linux/arch/powerpc/kernel/align.c
<<
>>
Prefs
   1/* align.c - handle alignment exceptions for the Power PC.
   2 *
   3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
   4 * Copyright (c) 1998-1999 TiVo, Inc.
   5 *   PowerPC 403GCX modifications.
   6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
   7 *   PowerPC 403GCX/405GP modifications.
   8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
   9 *   64-bit and Power4 support
  10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
  11 *                    <benh@kernel.crashing.org>
  12 *   Merge ppc32 and ppc64 implementations
  13 *
  14 * This program is free software; you can redistribute it and/or
  15 * modify it under the terms of the GNU General Public License
  16 * as published by the Free Software Foundation; either version
  17 * 2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <asm/processor.h>
  23#include <asm/uaccess.h>
  24#include <asm/cache.h>
  25#include <asm/cputable.h>
  26#include <asm/emulated_ops.h>
  27#include <asm/switch_to.h>
  28#include <asm/disassemble.h>
  29
  30struct aligninfo {
  31        unsigned char len;
  32        unsigned char flags;
  33};
  34
  35
  36#define INVALID { 0, 0 }
  37
  38/* Bits in the flags field */
  39#define LD      0       /* load */
  40#define ST      1       /* store */
  41#define SE      2       /* sign-extend value, or FP ld/st as word */
  42#define F       4       /* to/from fp regs */
  43#define U       8       /* update index register */
  44#define M       0x10    /* multiple load/store */
  45#define SW      0x20    /* byte swap */
  46#define S       0x40    /* single-precision fp or... */
  47#define SX      0x40    /* ... byte count in XER */
  48#define HARD    0x80    /* string, stwcx. */
  49#define E4      0x40    /* SPE endianness is word */
  50#define E8      0x80    /* SPE endianness is double word */
  51#define SPLT    0x80    /* VSX SPLAT load */
  52
  53/* DSISR bits reported for a DCBZ instruction: */
  54#define DCBZ    0x5f    /* 8xx/82xx dcbz faults when cache not enabled */
  55
  56/*
  57 * The PowerPC stores certain bits of the instruction that caused the
  58 * alignment exception in the DSISR register.  This array maps those
  59 * bits to information about the operand length and what the
  60 * instruction would do.
  61 */
  62static struct aligninfo aligninfo[128] = {
  63        { 4, LD },              /* 00 0 0000: lwz / lwarx */
  64        INVALID,                /* 00 0 0001 */
  65        { 4, ST },              /* 00 0 0010: stw */
  66        INVALID,                /* 00 0 0011 */
  67        { 2, LD },              /* 00 0 0100: lhz */
  68        { 2, LD+SE },           /* 00 0 0101: lha */
  69        { 2, ST },              /* 00 0 0110: sth */
  70        { 4, LD+M },            /* 00 0 0111: lmw */
  71        { 4, LD+F+S },          /* 00 0 1000: lfs */
  72        { 8, LD+F },            /* 00 0 1001: lfd */
  73        { 4, ST+F+S },          /* 00 0 1010: stfs */
  74        { 8, ST+F },            /* 00 0 1011: stfd */
  75        { 16, LD },             /* 00 0 1100: lq */
  76        { 8, LD },              /* 00 0 1101: ld/ldu/lwa */
  77        INVALID,                /* 00 0 1110 */
  78        { 8, ST },              /* 00 0 1111: std/stdu */
  79        { 4, LD+U },            /* 00 1 0000: lwzu */
  80        INVALID,                /* 00 1 0001 */
  81        { 4, ST+U },            /* 00 1 0010: stwu */
  82        INVALID,                /* 00 1 0011 */
  83        { 2, LD+U },            /* 00 1 0100: lhzu */
  84        { 2, LD+SE+U },         /* 00 1 0101: lhau */
  85        { 2, ST+U },            /* 00 1 0110: sthu */
  86        { 4, ST+M },            /* 00 1 0111: stmw */
  87        { 4, LD+F+S+U },        /* 00 1 1000: lfsu */
  88        { 8, LD+F+U },          /* 00 1 1001: lfdu */
  89        { 4, ST+F+S+U },        /* 00 1 1010: stfsu */
  90        { 8, ST+F+U },          /* 00 1 1011: stfdu */
  91        { 16, LD+F },           /* 00 1 1100: lfdp */
  92        INVALID,                /* 00 1 1101 */
  93        { 16, ST+F },           /* 00 1 1110: stfdp */
  94        INVALID,                /* 00 1 1111 */
  95        { 8, LD },              /* 01 0 0000: ldx */
  96        INVALID,                /* 01 0 0001 */
  97        { 8, ST },              /* 01 0 0010: stdx */
  98        INVALID,                /* 01 0 0011 */
  99        INVALID,                /* 01 0 0100 */
 100        { 4, LD+SE },           /* 01 0 0101: lwax */
 101        INVALID,                /* 01 0 0110 */
 102        INVALID,                /* 01 0 0111 */
 103        { 4, LD+M+HARD+SX },    /* 01 0 1000: lswx */
 104        { 4, LD+M+HARD },       /* 01 0 1001: lswi */
 105        { 4, ST+M+HARD+SX },    /* 01 0 1010: stswx */
 106        { 4, ST+M+HARD },       /* 01 0 1011: stswi */
