linux/arch/powerpc/include/asm/book3s/64/mmu-hash.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_MMU_HASH64_H_
   2#define _ASM_POWERPC_MMU_HASH64_H_
   3/*
   4 * PowerPC64 memory management structures
   5 *
   6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
   7 *   PPC64 rework.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; either version
  12 * 2 of the License, or (at your option) any later version.
  13 */
  14
  15#include <asm/asm-compat.h>
  16#include <asm/page.h>
  17#include <asm/bug.h>
  18
  19/*
  20 * This is necessary to get the definition of PGTABLE_RANGE which we
  21 * need for various slices related matters. Note that this isn't the
  22 * complete pgtable.h but only a portion of it.
  23 */
  24#include <asm/book3s/64/pgtable.h>
  25#include <asm/bug.h>
  26#include <asm/processor.h>
  27
  28/*
  29 * SLB
  30 */
  31
  32#define SLB_NUM_BOLTED          3
  33#define SLB_CACHE_ENTRIES       8
  34#define SLB_MIN_SIZE            32
  35
  36/* Bits in the SLB ESID word */
  37#define SLB_ESID_V              ASM_CONST(0x0000000008000000) /* valid */
  38
  39/* Bits in the SLB VSID word */
  40#define SLB_VSID_SHIFT          12
  41#define SLB_VSID_SHIFT_1T       24
  42#define SLB_VSID_SSIZE_SHIFT    62
  43#define SLB_VSID_B              ASM_CONST(0xc000000000000000)
  44#define SLB_VSID_B_256M         ASM_CONST(0x0000000000000000)
  45#define SLB_VSID_B_1T           ASM_CONST(0x4000000000000000)
  46#define SLB_VSID_KS             ASM_CONST(0x0000000000000800)
  47#define SLB_VSID_KP             ASM_CONST(0x0000000000000400)
  48#define SLB_VSID_N              ASM_CONST(0x0000000000000200) /* no-execute */
  49#define SLB_VSID_L              ASM_CONST(0x0000000000000100)
  50#define SLB_VSID_C              ASM_CONST(0x0000000000000080) /* class */
  51#define SLB_VSID_LP             ASM_CONST(0x0000000000000030)
  52#define SLB_VSID_LP_00          ASM_CONST(0x0000000000000000)
  53#define SLB_VSID_LP_01          ASM_CONST(0x0000000000000010)
  54#define SLB_VSID_LP_10          ASM_CONST(0x0000000000000020)
  55#define SLB_VSID_LP_11          ASM_CONST(0x0000000000000030)
  56#define SLB_VSID_LLP            (SLB_VSID_L|SLB_VSID_LP)
  57
  58#define SLB_VSID_KERNEL         (SLB_VSID_KP)
  59#define SLB_VSID_USER           (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  60
  61#define SLBIE_C                 (0x08000000)
  62#define SLBIE_SSIZE_SHIFT       25
  63
  64/*
  65 * Hash table
  66 */
  67
  68#define HPTES_PER_GROUP 8
  69
  70#define HPTE_V_SSIZE_SHIFT      62
  71#define HPTE_V_AVPN_SHIFT       7
  72#define HPTE_V_AVPN             ASM_CONST(0x3fffffffffffff80)
  73#define HPTE_V_AVPN_VAL(x)      (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  74#define HPTE_V_COMPARE(x,y)     (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  75#define HPTE_V_BOLTED           ASM_CONST(0x0000000000000010)
  76#define HPTE_V_LOCK             ASM_CONST(0x0000000000000008)
  77#define HPTE_V_LARGE            ASM_CONST(0x0000000000000004)
  78#define HPTE_V_SECONDARY        ASM_CONST(0x0000000000000002)
  79#define HPTE_V_VALID            ASM_CONST(0x0000000000000001)
  80
  81#define HPTE_R_PP0              ASM_CONST(0x8000000000000000)
  82#define HPTE_R_TS               ASM_CONST(0x4000000000000000)
  83#define HPTE_R_KEY_HI           ASM_CONST(0x3000000000000000)
  84#define HPTE_R_RPN_SHIFT        12
  85#define HPTE_R_RPN              ASM_CONST(0x0ffffffffffff000)
  86#define HPTE_R_PP               ASM_CONST(0x0000000000000003)
