linux/arch/mips/mm/dma-default.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
   7 * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
   8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
   9 */
  10
  11#include <linux/types.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/mm.h>
  14#include <linux/module.h>
  15#include <linux/scatterlist.h>
  16#include <linux/string.h>
  17#include <linux/gfp.h>
  18#include <linux/highmem.h>
  19#include <linux/dma-contiguous.h>
  20
  21#include <asm/cache.h>
  22#include <asm/cpu-type.h>
  23#include <asm/io.h>
  24
  25#include <dma-coherence.h>
  26
  27#ifdef CONFIG_DMA_MAYBE_COHERENT
  28int coherentio = 0;     /* User defined DMA coherency from command line. */
  29EXPORT_SYMBOL_GPL(coherentio);
  30int hw_coherentio = 0;  /* Actual hardware supported DMA coherency setting. */
  31
  32static int __init setcoherentio(char *str)
  33{
  34        coherentio = 1;
  35        pr_info("Hardware DMA cache coherency (command line)\n");
  36        return 0;
  37}
  38early_param("coherentio", setcoherentio);
  39
  40static int __init setnocoherentio(char *str)
  41{
  42        coherentio = 0;
  43        pr_info("Software DMA cache coherency (command line)\n");
  44        return 0;
  45}
  46early_param("nocoherentio", setnocoherentio);
  47#endif
  48
  49static inline struct page *dma_addr_to_page(struct device *dev,
  50        dma_addr_t dma_addr)
  51{
  52        return pfn_to_page(
  53                plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
  54}
  55
  56/*
  57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
  58 * speculatively fill random cachelines with stale data at any time,
  59 * requiring an extra flush post-DMA.
  60 *
  61 * Warning on the terminology - Linux calls an uncached area coherent;
  62 * MIPS terminology calls memory areas with hardware maintained coherency
  63 * coherent.
  64 *
  65 * Note that the R14000 and R16000 should also be checked for in this
  66 * condition.  However this function is only called on non-I/O-coherent
  67 * systems and only the R10000 and R12000 are used in such systems, the
  68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
  69 */
  70static inline int cpu_needs_post_dma_flush(struct device *dev)
  71{
  72        return !plat_device_is_coherent(dev) &&
  73               (boot_cpu_type() == CPU_R10000 ||
  74                boot_cpu_type() == CPU_R12000 ||
  75                boot_cpu_type() == CPU_BMIPS5000);
  76}
  77
  78static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
  79{
  80        gfp_t dma_flag;
  81
  82        /* ignore region specifiers */
  83        gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
  84
  85#ifdef CONFIG_ISA
  86        if (dev == NULL)
  87                dma_flag = __GFP_DMA;
  88        else
  89#endif
  90#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
  91             if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
  92                        dma_flag = __GFP_DMA;
  93        else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  94                        dma_flag = __GFP_DMA32;
  95        else
  96#endif
  97#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
  98             if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  99                dma_flag = __GFP_DMA32;
 100        else
 101#endif
 102#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 103             if (dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
 104                dma_flag = __GFP_DMA;
 105        else
 106#endif
 107                dma_flag = 0;
 108
 109        /* Don't invoke OOM killer */
 110        gfp |= __GFP_NORETRY;
 111
 112        return gfp | dma_flag;
 113}
 114
 115static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
 116        dma_addr_t * dma_handle, gfp_t gfp)
 117{
 118        void *ret;
 119
 120        gfp = massage_gfp_flags(dev, gfp);
 121
 122        ret = (void *) __get_free_pages(gfp, get_order(size));
 123
 124        if (ret != NULL) {
 125                memset(ret, 0, size);
 126                *dma_handle = plat_map_dma_mem(dev, ret, size);
 127        }
 128
 129        return ret;
 130}
 131
 132static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
 133        dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
 134{
 135        void *ret;
 136        struct page *page = NULL;
 137        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 138
 139        /*
 140         * XXX: seems like the coherent and non-coherent implementations could
 141         * be consolidated.
