linux/arch/powerpc/kernel/eeh.c
<<
>>
Prefs
   1/*
   2 * Copyright IBM Corporation 2001, 2005, 2006
   3 * Copyright Dave Engebretsen & Todd Inglett 2001
   4 * Copyright Linas Vepstas 2005, 2006
   5 * Copyright 2001-2012 IBM Corporation.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
  22 */
  23
  24#include <linux/delay.h>
  25#include <linux/debugfs.h>
  26#include <linux/sched.h>
  27#include <linux/init.h>
  28#include <linux/list.h>
  29#include <linux/pci.h>
  30#include <linux/iommu.h>
  31#include <linux/proc_fs.h>
  32#include <linux/rbtree.h>
  33#include <linux/reboot.h>
  34#include <linux/seq_file.h>
  35#include <linux/spinlock.h>
  36#include <linux/export.h>
  37#include <linux/of.h>
  38
  39#include <linux/atomic.h>
  40#include <asm/debug.h>
  41#include <asm/eeh.h>
  42#include <asm/eeh_event.h>
  43#include <asm/io.h>
  44#include <asm/iommu.h>
  45#include <asm/machdep.h>
  46#include <asm/ppc-pci.h>
  47#include <asm/rtas.h>
  48
  49
  50/** Overview:
  51 *  EEH, or "Extended Error Handling" is a PCI bridge technology for
  52 *  dealing with PCI bus errors that can't be dealt with within the
  53 *  usual PCI framework, except by check-stopping the CPU.  Systems
  54 *  that are designed for high-availability/reliability cannot afford
  55 *  to crash due to a "mere" PCI error, thus the need for EEH.
  56 *  An EEH-capable bridge operates by converting a detected error
  57 *  into a "slot freeze", taking the PCI adapter off-line, making
  58 *  the slot behave, from the OS'es point of view, as if the slot
  59 *  were "empty": all reads return 0xff's and all writes are silently
  60 *  ignored.  EEH slot isolation events can be triggered by parity
  61 *  errors on the address or data busses (e.g. during posted writes),
  62 *  which in turn might be caused by low voltage on the bus, dust,
  63 *  vibration, humidity, radioactivity or plain-old failed hardware.
  64 *
  65 *  Note, however, that one of the leading causes of EEH slot
  66 *  freeze events are buggy device drivers, buggy device microcode,
  67 *  or buggy device hardware.  This is because any attempt by the
  68 *  device to bus-master data to a memory address that is not
  69 *  assigned to the device will trigger a slot freeze.   (The idea
  70 *  is to prevent devices-gone-wild from corrupting system memory).
  71 *  Buggy hardware/drivers will have a miserable time co-existing
  72 *  with EEH.
  73 *
  74 *  Ideally, a PCI device driver, when suspecting that an isolation
  75 *  event has occurred (e.g. by reading 0xff's), will then ask EEH
  76 *  whether this is the case, and then take appropriate steps to
  77 *  reset the PCI slot, the PCI device, and then resume operations.
  78 *  However, until that day,  the checking is done here, with the
  79 *  eeh_check_failure() routine embedded in the MMIO macros.  If
  80 *  the slot is found to be isolated, an "EEH Event" is synthesized
  81 *  and sent out for processing.
  82 */
  83
  84/* If a device driver keeps reading an MMIO register in an interrupt
  85 * handler after a slot isolation event, it might be broken.
  86 * This sets the threshold for how many read attempts we allow
  87 * before printing an error message.
  88 */
  89#define EEH_MAX_FAILS   2100000
  90
  91/* Time to wait for a PCI slot to report status, in milliseconds */
  92#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
  93
  94/*
  95 * EEH probe mode support, which is part of the flags,
  96 * is to support multiple platforms for EEH. Some platforms
  97 * like pSeries do PCI emunation based on device tree.
  98 * However, other platforms like powernv probe PCI devices
  99 * from hardware. The flag is used to distinguish that.
 100 * In addition, struct eeh_ops::probe would be invoked for
 101 * particular OF node or PCI device so that the corresponding
 102 * PE would be created there.
