linux/arch/parisc/kernel/firmware.c
<<
>>
Prefs
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *      PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*      I think it would be in everyone's best interest to follow this
  24 *      guidelines when writing PDC wrappers:
  25 *
  26 *       - the name of the pdc wrapper should match one of the macros
  27 *         used for the first two arguments
  28 *       - don't use caps for random parts of the name
  29 *       - use the static PDC result buffers and "copyout" to structs
  30 *         supplied by the caller to encapsulate alignment restrictions
  31 *       - hold pdc_lock while in PDC or using static result buffers
  32 *       - use __pa() to convert virtual (kernel) pointers to physical
  33 *         ones.
  34 *       - the name of the struct used for pdc return values should equal
  35 *         one of the macros used for the first two arguments to the
  36 *         corresponding PDC call
  37 *       - keep the order of arguments
  38 *       - don't be smart (setting trailing NUL bytes for strings, return
  39 *         something useful even if the call failed) unless you are sure
  40 *         it's not going to affect functionality or performance
  41 *
  42 *      Example:
  43 *      int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *      {
  45 *              int retval;
  46 *
  47 *              spin_lock_irq(&pdc_lock);
  48 *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *              convert_to_wide(pdc_result);
  50 *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *              spin_unlock_irq(&pdc_lock);
  52 *
  53 *              return retval;
  54 *      }
  55 *                                      prumpf  991016  
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>      /* for boot_cpu_data */
  71
  72static DEFINE_SPINLOCK(pdc_lock);
  73extern unsigned long pdc_result[NUM_PDC_RESULT];
  74extern unsigned long pdc_result2[NUM_PDC_RESULT];
  75
  76#ifdef CONFIG_64BIT
  77#define WIDE_FIRMWARE 0x1
  78#define NARROW_FIRMWARE 0x2
  79
  80/* Firmware needs to be initially set to narrow to determine the 
  81 * actual firmware width. */
  82int parisc_narrow_firmware __read_mostly = 1;
  83#endif
  84
  85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  86 * and MEM_PDC calls are always the same width as the OS.
  87 * Some PAT boxes may have 64-bit IODC I/O.
  88 *
  89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  91 * This allowed wide kernels to run on Cxxx boxes.
  92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  94 */
  95
  96#ifdef CONFIG_64BIT
  97long real64_call(unsigned long function, ...);
  98#endif
  99long real32_call(unsigned long function, ...);
 100
 101#ifdef CONFIG_64BIT
 102#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 103#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 104#else
 105#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 107#endif
 108
 109
 110/**
 111 * f_extend - Convert PDC addresses to kernel addresses.
 112 * @address: Address returned from PDC.
 113 *
 114 * This function is used to convert PDC addresses into kernel addresses
 115 * when the PDC address size and kernel address size are different.
 116 */
 117static unsigned long f_extend(unsigned long address)
 118{
 119#ifdef CONFIG_64BIT
 120        if(unlikely(parisc_narrow_firmware)) {
 121                if((address & 0xff000000) == 0xf0000000)
 122                        return 0xf0f0f0f000000000UL | (u32)address;
 123
 124                if((address & 0xf0000000) == 0xf0000000)
 125                        return 0xffffffff00000000UL | (u32)address;
 126        }
 127#endif
 128        return address;
 129}
 130
 131/**
 132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 133 * @address: The return buffer from PDC.
 134 *
 135 * This function is used to convert the return buffer addresses retrieved from PDC
 136 * into kernel addresses when the PDC address size and kernel address size are
 137 * different.
 138 */
 139static void convert_to_wide(unsigned long *addr)
 140{
 141#ifdef CONFIG_64BIT
 142        int i;
 143        unsigned int *p = (unsigned int *)addr;
 144
 145        if(unlikely(parisc_narrow_firmware)) {
 146                for(i = 31; i >= 0; --i)
 147                        addr[i] = p[i];
 148        }
 149#endif
 150}
 151
 152#ifdef CONFIG_64BIT
 153void set_firmware_width_unlocked(void)
 154{
 155        int ret;
 156
 157        ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 158                __pa(pdc_result), 0);
 159        convert_to_wide(pdc_result);
 160        if (pdc_result[0] != NARROW_FIRMWARE)
 161                parisc_narrow_firmware = 0;
 162}
 163        
 164/**
 165 * set_firmware_width - Determine if the firmware is wide or narrow.
 166 * 
 167 * This function must be called before any pdc_* function that uses the
 168 * convert_to_wide function.
 169 */
 170void set_firmware_width(void)
 171{
 172        unsigned long flags;
 173        spin_lock_irqsave(&pdc_lock, flags);
 174        set_firmware_width_unlocked();
 175        spin_unlock_irqrestore(&pdc_lock, flags);
 176}
 177#else
 178void set_firmware_width_unlocked(void)
 179{
 180        return;
 181}
 182
 183void set_firmware_width(void)
 184{
 185        return;
 186}
 187#endif /*CONFIG_64BIT*/
 188
 189/**
 190 * pdc_emergency_unlock - Unlock the linux pdc lock
 191 *
 192 * This call unlocks the linux pdc lock in case we need some PDC functions
 193 * (like pdc_add_valid) during kernel stack dump.