 142         */
 143        if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs))
 144                return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
 145
 146        gfp = massage_gfp_flags(dev, gfp);
 147
 148        if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
 149                page = dma_alloc_from_contiguous(dev,
 150                                        count, get_order(size));
 151        if (!page)
 152                page = alloc_pages(gfp, get_order(size));
 153
 154        if (!page)
 155                return NULL;
 156
 157        ret = page_address(page);
 158        memset(ret, 0, size);
 159        *dma_handle = plat_map_dma_mem(dev, ret, size);
 160        if (!plat_device_is_coherent(dev)) {
 161                dma_cache_wback_inv((unsigned long) ret, size);
 162                if (!hw_coherentio)
 163                        ret = UNCAC_ADDR(ret);
 164        }
 165
 166        return ret;
 167}
 168
 169
 170static void mips_dma_free_noncoherent(struct device *dev, size_t size,
 171                void *vaddr, dma_addr_t dma_handle)
 172{
 173        plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
 174        free_pages((unsigned long) vaddr, get_order(size));
 175}
 176
 177static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
 178        dma_addr_t dma_handle, struct dma_attrs *attrs)
 179{
 180        unsigned long addr = (unsigned long) vaddr;
 181        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 182        struct page *page = NULL;
 183
 184        if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) {
 185                mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
 186                return;
 187        }
 188
 189        plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
 190
 191        if (!plat_device_is_coherent(dev) && !hw_coherentio)
 192                addr = CAC_ADDR(addr);
 193
 194        page = virt_to_page((void *) addr);
 195
 196        if (!dma_release_from_contiguous(dev, page, count))
 197                __free_pages(page, get_order(size));
 198}
 199
 200static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 201        void *cpu_addr, dma_addr_t dma_addr, size_t size,
 202        struct dma_attrs *attrs)
 203{
 204        unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 205        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 206        unsigned long addr = (unsigned long)cpu_addr;
 207        unsigned long off = vma->vm_pgoff;
 208        unsigned long pfn;
 209        int ret = -ENXIO;
 210
 211        if (!plat_device_is_coherent(dev) && !hw_coherentio)
 212                addr = CAC_ADDR(addr);
 213
 214        pfn = page_to_pfn(virt_to_page((void *)addr));
 215
 216        if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
 217                vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 218        else
 219                vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 220
 221        if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 222                return ret;
 223
 224        if (off < count && user_count <= (count - off)) {
 225                ret = remap_pfn_range(vma, vma->vm_start,
 226                                      pfn + off,
 227                                      user_count << PAGE_SHIFT,
 228                                      vma->vm_page_prot);
 229        }
 230
 231        return ret;
 232}
 233
 234static inline void __dma_sync_virtual(void *addr, size_t size,
 235        enum dma_data_direction direction)
 236{
 237        switch (direction) {
 238        case DMA_TO_DEVICE:
 239                dma_cache_wback((unsigned long)addr, size);
 240                break;
 241
 242        case DMA_FROM_DEVICE:
 243                dma_cache_inv((unsigned long)addr, size);
 244                break;
 245
 246        case DMA_BIDIRECTIONAL:
 247                dma_cache_wback_inv((unsigned long)addr, size);
 248                break;
 249
 250        default:
 251                BUG();
 252        }
 253}
 254
 255/*
 256 * A single sg entry may refer to multiple physically contiguous
 257 * pages. But we still need to process highmem pages individually.
 258 * If highmem is not configured then the bulk of this loop gets
 259 * optimized out.
 260 */
 261static inline void __dma_sync(struct page *page,
 262        unsigned long offset, size_t size, enum dma_data_direction direction)
 263{
 264        size_t left = size;
 265
 266        do {
 267                size_t len = left;
 268
 269                if (PageHighMem(page)) {
 270                        void *addr;
 271
 272                        if (offset + len > PAGE_SIZE) {
 273                                if (offset >= PAGE_SIZE) {
 274                                        page += offset >> PAGE_SHIFT;
 275                                        offset &= ~PAGE_MASK;
 276                                }
 277                                len = PAGE_SIZE - offset;
 278                        }
 279
 280                        addr = kmap_atomic(page);
 281                        __dma_sync_virtual(addr + offset, len, direction);
 282                        kunmap_atomic(addr);
 283                } else
 284                        __dma_sync_virtual(page_address(page) + offset,
 285                                           size, direction);
 286                offset = 0;
 287                page++;
 288                left -= len;
 289        } while (left);
 290}
 291