  87#define HPTE_R_N                ASM_CONST(0x0000000000000004)
  88#define HPTE_R_G                ASM_CONST(0x0000000000000008)
  89#define HPTE_R_M                ASM_CONST(0x0000000000000010)
  90#define HPTE_R_I                ASM_CONST(0x0000000000000020)
  91#define HPTE_R_W                ASM_CONST(0x0000000000000040)
  92#define HPTE_R_WIMG             ASM_CONST(0x0000000000000078)
  93#define HPTE_R_C                ASM_CONST(0x0000000000000080)
  94#define HPTE_R_R                ASM_CONST(0x0000000000000100)
  95#define HPTE_R_KEY_LO           ASM_CONST(0x0000000000000e00)
  96
  97#define HPTE_V_1TB_SEG          ASM_CONST(0x4000000000000000)
  98#define HPTE_V_VRMA_MASK        ASM_CONST(0x4001ffffff000000)
  99
 100/* Values for PP (assumes Ks=0, Kp=1) */
 101#define PP_RWXX 0       /* Supervisor read/write, User none */
 102#define PP_RWRX 1       /* Supervisor read/write, User read */
 103#define PP_RWRW 2       /* Supervisor read/write, User read/write */
 104#define PP_RXRX 3       /* Supervisor read,       User read */
 105#define PP_RXXX (HPTE_R_PP0 | 2)        /* Supervisor read, user none */
 106
 107/* Fields for tlbiel instruction in architecture 2.06 */
 108#define TLBIEL_INVAL_SEL_MASK   0xc00   /* invalidation selector */
 109#define  TLBIEL_INVAL_PAGE      0x000   /* invalidate a single page */
 110#define  TLBIEL_INVAL_SET_LPID  0x800   /* invalidate a set for current LPID */
 111#define  TLBIEL_INVAL_SET       0xc00   /* invalidate a set for all LPIDs */
 112#define TLBIEL_INVAL_SET_MASK   0xfff000        /* set number to inval. */
 113#define TLBIEL_INVAL_SET_SHIFT  12
 114
 115#define POWER7_TLB_SETS         128     /* # sets in POWER7 TLB */
 116#define POWER8_TLB_SETS         512     /* # sets in POWER8 TLB */
 117#define POWER9_TLB_SETS_HASH    256     /* # sets in POWER9 TLB Hash mode */
 118
 119#ifndef __ASSEMBLY__
 120
 121struct hash_pte {
 122        __be64 v;
 123        __be64 r;
 124};
 125
 126extern struct hash_pte *htab_address;
 127extern unsigned long htab_size_bytes;
 128extern unsigned long htab_hash_mask;
 129
 130/*
 131 * Page size definition
 132 *
 133 *    shift : is the "PAGE_SHIFT" value for that page size
 134 *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
 135 *            directly to a slbmte "vsid" value
 136 *    penc  : is the HPTE encoding mask for the "LP" field:
 137 *
 138 */
 139struct mmu_psize_def
 140{
 141        unsigned int    shift;  /* number of bits */
 142        int             penc[MMU_PAGE_COUNT];   /* HPTE encoding */
 143        unsigned int    tlbiel; /* tlbiel supported for that page size */
 144        unsigned long   avpnm;  /* bits to mask out in AVPN in the HPTE */
 145        unsigned long   sllp;   /* SLB L||LP (exact mask to use in slbmte) */
 146};
 147extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
 148
 149static inline int shift_to_mmu_psize(unsigned int shift)
 150{
 151        int psize;
 152
 153        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
 154                if (mmu_psize_defs[psize].shift == shift)
 155                        return psize;
 156        return -1;
 157}
 158
 159static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
 160{
 161        if (mmu_psize_defs[mmu_psize].shift)
 162                return mmu_psize_defs[mmu_psize].shift;
 163        BUG();
 164}
 165
 166#endif /* __ASSEMBLY__ */
 167
 168/*
 169 * Segment sizes.
 170 * These are the values used by hardware in the B field of
 171 * SLB entries and the first dword of MMU hashtable entries.