 194 */
 195void pdc_emergency_unlock(void)
 196{
 197        /* Spinlock DEBUG code freaks out if we unconditionally unlock */
 198        if (spin_is_locked(&pdc_lock))
 199                spin_unlock(&pdc_lock);
 200}
 201
 202
 203/**
 204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 205 * @address: Address to be verified.
 206 *
 207 * This PDC call attempts to read from the specified address and verifies
 208 * if the address is valid.
 209 * 
 210 * The return value is PDC_OK (0) in case accessing this address is valid.
 211 */
 212int pdc_add_valid(unsigned long address)
 213{
 214        int retval;
 215        unsigned long flags;
 216
 217        spin_lock_irqsave(&pdc_lock, flags);
 218        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 219        spin_unlock_irqrestore(&pdc_lock, flags);
 220
 221        return retval;
 222}
 223EXPORT_SYMBOL(pdc_add_valid);
 224
 225/**
 226 * pdc_chassis_info - Return chassis information.
 227 * @result: The return buffer.
 228 * @chassis_info: The memory buffer address.
 229 * @len: The size of the memory buffer address.
 230 *
 231 * An HVERSION dependent call for returning the chassis information.
 232 */
 233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 234{
 235        int retval;
 236        unsigned long flags;
 237
 238        spin_lock_irqsave(&pdc_lock, flags);
 239        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 240        memcpy(&pdc_result2, led_info, len);
 241        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 242                              __pa(pdc_result), __pa(pdc_result2), len);
 243        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 244        memcpy(led_info, pdc_result2, len);
 245        spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247        return retval;
 248}
 249
 250/**
 251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 252 * @retval: -1 on error, 0 on success. Other value are PDC errors
 253 * 
 254 * Must be correctly formatted or expect system crash
 255 */
 256#ifdef CONFIG_64BIT
 257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 258{
 259        int retval = 0;
 260        unsigned long flags;
 261        
 262        if (!is_pdc_pat())
 263                return -1;
 264
 265        spin_lock_irqsave(&pdc_lock, flags);
 266        retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 267        spin_unlock_irqrestore(&pdc_lock, flags);
 268
 269        return retval;
 270}
 271#endif
 272
 273/**
 274 * pdc_chassis_disp - Updates chassis code
 275 * @retval: -1 on error, 0 on success
 276 */
 277int pdc_chassis_disp(unsigned long disp)
 278{
 279        int retval = 0;
 280        unsigned long flags;
 281
 282        spin_lock_irqsave(&pdc_lock, flags);
 283        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 284        spin_unlock_irqrestore(&pdc_lock, flags);
 285
 286        return retval;
 287}
 288
 289/**
 290 * pdc_chassis_warn - Fetches chassis warnings
 291 * @retval: -1 on error, 0 on success
 292 */
 293int pdc_chassis_warn(unsigned long *warn)
 294{
 295        int retval = 0;
 296        unsigned long flags;
 297
 298        spin_lock_irqsave(&pdc_lock, flags);
 299        retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 300        *warn = pdc_result[0];
 301        spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303        return retval;
 304}
 305
 306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 307{
 308        int ret;
 309
 310        ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 311        convert_to_wide(pdc_result);
 312        pdc_coproc_info->ccr_functional = pdc_result[0];
 313        pdc_coproc_info->ccr_present = pdc_result[1];
 314        pdc_coproc_info->revision = pdc_result[17];
 315        pdc_coproc_info->model = pdc_result[18];
 316
 317        return ret;
 318}
 319
 320/**
 321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 322 * @pdc_coproc_info: Return buffer address.
 323 *
 324 * This PDC call returns the presence and status of all the coprocessors
 325 * attached to the processor.
 326 */
 327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 328{
 329        int ret;
 330        unsigned long flags;
 331
 332        spin_lock_irqsave(&pdc_lock, flags);
 333        ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 334        spin_unlock_irqrestore(&pdc_lock, flags);
 335
 336        return ret;
 337}
 338
 339/**
 340 * pdc_iodc_read - Read data from the modules IODC.
 341 * @actcnt: The actual number of bytes.
 342 * @hpa: The HPA of the module for the iodc read.
 343 * @index: The iodc entry point.
 344 * @iodc_data: A buffer memory for the iodc options.
 345 * @iodc_data_size: Size of the memory buffer.
 346 *
 347 * This PDC call reads from the IODC of the module specified by the hpa
 348 * argument.
 349 */
 350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 351                  void *iodc_data, unsigned int iodc_data_size)
 352{
 353        int retval;
 354        unsigned long flags;
 355
 356        spin_lock_irqsave(&pdc_lock, flags);
 357        retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 358                              index, __pa(pdc_result2), iodc_data_size);
 359        convert_to_wide(pdc_result);
 360        *actcnt = pdc_result[0];
 361        memcpy(iodc_data, pdc_result2, iodc_data_size);
 362        spin_unlock_irqrestore(&pdc_lock, flags);
 363
 364        return retval;
 365}
 366EXPORT_SYMBOL(pdc_iodc_read);
 367
 368/**
 369 * pdc_system_map_find_mods - Locate unarchitected modules.