 103 */
 104int eeh_subsystem_flags;
 105EXPORT_SYMBOL(eeh_subsystem_flags);
 106
 107/*
 108 * EEH allowed maximal frozen times. If one particular PE's
 109 * frozen count in last hour exceeds this limit, the PE will
 110 * be forced to be offline permanently.
 111 */
 112int eeh_max_freezes = 5;
 113
 114/* Platform dependent EEH operations */
 115struct eeh_ops *eeh_ops = NULL;
 116
 117/* Lock to avoid races due to multiple reports of an error */
 118DEFINE_RAW_SPINLOCK(confirm_error_lock);
 119
 120/* Lock to protect passed flags */
 121static DEFINE_MUTEX(eeh_dev_mutex);
 122
 123/* Buffer for reporting pci register dumps. Its here in BSS, and
 124 * not dynamically alloced, so that it ends up in RMO where RTAS
 125 * can access it.
 126 */
 127#define EEH_PCI_REGS_LOG_LEN 8192
 128static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
 129
 130/*
 131 * The struct is used to maintain the EEH global statistic
 132 * information. Besides, the EEH global statistics will be
 133 * exported to user space through procfs
 134 */
 135struct eeh_stats {
 136        u64 no_device;          /* PCI device not found         */
 137        u64 no_dn;              /* OF node not found            */
 138        u64 no_cfg_addr;        /* Config address not found     */
 139        u64 ignored_check;      /* EEH check skipped            */
 140        u64 total_mmio_ffs;     /* Total EEH checks             */
 141        u64 false_positives;    /* Unnecessary EEH checks       */
 142        u64 slot_resets;        /* PE reset                     */
 143};
 144
 145static struct eeh_stats eeh_stats;
 146
 147static int __init eeh_setup(char *str)
 148{
 149        if (!strcmp(str, "off"))
 150                eeh_add_flag(EEH_FORCE_DISABLED);
 151        else if (!strcmp(str, "early_log"))
 152                eeh_add_flag(EEH_EARLY_DUMP_LOG);
 153
 154        return 1;
 155}
 156__setup("eeh=", eeh_setup);
 157
 158/*
 159 * This routine captures assorted PCI configuration space data
 160 * for the indicated PCI device, and puts them into a buffer
 161 * for RTAS error logging.
 162 */
 163static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
 164{
 165        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 166        u32 cfg;
 167        int cap, i;
 168        int n = 0, l = 0;
 169        char buffer[128];
 170
 171        n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
 172                       edev->phb->global_number, pdn->busno,
 173                       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
 174        pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
 175                edev->phb->global_number, pdn->busno,
 176                PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
 177
 178        eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
 179        n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
 180        pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
 181
 182        eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
 183        n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
 184        pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
 185
 186        /* Gather bridge-specific registers */
 187        if (edev->mode & EEH_DEV_BRIDGE) {
 188                eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
 189                n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
 190                pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
 191
 192                eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
 193                n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
 194                pr_warn("EEH: Bridge control: %04x\n", cfg);
 195        }
 196
 197        /* Dump out the PCI-X command and status regs */
 198        cap = edev->pcix_cap;
 199        if (cap) {
 200                eeh_ops->read_config(pdn, cap, 4, &cfg);
 201                n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
 202                pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
 203
 204                eeh_ops->read_config(pdn, cap+4, 4, &cfg);
 205                n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
 206                pr_warn("EEH: PCI-X status: %08x\n", cfg);
 207        }
 208
 209        /* If PCI-E capable, dump PCI-E cap 10 */
 210        cap = edev->pcie_cap;
 211        if (cap) {
 212                n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
 213                pr_warn("EEH: PCI-E capabilities and status follow:\n");
 214
 215                for (i=0; i<=8; i++) {
 216                        eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
 217                        n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 218
 219                        if ((i % 4) == 0) {
 220                                if (i != 0)
 221                                        pr_warn("%s\n", buffer);
 222
 223                                l = scnprintf(buffer, sizeof(buffer),
