linux/arch/mips/pci/pci-octeon.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2005-2009 Cavium Networks
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10#include <linux/pci.h>
  11#include <linux/interrupt.h>
  12#include <linux/time.h>
  13#include <linux/delay.h>
  14#include <linux/platform_device.h>
  15#include <linux/swiotlb.h>
  16
  17#include <asm/time.h>
  18
  19#include <asm/octeon/octeon.h>
  20#include <asm/octeon/cvmx-npi-defs.h>
  21#include <asm/octeon/cvmx-pci-defs.h>
  22#include <asm/octeon/pci-octeon.h>
  23
  24#include <dma-coherence.h>
  25
  26#define USE_OCTEON_INTERNAL_ARBITER
  27
  28/*
  29 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
  30 * addresses. Use PCI endian swapping 1 so no address swapping is
  31 * necessary. The Linux io routines will endian swap the data.
  32 */
  33#define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
  34#define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
  35
  36/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
  37#define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
  38
  39u64 octeon_bar1_pci_phys;
  40
  41/**
  42 * This is the bit decoding used for the Octeon PCI controller addresses
  43 */
  44union octeon_pci_address {
  45        uint64_t u64;
  46        struct {
  47                uint64_t upper:2;
  48                uint64_t reserved:13;
  49                uint64_t io:1;
  50                uint64_t did:5;
  51                uint64_t subdid:3;
  52                uint64_t reserved2:4;
  53                uint64_t endian_swap:2;
  54                uint64_t reserved3:10;
  55                uint64_t bus:8;
  56                uint64_t dev:5;
  57                uint64_t func:3;
  58                uint64_t reg:8;
  59        } s;
  60};
  61
  62int __initconst (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
  63                                         u8 slot, u8 pin);
  64enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
  65
  66/**
  67 * Map a PCI device to the appropriate interrupt line
  68 *
  69 * @dev:    The Linux PCI device structure for the device to map
  70 * @slot:   The slot number for this device on __BUS 0__. Linux
  71 *               enumerates through all the bridges and figures out the
  72 *               slot on Bus 0 where this device eventually hooks to.
  73 * @pin:    The PCI interrupt pin read from the device, then swizzled
  74 *               as it goes through each bridge.
  75 * Returns Interrupt number for the device
  76 */
  77int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
  78{
  79        if (octeon_pcibios_map_irq)
  80                return octeon_pcibios_map_irq(dev, slot, pin);
  81        else
  82                panic("octeon_pcibios_map_irq not set.");
  83}
  84
  85
  86/*
  87 * Called to perform platform specific PCI setup
  88 */
  89int pcibios_plat_dev_init(struct pci_dev *dev)
  90{
  91        uint16_t config;
  92        uint32_t dconfig;
  93        int pos;
  94        /*
  95         * Force the Cache line setting to 64 bytes. The standard
  96         * Linux bus scan doesn't seem to set it. Octeon really has
  97         * 128 byte lines, but Intel bridges get really upset if you
  98         * try and set values above 64 bytes. Value is specified in
  99         * 32bit words.
 100         */
 101        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
 102        /* Set latency timers for all devices */
 103        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
 104
 105        /* Enable reporting System errors and parity errors on all devices */
 106        /* Enable parity checking and error reporting */
 107        pci_read_config_word(dev, PCI_COMMAND, &config);
 108        config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
 109        pci_write_config_word(dev, PCI_COMMAND, config);
 110
 111        if (dev->subordinate) {
 112                /* Set latency timers on sub bridges */
 113                pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
 114                /* More bridge error detection */
 115                pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
 116                config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
 117                pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
 118        }
 119
 120        /* Enable the PCIe normal error reporting */
 121        config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
 122        config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
 123        config |= PCI_EXP_DEVCTL_FERE;  /* Fatal Error Reporting */
 124        config |= PCI_EXP_DEVCTL_URRE;  /* Unsupported Request */
 125        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
 126
 127        /* Find the Advanced Error Reporting capability */
 128        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
 129        if (pos) {
 130                /* Clear Uncorrectable Error Status */
 131                pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 132                                      &dconfig);
 133                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
 134                                       dconfig);
 135                /* Enable reporting of all uncorrectable errors */
 136                /* Uncorrectable Error Mask - turned on bits disable errors */
 137                pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
 138                /*
 139                 * Leave severity at HW default. This only controls if
 140                 * errors are reported as uncorrectable or
 141                 * correctable, not if the error is reported.
