, old_epc, old_ra;
1809        unsigned int debug;
1810
1811        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1812        depc = read_c0_depc();
1813        debug = read_c0_debug();
1814        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1815        if (debug & 0x80000000) {
1816                /*
1817                 * In branch delay slot.
1818                 * We cheat a little bit here and use EPC to calculate the
1819                 * debug return address (DEPC). EPC is restored after the
1820                 * calculation.
1821                 */
1822                old_epc = regs->cp0_epc;
1823                old_ra = regs->regs[31];
1824                regs->cp0_epc = depc;
1825                compute_return_epc(regs);
1826                depc = regs->cp0_epc;
1827                regs->cp0_epc = old_epc;
1828                regs->regs[31] = old_ra;
1829        } else
1830                depc += 4;
1831        write_c0_depc(depc);
1832
1833#if 0
1834        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1835        write_c0_debug(debug | 0x100);
1836#endif
1837}
1838
1839/*
1840 * NMI exception handler.
1841 * No lock; only written during early bootup by CPU 0.
1842 */
1843static RAW_NOTIFIER_HEAD(nmi_chain);
1844
1845int register_nmi_notifier(struct notifier_block *nb)
1846{
1847        return raw_notifier_chain_register(&nmi_chain, nb);
1848}
1849
1850void __noreturn nmi_exception_handler(struct pt_regs *regs)
1851{
1852        char str[100];
1853
1854        nmi_enter();
1855        raw_notifier_call_chain(&nmi_chain, 0, regs);
1856        bust_spinlocks(1);
1857        snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1858                 smp_processor_id(), regs->cp0_epc);
1859        regs->cp0_epc = read_c0_errorepc();
1860        die(str, regs);
1861        nmi_exit();
1862}
1863
1864#define VECTORSPACING 0x100     /* for EI/VI mode */
1865
1866unsigned long ebase;
1867unsigned long exception_handlers[32];
1868unsigned long vi_handlers[64];
1869
1870void __init *set_except_vector(int n, void *addr)
1871{
1872        unsigned long handler = (unsigned long) addr;
1873        unsigned long old_handler;
1874
1875#ifdef CONFIG_CPU_MICROMIPS
1876        /*
1877         * Only the TLB handlers are cache aligned with an even
1878         * address. All other handlers are on an odd address and
1879         * require no modification. Otherwise, MIPS32 mode will
1880         * be entered when handling any TLB exceptions. That
1881         * would be bad...since we must stay in microMIPS mode.
1882         */
1883        if (!(handler & 0x1))
1884                handler |= 1;
1885#endif
1886        old_handler = xchg(&exception_handlers[n], handler);
1887
1888        if (n == 0 && cpu_has_divec) {
1889#ifdef CONFIG_CPU_MICROMIPS
1890                unsigned long jump_mask = ~((1 << 27) - 1);
1891#else
1892                unsigned long jump_mask = ~((1 << 28) - 1);
1893#endif
1894                u32 *buf = (u32 *)(ebase + 0x200);
1895                unsigned int k0 = 26;
1896                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1897                        uasm_i_j(&buf, handler & ~jump_mask);
1898                        uasm_i_nop(&buf);
1899                } else {
1900                        UASM_i_LA(&buf, k0, handler);
1901                        uasm_i_jr(&buf, k0);
1902                        uasm_i_nop(&buf);
1903                }
1904                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1905        }
1906        return (void *)old_handler;
1907}
1908
1909static void do_default_vi(void)
1910{
1911        show_regs(get_irq_regs());
1912        panic("Caught unexpected vectored interrupt.");
1913}
1914
1915static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1916{
1917        unsigned long handler;
1918        unsigned long old_handler = vi_handlers[n];
1919        int srssets = current_cpu_data.srsets;
1920        u16 *h;
1921        unsigned char *b;
1922
1923        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1924
1925        if (addr == NULL) {
1926                handler = (unsigned long) do_default_vi;
1927                srs = 0;
1928        } else
1929                handler = (unsigned long) addr;
1930        vi_handlers[n] = handler;
1931
1932        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1933
1934        if (srs >= srssets)
1935                panic("Shadow register set %d not supported", srs);
1936
1937        if (cpu_has_veic) {
1938                if (board_bind_eic_interrupt)
1939                        board_bind_eic_interrupt(n, srs);
1940        } else if (cpu_has_vint) {
1941                /* SRSMap is only defined if shadow sets are implemented */
1942                if (srssets > 1)
1943                        change_c0_srsmap(0xf << n*4, srs << n*4);
1944        }
1945
1946        if (srs == 0) {
1947                /*
1948                 * If no shadow set is selected then use the default handler
1949                 * that does normal register saving and standard interrupt exit
1950                 */
1951                extern char except_vec_vi, except_vec_vi_lui;
1952                extern char except_vec_vi_ori, except_vec_vi_end;
1953                extern char rollback_except_vec_vi;
1954                char *vec_start = using_rollback_handler() ?