 107        INVALID,                /* 01 0 1100 */
 108        { 8, LD+U },            /* 01 0 1101: ldu */
 109        INVALID,                /* 01 0 1110 */
 110        { 8, ST+U },            /* 01 0 1111: stdu */
 111        { 8, LD+U },            /* 01 1 0000: ldux */
 112        INVALID,                /* 01 1 0001 */
 113        { 8, ST+U },            /* 01 1 0010: stdux */
 114        INVALID,                /* 01 1 0011 */
 115        INVALID,                /* 01 1 0100 */
 116        { 4, LD+SE+U },         /* 01 1 0101: lwaux */
 117        INVALID,                /* 01 1 0110 */
 118        INVALID,                /* 01 1 0111 */
 119        INVALID,                /* 01 1 1000 */
 120        INVALID,                /* 01 1 1001 */
 121        INVALID,                /* 01 1 1010 */
 122        INVALID,                /* 01 1 1011 */
 123        INVALID,                /* 01 1 1100 */
 124        INVALID,                /* 01 1 1101 */
 125        INVALID,                /* 01 1 1110 */
 126        INVALID,                /* 01 1 1111 */
 127        INVALID,                /* 10 0 0000 */
 128        INVALID,                /* 10 0 0001 */
 129        INVALID,                /* 10 0 0010: stwcx. */
 130        INVALID,                /* 10 0 0011 */
 131        INVALID,                /* 10 0 0100 */
 132        INVALID,                /* 10 0 0101 */
 133        INVALID,                /* 10 0 0110 */
 134        INVALID,                /* 10 0 0111 */
 135        { 4, LD+SW },           /* 10 0 1000: lwbrx */
 136        INVALID,                /* 10 0 1001 */
 137        { 4, ST+SW },           /* 10 0 1010: stwbrx */
 138        INVALID,                /* 10 0 1011 */
 139        { 2, LD+SW },           /* 10 0 1100: lhbrx */
 140        { 4, LD+SE },           /* 10 0 1101  lwa */
 141        { 2, ST+SW },           /* 10 0 1110: sthbrx */
 142        { 16, ST },             /* 10 0 1111: stq */
 143        INVALID,                /* 10 1 0000 */
 144        INVALID,                /* 10 1 0001 */
 145        INVALID,                /* 10 1 0010 */
 146        INVALID,                /* 10 1 0011 */
 147        INVALID,                /* 10 1 0100 */
 148        INVALID,                /* 10 1 0101 */
 149        INVALID,                /* 10 1 0110 */
 150        INVALID,                /* 10 1 0111 */
 151        INVALID,                /* 10 1 1000 */
 152        INVALID,                /* 10 1 1001 */
 153        INVALID,                /* 10 1 1010 */
 154        INVALID,                /* 10 1 1011 */
 155        INVALID,                /* 10 1 1100 */
 156        INVALID,                /* 10 1 1101 */
 157        INVALID,                /* 10 1 1110 */
 158        { 0, ST+HARD },         /* 10 1 1111: dcbz */
 159        { 4, LD },              /* 11 0 0000: lwzx */
 160        INVALID,                /* 11 0 0001 */
 161        { 4, ST },              /* 11 0 0010: stwx */
 162        INVALID,                /* 11 0 0011 */
 163        { 2, LD },              /* 11 0 0100: lhzx */
 164        { 2, LD+SE },           /* 11 0 0101: lhax */
 165        { 2, ST },              /* 11 0 0110: sthx */
 166        INVALID,                /* 11 0 0111 */
 167        { 4, LD+F+S },          /* 11 0 1000: lfsx */
 168        { 8, LD+F },            /* 11 0 1001: lfdx */
 169        { 4, ST+F+S },          /* 11 0 1010: stfsx */
 170        { 8, ST+F },            /* 11 0 1011: stfdx */
 171        { 16, LD+F },           /* 11 0 1100: lfdpx */
 172        { 4, LD+F+SE },         /* 11 0 1101: lfiwax */
 173        { 16, ST+F },           /* 11 0 1110: stfdpx */
 174        { 4, ST+F },            /* 11 0 1111: stfiwx */
 175        { 4, LD+U },            /* 11 1 0000: lwzux */
 176        INVALID,                /* 11 1 0001 */
 177        { 4, ST+U },            /* 11 1 0010: stwux */
 178        INVALID,                /* 11 1 0011 */
 179        { 2, LD+U },            /* 11 1 0100: lhzux */
 180        { 2, LD+SE+U },         /* 11 1 0101: lhaux */
 181        { 2, ST+U },            /* 11 1 0110: sthux */
 182        INVALID,                /* 11 1 0111 */
 183        { 4, LD+F+S+U },        /* 11 1 1000: lfsux */
 184        { 8, LD+F+U },          /* 11 1 1001: lfdux */
 185        { 4, ST+F+S+U },        /* 11 1 1010: stfsux */
 186        { 8, ST+F+U },          /* 11 1 1011: stfdux */
 187        INVALID,                /* 11 1 1100 */
 188        { 4, LD+F },            /* 11 1 1101: lfiwzx */
 189        INVALID,                /* 11 1 1110 */
 190        INVALID,                /* 11 1 1111 */
 191};
 192
 193/*
 194 * The dcbz (data cache block zero) instruction
 195 * gives an alignment fault if used on non-cacheable
 196 * memory.  We handle the fault mainly for the
 197 * case when we are running with the cache disabled
 198 * for debugging.