 142                 */
 143                /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
 144                /* Clear Correctable Error Status */
 145                pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
 146                pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
 147                /* Enable reporting of all correctable errors */
 148                /* Correctable Error Mask - turned on bits disable errors */
 149                pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
 150                /* Advanced Error Capabilities */
 151                pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
 152                /* ECRC Generation Enable */
 153                if (config & PCI_ERR_CAP_ECRC_GENC)
 154                        config |= PCI_ERR_CAP_ECRC_GENE;
 155                /* ECRC Check Enable */
 156                if (config & PCI_ERR_CAP_ECRC_CHKC)
 157                        config |= PCI_ERR_CAP_ECRC_CHKE;
 158                pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
 159                /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
 160                /* Report all errors to the root complex */
 161                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
 162                                       PCI_ERR_ROOT_CMD_COR_EN |
 163                                       PCI_ERR_ROOT_CMD_NONFATAL_EN |
 164                                       PCI_ERR_ROOT_CMD_FATAL_EN);
 165                /* Clear the Root status register */
 166                pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
 167                pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
 168        }
 169
 170        dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
 171
 172        return 0;
 173}
 174
 175/**
 176 * Return the mapping of PCI device number to IRQ line. Each
 177 * character in the return string represents the interrupt
 178 * line for the device at that position. Device 1 maps to the
 179 * first character, etc. The characters A-D are used for PCI
 180 * interrupts.
 181 *
 182 * Returns PCI interrupt mapping
 183 */
 184const char *octeon_get_pci_interrupts(void)
 185{
 186        /*
 187         * Returning an empty string causes the interrupts to be
 188         * routed based on the PCI specification. From the PCI spec:
 189         *
 190         * INTA# of Device Number 0 is connected to IRQW on the system
 191         * board.  (Device Number has no significance regarding being
 192         * located on the system board or in a connector.) INTA# of
 193         * Device Number 1 is connected to IRQX on the system
 194         * board. INTA# of Device Number 2 is connected to IRQY on the
 195         * system board. INTA# of Device Number 3 is connected to IRQZ
 196         * on the system board. The table below describes how each
 197         * agent's INTx# lines are connected to the system board
 198         * interrupt lines. The following equation can be used to
 199         * determine to which INTx# signal on the system board a given
 200         * device's INTx# line(s) is connected.
 201         *
 202         * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
 203         * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
 204         * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
 205         * INTD# = 3)
 206         */
 207        switch (octeon_bootinfo->board_type) {
 208        case CVMX_BOARD_TYPE_NAO38:
 209                /* This is really the NAC38 */
 210                return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
 211        case CVMX_BOARD_TYPE_EBH3100:
 212        case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
 213        case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
 214                return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
 215        case CVMX_BOARD_TYPE_BBGW_REF:
 216                return "AABCD";
 217        case CVMX_BOARD_TYPE_CUST_DSR1000N:
 218                return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
 219        case CVMX_BOARD_TYPE_THUNDER:
 220        case CVMX_BOARD_TYPE_EBH3000:
 221        default:
 222                return "";
 223        }
 224}
 225
 226/**
 227 * Map a PCI device to the appropriate interrupt line
 228 *
 229 * @dev:    The Linux PCI device structure for the device to map
 230 * @slot:   The slot number for this device on __BUS 0__. Linux
 231 *               enumerates through all the bridges and figures out the
 232 *               slot on Bus 0 where this device eventually hooks to.
 233 * @pin:    The PCI interrupt pin read from the device, then swizzled
 234 *               as it goes through each bridge.