 224                                              "EEH: PCI-E %02x: %08x ",
 225                                              4*i, cfg);
 226                        } else {
 227                                l += scnprintf(buffer+l, sizeof(buffer)-l,
 228                                               "%08x ", cfg);
 229                        }
 230
 231                }
 232
 233                pr_warn("%s\n", buffer);
 234        }
 235
 236        /* If AER capable, dump it */
 237        cap = edev->aer_cap;
 238        if (cap) {
 239                n += scnprintf(buf+n, len-n, "pci-e AER:\n");
 240                pr_warn("EEH: PCI-E AER capability register set follows:\n");
 241
 242                for (i=0; i<=13; i++) {
 243                        eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
 244                        n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
 245
 246                        if ((i % 4) == 0) {
 247                                if (i != 0)
 248                                        pr_warn("%s\n", buffer);
 249
 250                                l = scnprintf(buffer, sizeof(buffer),
 251                                              "EEH: PCI-E AER %02x: %08x ",
 252                                              4*i, cfg);
 253                        } else {
 254                                l += scnprintf(buffer+l, sizeof(buffer)-l,
 255                                               "%08x ", cfg);
 256                        }
 257                }
 258
 259                pr_warn("%s\n", buffer);
 260        }
 261
 262        return n;
 263}
 264
 265static void *eeh_dump_pe_log(void *data, void *flag)
 266{
 267        struct eeh_pe *pe = data;
 268        struct eeh_dev *edev, *tmp;
 269        size_t *plen = flag;
 270
 271        eeh_pe_for_each_dev(pe, edev, tmp)
 272                *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
 273                                          EEH_PCI_REGS_LOG_LEN - *plen);
 274
 275        return NULL;
 276}
 277
 278/**
 279 * eeh_slot_error_detail - Generate combined log including driver log and error log
 280 * @pe: EEH PE
 281 * @severity: temporary or permanent error log
 282 *
 283 * This routine should be called to generate the combined log, which
 284 * is comprised of driver log and error log. The driver log is figured
 285 * out from the config space of the corresponding PCI device, while
 286 * the error log is fetched through platform dependent function call.
 287 */
 288void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
 289{
 290        size_t loglen = 0;
 291
 292        /*
 293         * When the PHB is fenced or dead, it's pointless to collect
 294         * the data from PCI config space because it should return
 295         * 0xFF's. For ER, we still retrieve the data from the PCI
 296         * config space.
 297         *
 298         * For pHyp, we have to enable IO for log retrieval. Otherwise,
 299         * 0xFF's is always returned from PCI config space.
 300         */
 301        if (!(pe->type & EEH_PE_PHB)) {
 302                if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
 303                        eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
 304
 305                /*
 306                 * The config space of some PCI devices can't be accessed
 307                 * when their PEs are in frozen state. Otherwise, fenced
 308                 * PHB might be seen. Those PEs are identified with flag
 309                 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
 310                 * is set automatically when the PE is put to EEH_PE_ISOLATED.
 311                 *
 312                 * Restoring BARs possibly triggers PCI config access in
 313                 * (OPAL) firmware and then causes fenced PHB. If the
 314                 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
 315                 * pointless to restore BARs and dump config space.
 316                 */
 317                eeh_ops->configure_bridge(pe);
 318                if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
 319                        eeh_pe_restore_bars(pe);
 320
 321                        pci_regs_buf[0] = 0;
 322                        eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
 323                }
 324        }
 325
 326        eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
 327}
 328
 329/**
 330 * eeh_token_to_phys - Convert EEH address token to phys address
 331 * @token: I/O token, should be address in the form 0xA....
 332 *
 333 * This routine should be called to convert virtual I/O address
 334 * to physical one.
 335 */
 336static inline unsigned long eeh_token_to_phys(unsigned long token)
 337{
 338        pte_t *ptep;
 339        unsigned long pa;
 340        int hugepage_shift;
 341
 342        /*
 343         * We won't find hugepages here(this is iomem). Hence we are not
 344         * worried about _PAGE_SPLITTING/collapse. Also we will not hit
 345         * page table free, because of init_mm.