 199 */
 200static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
 201{
 202        long __user *p;
 203        int i, size;
 204
 205#ifdef __powerpc64__
 206        size = ppc64_caches.dline_size;
 207#else
 208        size = L1_CACHE_BYTES;
 209#endif
 210        p = (long __user *) (regs->dar & -size);
 211        if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
 212                return -EFAULT;
 213        for (i = 0; i < size / sizeof(long); ++i)
 214                if (__put_user_inatomic(0, p+i))
 215                        return -EFAULT;
 216        return 1;
 217}
 218
 219/*
 220 * Emulate load & store multiple instructions
 221 * On 64-bit machines, these instructions only affect/use the
 222 * bottom 4 bytes of each register, and the loads clear the
 223 * top 4 bytes of the affected register.
 224 */
 225#ifdef __BIG_ENDIAN__
 226#ifdef CONFIG_PPC64
 227#define REG_BYTE(rp, i)         *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
 228#else
 229#define REG_BYTE(rp, i)         *((u8 *)(rp) + (i))
 230#endif
 231#endif
 232
 233#ifdef __LITTLE_ENDIAN__
 234#define REG_BYTE(rp, i)         (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
 235#endif
 236
 237#define SWIZ_PTR(p)             ((unsigned char __user *)((p) ^ swiz))
 238
 239static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
 240                            unsigned int reg, unsigned int nb,
 241                            unsigned int flags, unsigned int instr,
 242                            unsigned long swiz)
 243{
 244        unsigned long *rptr;
 245        unsigned int nb0, i, bswiz;
 246        unsigned long p;
 247
 248        /*
 249         * We do not try to emulate 8 bytes multiple as they aren't really
 250         * available in our operating environments and we don't try to
 251         * emulate multiples operations in kernel land as they should never
 252         * be used/generated there at least not on unaligned boundaries
 253         */
 254        if (unlikely((nb > 4) || !user_mode(regs)))
 255                return 0;
 256
 257        /* lmw, stmw, lswi/x, stswi/x */
 258        nb0 = 0;
 259        if (flags & HARD) {
 260                if (flags & SX) {
 261                        nb = regs->xer & 127;
 262                        if (nb == 0)
 263                                return 1;
 264                } else {
 265                        unsigned long pc = regs->nip ^ (swiz & 4);
 266
 267                        if (__get_user_inatomic(instr,
 268                                                (unsigned int __user *)pc))
 269                                return -EFAULT;
 270                        if (swiz == 0 && (flags & SW))
 271                                instr = cpu_to_le32(instr);
 272                        nb = (instr >> 11) & 0x1f;
 273                        if (nb == 0)
 274                                nb = 32;
 275                }
 276                if (nb + reg * 4 > 128) {
 277                        nb0 = nb + reg * 4 - 128;
 278                        nb = 128 - reg * 4;
 279                }
 280#ifdef __LITTLE_ENDIAN__
 281                /*
 282                 *  String instructions are endian neutral but the code
 283                 *  below is not.  Force byte swapping on so that the
 284                 *  effects of swizzling are undone in the load/store
 285                 *  loops below.
 286                 */
 287                flags ^= SW;
 288#endif
 289        } else {
 290                /* lwm, stmw */
 291                nb = (32 - reg) * 4;
 292        }
 293
 294        if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
 295                return -EFAULT; /* bad address */
 296
 297        rptr = &regs->gpr[reg];
 298        p = (unsigned long) addr;
 299        bswiz = (flags & SW)? 3: 0;
 300
 301        if (!(flags & ST)) {
 302                /*
 303                 * This zeroes the top 4 bytes of the affected registers
 304                 * in 64-bit mode, and also zeroes out any remaining
 305                 * bytes of the last register for lsw*.