1955                        &rollback_except_vec_vi : &except_vec_vi;
1956#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1957                const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1958                const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1959#else
1960                const int lui_offset = &except_vec_vi_lui - vec_start;
1961                const int ori_offset = &except_vec_vi_ori - vec_start;
1962#endif
1963                const int handler_len = &except_vec_vi_end - vec_start;
1964
1965                if (handler_len > VECTORSPACING) {
1966                        /*
1967                         * Sigh... panicing won't help as the console
1968                         * is probably not configured :(
1969                         */
1970                        panic("VECTORSPACING too small");
1971                }
1972
1973                set_handler(((unsigned long)b - ebase), vec_start,
1974#ifdef CONFIG_CPU_MICROMIPS
1975                                (handler_len - 1));
1976#else
1977                                handler_len);
1978#endif
1979                h = (u16 *)(b + lui_offset);
1980                *h = (handler >> 16) & 0xffff;
1981                h = (u16 *)(b + ori_offset);
1982                *h = (handler & 0xffff);
1983                local_flush_icache_range((unsigned long)b,
1984                                         (unsigned long)(b+handler_len));
1985        }
1986        else {
1987                /*
1988                 * In other cases jump directly to the interrupt handler. It
1989                 * is the handler's responsibility to save registers if required
1990                 * (eg hi/lo) and return from the exception using "eret".
1991                 */
1992                u32 insn;
1993
1994                h = (u16 *)b;
1995                /* j handler */
1996#ifdef CONFIG_CPU_MICROMIPS
1997                insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1998#else
1999                insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2000#endif
2001                h[0] = (insn >> 16) & 0xffff;
2002                h[1] = insn & 0xffff;
2003                h[2] = 0;
2004                h[3] = 0;
2005                local_flush_icache_range((unsigned long)b,
2006                                         (unsigned long)(b+8));
2007        }
2008
2009        return (void *)old_handler;
2010}
2011
2012void *set_vi_handler(int n, vi_handler_t addr)
2013{
2014        return set_vi_srs_handler(n, addr, 0);
2015}
2016
2017extern void tlb_init(void);
2018
2019/*
2020 * Timer interrupt
2021 */
2022int cp0_compare_irq;
2023EXPORT_SYMBOL_GPL(cp0_compare_irq);
2024int cp0_compare_irq_shift;
2025
2026/*
2027 * Performance counter IRQ or -1 if shared with timer
2028 */
2029int cp0_perfcount_irq;
2030EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2031
2032/*
2033 * Fast debug channel IRQ or -1 if not present
2034 */
2035int cp0_fdc_irq;
2036EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2037
2038static int noulri;
2039
2040static int __init ulri_disable(char *s)
2041{
2042        pr_info("Disabling ulri\n");
2043        noulri = 1;
2044
2045        return 1;
2046}
2047__setup("noulri", ulri_disable);
2048
2049/* configure STATUS register */
2050static void configure_status(void)
2051{
2052        /*
2053         * Disable coprocessors and select 32-bit or 64-bit addressing
2054         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2055         * flag that some firmware may have left set and the TS bit (for
2056         * IP27).  Set XX for ISA IV code to work.