 346         */
 347        ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
 348                                           NULL, &hugepage_shift);
 349        if (!ptep)
 350                return token;
 351        WARN_ON(hugepage_shift);
 352        pa = pte_pfn(*ptep) << PAGE_SHIFT;
 353
 354        return pa | (token & (PAGE_SIZE-1));
 355}
 356
 357/*
 358 * On PowerNV platform, we might already have fenced PHB there.
 359 * For that case, it's meaningless to recover frozen PE. Intead,
 360 * We have to handle fenced PHB firstly.
 361 */
 362static int eeh_phb_check_failure(struct eeh_pe *pe)
 363{
 364        struct eeh_pe *phb_pe;
 365        unsigned long flags;
 366        int ret;
 367
 368        if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
 369                return -EPERM;
 370
 371        /* Find the PHB PE */
 372        phb_pe = eeh_phb_pe_get(pe->phb);
 373        if (!phb_pe) {
 374                pr_warn("%s Can't find PE for PHB#%d\n",
 375                        __func__, pe->phb->global_number);
 376                return -EEXIST;
 377        }
 378
 379        /* If the PHB has been in problematic state */
 380        eeh_serialize_lock(&flags);
 381        if (phb_pe->state & EEH_PE_ISOLATED) {
 382                ret = 0;
 383                goto out;
 384        }
 385
 386        /* Check PHB state */
 387        ret = eeh_ops->get_state(phb_pe, NULL);
 388        if ((ret < 0) ||
 389            (ret == EEH_STATE_NOT_SUPPORT) ||
 390            (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
 391            (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
 392                ret = 0;
 393                goto out;
 394        }
 395
 396        /* Isolate the PHB and send event */
 397        eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
 398        eeh_serialize_unlock(flags);
 399
 400        pr_err("EEH: PHB#%x failure detected, location: %s\n",
 401                phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
 402        dump_stack();
 403        eeh_send_failure_event(phb_pe);
 404
 405        return 1;
 406out:
 407        eeh_serialize_unlock(flags);
 408        return ret;
 409}
 410
 411/**
 412 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
 413 * @edev: eeh device
 414 *
 415 * Check for an EEH failure for the given device node.  Call this
 416 * routine if the result of a read was all 0xff's and you want to
 417 * find out if this is due to an EEH slot freeze.  This routine
 418 * will query firmware for the EEH status.
 419 *
 420 * Returns 0 if there has not been an EEH error; otherwise returns
 421 * a non-zero value and queues up a slot isolation event notification.
 422 *
 423 * It is safe to call this routine in an interrupt context.
 424 */
 425int eeh_dev_check_failure(struct eeh_dev *edev)
 426{
 427        int ret;
 428        int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
 429        unsigned long flags;
 430        struct pci_dn *pdn;
 431        struct pci_dev *dev;
 432        struct eeh_pe *pe, *parent_pe, *phb_pe;
 433        int rc = 0;
 434        const char *location = NULL;
 435
 436        eeh_stats.total_mmio_ffs++;
 437
 438        if (!eeh_enabled())
 439                return 0;
 440
 441        if (!edev) {
 442                eeh_stats.no_dn++;
 443                return 0;
 444        }
 445        dev = eeh_dev_to_pci_dev(edev);
 446        pe = eeh_dev_to_pe(edev);
 447
 448        /* Access to IO BARs might get this far and still not want checking. */
 449        if (!pe) {
 450                eeh_stats.ignored_check++;
 451                pr_debug("EEH: Ignored check for %s\n",
 452                        eeh_pci_name(dev));
 453                return 0;
 454        }
 455
 456        if (!pe->addr && !pe->config_addr) {
 457                eeh_stats.no_cfg_addr++;
 458                return 0;
 459        }
 460
 461        /*
 462         * On PowerNV platform, we might already have fenced PHB
 463         * there and we need take care of that firstly.