 172 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 173 */
 174#define MMU_SEGSIZE_256M        0
 175#define MMU_SEGSIZE_1T          1
 176
 177/*
 178 * encode page number shift.
 179 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
 180 * 12 bits. This enable us to address upto 76 bit va.
 181 * For hpt hash from a va we can ignore the page size bits of va and for
 182 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
 183 * we work in all cases including 4k page size.
 184 */
 185#define VPN_SHIFT       12
 186
 187/*
 188 * HPTE Large Page (LP) details
 189 */
 190#define LP_SHIFT        12
 191#define LP_BITS         8
 192#define LP_MASK(i)      ((0xFF >> (i)) << LP_SHIFT)
 193
 194#ifndef __ASSEMBLY__
 195
 196static inline int slb_vsid_shift(int ssize)
 197{
 198        if (ssize == MMU_SEGSIZE_256M)
 199                return SLB_VSID_SHIFT;
 200        return SLB_VSID_SHIFT_1T;
 201}
 202
 203static inline int segment_shift(int ssize)
 204{
 205        if (ssize == MMU_SEGSIZE_256M)
 206                return SID_SHIFT;
 207        return SID_SHIFT_1T;
 208}
 209
 210/*
 211 * The current system page and segment sizes
 212 */
 213extern int mmu_linear_psize;
 214extern int mmu_virtual_psize;
 215extern int mmu_vmalloc_psize;
 216extern int mmu_vmemmap_psize;
 217extern int mmu_io_psize;
 218extern int mmu_kernel_ssize;
 219extern int mmu_highuser_ssize;
 220extern u16 mmu_slb_size;
 221extern unsigned long tce_alloc_start, tce_alloc_end;
 222
 223/*
 224 * If the processor supports 64k normal pages but not 64k cache
 225 * inhibited pages, we have to be prepared to switch processes
 226 * to use 4k pages when they create cache-inhibited mappings.
 227 * If this is the case, mmu_ci_restrictions will be set to 1.
 228 */
 229extern int mmu_ci_restrictions;
 230
 231/*
 232 * This computes the AVPN and B fields of the first dword of a HPTE,
 233 * for use when we want to match an existing PTE.  The bottom 7 bits
 234 * of the returned value are zero.
 235 */
 236static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
 237                                             int ssize)
 238{
 239        unsigned long v;
 240        /*
 241         * The AVA field omits the low-order 23 bits of the 78 bits VA.
 242         * These bits are not needed in the PTE, because the
 243         * low-order b of these bits are part of the byte offset
 244         * into the virtual page and, if b < 23, the high-order
 245         * 23-b of these bits are always used in selecting the
 246         * PTEGs to be searched
 247         */
 248        v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
 249        v <<= HPTE_V_AVPN_SHIFT;
 250        v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
 251        return v;
 252}
 253
 254/*
 255 * This function sets the AVPN and L fields of the HPTE  appropriately
 256 * using the base page size and actual page size.