2057         */
2058        unsigned int status_set = ST0_CU0;
2059#ifdef CONFIG_64BIT
2060        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2061#endif
2062        if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2063                status_set |= ST0_XX;
2064        if (cpu_has_dsp)
2065                status_set |= ST0_MX;
2066
2067        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2068                         status_set);
2069}
2070
2071/* configure HWRENA register */
2072static void configure_hwrena(void)
2073{
2074        unsigned int hwrena = cpu_hwrena_impl_bits;
2075
2076        if (cpu_has_mips_r2_r6)
2077                hwrena |= 0x0000000f;
2078
2079        if (!noulri && cpu_has_userlocal)
2080                hwrena |= (1 << 29);
2081
2082        if (hwrena)
2083                write_c0_hwrena(hwrena);
2084}
2085
2086static void configure_exception_vector(void)
2087{
2088        if (cpu_has_veic || cpu_has_vint) {
2089                unsigned long sr = set_c0_status(ST0_BEV);
2090                write_c0_ebase(ebase);
2091                write_c0_status(sr);
2092                /* Setting vector spacing enables EI/VI mode  */
2093                change_c0_intctl(0x3e0, VECTORSPACING);
2094        }
2095        if (cpu_has_divec) {
2096                if (cpu_has_mipsmt) {
2097                        unsigned int vpflags = dvpe();
2098                        set_c0_cause(CAUSEF_IV);
2099                        evpe(vpflags);
2100                } else
2101                        set_c0_cause(CAUSEF_IV);
2102        }
2103}
2104
2105void per_cpu_trap_init(bool is_boot_cpu)
2106{
2107        unsigned int cpu = smp_processor_id();
2108
2109        configure_status();
2110        configure_hwrena();
2111
2112        configure_exception_vector();
2113
2114        /*
2115         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2116         *
2117         *  o read IntCtl.IPTI to determine the timer interrupt
2118         *  o read IntCtl.IPPCI to determine the performance counter interrupt
2119         *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2120         */
2121        if (cpu_has_mips_r2_r6) {
2122                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2123                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2124                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2125                cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2126                if (!cp0_fdc_irq)
2127                        cp0_fdc_irq = -1;
2128
2129        } else {
2130                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2131                cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2132                cp0_perfcount_irq = -1;
2133                cp0_fdc_irq = -1;
2134        }
2135
2136        if (!cpu_data[cpu].asid_cache)
2137                cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2138
2139        atomic_inc(&init_mm.mm_count);
2140        current->active_mm = &init_mm;
2141        BUG_ON(current->mm);
2142        enter_lazy_tlb(&init_mm, current);
2143
2144        /* Boot CPU's cache setup in setup_arch(). */
2145        if (!is_boot_cpu)
2146                cpu_cache_init();
2147        tlb_init();
2148        TLBMISS_HANDLER_SETUP();
2149}
2150
2151/* Install CPU exception handler */
2152void set_handler(unsigned long offset, void *addr, unsigned long size)
2153{
2154#ifdef CONFIG_CPU_MICROMIPS
2155        memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2156#else
2157        memcpy((void *)(ebase + offset), addr, size);
2158#endif
2159        local_flush_icache_range(ebase + offset, ebase + offset + size);
2160}
2161
2162static char panic_null_cerr[] =
2163        "Trying to set NULL cache error exception handler";
2164
2165/*
2166 * Install uncached CPU exception handler.
2167 * This is suitable only for the cache error exception which is the only
2168 * exception handler that is being run uncached.
2169 */
2170void set_uncached_handler(unsigned long offset, void *addr,
2171        unsigned long size)
2172{
2173        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2174
2175        if (!addr)
2176                panic(panic_null_cerr);
2177
2178        memcpy((void *)(uncached_ebase + offset), addr, size);
2179}
2180
2181static int __initdata rdhwr_noopt;
2182static int __init set_rdhwr_noopt(char *str)
2183{
2184        rdhwr_noopt = 1;
2185        return 1;
2186}
2187
2188__setup("rdhwr_noopt", set_rdhwr_noopt);
2189
2190void __init trap_init(void)
2191{
2192        extern char except_vec3_generic;
2193        extern char except_vec4;
2194        extern char except_vec3_r4000;
2195        unsigned long i;
2196
2197        check_wait();
2198
2199        if (cpu_has_veic || cpu_has_vint) {
2200                unsigned long size = 0x200 + VECTORSPACING*64;
2201                ebase = (unsigned long)
2202                        __alloc_bootmem(size, 1 << fls(size), 0);
2203        } else {
2204                ebase = CAC_BASE;
2205
2206                if (cpu_has_mips_r2_r6)
2207                        ebase += (read_c0_ebase() & 0x3ffff000);
2208        }
2209
2210        if (cpu_has_mmips) {
2211                unsigned int config3 = read_c0_config3();
2212
2213                if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2214                        write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2215                else
2216                        write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2217        }
2218
2219        if (board_ebase_setup)
2220                board_ebase_setup();
2221        per_cpu_trap_init(true);
2222
2223        /*
2224         * Copy the generic exception handlers to their final destination.
2225         * This will be overridden later as suitable for a particular
2226         * configuration.
2227         */
2228        set_handler(0x180, &except_vec3_generic, 0x80);
2229
2230        /*
2231         * Setup default vectors
2232         */
2233        for (i = 0; i <= 31; i++)
2234                set_except_vector(i, handle_reserved);
2235
2236        /*
2237         * Copy the EJTAG debug exception vector handler code to it's final
2238         * destination.
2239         */
2240        if (cpu_has_ejtag && board_ejtag_handler_setup)
2241                board_ejtag_handler_setup();
2242
2243        /*
2244         * Only some CPUs have the watch exceptions.