 235 * Returns Interrupt number for the device
 236 */
 237int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
 238                                      u8 slot, u8 pin)
 239{
 240        int irq_num;
 241        const char *interrupts;
 242        int dev_num;
 243
 244        /* Get the board specific interrupt mapping */
 245        interrupts = octeon_get_pci_interrupts();
 246
 247        dev_num = dev->devfn >> 3;
 248        if (dev_num < strlen(interrupts))
 249                irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
 250                        OCTEON_IRQ_PCI_INT0;
 251        else
 252                irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
 253        return irq_num;
 254}
 255
 256
 257/*
 258 * Read a value from configuration space
 259 */
 260static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
 261                              int reg, int size, u32 *val)
 262{
 263        union octeon_pci_address pci_addr;
 264
 265        pci_addr.u64 = 0;
 266        pci_addr.s.upper = 2;
 267        pci_addr.s.io = 1;
 268        pci_addr.s.did = 3;
 269        pci_addr.s.subdid = 1;
 270        pci_addr.s.endian_swap = 1;
 271        pci_addr.s.bus = bus->number;
 272        pci_addr.s.dev = devfn >> 3;
 273        pci_addr.s.func = devfn & 0x7;
 274        pci_addr.s.reg = reg;
 275
 276        switch (size) {
 277        case 4:
 278                *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
 279                return PCIBIOS_SUCCESSFUL;
 280        case 2:
 281                *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
 282                return PCIBIOS_SUCCESSFUL;
 283        case 1:
 284                *val = cvmx_read64_uint8(pci_addr.u64);
 285                return PCIBIOS_SUCCESSFUL;
 286        }
 287        return PCIBIOS_FUNC_NOT_SUPPORTED;
 288}
 289
 290
 291/*
 292 * Write a value to PCI configuration space
 293 */
 294static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
 295                               int reg, int size, u32 val)
 296{
 297        union octeon_pci_address pci_addr;
 298
 299        pci_addr.u64 = 0;
 300        pci_addr.s.upper = 2;
 301        pci_addr.s.io = 1;
 302        pci_addr.s.did = 3;
 303        pci_addr.s.subdid = 1;
 304        pci_addr.s.endian_swap = 1;
 305        pci_addr.s.bus = bus->number;
 306        pci_addr.s.dev = devfn >> 3;
 307        pci_addr.s.func = devfn & 0x7;
 308        pci_addr.s.reg = reg;
 309
 310        switch (size) {
 311        case 4:
 312                cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
 313                return PCIBIOS_SUCCESSFUL;
 314        case 2:
 315                cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
 316                return PCIBIOS_SUCCESSFUL;
 317        case 1:
 318                cvmx_write64_uint8(pci_addr.u64, val);
 319                return PCIBIOS_SUCCESSFUL;
 320        }
 321        return PCIBIOS_FUNC_NOT_SUPPORTED;
 322}
 323
 324
 325static struct pci_ops octeon_pci_ops = {
 326        .read   = octeon_read_config,
 327        .write  = octeon_write_config,
 328};
 329
 330static struct resource octeon_pci_mem_resource = {
 331        .start = 0,
 332        .end = 0,
 333        .name = "Octeon PCI MEM",
 334        .flags = IORESOURCE_MEM,
 335};
 336
 337/*
 338 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
 339 * bridge
 340 */
 341static struct resource octeon_pci_io_resource = {
 342        .start = 0x4000,
 343        .end = OCTEON_PCI_IOSPACE_SIZE - 1,
 344        .name = "Octeon PCI IO",
 345        .flags = IORESOURCE_IO,
 346};
 347
 348static struct pci_controller octeon_pci_controller = {
 349        .pci_ops = &octeon_pci_ops,
 350        .mem_resource = &octeon_pci_mem_resource,
 351        .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
 352        .io_resource = &octeon_pci_io_resource,
 353        .io_offset = 0,
 354        .io_map_base = OCTEON_PCI_IOSPACE_BASE,
 355};
 356
 357
 358/*
 359 * Low level initialize the Octeon PCI controller
 360 */
 361static void octeon_pci_initialize(void)
 362{
 363        union cvmx_pci_cfg01 cfg01;
 364        union cvmx_npi_ctl_status ctl_status;
 365        union cvmx_pci_ctl_status_2 ctl_status_2;
 366        union cvmx_pci_cfg19 cfg19;
 367        union cvmx_pci_cfg16 cfg16;
 368        union cvmx_pci_cfg22 cfg22;
 369        union cvmx_pci_cfg56 cfg56;
 370
 371        /* Reset the PCI Bus */
 372        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
 373        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 374
 375        udelay(2000);           /* Hold PCI reset for 2 ms */
 376
 377        ctl_status.u64 = 0;     /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
 378        ctl_status.s.max_word = 1;
 379        ctl_status.s.timer = 1;
 380        cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
 381
 382        /* Deassert PCI reset and advertize PCX Host Mode Device Capability
 383           (64b) */