 464         */
 465        ret = eeh_phb_check_failure(pe);
 466        if (ret > 0)
 467                return ret;
 468
 469        /*
 470         * If the PE isn't owned by us, we shouldn't check the
 471         * state. Instead, let the owner handle it if the PE has
 472         * been frozen.
 473         */
 474        if (eeh_pe_passed(pe))
 475                return 0;
 476
 477        /* If we already have a pending isolation event for this
 478         * slot, we know it's bad already, we don't need to check.
 479         * Do this checking under a lock; as multiple PCI devices
 480         * in one slot might report errors simultaneously, and we
 481         * only want one error recovery routine running.
 482         */
 483        eeh_serialize_lock(&flags);
 484        rc = 1;
 485        if (pe->state & EEH_PE_ISOLATED) {
 486                pe->check_count++;
 487                if (pe->check_count % EEH_MAX_FAILS == 0) {
 488                        pdn = eeh_dev_to_pdn(edev);
 489                        if (pdn->node)
 490                                location = of_get_property(pdn->node, "ibm,loc-code", NULL);
 491                        printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
 492                                "location=%s driver=%s pci addr=%s\n",
 493                                pe->check_count,
 494                                location ? location : "unknown",
 495                                eeh_driver_name(dev), eeh_pci_name(dev));
 496                        printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
 497                                eeh_driver_name(dev));
 498                        dump_stack();
 499                }
 500                goto dn_unlock;
 501        }
 502
 503        /*
 504         * Now test for an EEH failure.  This is VERY expensive.
 505         * Note that the eeh_config_addr may be a parent device
 506         * in the case of a device behind a bridge, or it may be
 507         * function zero of a multi-function device.
 508         * In any case they must share a common PHB.
 509         */
 510        ret = eeh_ops->get_state(pe, NULL);
 511
 512        /* Note that config-io to empty slots may fail;
 513         * they are empty when they don't have children.
 514         * We will punt with the following conditions: Failure to get
 515         * PE's state, EEH not support and Permanently unavailable
 516         * state, PE is in good state.
 517         */
 518        if ((ret < 0) ||
 519            (ret == EEH_STATE_NOT_SUPPORT) ||
 520            ((ret & active_flags) == active_flags)) {
 521                eeh_stats.false_positives++;
 522                pe->false_positives++;
 523                rc = 0;
 524                goto dn_unlock;
 525        }
 526
 527        /*
 528         * It should be corner case that the parent PE has been
 529         * put into frozen state as well. We should take care
 530         * that at first.
 531         */
 532        parent_pe = pe->parent;
 533        while (parent_pe) {
 534                /* Hit the ceiling ? */
 535                if (parent_pe->type & EEH_PE_PHB)
 536                        break;
 537
 538                /* Frozen parent PE ? */
 539                ret = eeh_ops->get_state(parent_pe, NULL);
 540                if (ret > 0 &&
 541                    (ret & active_flags) != active_flags)
 542                        pe = parent_pe;
 543
 544                /* Next parent level */
 545                parent_pe = parent_pe->parent;
 546        }
 547
 548        eeh_stats.slot_resets++;
 549
 550        /* Avoid repeated reports of this failure, including problems
 551         * with other functions on this device, and functions under
 552         * bridges.
 553         */
 554        eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
 555        eeh_serialize_unlock(flags);
 556
 557        /* Most EEH events are due to device driver bugs.  Having
 558         * a stack trace will help the device-driver authors figure
 559         * out what happened.  So print that out.
 560         */
 561        phb_pe = eeh_phb_pe_get(pe->phb);
 562        pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
 563               pe->phb->global_number, pe->addr);
 564        pr_err("EEH: PE location: %s, PHB location: %s\n",
 565               eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
 566        dump_stack();
 567
 568        eeh_send_failure_event(pe);
 569
 570        return 1;
 571
 572dn_unlock:
 573        eeh_serialize_unlock(flags);
 574        return rc;
 575}
 576
 577EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
 578
 579/**
 580 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
 581 * @token: I/O address
 582 *
 583 * Check for an EEH failure at the given I/O address. Call this
 584 * routine if the result of a read was all 0xff's and you want to
 585 * find out if this is due to an EEH slot freeze event. This routine
 586 * will query firmware for the EEH status.