 370 * @pdc_mod_info: Return buffer address.
 371 * @mod_path: pointer to dev path structure.
 372 * @mod_index: fixed address module index.
 373 *
 374 * To locate and identify modules which reside at fixed I/O addresses, which
 375 * do not self-identify via architected bus walks.
 376 */
 377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 378                             struct pdc_module_path *mod_path, long mod_index)
 379{
 380        int retval;
 381        unsigned long flags;
 382
 383        spin_lock_irqsave(&pdc_lock, flags);
 384        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 385                              __pa(pdc_result2), mod_index);
 386        convert_to_wide(pdc_result);
 387        memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 388        memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 389        spin_unlock_irqrestore(&pdc_lock, flags);
 390
 391        pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 392        return retval;
 393}
 394
 395/**
 396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 397 * @pdc_addr_info: Return buffer address.
 398 * @mod_index: Fixed address module index.
 399 * @addr_index: Address range index.
 400 * 
 401 * Retrieve additional information about subsequent address ranges for modules
 402 * with multiple address ranges.  
 403 */
 404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 405                              long mod_index, long addr_index)
 406{
 407        int retval;
 408        unsigned long flags;
 409
 410        spin_lock_irqsave(&pdc_lock, flags);
 411        retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 412                              mod_index, addr_index);
 413        convert_to_wide(pdc_result);
 414        memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 415        spin_unlock_irqrestore(&pdc_lock, flags);
 416
 417        pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 418        return retval;
 419}
 420
 421/**
 422 * pdc_model_info - Return model information about the processor.
 423 * @model: The return buffer.
 424 *
 425 * Returns the version numbers, identifiers, and capabilities from the processor module.
 426 */
 427int pdc_model_info(struct pdc_model *model) 
 428{
 429        int retval;
 430        unsigned long flags;
 431
 432        spin_lock_irqsave(&pdc_lock, flags);
 433        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 434        convert_to_wide(pdc_result);
 435        memcpy(model, pdc_result, sizeof(*model));
 436        spin_unlock_irqrestore(&pdc_lock, flags);
 437
 438        return retval;
 439}
 440
 441/**
 442 * pdc_model_sysmodel - Get the system model name.
 443 * @name: A char array of at least 81 characters.
 444 *
 445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 447 * on HP/UX.
 448 */
 449int pdc_model_sysmodel(char *name)
 450{
 451        int retval;
 452        unsigned long flags;
 453
 454        spin_lock_irqsave(&pdc_lock, flags);
 455        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 456                              OS_ID_HPUX, __pa(name));
 457        convert_to_wide(pdc_result);
 458
 459        if (retval == PDC_OK) {
 460                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 461        } else {
 462                name[0] = 0;
 463        }
 464        spin_unlock_irqrestore(&pdc_lock, flags);
 465
 466        return retval;
 467}
 468
 469/**
 470 * pdc_model_versions - Identify the version number of each processor.
 471 * @cpu_id: The return buffer.
 472 * @id: The id of the processor to check.
 473 *
 474 * Returns the version number for each processor component.
 475 *
 476 * This comment was here before, but I do not know what it means :( -RB
 477 * id: 0 = cpu revision, 1 = boot-rom-version
 478 */
 479int pdc_model_versions(unsigned long *versions, int id)
 480{
 481        int retval;
 482        unsigned long flags;
 483
 484        spin_lock_irqsave(&pdc_lock, flags);
 485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 486        convert_to_wide(pdc_result);
 487        *versions = pdc_result[0];
 488        spin_unlock_irqrestore(&pdc_lock, flags);
 489
 490        return retval;
 491}
 492
 493/**
 494 * pdc_model_cpuid - Returns the CPU_ID.
 495 * @cpu_id: The return buffer.
 496 *
 497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 498 * the processor module.
 499 */
 500int pdc_model_cpuid(unsigned long *cpu_id)
 501{
 502        int retval;
 503        unsigned long flags;
 504
 505        spin_lock_irqsave(&pdc_lock, flags);
 506        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 507        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 508        convert_to_wide(pdc_result);
 509        *cpu_id = pdc_result[0];
 510        spin_unlock_irqrestore(&pdc_lock, flags);
 511
 512        return retval;
 513}
 514
 515/**
 516 * pdc_model_capabilities - Returns the platform capabilities.
 517 * @capabilities: The return buffer.
 518 *
 519 * Returns information about platform support for 32- and/or 64-bit
 520 * OSes, IO-PDIR coherency, and virtual aliasing.