 384        cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
 385        cvmx_read_csr(CVMX_CIU_SOFT_PRST);
 386
 387        udelay(2000);           /* Wait 2 ms after deasserting PCI reset */
 388
 389        ctl_status_2.u32 = 0;
 390        ctl_status_2.s.tsr_hwm = 1;     /* Initializes to 0.  Must be set
 391                                           before any PCI reads. */
 392        ctl_status_2.s.bar2pres = 1;    /* Enable BAR2 */
 393        ctl_status_2.s.bar2_enb = 1;
 394        ctl_status_2.s.bar2_cax = 1;    /* Don't use L2 */
 395        ctl_status_2.s.bar2_esx = 1;
 396        ctl_status_2.s.pmo_amod = 1;    /* Round robin priority */
 397        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 398                /* BAR1 hole */
 399                ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
 400                ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
 401                ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
 402                ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
 403                ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
 404                ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
 405        }
 406
 407        octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
 408        udelay(2000);           /* Wait 2 ms before doing PCI reads */
 409
 410        ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
 411        pr_notice("PCI Status: %s %s-bit\n",
 412                  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
 413                  ctl_status_2.s.ap_64ad ? "64" : "32");
 414
 415        if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
 416                union cvmx_pci_cnt_reg cnt_reg_start;
 417                union cvmx_pci_cnt_reg cnt_reg_end;
 418                unsigned long cycles, pci_clock;
 419
 420                cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 421                cycles = read_c0_cvmcount();
 422                udelay(1000);
 423                cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
 424                cycles = read_c0_cvmcount() - cycles;
 425                pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
 426                            (cycles / (mips_hpt_frequency / 1000000));
 427                pr_notice("PCI Clock: %lu MHz\n", pci_clock);
 428        }
 429
 430        /*
 431         * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
 432         * in PCI-X mode to allow four outstanding splits. Otherwise,
 433         * should not change from its reset value. Don't write PCI_CFG19
 434         * in PCI mode (0x82000001 reset value), write it to 0x82000004
 435         * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
 436         * MRBCM -> must be one.
 437         */
 438        if (ctl_status_2.s.ap_pcix) {
 439                cfg19.u32 = 0;
 440                /*
 441                 * Target Delayed/Split request outstanding maximum
 442                 * count. [1..31] and 0=32.  NOTE: If the user
 443                 * programs these bits beyond the Designed Maximum
 444                 * outstanding count, then the designed maximum table
 445                 * depth will be used instead.  No additional
 446                 * Deferred/Split transactions will be accepted if
 447                 * this outstanding maximum count is
 448                 * reached. Furthermore, no additional deferred/split
 449                 * transactions will be accepted if the I/O delay/ I/O
 450                 * Split Request outstanding maximum is reached.
 451                 */
 452                cfg19.s.tdomc = 4;
 453                /*
 454                 * Master Deferred Read Request Outstanding Max Count
 455                 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
 456                 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
 457                 * 5 2 110 6 3 111 7 3 For example, if these bits are
 458                 * programmed to 100, the core can support 2 DAC
 459                 * cycles, 4 SAC cycles or a combination of 1 DAC and
 460                 * 2 SAC cycles. NOTE: For the PCI-X maximum
 461                 * outstanding split transactions, refer to
 462                 * CRE0[22:20].
 463                 */
 464                cfg19.s.mdrrmc = 2;
 465                /*
 466                 * Master Request (Memory Read) Byte Count/Byte Enable
 467                 * select. 0 = Byte Enables valid. In PCI mode, a
 468                 * burst transaction cannot be performed using Memory
 469                 * Read command=4?h6. 1 = DWORD Byte Count valid
 470                 * (default). In PCI Mode, the memory read byte
 471                 * enables are automatically generated by the
 472                 * core. Note: N3 Master Request transaction sizes are
 473                 * always determined through the
 474                 * am_attr[<35:32>|<7:0>] field.