 292static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
 293        size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
 294{
 295        if (cpu_needs_post_dma_flush(dev))
 296                __dma_sync(dma_addr_to_page(dev, dma_addr),
 297                           dma_addr & ~PAGE_MASK, size, direction);
 298        plat_post_dma_flush(dev);
 299        plat_unmap_dma_mem(dev, dma_addr, size, direction);
 300}
 301
 302static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
 303        int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
 304{
 305        int i;
 306        struct scatterlist *sg;
 307
 308        for_each_sg(sglist, sg, nents, i) {
 309                if (!plat_device_is_coherent(dev))
 310                        __dma_sync(sg_page(sg), sg->offset, sg->length,
 311                                   direction);
 312#ifdef CONFIG_NEED_SG_DMA_LENGTH
 313                sg->dma_length = sg->length;
 314#endif
 315                sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
 316                                  sg->offset;
 317        }
 318
 319        return nents;
 320}
 321
 322static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
 323        unsigned long offset, size_t size, enum dma_data_direction direction,
 324        struct dma_attrs *attrs)
 325{
 326        if (!plat_device_is_coherent(dev))
 327                __dma_sync(page, offset, size, direction);
 328
 329        return plat_map_dma_mem_page(dev, page) + offset;
 330}
 331
 332static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
 333        int nhwentries, enum dma_data_direction direction,
 334        struct dma_attrs *attrs)
 335{
 336        int i;
 337        struct scatterlist *sg;
 338
 339        for_each_sg(sglist, sg, nhwentries, i) {
 340                if (!plat_device_is_coherent(dev) &&
 341                    direction != DMA_TO_DEVICE)
 342                        __dma_sync(sg_page(sg), sg->offset, sg->length,
 343                                   direction);
 344                plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
 345        }
 346}
 347
 348static void mips_dma_sync_single_for_cpu(struct device *dev,
 349        dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
 350{
 351        if (cpu_needs_post_dma_flush(dev))
 352                __dma_sync(dma_addr_to_page(dev, dma_handle),
 353                           dma_handle & ~PAGE_MASK, size, direction);
 354        plat_post_dma_flush(dev);
 355}
 356
 357static void mips_dma_sync_single_for_device(struct device *dev,
 358        dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
 359{
 360        if (!plat_device_is_coherent(dev))
 361                __dma_sync(dma_addr_to_page(dev, dma_handle),
 362                           dma_handle & ~PAGE_MASK, size, direction);
 363}
 364
 365static void mips_dma_sync_sg_for_cpu(struct device *dev,
 366        struct scatterlist *sglist, int nelems,
 367        enum dma_data_direction direction)
 368{
 369        int i;
 370        struct scatterlist *sg;
 371
 372        if (cpu_needs_post_dma_flush(dev)) {
 373                for_each_sg(sglist, sg, nelems, i) {
 374                        __dma_sync(sg_page(sg), sg->offset, sg->length,
 375                                   direction);
 376                }
 377        }
 378        plat_post_dma_flush(dev);
 379}
 380
 381static void mips_dma_sync_sg_for_device(struct device *dev,
 382        struct scatterlist *sglist, int nelems,
 383        enum dma_data_direction direction)
 384{
 385        int i;
 386        struct scatterlist *sg;
 387
 388        if (!plat_device_is_coherent(dev)) {
 389                for_each_sg(sglist, sg, nelems, i) {
 390                        __dma_sync(sg_page(sg), sg->offset, sg->length,
 391                                   direction);
 392                }
 393        }
 394}
 395
 396int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 397{
 398        return 0;
 399}
 400
 401int mips_dma_supported(struct device *dev, u64 mask)
 402{
 403        return plat_dma_supported(dev, mask);
 404}
 405
 406void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 407                         enum dma_data_direction direction)
 408{
 409        BUG_ON(direction == DMA_NONE);
 410
 411        if (!plat_device_is_coherent(dev))
 412                __dma_sync_virtual(vaddr, size, direction);
 413}
 414
 415EXPORT_SYMBOL(dma_cache_sync);
 416
 417static struct dma_map_ops mips_default_dma_map_ops = {
 418        .alloc = mips_dma_alloc_coherent,
 419        .free = mips_dma_free_coherent,
 420        .mmap = mips_dma_mmap,
 421        .map_page = mips_dma_map_page,
 422        .unmap_page = mips_dma_unmap_page,
 423        .map_sg = mips_dma_map_sg,
 424        .unmap_sg = mips_dma_unmap_sg,
 425        .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
 426        .sync_single_for_device = mips_dma_sync_single_for_device,
 427        .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
 428        .sync_sg_for_device = mips_dma_sync_sg_for_device,
 429        .mapping_error = mips_dma_mapping_error,
 430        .dma_supported = mips_dma_supported
 431};
 432
 433struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
 434EXPORT_SYMBOL(mips_dma_map_ops);
 435
 436#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
 437
 438static int __init mips_dma_init(void)
 439{
 440        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
 441
 442        return 0;
 443}
 444fs_initcall(mips_dma_init);
 445