2245         */
2246        if (cpu_has_watch)
2247                set_except_vector(EXCCODE_WATCH, handle_watch);
2248
2249        /*
2250         * Initialise interrupt handlers
2251         */
2252        if (cpu_has_veic || cpu_has_vint) {
2253                int nvec = cpu_has_veic ? 64 : 8;
2254                for (i = 0; i < nvec; i++)
2255                        set_vi_handler(i, NULL);
2256        }
2257        else if (cpu_has_divec)
2258                set_handler(0x200, &except_vec4, 0x8);
2259
2260        /*
2261         * Some CPUs can enable/disable for cache parity detection, but does
2262         * it different ways.
2263         */
2264        parity_protection_init();
2265
2266        /*
2267         * The Data Bus Errors / Instruction Bus Errors are signaled
2268         * by external hardware.  Therefore these two exceptions
2269         * may have board specific handlers.
2270         */
2271        if (board_be_init)
2272                board_be_init();
2273
2274        set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2275                                        rollback_handle_int : handle_int);
2276        set_except_vector(EXCCODE_MOD, handle_tlbm);
2277        set_except_vector(EXCCODE_TLBL, handle_tlbl);
2278        set_except_vector(EXCCODE_TLBS, handle_tlbs);
2279
2280        set_except_vector(EXCCODE_ADEL, handle_adel);
2281        set_except_vector(EXCCODE_ADES, handle_ades);
2282
2283        set_except_vector(EXCCODE_IBE, handle_ibe);
2284        set_except_vector(EXCCODE_DBE, handle_dbe);
2285
2286        set_except_vector(EXCCODE_SYS, handle_sys);
2287        set_except_vector(EXCCODE_BP, handle_bp);
2288        set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2289                          (cpu_has_vtag_icache ?
2290                           handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2291        set_except_vector(EXCCODE_CPU, handle_cpu);
2292        set_except_vector(EXCCODE_OV, handle_ov);
2293        set_except_vector(EXCCODE_TR, handle_tr);
2294        set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2295
2296        if (current_cpu_type() == CPU_R6000 ||
2297            current_cpu_type() == CPU_R6000A) {
2298                /*
2299                 * The R6000 is the only R-series CPU that features a machine
2300                 * check exception (similar to the R4000 cache error) and
2301                 * unaligned ldc1/sdc1 exception.  The handlers have not been
2302                 * written yet.  Well, anyway there is no R6000 machine on the
2303                 * current list of targets for Linux/MIPS.
2304                 * (Duh, crap, there is someone with a triple R6k machine)
2305                 */
2306                //set_except_vector(14, handle_mc);
2307                //set_except_vector(15, handle_ndc);
2308        }
2309
2310
2311        if (board_nmi_handler_setup)
2312                board_nmi_handler_setup();
2313
2314        if (cpu_has_fpu && !cpu_has_nofpuex)
2315                set_except_vector(EXCCODE_FPE, handle_fpe);
2316
2317        set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2318
2319        if (cpu_has_rixiex) {
2320                set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2321                set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2322        }
2323
2324        set_except_vector(EXCCODE_MSADIS, handle_msa);
2325        set_except_vector(EXCCODE_MDMX, handle_mdmx);
2326
2327        if (cpu_has_mcheck)
2328                set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2329
2330        if (cpu_has_mipsmt)
2331                set_except_vector(EXCCODE_THREAD, handle_mt);
2332
2333        set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2334
2335        if (board_cache_error_setup)
2336                board_cache_error_setup();
2337
2338        if (cpu_has_vce)
2339                /* Special exception: R4[04]00 uses also the divec space. */
2340                set_handler(0x180, &except_vec3_r4000, 0x100);
2341        else if (cpu_has_4kex)
2342                set_handler(0x180, &except_vec3_generic, 0x80);
2343        else
2344                set_handler(0x080, &except_vec3_generic, 0x80);
2345
2346        local_flush_icache_range(ebase, ebase + 0x400);
2347
2348        sort_extable(__start___dbe_table, __stop___dbe_table);
2349
2350        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2351}
2352
2353static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2354                            void *v)
2355{
2356        switch (cmd) {
2357        case CPU_PM_ENTER_FAILED:
2358        case CPU_PM_EXIT:
2359                configure_status();
2360                configure_hwrena();
2361                configure_exception_vector();
2362
2363                /* Restore register with CPU number for TLB handlers */
2364                TLBMISS_HANDLER_RESTORE();
2365
2366                break;
2367        }
2368
2369        return NOTIFY_OK;
2370}
2371
2372static struct notifier_block trap_pm_notifier_block = {
2373        .notifier_call = trap_pm_notifier,
2374};
2375
2376static int __init trap_pm_init(void)
2377{
2378        return cpu_pm_register_notifier(&trap_pm_notifier_block);
2379}
2380arch_initcall(trap_pm_init);
2381