 521 */
 522int pdc_model_capabilities(unsigned long *capabilities)
 523{
 524        int retval;
 525        unsigned long flags;
 526
 527        spin_lock_irqsave(&pdc_lock, flags);
 528        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 529        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 530        convert_to_wide(pdc_result);
 531        if (retval == PDC_OK) {
 532                *capabilities = pdc_result[0];
 533        } else {
 534                *capabilities = PDC_MODEL_OS32;
 535        }
 536        spin_unlock_irqrestore(&pdc_lock, flags);
 537
 538        return retval;
 539}
 540
 541/**
 542 * pdc_cache_info - Return cache and TLB information.
 543 * @cache_info: The return buffer.
 544 *
 545 * Returns information about the processor's cache and TLB.
 546 */
 547int pdc_cache_info(struct pdc_cache_info *cache_info)
 548{
 549        int retval;
 550        unsigned long flags;
 551
 552        spin_lock_irqsave(&pdc_lock, flags);
 553        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 554        convert_to_wide(pdc_result);
 555        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 556        spin_unlock_irqrestore(&pdc_lock, flags);
 557
 558        return retval;
 559}
 560
 561/**
 562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 563 * @space_bits: Should be 0, if not, bad mojo!
 564 *
 565 * Returns information about Space ID hashing.
 566 */
 567int pdc_spaceid_bits(unsigned long *space_bits)
 568{
 569        int retval;
 570        unsigned long flags;
 571
 572        spin_lock_irqsave(&pdc_lock, flags);
 573        pdc_result[0] = 0;
 574        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 575        convert_to_wide(pdc_result);
 576        *space_bits = pdc_result[0];
 577        spin_unlock_irqrestore(&pdc_lock, flags);
 578
 579        return retval;
 580}
 581
 582#ifndef CONFIG_PA20
 583/**
 584 * pdc_btlb_info - Return block TLB information.
 585 * @btlb: The return buffer.
 586 *
 587 * Returns information about the hardware Block TLB.
 588 */
 589int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 590{
 591        int retval;
 592        unsigned long flags;
 593
 594        spin_lock_irqsave(&pdc_lock, flags);
 595        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 596        memcpy(btlb, pdc_result, sizeof(*btlb));
 597        spin_unlock_irqrestore(&pdc_lock, flags);
 598
 599        if(retval < 0) {
 600                btlb->max_size = 0;
 601        }
 602        return retval;
 603}
 604
 605/**
 606 * pdc_mem_map_hpa - Find fixed module information.  
 607 * @address: The return buffer
 608 * @mod_path: pointer to dev path structure.
 609 *
 610 * This call was developed for S700 workstations to allow the kernel to find
 611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 613 * call.
 614 *
 615 * This call is supported by all existing S700 workstations (up to  Gecko).
 616 */
 617int pdc_mem_map_hpa(struct pdc_memory_map *address,
 618                struct pdc_module_path *mod_path)
 619{
 620        int retval;
 621        unsigned long flags;
 622
 623        spin_lock_irqsave(&pdc_lock, flags);
 624        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 625        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 626                                __pa(pdc_result2));
 627        memcpy(address, pdc_result, sizeof(*address));
 628        spin_unlock_irqrestore(&pdc_lock, flags);
 629
 630        return retval;
 631}
 632#endif  /* !CONFIG_PA20 */
 633
 634/**
 635 * pdc_lan_station_id - Get the LAN address.
 636 * @lan_addr: The return buffer.
 637 * @hpa: The network device HPA.
 638 *
 639 * Get the LAN station address when it is not directly available from the LAN hardware.
 640 */
 641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 642{
 643        int retval;
 644        unsigned long flags;
 645
 646        spin_lock_irqsave(&pdc_lock, flags);
 647        retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 648                        __pa(pdc_result), hpa);
 649        if (retval < 0) {
 650                /* FIXME: else read MAC from NVRAM */
 651                memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 652        } else {
 653                memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 654        }
 655        spin_unlock_irqrestore(&pdc_lock, flags);
 656
 657        return retval;
 658}
 659EXPORT_SYMBOL(pdc_lan_station_id);
 660
 661/**
 662 * pdc_stable_read - Read data from Stable Storage.
 663 * @staddr: Stable Storage address to access.
 664 * @memaddr: The memory address where Stable Storage data shall be copied.
 665 * @count: number of bytes to transfer. count is multiple of 4.
 666 *
 667 * This PDC call reads from the Stable Storage address supplied in staddr
 668 * and copies count bytes to the memory address memaddr.
 669 * The call will fail if staddr+count > PDC_STABLE size.
 670 */
 671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 672{
 673       int retval;
 674        unsigned long flags;
 675
 676       spin_lock_irqsave(&pdc_lock, flags);
 677       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 678               __pa(pdc_result), count);
 679       convert_to_wide(pdc_result);
 680       memcpy(memaddr, pdc_result, count);
 681       spin_unlock_irqrestore(&pdc_lock, flags);
 682
 683       return retval;
 684}
 685EXPORT_SYMBOL(pdc_stable_read);
 686
 687/**
 688 * pdc_stable_write - Write data to Stable Storage.
 689 * @staddr: Stable Storage address to access.
 690 * @memaddr: The memory address where Stable Storage data shall be read from.
 691 * @count: number of bytes to transfer. count is multiple of 4.