 306                 */
 307                memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
 308                if (nb0 > 0)
 309                        memset(&regs->gpr[0], 0,
 310                               ((nb0 + 3) / 4) * sizeof(unsigned long));
 311
 312                for (i = 0; i < nb; ++i, ++p)
 313                        if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
 314                                                SWIZ_PTR(p)))
 315                                return -EFAULT;
 316                if (nb0 > 0) {
 317                        rptr = &regs->gpr[0];
 318                        addr += nb;
 319                        for (i = 0; i < nb0; ++i, ++p)
 320                                if (__get_user_inatomic(REG_BYTE(rptr,
 321                                                                 i ^ bswiz),
 322                                                        SWIZ_PTR(p)))
 323                                        return -EFAULT;
 324                }
 325
 326        } else {
 327                for (i = 0; i < nb; ++i, ++p)
 328                        if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
 329                                                SWIZ_PTR(p)))
 330                                return -EFAULT;
 331                if (nb0 > 0) {
 332                        rptr = &regs->gpr[0];
 333                        addr += nb;
 334                        for (i = 0; i < nb0; ++i, ++p)
 335                                if (__put_user_inatomic(REG_BYTE(rptr,
 336                                                                 i ^ bswiz),
 337                                                        SWIZ_PTR(p)))
 338                                        return -EFAULT;
 339                }
 340        }
 341        return 1;
 342}
 343
 344/*
 345 * Emulate floating-point pair loads and stores.
 346 * Only POWER6 has these instructions, and it does true little-endian,
 347 * so we don't need the address swizzling.
 348 */
 349static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
 350                           unsigned int flags)
 351{
 352        char *ptr0 = (char *) &current->thread.TS_FPR(reg);
 353        char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
 354        int i, ret, sw = 0;
 355
 356        if (reg & 1)
 357                return 0;       /* invalid form: FRS/FRT must be even */
 358        if (flags & SW)
 359                sw = 7;
 360        ret = 0;
 361        for (i = 0; i < 8; ++i) {
 362                if (!(flags & ST)) {
 363                        ret |= __get_user(ptr0[i^sw], addr + i);
 364                        ret |= __get_user(ptr1[i^sw], addr + i + 8);
 365                } else {
 366                        ret |= __put_user(ptr0[i^sw], addr + i);
 367                        ret |= __put_user(ptr1[i^sw], addr + i + 8);
 368                }
 369        }
 370        if (ret)
 371                return -EFAULT;
 372        return 1;       /* exception handled and fixed up */
 373}
 374
 375#ifdef CONFIG_PPC64
 376static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
 377                          unsigned int reg, unsigned int flags)
 378{
 379        char *ptr0 = (char *)&regs->gpr[reg];
 380        char *ptr1 = (char *)&regs->gpr[reg+1];
 381        int i, ret, sw = 0;
 382
 383        if (reg & 1)
 384                return 0;       /* invalid form: GPR must be even */
 385        if (flags & SW)
 386                sw = 7;
 387        ret = 0;
 388        for (i = 0; i < 8; ++i) {
 389                if (!(flags & ST)) {
 390                        ret |= __get_user(ptr0[i^sw], addr + i);
 391                        ret |= __get_user(ptr1[i^sw], addr + i + 8);
 392                } else {
 393                        ret |= __put_user(ptr0[i^sw], addr + i);
 394                        ret |= __put_user(ptr1[i^sw], addr + i + 8);
 395                }
 396        }
 397        if (ret)
 398                return -EFAULT;
 399        return 1;       /* exception handled and fixed up */
 400}
 401#endif /* CONFIG_PPC64 */
 402
 403#ifdef CONFIG_SPE
 404
 405static struct aligninfo spe_aligninfo[32] = {
 406        { 8, LD+E8 },           /* 0 00 00: evldd[x] */
 407        { 8, LD+E4 },           /* 0 00 01: evldw[x] */
 408        { 8, LD },              /* 0 00 10: evldh[x] */
 409        INVALID,                /* 0 00 11 */
 410        { 2, LD },              /* 0 01 00: evlhhesplat[x] */
 411        INVALID,                /* 0 01 01 */
 412        { 2, LD },              /* 0 01 10: evlhhousplat[x] */
 413        { 2, LD+SE },           /* 0 01 11: evlhhossplat[x] */
 414        { 4, LD },              /* 0 10 00: evlwhe[x] */
 415        INVALID,                /* 0 10 01 */
 416        { 4, LD },              /* 0 10 10: evlwhou[x] */
 417        { 4, LD+SE },           /* 0 10 11: evlwhos[x] */
 418        { 4, LD+E4 },           /* 0 11 00: evlwwsplat[x] */
 419        INVALID,                /* 0 11 01 */
 420        { 4, LD },              /* 0 11 10: evlwhsplat[x] */
 421        INVALID,                /* 0 11 11 */
 422
 423        { 8, ST+E8 },           /* 1 00 00: evstdd[x] */
 424        { 8, ST+E4 },           /* 1 00 01: evstdw[x] */
 425        { 8, ST },              /* 1 00 10: evstdh[x] */
 426        INVALID,                /* 1 00 11 */
 427        INVALID,                /* 1 01 00 */
 428        INVALID,                /* 1 01 01 */
 429        INVALID,                /* 1 01 10 */
 430        INVALID,                /* 1 01 11 */
 431        { 4, ST },              /* 1 10 00: evstwhe[x] */
 432        INVALID,                /* 1 10 01 */
 433        { 4, ST },              /* 1 10 10: evstwho[x] */
 434        INVALID,                /* 1 10 11 */
 435        { 4, ST+E4 },           /* 1 11 00: evstwwe[x] */
 436        INVALID,                /* 1 11 01 */
 437        { 4, ST+E4 },           /* 1 11 10: evstwwo[x] */
 438        INVALID,                /* 1 11 11 */
 439};
 440
 441#define EVLDD           0x00
 442#define EVLDW           0x01
 443#define EVLDH           0x02
 444#define EVLHHESPLAT     0x04
 445#define EVLHHOUSPLAT    0x06
 446#define EVLHHOSSPLAT    0x07
 447#define EVLWHE          0x08
 448#define EVLWHOU         0x0A
 449#define EVLWHOS         0x0B
 450#define EVLWWSPLAT      0x0C
 451#define EVLWHSPLAT      0x0E
 452#define EVSTDD          0x10
 453#define EVSTDW          0x11
 454#define EVSTDH          0x12
 455#define EVSTWHE         0x18
 456#define EVSTWHO         0x1A
 457#define EVSTWWE         0x1C
 458#define EVSTWWO         0x1E
 459
 460/*
 461 * Emulate SPE loads and stores.