 475                 */
 476                cfg19.s.mrbcm = 1;
 477                octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
 478        }
 479
 480
 481        cfg01.u32 = 0;
 482        cfg01.s.msae = 1;       /* Memory Space Access Enable */
 483        cfg01.s.me = 1;         /* Master Enable */
 484        cfg01.s.pee = 1;        /* PERR# Enable */
 485        cfg01.s.see = 1;        /* System Error Enable */
 486        cfg01.s.fbbe = 1;       /* Fast Back to Back Transaction Enable */
 487
 488        octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
 489
 490#ifdef USE_OCTEON_INTERNAL_ARBITER
 491        /*
 492         * When OCTEON is a PCI host, most systems will use OCTEON's
 493         * internal arbiter, so must enable it before any PCI/PCI-X
 494         * traffic can occur.
 495         */
 496        {
 497                union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
 498
 499                pci_int_arb_cfg.u64 = 0;
 500                pci_int_arb_cfg.s.en = 1;       /* Internal arbiter enable */
 501                cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
 502        }
 503#endif  /* USE_OCTEON_INTERNAL_ARBITER */
 504
 505        /*
 506         * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
 507         * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
 508         * 1..7.
 509         */
 510        cfg16.u32 = 0;
 511        cfg16.s.mltd = 1;       /* Master Latency Timer Disable */
 512        octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
 513
 514        /*
 515         * Should be written to 0x4ff00. MTTV -> must be zero.
 516         * FLUSH -> must be 1. MRV -> should be 0xFF.
 517         */
 518        cfg22.u32 = 0;
 519        /* Master Retry Value [1..255] and 0=infinite */
 520        cfg22.s.mrv = 0xff;
 521        /*
 522         * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
 523         * N3K operation.
 524         */
 525        cfg22.s.flush = 1;
 526        octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
 527
 528        /*
 529         * MOST Indicates the maximum number of outstanding splits (in -1
 530         * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
 531         * affected by the MOST selection.  Should generally be written
 532         * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
 533         * depending on the desired MOST of 3, 2, 1, or 0, respectively.
 534         */
 535        cfg56.u32 = 0;
 536        cfg56.s.pxcid = 7;      /* RO - PCI-X Capability ID */
 537        cfg56.s.ncp = 0xe8;     /* RO - Next Capability Pointer */
 538        cfg56.s.dpere = 1;      /* Data Parity Error Recovery Enable */
 539        cfg56.s.roe = 1;        /* Relaxed Ordering Enable */
 540        cfg56.s.mmbc = 1;       /* Maximum Memory Byte Count
 541                                   [0=512B,1=1024B,2=2048B,3=4096B] */
 542        cfg56.s.most = 3;       /* Maximum outstanding Split transactions [0=1
 543                                   .. 7=32] */
 544
 545        octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
 546
 547        /*
 548         * Affects PCI performance when OCTEON services reads to its
 549         * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
 550         * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
 551         * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
 552         * these values need to be changed so they won't possibly prefetch off
 553         * of the end of memory if PCI is DMAing a buffer at the end of
 554         * memory. Note that these values differ from their reset values.
 555         */
 556        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
 557        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
 558        octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
 559}
 560
 561
 562/*
 563 * Initialize the Octeon PCI controller
 564 */
 565static int __init octeon_pci_setup(void)
 566{
 567        union cvmx_npi_mem_access_subidx mem_access;
 568        int index;
 569
 570        /* Only these chips have PCI */
 571        if (octeon_has_feature(OCTEON_FEATURE_PCIE))
 572                return 0;
 573
 574        /* Point pcibios_map_irq() to the PCI version of it */
 575        octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
 576
 577        /* Only use the big bars on chips that support it */
 578        if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
 579            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
 580            OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
 581                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
 582        else
 583                octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
 584
 585        if (!octeon_is_pci_host()) {
 586                pr_notice("Not in host mode, PCI Controller not initialized\n");
 587                return 0;
 588        }
 589
 590        /* PCI I/O and PCI MEM values */
 591        set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
 592        ioport_resource.start = 0;
 593        ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
 594
 595        pr_notice("%s Octeon big bar support\n",
 596                  (octeon_dma_bar_type ==
 597                  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
 598
 599        octeon_pci_initialize();
 600
 601        mem_access.u64 = 0;
 602        mem_access.s.esr = 1;   /* Endian-Swap on read. */
 603        mem_access.s.esw = 1;   /* Endian-Swap on write. */
 604        mem_access.s.nsr = 0;   /* No-Snoop on read. */
 605        mem_access.s.nsw = 0;   /* No-Snoop on write. */
 606        mem_access.s.ror = 0;   /* Relax Read on read. */
 607        mem_access.s.row = 0;   /* Relax Order on write. */
 608        mem_access.s.ba = 0;    /* PCI Address bits [63:36]. */
 609        cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
 610
 611        /*
 612         * Remap the Octeon BAR 2 above all 32 bit devices
 613         * (0x8000000000ul).  This is done here so it is remapped
 614         * before the readl()'s below. We don't want BAR2 overlapping
 615         * with BAR0/BAR1 during these reads.