 692 *
 693 * This PDC call reads count bytes from the supplied memaddr address,
 694 * and copies count bytes to the Stable Storage address staddr.
 695 * The call will fail if staddr+count > PDC_STABLE size.
 696 */
 697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 698{
 699       int retval;
 700        unsigned long flags;
 701
 702       spin_lock_irqsave(&pdc_lock, flags);
 703       memcpy(pdc_result, memaddr, count);
 704       convert_to_wide(pdc_result);
 705       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 706               __pa(pdc_result), count);
 707       spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709       return retval;
 710}
 711EXPORT_SYMBOL(pdc_stable_write);
 712
 713/**
 714 * pdc_stable_get_size - Get Stable Storage size in bytes.
 715 * @size: pointer where the size will be stored.
 716 *
 717 * This PDC call returns the number of bytes in the processor's Stable
 718 * Storage, which is the number of contiguous bytes implemented in Stable
 719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 720 * which is a multiple of four.
 721 */
 722int pdc_stable_get_size(unsigned long *size)
 723{
 724       int retval;
 725        unsigned long flags;
 726
 727       spin_lock_irqsave(&pdc_lock, flags);
 728       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 729       *size = pdc_result[0];
 730       spin_unlock_irqrestore(&pdc_lock, flags);
 731
 732       return retval;
 733}
 734EXPORT_SYMBOL(pdc_stable_get_size);
 735
 736/**
 737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 738 *
 739 * This PDC call is meant to be used to check the integrity of the current
 740 * contents of Stable Storage.
 741 */
 742int pdc_stable_verify_contents(void)
 743{
 744       int retval;
 745        unsigned long flags;
 746
 747       spin_lock_irqsave(&pdc_lock, flags);
 748       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 749       spin_unlock_irqrestore(&pdc_lock, flags);
 750
 751       return retval;
 752}
 753EXPORT_SYMBOL(pdc_stable_verify_contents);
 754
 755/**
 756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 757 * the validity indicator.
 758 *
 759 * This PDC call will erase all contents of Stable Storage. Use with care!
 760 */
 761int pdc_stable_initialize(void)
 762{
 763       int retval;
 764        unsigned long flags;
 765
 766       spin_lock_irqsave(&pdc_lock, flags);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 768       spin_unlock_irqrestore(&pdc_lock, flags);
 769
 770       return retval;
 771}
 772EXPORT_SYMBOL(pdc_stable_initialize);
 773
 774/**
 775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 776 * @hwpath: fully bc.mod style path to the device.
 777 * @initiator: the array to return the result into
 778 *
 779 * Get the SCSI operational parameters from PDC.
 780 * Needed since HPUX never used BIOS or symbios card NVRAM.
 781 * Most ncr/sym cards won't have an entry and just use whatever
 782 * capabilities of the card are (eg Ultra, LVD). But there are
 783 * several cases where it's useful:
 784 *    o set SCSI id for Multi-initiator clusters,
 785 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 786 *    o bus width exported is less than what the interface chip supports.
 787 */
 788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 789{
 790        int retval;
 791        unsigned long flags;
 792
 793        spin_lock_irqsave(&pdc_lock, flags);
 794
 795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 797        strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 798
 799        retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 800                              __pa(pdc_result), __pa(hwpath));
 801        if (retval < PDC_OK)
 802                goto out;
 803
 804        if (pdc_result[0] < 16) {
 805                initiator->host_id = pdc_result[0];
 806        } else {
 807                initiator->host_id = -1;
 808        }
 809
 810        /*
 811         * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 812         * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 813         */
 814        switch (pdc_result[1]) {
 815                case  1: initiator->factor = 50; break;
 816                case  2: initiator->factor = 25; break;
 817                case  5: initiator->factor = 12; break;
 818                case 25: initiator->factor = 10; break;
 819                case 20: initiator->factor = 12; break;
 820                case 40: initiator->factor = 10; break;
 821                default: initiator->factor = -1; break;
 822        }
 823
 824        if (IS_SPROCKETS()) {
 825                initiator->width = pdc_result[4];
 826                initiator->mode = pdc_result[5];
 827        } else {
 828                initiator->width = -1;
 829                initiator->mode = -1;
 830        }
 831
 832 out:
 833        spin_unlock_irqrestore(&pdc_lock, flags);
 834
 835        return (retval >= PDC_OK);
 836}
 837EXPORT_SYMBOL(pdc_get_initiator);
 838
 839
 840/**
 841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 842 * @num_entries: The return value.
 843 * @hpa: The HPA for the device.
 844 *
 845 * This PDC function returns the number of entries in the specified cell's
 846 * interrupt table.
 847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 848 */ 
 849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 850{
 851        int retval;
 852        unsigned long flags;
 853
 854        spin_lock_irqsave(&pdc_lock, flags);
 855        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 856                              __pa(pdc_result), hpa);
 857        convert_to_wide(pdc_result);
 858        *num_entries = pdc_result[0];
 859        spin_unlock_irqrestore(&pdc_lock, flags);
 860
 861        return retval;
 862}
 863
 864/** 
 865 * pdc_pci_irt - Get the PCI interrupt routing table.