 462 * Only Book-E has these instructions, and it does true little-endian,
 463 * so we don't need the address swizzling.
 464 */
 465static int emulate_spe(struct pt_regs *regs, unsigned int reg,
 466                       unsigned int instr)
 467{
 468        int ret;
 469        union {
 470                u64 ll;
 471                u32 w[2];
 472                u16 h[4];
 473                u8 v[8];
 474        } data, temp;
 475        unsigned char __user *p, *addr;
 476        unsigned long *evr = &current->thread.evr[reg];
 477        unsigned int nb, flags;
 478
 479        instr = (instr >> 1) & 0x1f;
 480
 481        /* DAR has the operand effective address */
 482        addr = (unsigned char __user *)regs->dar;
 483
 484        nb = spe_aligninfo[instr].len;
 485        flags = spe_aligninfo[instr].flags;
 486
 487        /* Verify the address of the operand */
 488        if (unlikely(user_mode(regs) &&
 489                     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
 490                                addr, nb)))
 491                return -EFAULT;
 492
 493        /* userland only */
 494        if (unlikely(!user_mode(regs)))
 495                return 0;
 496
 497        flush_spe_to_thread(current);
 498
 499        /* If we are loading, get the data from user space, else
 500         * get it from register values
 501         */
 502        if (flags & ST) {
 503                data.ll = 0;
 504                switch (instr) {
 505                case EVSTDD:
 506                case EVSTDW:
 507                case EVSTDH:
 508                        data.w[0] = *evr;
 509                        data.w[1] = regs->gpr[reg];
 510                        break;
 511                case EVSTWHE:
 512                        data.h[2] = *evr >> 16;
 513                        data.h[3] = regs->gpr[reg] >> 16;
 514                        break;
 515                case EVSTWHO:
 516                        data.h[2] = *evr & 0xffff;
 517                        data.h[3] = regs->gpr[reg] & 0xffff;
 518                        break;
 519                case EVSTWWE:
 520                        data.w[1] = *evr;
 521                        break;
 522                case EVSTWWO:
 523                        data.w[1] = regs->gpr[reg];
 524                        break;
 525                default:
 526                        return -EINVAL;
 527                }
 528        } else {
 529                temp.ll = data.ll = 0;
 530                ret = 0;
 531                p = addr;
 532
 533                switch (nb) {
 534                case 8:
 535                        ret |= __get_user_inatomic(temp.v[0], p++);
 536                        ret |= __get_user_inatomic(temp.v[1], p++);
 537                        ret |= __get_user_inatomic(temp.v[2], p++);
 538                        ret |= __get_user_inatomic(temp.v[3], p++);
 539                case 4:
 540                        ret |= __get_user_inatomic(temp.v[4], p++);
 541                        ret |= __get_user_inatomic(temp.v[5], p++);
 542                case 2:
 543                        ret |= __get_user_inatomic(temp.v[6], p++);
 544                        ret |= __get_user_inatomic(temp.v[7], p++);
 545                        if (unlikely(ret))
 546                                return -EFAULT;
 547                }
 548
 549                switch (instr) {
 550                case EVLDD:
 551                case EVLDW:
 552                case EVLDH:
 553                        data.ll = temp.ll;
 554                        break;
 555                case EVLHHESPLAT:
 556                        data.h[0] = temp.h[3];
 557                        data.h[2] = temp.h[3];
 558                        break;
 559                case EVLHHOUSPLAT:
 560                case EVLHHOSSPLAT:
 561                        data.h[1] = temp.h[3];
 562                        data.h[3] = temp.h[3];
 563                        break;
 564                case EVLWHE:
 565                        data.h[0] = temp.h[2];
 566                        data.h[2] = temp.h[3];
 567                        break;
 568                case EVLWHOU:
 569                case EVLWHOS:
 570                        data.h[1] = temp.h[2];
 571                        data.h[3] = temp.h[3];
 572                        break;
 573                case EVLWWSPLAT:
 574                        data.w[0] = temp.w[1];
 575                        data.w[1] = temp.w[1];
 576                        break;
 577                case EVLWHSPLAT:
 578                        data.h[0] = temp.h[2];
 579                        data.h[1] = temp.h[2];
 580                        data.h[2] = temp.h[3];
 581                        data.h[3] = temp.h[3];
 582                        break;
 583                default:
 584                        return -EINVAL;
 585                }
 586        }
 587
 588        if (flags & SW) {
 589                switch (flags & 0xf0) {
 590                case E8:
 591                        data.ll = swab64(data.ll);
 592                        break;
 593                case E4:
 594                        data.w[0] = swab32(data.w[0]);
 595                        data.w[1] = swab32(data.w[1]);
 596                        break;
 597                /* Its half word endian */
 598                default:
 599                        data.h[0] = swab16(data.h[0]);