 587 *
 588 * Note this routine is safe to call in an interrupt context.
 589 */
 590int eeh_check_failure(const volatile void __iomem *token)
 591{
 592        unsigned long addr;
 593        struct eeh_dev *edev;
 594
 595        /* Finding the phys addr + pci device; this is pretty quick. */
 596        addr = eeh_token_to_phys((unsigned long __force) token);
 597        edev = eeh_addr_cache_get_dev(addr);
 598        if (!edev) {
 599                eeh_stats.no_device++;
 600                return 0;
 601        }
 602
 603        return eeh_dev_check_failure(edev);
 604}
 605EXPORT_SYMBOL(eeh_check_failure);
 606
 607
 608/**
 609 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
 610 * @pe: EEH PE
 611 *
 612 * This routine should be called to reenable frozen MMIO or DMA
 613 * so that it would work correctly again. It's useful while doing
 614 * recovery or log collection on the indicated device.
 615 */
 616int eeh_pci_enable(struct eeh_pe *pe, int function)
 617{
 618        int active_flag, rc;
 619
 620        /*
 621         * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
 622         * Also, it's pointless to enable them on unfrozen PE. So
 623         * we have to check before enabling IO or DMA.
 624         */
 625        switch (function) {
 626        case EEH_OPT_THAW_MMIO:
 627                active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
 628                break;
 629        case EEH_OPT_THAW_DMA:
 630                active_flag = EEH_STATE_DMA_ACTIVE;
 631                break;
 632        case EEH_OPT_DISABLE:
 633        case EEH_OPT_ENABLE:
 634        case EEH_OPT_FREEZE_PE:
 635                active_flag = 0;
 636                break;
 637        default:
 638                pr_warn("%s: Invalid function %d\n",
 639                        __func__, function);
 640                return -EINVAL;
 641        }
 642
 643        /*
 644         * Check if IO or DMA has been enabled before
 645         * enabling them.
 646         */
 647        if (active_flag) {
 648                rc = eeh_ops->get_state(pe, NULL);
 649                if (rc < 0)
 650                        return rc;
 651
 652                /* Needn't enable it at all */
 653                if (rc == EEH_STATE_NOT_SUPPORT)
 654                        return 0;
 655
 656                /* It's already enabled */
 657                if (rc & active_flag)
 658                        return 0;
 659        }
 660
 661
 662        /* Issue the request */
 663        rc = eeh_ops->set_option(pe, function);
 664        if (rc)
 665                pr_warn("%s: Unexpected state change %d on "
 666                        "PHB#%d-PE#%x, err=%d\n",
 667                        __func__, function, pe->phb->global_number,
 668                        pe->addr, rc);
 669
 670        /* Check if the request is finished successfully */
 671        if (active_flag) {
 672                rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 673                if (rc < 0)
 674                        return rc;
 675
 676                if (rc & active_flag)
 677                        return 0;
 678
 679                return -EIO;
 680        }
 681
 682        return rc;
 683}
 684
 685static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
 686{
 687        struct eeh_dev *edev = data;
 688        struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 689        struct pci_dev *dev = userdata;
 690
 691        /*
 692         * The caller should have disabled and saved the
 693         * state for the specified device
 694         */
 695        if (!pdev || pdev == dev)
 696                return NULL;
 697
 698        /* Ensure we have D0 power state */
 699        pci_set_power_state(pdev, PCI_D0);
 700
 701        /* Save device state */
 702        pci_save_state(pdev);
 703
 704        /*
 705         * Disable device to avoid any DMA traffic and
 706         * interrupt from the device
 707         */
 708        pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
 709
 710        return NULL;
 711}
 712
 713static void *eeh_restore_dev_state(void *data, void *userdata)
 714{
 715        struct eeh_dev *edev = data;
 716        struct pci_dn *pdn = eeh_dev_to_pdn(edev);
 717        struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
 718        struct pci_dev *dev = userdata;
 719
 720        if (!pdev)
 721                return NULL;
 722
 723        /* Apply customization from firmware */
 724        if (pdn && eeh_ops->restore_config)
 725                eeh_ops->restore_config(pdn);
 726
 727        /* The caller should restore state for the specified device */
 728        if (pdev != dev)
 729                pci_restore_state(pdev);