 866 * @num_entries: The number of entries in the table.
 867 * @hpa: The Hard Physical Address of the device.
 868 * @tbl: 
 869 *
 870 * Get the PCI interrupt routing table for the device at the given HPA.
 871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 872 */
 873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 874{
 875        int retval;
 876        unsigned long flags;
 877
 878        BUG_ON((unsigned long)tbl & 0x7);
 879
 880        spin_lock_irqsave(&pdc_lock, flags);
 881        pdc_result[0] = num_entries;
 882        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 883                              __pa(pdc_result), hpa, __pa(tbl));
 884        spin_unlock_irqrestore(&pdc_lock, flags);
 885
 886        return retval;
 887}
 888
 889
 890#if 0   /* UNTEST CODE - left here in case someone needs it */
 891
 892/** 
 893 * pdc_pci_config_read - read PCI config space.
 894 * @hpa         token from PDC to indicate which PCI device
 895 * @pci_addr    configuration space address to read from
 896 *
 897 * Read PCI Configuration space *before* linux PCI subsystem is running.
 898 */
 899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 900{
 901        int retval;
 902        unsigned long flags;
 903
 904        spin_lock_irqsave(&pdc_lock, flags);
 905        pdc_result[0] = 0;
 906        pdc_result[1] = 0;
 907        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 908                              __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 909        spin_unlock_irqrestore(&pdc_lock, flags);
 910
 911        return retval ? ~0 : (unsigned int) pdc_result[0];
 912}
 913
 914
 915/** 
 916 * pdc_pci_config_write - read PCI config space.
 917 * @hpa         token from PDC to indicate which PCI device
 918 * @pci_addr    configuration space address to write
 919 * @val         value we want in the 32-bit register
 920 *
 921 * Write PCI Configuration space *before* linux PCI subsystem is running.
 922 */
 923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 924{
 925        int retval;
 926        unsigned long flags;
 927
 928        spin_lock_irqsave(&pdc_lock, flags);
 929        pdc_result[0] = 0;
 930        retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 931                              __pa(pdc_result), hpa,
 932                              cfg_addr&~3UL, 4UL, (unsigned long) val);
 933        spin_unlock_irqrestore(&pdc_lock, flags);
 934
 935        return retval;
 936}
 937#endif /* UNTESTED CODE */
 938
 939/**
 940 * pdc_tod_read - Read the Time-Of-Day clock.
 941 * @tod: The return buffer:
 942 *
 943 * Read the Time-Of-Day clock
 944 */
 945int pdc_tod_read(struct pdc_tod *tod)
 946{
 947        int retval;
 948        unsigned long flags;
 949
 950        spin_lock_irqsave(&pdc_lock, flags);
 951        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 952        convert_to_wide(pdc_result);
 953        memcpy(tod, pdc_result, sizeof(*tod));
 954        spin_unlock_irqrestore(&pdc_lock, flags);
 955
 956        return retval;
 957}
 958EXPORT_SYMBOL(pdc_tod_read);
 959
 960/**
 961 * pdc_tod_set - Set the Time-Of-Day clock.
 962 * @sec: The number of seconds since epoch.
 963 * @usec: The number of micro seconds.
 964 *
 965 * Set the Time-Of-Day clock.
 966 */ 
 967int pdc_tod_set(unsigned long sec, unsigned long usec)
 968{
 969        int retval;
 970        unsigned long flags;
 971
 972        spin_lock_irqsave(&pdc_lock, flags);
 973        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 974        spin_unlock_irqrestore(&pdc_lock, flags);
 975
 976        return retval;
 977}
 978EXPORT_SYMBOL(pdc_tod_set);
 979
 980#ifdef CONFIG_64BIT
 981int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 982                struct pdc_memory_table *tbl, unsigned long entries)
 983{
 984        int retval;
 985        unsigned long flags;
 986
 987        spin_lock_irqsave(&pdc_lock, flags);
 988        retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 989        convert_to_wide(pdc_result);
 990        memcpy(r_addr, pdc_result, sizeof(*r_addr));
 991        memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 992        spin_unlock_irqrestore(&pdc_lock, flags);
 993
 994        return retval;
 995}
 996#endif /* CONFIG_64BIT */
 997
 998/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 999 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003{
1004        int retval;
1005        unsigned long flags;
1006
1007        spin_lock_irqsave(&pdc_lock, flags);
1008        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010        spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012        return retval;
1013}
1014
1015/*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020int pdc_do_reset(void)
1021{
1022        int retval;
1023        unsigned long flags;
1024
1025        spin_lock_irqsave(&pdc_lock, flags);
1026        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027        spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029        return retval;
1030}
1031
1032/*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038int __init pdc_soft_power_info(unsigned long *power_reg)
1039{
1040        int retval;
1041        unsigned long flags;
1042
1043        *power_reg = (unsigned long) (-1);
1044        
1045        spin_lock_irqsave(&pdc_lock, flags);
1046        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047        if (retval == PDC_OK) {
1048                convert_to_wide(pdc_result);
1049                *power_reg = f_extend(pdc_result[0]);
1050        }
1051        spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053        return retval;
1054}
1055
1056/*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control 
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut 
1064 * down the system. Under hardware control pressing the power button 
1065 * powers off the system immediately.