 600                        data.h[1] = swab16(data.h[1]);
 601                        data.h[2] = swab16(data.h[2]);
 602                        data.h[3] = swab16(data.h[3]);
 603                        break;
 604                }
 605        }
 606
 607        if (flags & SE) {
 608                data.w[0] = (s16)data.h[1];
 609                data.w[1] = (s16)data.h[3];
 610        }
 611
 612        /* Store result to memory or update registers */
 613        if (flags & ST) {
 614                ret = 0;
 615                p = addr;
 616                switch (nb) {
 617                case 8:
 618                        ret |= __put_user_inatomic(data.v[0], p++);
 619                        ret |= __put_user_inatomic(data.v[1], p++);
 620                        ret |= __put_user_inatomic(data.v[2], p++);
 621                        ret |= __put_user_inatomic(data.v[3], p++);
 622                case 4:
 623                        ret |= __put_user_inatomic(data.v[4], p++);
 624                        ret |= __put_user_inatomic(data.v[5], p++);
 625                case 2:
 626                        ret |= __put_user_inatomic(data.v[6], p++);
 627                        ret |= __put_user_inatomic(data.v[7], p++);
 628                }
 629                if (unlikely(ret))
 630                        return -EFAULT;
 631        } else {
 632                *evr = data.w[0];
 633                regs->gpr[reg] = data.w[1];
 634        }
 635
 636        return 1;
 637}
 638#endif /* CONFIG_SPE */
 639
 640#ifdef CONFIG_VSX
 641/*
 642 * Emulate VSX instructions...
 643 */
 644static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
 645                       unsigned int areg, struct pt_regs *regs,
 646                       unsigned int flags, unsigned int length,
 647                       unsigned int elsize)
 648{
 649        char *ptr;
 650        unsigned long *lptr;
 651        int ret = 0;
 652        int sw = 0;
 653        int i, j;
 654
 655        /* userland only */
 656        if (unlikely(!user_mode(regs)))
 657                return 0;
 658
 659        flush_vsx_to_thread(current);
 660
 661        if (reg < 32)
 662                ptr = (char *) &current->thread.fp_state.fpr[reg][0];
 663        else
 664                ptr = (char *) &current->thread.vr_state.vr[reg - 32];
 665
 666        lptr = (unsigned long *) ptr;
 667
 668#ifdef __LITTLE_ENDIAN__
 669        if (flags & SW) {
 670                elsize = length;
 671                sw = length-1;
 672        } else {
 673                /*
 674                 * The elements are BE ordered, even in LE mode, so process
 675                 * them in reverse order.
 676                 */
 677                addr += length - elsize;
 678
 679                /* 8 byte memory accesses go in the top 8 bytes of the VR */
 680                if (length == 8)
 681                        ptr += 8;
 682        }
 683#else
 684        if (flags & SW)
 685                sw = elsize-1;
 686#endif
 687
 688        for (j = 0; j < length; j += elsize) {
 689                for (i = 0; i < elsize; ++i) {
 690                        if (flags & ST)
 691                                ret |= __put_user(ptr[i^sw], addr + i);
 692                        else
 693                                ret |= __get_user(ptr[i^sw], addr + i);
 694                }
 695                ptr  += elsize;
 696#ifdef __LITTLE_ENDIAN__
 697                addr -= elsize;
 698#else
 699                addr += elsize;
 700#endif
 701        }
 702
 703#ifdef __BIG_ENDIAN__
 704#define VSX_HI 0
 705#define VSX_LO 1
 706#else
 707#define VSX_HI 1
 708#define VSX_LO 0
 709#endif
 710
 711        if (!ret) {
 712                if (flags & U)
 713                        regs->gpr[areg] = regs->dar;
 714
 715                /* Splat load copies the same data to top and bottom 8 bytes */
 716                if (flags & SPLT)
 717                        lptr[VSX_LO] = lptr[VSX_HI];
 718                /* For 8 byte loads, zero the low 8 bytes */
 719                else if (!(flags & ST) && (8 == length))
 720                        lptr[VSX_LO] = 0;
 721        } else
 722                return -EFAULT;
 723
 724        return 1;
 725}
 726#endif
 727
 728/*
 729 * Called on alignment exception. Attempts to fixup
 730 *
 731 * Return 1 on success
 732 * Return 0 if unable to handle the interrupt
 733 * Return -EFAULT if data address is bad
 734 */
 735
 736int fix_alignment(struct pt_regs *regs)
 737{
 738        unsigned int instr, nb, flags, instruction = 0;
 739        unsigned int reg, areg;
 740        unsigned int dsisr;
 741        unsigned char __user *addr;
 742        unsigned long p, swiz;
 743        int ret, i;
 744        union data {
 745                u64 ll;
 746                double dd;
 747                unsigned char v[8];
 748                struct {
 749#ifdef __LITTLE_ENDIAN__
 750                        int      low32;
 751                        unsigned hi32;
 752#else
 753                        unsigned hi32;
 754                        int      low32;
 755#endif
 756                } x32;
 757                struct {
 758#ifdef __LITTLE_ENDIAN__
 759                        short         low16;
 760                        unsigned char hi48[6];
 761#else
 762                        unsigned char hi48[6];
 763                        short         low16;