 257 */
 258static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
 259                                          int actual_psize, int ssize)
 260{
 261        unsigned long v;
 262        v = hpte_encode_avpn(vpn, base_psize, ssize);
 263        if (actual_psize != MMU_PAGE_4K)
 264                v |= HPTE_V_LARGE;
 265        return v;
 266}
 267
 268/*
 269 * This function sets the ARPN, and LP fields of the HPTE appropriately
 270 * for the page size. We assume the pa is already "clean" that is properly
 271 * aligned for the requested page size
 272 */
 273static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
 274                                          int actual_psize)
 275{
 276        /* A 4K page needs no special encoding */
 277        if (actual_psize == MMU_PAGE_4K)
 278                return pa & HPTE_R_RPN;
 279        else {
 280                unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
 281                unsigned int shift = mmu_psize_defs[actual_psize].shift;
 282                return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
 283        }
 284}
 285
 286/*
 287 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
 288 */
 289static inline unsigned long hpt_vpn(unsigned long ea,
 290                                    unsigned long vsid, int ssize)
 291{
 292        unsigned long mask;
 293        int s_shift = segment_shift(ssize);
 294
 295        mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
 296        return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
 297}
 298
 299/*
 300 * This hashes a virtual address
 301 */
 302static inline unsigned long hpt_hash(unsigned long vpn,
 303                                     unsigned int shift, int ssize)
 304{
 305        int mask;
 306        unsigned long hash, vsid;
 307
 308        /* VPN_SHIFT can be atmost 12 */
 309        if (ssize == MMU_SEGSIZE_256M) {
 310                mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
 311                hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
 312                        ((vpn & mask) >> (shift - VPN_SHIFT));
 313        } else {
 314                mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
 315                vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
 316                hash = vsid ^ (vsid << 25) ^
 317                        ((vpn & mask) >> (shift - VPN_SHIFT)) ;
 318        }
 319        return hash & 0x7fffffffffUL;
 320}
 321
 322#define HPTE_LOCAL_UPDATE       0x1
 323#define HPTE_NOHPTE_UPDATE      0x2
 324
 325extern int __hash_page_4K(unsigned long ea, unsigned long access,
 326                          unsigned long vsid, pte_t *ptep, unsigned long trap,
 327                          unsigned long flags, int ssize, int subpage_prot);
 328extern int __hash_page_64K(unsigned long ea, unsigned long access,
 329                           unsigned long vsid, pte_t *ptep, unsigned long trap,
 330                           unsigned long flags, int ssize);
 331struct mm_struct;
 332unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
 333extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
 334                        unsigned long access, unsigned long trap,
 335                        unsigned long flags);
 336extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
 337                     unsigned long dsisr);
 338int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
 339                     pte_t *ptep, unsigned long trap, unsigned long flags,
 340                     int ssize, unsigned int shift, unsigned int mmu_psize);
 341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 342extern int __hash_page_thp(unsigned long ea, unsigned long access,
 343                           unsigned long vsid, pmd_t *pmdp, unsigned long trap,
 344                           unsigned long flags, int ssize, unsigned int psize);
 345#else
 346static inline int __hash_page_thp(unsigned long ea, unsigned long access,
 347                                  unsigned long vsid, pmd_t *pmdp,
 348                                  unsigned long trap, unsigned long flags,
 349                                  int ssize, unsigned int psize)
 350{
 351        BUG();
 352        return -1;
 353}
 354#endif
 355extern void hash_failure_debug(unsigned long ea, unsigned long access,
 356                               unsigned long vsid, unsigned long trap,
 357                               int ssize, int psize, int lpsize,
 358                               unsigned long pte);
 359extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 360                             unsigned long pstart, unsigned long prot,
 361                             int psize, int ssize);
 362int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 363                        int psize, int ssize);
 364extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
 365extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
 366
 367extern void hpte_init_native(void);
 368extern void hpte_init_lpar(void);
 369extern void hpte_init_beat(void);
 370extern void hpte_init_beat_v3(void);
 371
 372extern void slb_initialize(void);
 373extern void slb_flush_and_rebolt(void);
 374
 375extern void slb_vmalloc_update(void);
 376extern void slb_set_size(u16 size);
 377#endif /* __ASSEMBLY__ */
 378
 379/*
 380 * VSID allocation (256MB segment)
 381 *
 382 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
 383 * from mmu context id and effective segment id of the address.
 384 *
 385 * For user processes max context id is limited to ((1ul << 19) - 5)
 386 * for kernel space, we use the top 4 context ids to map address as below
 387 * NOTE: each context only support 64TB now.
 388 * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
 389 * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
 390 * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
 391 * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
 392 *
 393 * The proto-VSIDs are then scrambled into real VSIDs with the
 394 * multiplicative hash:
 395 *
 396 *      VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 397 *
 398 * VSID_MULTIPLIER is prime, so in particular it is
 399 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 400 * Because the modulus is 2^n-1 we can compute it efficiently without
 401 * a divide or extra multiply (see below). The scramble function gives
 402 * robust scattering in the hash table (at least based on some initial
 403 * results).
 404 *
 405 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
 406 * bad address. This enables us to consolidate bad address handling in
 407 * hash_page.
 408 *
 409 * We also need to avoid the last segment of the last context, because that
 410 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
 411 * because of the modulo operation in vsid scramble. But the vmemmap
 412 * (which is what uses region 0xf) will never be close to 64TB in size
 413 * (it's 56 bytes per page of system memory).