 730
 731        return NULL;
 732}
 733
 734/**
 735 * pcibios_set_pcie_reset_state - Set PCI-E reset state
 736 * @dev: pci device struct
 737 * @state: reset state to enter
 738 *
 739 * Return value:
 740 *      0 if success
 741 */
 742int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
 743{
 744        struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
 745        struct eeh_pe *pe = eeh_dev_to_pe(edev);
 746
 747        if (!pe) {
 748                pr_err("%s: No PE found on PCI device %s\n",
 749                        __func__, pci_name(dev));
 750                return -EINVAL;
 751        }
 752
 753        switch (state) {
 754        case pcie_deassert_reset:
 755                eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 756                eeh_unfreeze_pe(pe, false);
 757                if (!(pe->type & EEH_PE_VF))
 758                        eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
 759                eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
 760                eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
 761                break;
 762        case pcie_hot_reset:
 763                eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
 764                eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 765                eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 766                if (!(pe->type & EEH_PE_VF))
 767                        eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 768                eeh_ops->reset(pe, EEH_RESET_HOT);
 769                break;
 770        case pcie_warm_reset:
 771                eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
 772                eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
 773                eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
 774                if (!(pe->type & EEH_PE_VF))
 775                        eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
 776                eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 777                break;
 778        default:
 779                eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
 780                return -EINVAL;
 781        };
 782
 783        return 0;
 784}
 785
 786/**
 787 * eeh_set_pe_freset - Check the required reset for the indicated device
 788 * @data: EEH device
 789 * @flag: return value
 790 *
 791 * Each device might have its preferred reset type: fundamental or
 792 * hot reset. The routine is used to collected the information for
 793 * the indicated device and its children so that the bunch of the
 794 * devices could be reset properly.
 795 */
 796static void *eeh_set_dev_freset(void *data, void *flag)
 797{
 798        struct pci_dev *dev;
 799        unsigned int *freset = (unsigned int *)flag;
 800        struct eeh_dev *edev = (struct eeh_dev *)data;
 801
 802        dev = eeh_dev_to_pci_dev(edev);
 803        if (dev)
 804                *freset |= dev->needs_freset;
 805
 806        return NULL;
 807}
 808
 809/**
 810 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
 811 * @pe: EEH PE
 812 *
 813 * Assert the PCI #RST line for 1/4 second.
 814 */
 815static void eeh_reset_pe_once(struct eeh_pe *pe)
 816{
 817        unsigned int freset = 0;
 818
 819        /* Determine type of EEH reset required for
 820         * Partitionable Endpoint, a hot-reset (1)
 821         * or a fundamental reset (3).
 822         * A fundamental reset required by any device under
 823         * Partitionable Endpoint trumps hot-reset.
 824         */
 825        eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
 826
 827        if (freset)
 828                eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
 829        else
 830                eeh_ops->reset(pe, EEH_RESET_HOT);
 831
 832        eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
 833}
 834
 835/**
 836 * eeh_reset_pe - Reset the indicated PE
 837 * @pe: EEH PE
 838 *
 839 * This routine should be called to reset indicated device, including
 840 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
 841 * might be involved as well.
 842 */
 843int eeh_reset_pe(struct eeh_pe *pe)
 844{
 845        int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
 846        int i, state, ret;
 847
 848        /* Mark as reset and block config space */
 849        eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 850
 851        /* Take three shots at resetting the bus */
 852        for (i = 0; i < 3; i++) {
 853                eeh_reset_pe_once(pe);
 854
 855                /*
 856                 * EEH_PE_ISOLATED is expected to be removed after
 857                 * BAR restore.