 764#endif
 765                } x16;
 766        } data;
 767
 768        /*
 769         * We require a complete register set, if not, then our assembly
 770         * is broken
 771         */
 772        CHECK_FULL_REGS(regs);
 773
 774        dsisr = regs->dsisr;
 775
 776        /* Some processors don't provide us with a DSISR we can use here,
 777         * let's make one up from the instruction
 778         */
 779        if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
 780                unsigned long pc = regs->nip;
 781
 782                if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
 783                        pc ^= 4;
 784                if (unlikely(__get_user_inatomic(instr,
 785                                                 (unsigned int __user *)pc)))
 786                        return -EFAULT;
 787                if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
 788                        instr = cpu_to_le32(instr);
 789                dsisr = make_dsisr(instr);
 790                instruction = instr;
 791        }
 792
 793        /* extract the operation and registers from the dsisr */
 794        reg = (dsisr >> 5) & 0x1f;      /* source/dest register */
 795        areg = dsisr & 0x1f;            /* register to update */
 796
 797#ifdef CONFIG_SPE
 798        if ((instr >> 26) == 0x4) {
 799                PPC_WARN_ALIGNMENT(spe, regs);
 800                return emulate_spe(regs, reg, instr);
 801        }
 802#endif
 803
 804        instr = (dsisr >> 10) & 0x7f;
 805        instr |= (dsisr >> 13) & 0x60;
 806
 807        /* Lookup the operation in our table */
 808        nb = aligninfo[instr].len;
 809        flags = aligninfo[instr].flags;
 810
 811        /* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
 812        if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
 813                nb = 8;
 814                flags = LD+SW;
 815        } else if (IS_XFORM(instruction) &&
 816                   ((instruction >> 1) & 0x3ff) == 660) {
 817                nb = 8;
 818                flags = ST+SW;
 819        }
 820
 821        /* Byteswap little endian loads and stores */
 822        swiz = 0;
 823        if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
 824                flags ^= SW;
 825#ifdef __BIG_ENDIAN__
 826                /*
 827                 * So-called "PowerPC little endian" mode works by
 828                 * swizzling addresses rather than by actually doing
 829                 * any byte-swapping.  To emulate this, we XOR each
 830                 * byte address with 7.  We also byte-swap, because
 831                 * the processor's address swizzling depends on the
 832                 * operand size (it xors the address with 7 for bytes,
 833                 * 6 for halfwords, 4 for words, 0 for doublewords) but
 834                 * we will xor with 7 and load/store each byte separately.
 835                 */
 836                if (cpu_has_feature(CPU_FTR_PPC_LE))
 837                        swiz = 7;
 838#endif
 839        }
 840
 841        /* DAR has the operand effective address */
 842        addr = (unsigned char __user *)regs->dar;
 843
 844#ifdef CONFIG_VSX
 845        if ((instruction & 0xfc00003e) == 0x7c000018) {
 846                unsigned int elsize;
 847
 848                /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
 849                reg |= (instruction & 0x1) << 5;
 850                /* Simple inline decoder instead of a table */
 851                /* VSX has only 8 and 16 byte memory accesses */
 852                nb = 8;
 853                if (instruction & 0x200)
 854                        nb = 16;
 855
 856                /* Vector stores in little-endian mode swap individual
 857                   elements, so process them separately */
 858                elsize = 4;
 859                if (instruction & 0x80)
 860                        elsize = 8;
 861
 862                flags = 0;
 863                if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
 864                        flags |= SW;
 865                if (instruction & 0x100)
 866                        flags |= ST;
 867                if (instruction & 0x040)
 868                        flags |= U;
 869                /* splat load needs a special decoder */
 870                if ((instruction & 0x400) == 0){
 871                        flags |= SPLT;
 872                        nb = 8;
 873                }
 874                PPC_WARN_ALIGNMENT(vsx, regs);
 875                return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
 876        }
 877#endif
 878        /* A size of 0 indicates an instruction we don't support, with
 879         * the exception of DCBZ which is handled as a special case here
 880         */
 881        if (instr == DCBZ) {
 882                PPC_WARN_ALIGNMENT(dcbz, regs);
 883                return emulate_dcbz(regs, addr);
 884        }
 885        if (unlikely(nb == 0))
 886                return 0;
 887
 888        /* Load/Store Multiple instructions are handled in their own
 889         * function
 890         */
 891        if (flags & M) {
 892                PPC_WARN_ALIGNMENT(multiple, regs);
 893                return emulate_multiple(regs, addr, reg, nb,
 894                                        flags, instr, swiz);
 895        }
 896