 414 */
 415
 416#define CONTEXT_BITS            19
 417#define ESID_BITS               18
 418#define ESID_BITS_1T            6
 419
 420/*
 421 * 256MB segment
 422 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
 423 * available for user + kernel mapping. The top 4 contexts are used for
 424 * kernel mapping. Each segment contains 2^28 bytes. Each
 425 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
 426 * (19 == 37 + 28 - 46).
 427 */
 428#define MAX_USER_CONTEXT        ((ASM_CONST(1) << CONTEXT_BITS) - 5)
 429
 430/*
 431 * This should be computed such that protovosid * vsid_mulitplier
 432 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
 433 */
 434#define VSID_MULTIPLIER_256M    ASM_CONST(12538073)     /* 24-bit prime */
 435#define VSID_BITS_256M          (CONTEXT_BITS + ESID_BITS)
 436#define VSID_MODULUS_256M       ((1UL<<VSID_BITS_256M)-1)
 437
 438#define VSID_MULTIPLIER_1T      ASM_CONST(12538073)     /* 24-bit prime */
 439#define VSID_BITS_1T            (CONTEXT_BITS + ESID_BITS_1T)
 440#define VSID_MODULUS_1T         ((1UL<<VSID_BITS_1T)-1)
 441
 442
 443#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
 444
 445/*
 446 * This macro generates asm code to compute the VSID scramble
 447 * function.  Used in slb_allocate() and do_stab_bolted.  The function
 448 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
 449 *
 450 *      rt = register continaing the proto-VSID and into which the
 451 *              VSID will be stored
 452 *      rx = scratch register (clobbered)
 453 *
 454 *      - rt and rx must be different registers
 455 *      - The answer will end up in the low VSID_BITS bits of rt.  The higher
 456 *        bits may contain other garbage, so you may need to mask the
 457 *        result.
 458 */
 459#define ASM_VSID_SCRAMBLE(rt, rx, size)                                 \
 460        lis     rx,VSID_MULTIPLIER_##size@h;                            \
 461        ori     rx,rx,VSID_MULTIPLIER_##size@l;                         \
 462        mulld   rt,rt,rx;               /* rt = rt * MULTIPLIER */      \
 463                                                                        \
 464        srdi    rx,rt,VSID_BITS_##size;                                 \
 465        clrldi  rt,rt,(64-VSID_BITS_##size);                            \
 466        add     rt,rt,rx;               /* add high and low bits */     \
 467        /* NOTE: explanation based on VSID_BITS_##size = 36             \
 468         * Now, r3 == VSID (mod 2^36-1), and lies between 0 and         \
 469         * 2^36-1+2^28-1.  That in particular means that if r3 >=       \
 470         * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has     \
 471         * the bit clear, r3 already has the answer we want, if it      \
 472         * doesn't, the answer is the low 36 bits of r3+1.  So in all   \
 473         * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
 474        addi    rx,rt,1;                                                \
 475        srdi    rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */   \
 476        add     rt,rt,rx
 477
 478/* 4 bits per slice and we have one slice per 1TB */
 479#define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
 480
 481#ifndef __ASSEMBLY__
 482
 483#ifdef CONFIG_PPC_SUBPAGE_PROT
 484/*
 485 * For the sub-page protection option, we extend the PGD with one of
 486 * these.  Basically we have a 3-level tree, with the top level being
 487 * the protptrs array.  To optimize speed and memory consumption when
 488 * only addresses < 4GB are being protected, pointers to the first
 489 * four pages of sub-page protection words are stored in the low_prot
 490 * array.
 491 * Each page of sub-page protection words protects 1GB (4 bytes
 492 * protects 64k).  For the 3-level tree, each page of pointers then
 493 * protects 8TB.