1066 */
1067int pdc_soft_power_button(int sw_control)
1068{
1069        int retval;
1070        unsigned long flags;
1071
1072        spin_lock_irqsave(&pdc_lock, flags);
1073        retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074        spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076        return retval;
1077}
1078
1079/*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084void pdc_io_reset(void)
1085{
1086        unsigned long flags;
1087
1088        spin_lock_irqsave(&pdc_lock, flags);
1089        mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090        spin_unlock_irqrestore(&pdc_lock, flags);
1091}
1092
1093/*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu 
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102void pdc_io_reset_devices(void)
1103{
1104        unsigned long flags;
1105
1106        spin_lock_irqsave(&pdc_lock, flags);
1107        mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108        spin_unlock_irqrestore(&pdc_lock, flags);
1109}
1110
1111/* locked by pdc_console_lock */
1112static int __attribute__((aligned(8)))   iodc_retbuf[32];
1113static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114
1115/**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125int pdc_iodc_print(const unsigned char *str, unsigned count)
1126{
1127        unsigned int i;
1128        unsigned long flags;
1129
1130        for (i = 0; i < count;) {
1131                switch(str[i]) {
1132                case '\n':
1133                        iodc_dbuf[i+0] = '\r';
1134                        iodc_dbuf[i+1] = '\n';
1135                        i += 2;
1136                        goto print;
1137                default:
1138                        iodc_dbuf[i] = str[i];
1139                        i++;
1140                        break;
1141                }
1142        }
1143
1144print:
1145        spin_lock_irqsave(&pdc_lock, flags);
1146        real32_call(PAGE0->mem_cons.iodc_io,
1147                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150        spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152        return i;
1153}
1154
1155/**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161int pdc_iodc_getc(void)
1162{
1163        int ch;
1164        int status;
1165        unsigned long flags;
1166
1167        /* Bail if no console input device. */
1168        if (!PAGE0->mem_kbd.iodc_io)
1169                return 0;
1170        
1171        /* wait for a keyboard (rs232)-input */
1172        spin_lock_irqsave(&pdc_lock, flags);
1173        real32_call(PAGE0->mem_kbd.iodc_io,
1174                    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175                    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1176                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178        ch = *iodc_dbuf;
1179        status = *iodc_retbuf;
1180        spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182        if (status == 0)
1183            return -1;
1184        
1185        return ch;
1186}
1187
1188int pdc_sti_call(unsigned long func, unsigned long flags,
1189                 unsigned long inptr, unsigned long outputr,
1190                 unsigned long glob_cfg)
1191{
1192        int retval;
1193        unsigned long irqflags;
1194
1195        spin_lock_irqsave(&pdc_lock, irqflags);  
1196        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197        spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199        return retval;
1200}
1201EXPORT_SYMBOL(pdc_sti_call);
1202
1203#ifdef CONFIG_64BIT
1204/**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212{
1213        int retval;
1214        unsigned long flags;
1215
1216        spin_lock_irqsave(&pdc_lock, flags);
1217        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218        memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219        spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221        return retval;
1222}
1223
1224/**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236                        unsigned long view_type, void *mem_addr)
1237{
1238        int retval;
1239        unsigned long flags;
1240        static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242        spin_lock_irqsave(&pdc_lock, flags);
1243        retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1244                              ploc, mod, view_type, __pa(&result));
1245        if(!retval) {
1246                *actcnt = pdc_result[0];
1247                memcpy(mem_addr, &result, *actcnt);
1248        }
1249        spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251        return retval;
1252}
1253
1254/**
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262{
1263        int retval;
1264        unsigned long flags;
1265
1266        spin_lock_irqsave(&pdc_lock, flags);
1267        retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268                              __pa(&pdc_result), hpa);
1269        memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270        spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272        return retval;
1273}
1274
1275/**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284{
1285        int retval;
1286        unsigned long flags;
1287
1288        spin_lock_irqsave(&pdc_lock, flags);
1289        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290                              __pa(pdc_result), cell_num);
1291        *num_entries = pdc_result[0];
1292        spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294        return retval;
1295}
1296
1297/**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305{
1306        int retval;
1307        unsigned long flags;
1308
1309        spin_lock_irqsave(&pdc_lock, flags);
1310        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311                              __pa(r_addr), cell_num);
1312        spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314        return retval;
1315}
1316
1317/**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1326                            unsigned long count, unsigned long offset)
1327{
1328        int retval;
1329        unsigned long flags;
1330
1331        spin_lock_irqsave(&pdc_lock, flags);
1332        retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1333                              __pa(pdc_result2), count, offset);
1334        *actual_len = pdc_result[0];
1335        memcpy(mem_addr, pdc_result2, *actual_len);
1336        spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338        return retval;
1339}
1340
1341/**
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349{
1350        int retval;
1351        unsigned long flags;
1352
1353        spin_lock_irqsave(&pdc_lock, flags);
1354        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355                                        __pa(pdc_result), pci_addr, pci_size);
1356        switch(pci_size) {
1357                case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1358                case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1359                case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1360        }
1361        spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363        return retval;
1364}
1365
1366/**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write  request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1371 *         written to PCI Config space.