 897        /* Verify the address of the operand */
 898        if (unlikely(user_mode(regs) &&
 899                     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
 900                                addr, nb)))
 901                return -EFAULT;
 902
 903        /* Force the fprs into the save area so we can reference them */
 904        if (flags & F) {
 905                /* userland only */
 906                if (unlikely(!user_mode(regs)))
 907                        return 0;
 908                flush_fp_to_thread(current);
 909        }
 910
 911        if (nb == 16) {
 912                if (flags & F) {
 913                        /* Special case for 16-byte FP loads and stores */
 914                        PPC_WARN_ALIGNMENT(fp_pair, regs);
 915                        return emulate_fp_pair(addr, reg, flags);
 916                } else {
 917#ifdef CONFIG_PPC64
 918                        /* Special case for 16-byte loads and stores */
 919                        PPC_WARN_ALIGNMENT(lq_stq, regs);
 920                        return emulate_lq_stq(regs, addr, reg, flags);
 921#else
 922                        return 0;
 923#endif
 924                }
 925        }
 926
 927        PPC_WARN_ALIGNMENT(unaligned, regs);
 928
 929        /* If we are loading, get the data from user space, else
 930         * get it from register values
 931         */
 932        if (!(flags & ST)) {
 933                unsigned int start = 0;
 934
 935                switch (nb) {
 936                case 4:
 937                        start = offsetof(union data, x32.low32);
 938                        break;
 939                case 2:
 940                        start = offsetof(union data, x16.low16);
 941                        break;
 942                }
 943
 944                data.ll = 0;
 945                ret = 0;
 946                p = (unsigned long)addr;
 947
 948                for (i = 0; i < nb; i++)
 949                        ret |= __get_user_inatomic(data.v[start + i],
 950                                                   SWIZ_PTR(p++));
 951
 952                if (unlikely(ret))
 953                        return -EFAULT;
 954
 955        } else if (flags & F) {
 956                data.ll = current->thread.TS_FPR(reg);
 957                if (flags & S) {
 958                        /* Single-precision FP store requires conversion... */
 959#ifdef CONFIG_PPC_FPU
 960                        preempt_disable();
 961                        enable_kernel_fp();
 962                        cvt_df(&data.dd, (float *)&data.x32.low32);
 963                        disable_kernel_fp();
 964                        preempt_enable();
 965#else
 966                        return 0;
 967#endif
 968                }
 969        } else
 970                data.ll = regs->gpr[reg];
 971
 972        if (flags & SW) {
 973                switch (nb) {
 974                case 8:
 975                        data.ll = swab64(data.ll);
 976                        break;
 977                case 4:
 978                        data.x32.low32 = swab32(data.x32.low32);
 979                        break;
 980                case 2:
 981                        data.x16.low16 = swab16(data.x16.low16);
 982                        break;
 983                }
 984        }
 985
 986        /* Perform other misc operations like sign extension
 987         * or floating point single precision conversion
 988         */
 989        switch (flags & ~(U|SW)) {
 990        case LD+SE:     /* sign extending integer loads */
 991        case LD+F+SE:   /* sign extend for lfiwax */
 992                if ( nb == 2 )
 993                        data.ll = data.x16.low16;
 994                else    /* nb must be 4 */
 995                        data.ll = data.x32.low32;
 996                break;
 997
 998        /* Single-precision FP load requires conversion... */
 999        case LD+F+S:
1000#ifdef CONFIG_PPC_FPU
1001                preempt_disable();
1002                enable_kernel_fp();
1003                cvt_fd((float *)&data.x32.low32, &data.dd);
1004                disable_kernel_fp();
1005                preempt_enable();
1006#else
1007                return 0;
1008#endif
1009                break;
1010        }
1011
1012        /* Store result to memory or update registers */
1013        if (flags & ST) {
1014                unsigned int start = 0;
1015
1016                switch (nb) {
1017                case 4:
1018                        start = offsetof(union data, x32.low32);
1019                        break;
1020                case 2:
1021                        start = offsetof(union data, x16.low16);
1022                        break;
1023                }
1024
1025                ret = 0;
1026                p = (unsigned long)addr;
1027
1028                for (i = 0; i < nb; i++)
1029                        ret |= __put_user_inatomic(data.v[start + i],
1030                                                   SWIZ_PTR(p++));
1031
1032                if (unlikely(ret))
1033                        return -EFAULT;
1034        } else if (flags & F)
1035                current->thread.TS_FPR(reg) = data.ll;
1036        else
1037                regs->gpr[reg] = data.ll;
1038
1039        /* Update RA as needed */
1040        if (flags & U)
1041                regs->gpr[areg] = regs->dar;
1042
1043        return 1;
1044}
1045