 494 */
 495struct subpage_prot_table {
 496        unsigned long maxaddr;  /* only addresses < this are protected */
 497        unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
 498        unsigned int *low_prot[4];
 499};
 500
 501#define SBP_L1_BITS             (PAGE_SHIFT - 2)
 502#define SBP_L2_BITS             (PAGE_SHIFT - 3)
 503#define SBP_L1_COUNT            (1 << SBP_L1_BITS)
 504#define SBP_L2_COUNT            (1 << SBP_L2_BITS)
 505#define SBP_L2_SHIFT            (PAGE_SHIFT + SBP_L1_BITS)
 506#define SBP_L3_SHIFT            (SBP_L2_SHIFT + SBP_L2_BITS)
 507
 508extern void subpage_prot_free(struct mm_struct *mm);
 509extern void subpage_prot_init_new_context(struct mm_struct *mm);
 510#else
 511static inline void subpage_prot_free(struct mm_struct *mm) {}
 512static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
 513#endif /* CONFIG_PPC_SUBPAGE_PROT */
 514
 515typedef unsigned long mm_context_id_t;
 516struct spinlock;
 517
 518typedef struct {
 519        mm_context_id_t id;
 520        u16 user_psize;         /* page size index */
 521
 522#ifdef CONFIG_PPC_MM_SLICES
 523        u64 low_slices_psize;   /* SLB page size encodings */
 524        unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
 525#else
 526        u16 sllp;               /* SLB page size encoding */
 527#endif
 528        unsigned long vdso_base;
 529#ifdef CONFIG_PPC_SUBPAGE_PROT
 530        struct subpage_prot_table spt;
 531#endif /* CONFIG_PPC_SUBPAGE_PROT */
 532#ifdef CONFIG_PPC_ICSWX
 533        struct spinlock *cop_lockp; /* guard acop and cop_pid */
 534        unsigned long acop;     /* mask of enabled coprocessor types */
 535        unsigned int cop_pid;   /* pid value used with coprocessors */
 536#endif /* CONFIG_PPC_ICSWX */
 537#ifdef CONFIG_PPC_64K_PAGES
 538        /* for 4K PTE fragment support */
 539        void *pte_frag;
 540#endif
 541#ifdef CONFIG_SPAPR_TCE_IOMMU
 542        struct list_head iommu_group_mem_list;
 543#endif
 544} mm_context_t;
 545
 546
 547#if 0
 548/*
 549 * The code below is equivalent to this function for arguments
 550 * < 2^VSID_BITS, which is all this should ever be called
 551 * with.  However gcc is not clever enough to compute the
 552 * modulus (2^n-1) without a second multiply.
 553 */
 554#define vsid_scramble(protovsid, size) \
 555        ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
 556
 557#else /* 1 */
 558#define vsid_scramble(protovsid, size) \
 559        ({                                                               \
 560                unsigned long x;                                         \
 561                x = (protovsid) * VSID_MULTIPLIER_##size;                \
 562                x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
 563                (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
 564        })
 565#endif /* 1 */
 566
 567/* Returns the segment size indicator for a user address */
 568static inline int user_segment_size(unsigned long addr)
 569{
 570        /* Use 1T segments if possible for addresses >= 1T */
 571        if (addr >= (1UL << SID_SHIFT_1T))
 572                return mmu_highuser_ssize;
 573        return MMU_SEGSIZE_256M;
 574}
 575
 576static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
 577                                     int ssize)
 578{
 579        /*
 580         * Bad address. We return VSID 0 for that
 581         */
 582        if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
 583                return 0;
 584
 585        if (ssize == MMU_SEGSIZE_256M)
 586                return vsid_scramble((context << ESID_BITS)
 587                                     | (ea >> SID_SHIFT), 256M);
 588        return vsid_scramble((context << ESID_BITS_1T)
 589                             | (ea >> SID_SHIFT_1T), 1T);
 590}
 591
 592/*
 593 * This is only valid for addresses >= PAGE_OFFSET
 594 *
 595 * For kernel space, we use the top 4 context ids to map address as below
 596 * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
 597 * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
 598 * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
 599 * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
 600 */
 601static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
 602{
 603        unsigned long context;
 604
 605        /*
 606         * kernel take the top 4 context from the available range
 607         */
 608        context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
 609        return get_vsid(context, ea, ssize);
 610}
 611
 612unsigned htab_shift_for_mem_size(unsigned long mem_size);
 613
 614#endif /* __ASSEMBLY__ */
 615
 616#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
 617