1372 *
1373 */
1374int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375{
1376        int retval;
1377        unsigned long flags;
1378
1379        spin_lock_irqsave(&pdc_lock, flags);
1380        retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381                                pci_addr, pci_size, val);
1382        spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384        return retval;
1385}
1386#endif /* CONFIG_64BIT */
1387
1388
1389/***************** 32-bit real-mode calls ***********/
1390/* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395struct narrow_stack {
1396        /* use int, not long which is 64 bits */
1397        unsigned int arg13;
1398        unsigned int arg12;
1399        unsigned int arg11;
1400        unsigned int arg10;
1401        unsigned int arg9;
1402        unsigned int arg8;
1403        unsigned int arg7;
1404        unsigned int arg6;
1405        unsigned int arg5;
1406        unsigned int arg4;
1407        unsigned int arg3;
1408        unsigned int arg2;
1409        unsigned int arg1;
1410        unsigned int arg0;
1411        unsigned int frame_marker[8];
1412        unsigned int sp;
1413        /* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real32_call(unsigned long fn, ...)
1417{
1418        va_list args;
1419        extern struct narrow_stack real_stack;
1420        extern unsigned long real32_call_asm(unsigned int *,
1421                                             unsigned int *, 
1422                                             unsigned int);
1423        
1424        va_start(args, fn);
1425        real_stack.arg0 = va_arg(args, unsigned int);
1426        real_stack.arg1 = va_arg(args, unsigned int);
1427        real_stack.arg2 = va_arg(args, unsigned int);
1428        real_stack.arg3 = va_arg(args, unsigned int);
1429        real_stack.arg4 = va_arg(args, unsigned int);
1430        real_stack.arg5 = va_arg(args, unsigned int);
1431        real_stack.arg6 = va_arg(args, unsigned int);
1432        real_stack.arg7 = va_arg(args, unsigned int);
1433        real_stack.arg8 = va_arg(args, unsigned int);
1434        real_stack.arg9 = va_arg(args, unsigned int);
1435        real_stack.arg10 = va_arg(args, unsigned int);
1436        real_stack.arg11 = va_arg(args, unsigned int);
1437        real_stack.arg12 = va_arg(args, unsigned int);
1438        real_stack.arg13 = va_arg(args, unsigned int);
1439        va_end(args);
1440        
1441        return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442}
1443
1444#ifdef CONFIG_64BIT
1445/***************** 64-bit real-mode calls ***********/
1446
1447struct wide_stack {
1448        unsigned long arg0;
1449        unsigned long arg1;
1450        unsigned long arg2;
1451        unsigned long arg3;
1452        unsigned long arg4;
1453        unsigned long arg5;
1454        unsigned long arg6;
1455        unsigned long arg7;
1456        unsigned long arg8;
1457        unsigned long arg9;
1458        unsigned long arg10;
1459        unsigned long arg11;
1460        unsigned long arg12;
1461        unsigned long arg13;
1462        unsigned long frame_marker[2];  /* rp, previous sp */
1463        unsigned long sp;
1464        /* in reality, there's nearly 8k of stack after this */
1465};
1466
1467long real64_call(unsigned long fn, ...)
1468{
1469        va_list args;
1470        extern struct wide_stack real64_stack;
1471        extern unsigned long real64_call_asm(unsigned long *,
1472                                             unsigned long *, 
1473                                             unsigned long);
1474    
1475        va_start(args, fn);
1476        real64_stack.arg0 = va_arg(args, unsigned long);
1477        real64_stack.arg1 = va_arg(args, unsigned long);
1478        real64_stack.arg2 = va_arg(args, unsigned long);
1479        real64_stack.arg3 = va_arg(args, unsigned long);
1480        real64_stack.arg4 = va_arg(args, unsigned long);
1481        real64_stack.arg5 = va_arg(args, unsigned long);
1482        real64_stack.arg6 = va_arg(args, unsigned long);
1483        real64_stack.arg7 = va_arg(args, unsigned long);
1484        real64_stack.arg8 = va_arg(args, unsigned long);
1485        real64_stack.arg9 = va_arg(args, unsigned long);
1486        real64_stack.arg10 = va_arg(args, unsigned long);
1487        real64_stack.arg11 = va_arg(args, unsigned long);
1488        real64_stack.arg12 = va_arg(args, unsigned long);
1489        real64_stack.arg13 = va_arg(args, unsigned long);
1490        va_end(args);
1491        
1492        return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493}
1494
1495#endif /* CONFIG_64BIT */
1496
1497