 616         */
 617        octeon_npi_write32(CVMX_NPI_PCI_CFG08,
 618                           (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
 619        octeon_npi_write32(CVMX_NPI_PCI_CFG09,
 620                           (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
 621
 622        if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
 623                /* Remap the Octeon BAR 0 to 0-2GB */
 624                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
 625                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 626
 627                /*
 628                 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
 629                 * BAR 1 hole).
 630                 */
 631                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
 632                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 633
 634                /* BAR1 movable mappings set for identity mapping */
 635                octeon_bar1_pci_phys = 0x80000000ull;
 636                for (index = 0; index < 32; index++) {
 637                        union cvmx_pci_bar1_indexx bar1_index;
 638
 639                        bar1_index.u32 = 0;
 640                        /* Address bits[35:22] sent to L2C */
 641                        bar1_index.s.addr_idx =
 642                                (octeon_bar1_pci_phys >> 22) + index;
 643                        /* Don't put PCI accesses in L2. */
 644                        bar1_index.s.ca = 1;
 645                        /* Endian Swap Mode */
 646                        bar1_index.s.end_swp = 1;
 647                        /* Set '1' when the selected address range is valid. */
 648                        bar1_index.s.addr_v = 1;
 649                        octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 650                                           bar1_index.u32);
 651                }
 652
 653                /* Devices go after BAR1 */
 654                octeon_pci_mem_resource.start =
 655                        OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
 656                        (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
 657                octeon_pci_mem_resource.end =
 658                        octeon_pci_mem_resource.start + (1ul << 30);
 659        } else {
 660                /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
 661                octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
 662                octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
 663
 664                /* Remap the Octeon BAR 1 to map 0-128MB */
 665                octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
 666                octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
 667
 668                /* BAR1 movable regions contiguous to cover the swiotlb */
 669                octeon_bar1_pci_phys =
 670                        virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
 671
 672                for (index = 0; index < 32; index++) {
 673                        union cvmx_pci_bar1_indexx bar1_index;
 674
 675                        bar1_index.u32 = 0;
 676                        /* Address bits[35:22] sent to L2C */
 677                        bar1_index.s.addr_idx =
 678                                (octeon_bar1_pci_phys >> 22) + index;
 679                        /* Don't put PCI accesses in L2. */
 680                        bar1_index.s.ca = 1;
 681                        /* Endian Swap Mode */
 682                        bar1_index.s.end_swp = 1;
 683                        /* Set '1' when the selected address range is valid. */
 684                        bar1_index.s.addr_v = 1;
 685                        octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
 686                                           bar1_index.u32);
 687                }
 688
 689                /* Devices go after BAR0 */
 690                octeon_pci_mem_resource.start =
 691                        OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
 692                        (4ul << 10);
 693                octeon_pci_mem_resource.end =
 694                        octeon_pci_mem_resource.start + (1ul << 30);
 695        }
 696
 697        register_pci_controller(&octeon_pci_controller);
 698
 699        /*
 700         * Clear any errors that might be pending from before the bus
 701         * was setup properly.
 702         */
 703        cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
 704
 705        if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
 706                                                   -1, NULL, 0)))
 707                pr_err("Registration of co_pci_edac failed!\n");
 708
 709        octeon_pci_dma_init();
 710
 711        return 0;
 712}
 713
 714arch_initcall(octeon_pci_setup);
 715