 858                 */
 859                state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
 860                if ((state & flags) == flags) {
 861                        ret = 0;
 862                        goto out;
 863                }
 864
 865                if (state < 0) {
 866                        pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
 867                                __func__, pe->phb->global_number, pe->addr);
 868                        ret = -ENOTRECOVERABLE;
 869                        goto out;
 870                }
 871
 872                /* We might run out of credits */
 873                ret = -EIO;
 874                pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
 875                        __func__, state, pe->phb->global_number, pe->addr, (i + 1));
 876        }
 877
 878out:
 879        eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
 880        return ret;
 881}
 882
 883/**
 884 * eeh_save_bars - Save device bars
 885 * @edev: PCI device associated EEH device
 886 *
 887 * Save the values of the device bars. Unlike the restore
 888 * routine, this routine is *not* recursive. This is because
 889 * PCI devices are added individually; but, for the restore,
 890 * an entire slot is reset at a time.
 891 */
 892void eeh_save_bars(struct eeh_dev *edev)
 893{
 894        struct pci_dn *pdn;
 895        int i;
 896
 897        pdn = eeh_dev_to_pdn(edev);
 898        if (!pdn)
 899                return;
 900
 901        for (i = 0; i < 16; i++)
 902                eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
 903
 904        /*
 905         * For PCI bridges including root port, we need enable bus
 906         * master explicitly. Otherwise, it can't fetch IODA table
 907         * entries correctly. So we cache the bit in advance so that
 908         * we can restore it after reset, either PHB range or PE range.
 909         */
 910        if (edev->mode & EEH_DEV_BRIDGE)
 911                edev->config_space[1] |= PCI_COMMAND_MASTER;
 912}
 913
 914/**
 915 * eeh_ops_register - Register platform dependent EEH operations
 916 * @ops: platform dependent EEH operations
 917 *
 918 * Register the platform dependent EEH operation callback
 919 * functions. The platform should call this function before
 920 * any other EEH operations.
 921 */
 922int __init eeh_ops_register(struct eeh_ops *ops)
 923{
 924        if (!ops->name) {
 925                pr_warn("%s: Invalid EEH ops name for %p\n",
 926                        __func__, ops);
 927                return -EINVAL;
 928        }
 929
 930        if (eeh_ops && eeh_ops != ops) {
 931                pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
 932                        __func__, eeh_ops->name, ops->name);
 933                return -EEXIST;
 934        }
 935
 936        eeh_ops = ops;
 937
 938        return 0;
 939}
 940
 941/**
 942 * eeh_ops_unregister - Unreigster platform dependent EEH operations
 943 * @name: name of EEH platform operations
 944 *
 945 * Unregister the platform dependent EEH operation callback
 946 * functions.
 947 */
 948int __exit eeh_ops_unregister(const char *name)
 949{
 950        if (!name || !strlen(name)) {
 951                pr_warn("%s: Invalid EEH ops name\n",
 952                        __func__);
 953                return -EINVAL;
 954        }
 955
 956        if (eeh_ops && !strcmp(eeh_ops->name, name)) {
 957                eeh_ops = NULL;
 958                return 0;
 959        }
 960
 961        return -EEXIST;
 962}
 963
 964static int eeh_reboot_notifier(struct notifier_block *nb,
 965                               unsigned long action, void *unused)
 966{
 967        eeh_clear_flag(EEH_ENABLED);
 968        return NOTIFY_DONE;
 969}
 970
 971static struct notifier_block eeh_reboot_nb = {
 972        .notifier_call = eeh_reboot_notifier,
 973};
 974
 975/**
 976 * eeh_init - EEH initialization
 977 *
 978 * Initialize EEH by trying to enable it for all of the adapters in the system.
 979 * As a side effect we can determine here if eeh is supported at all.
 980 * Note that we leave EEH on so failed config cycles won't cause a machine
 981 * check.  If a user turns off EEH for a particular adapter they are really
 982 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 983 * grant access to a slot if EEH isn't enabled, and so we always enable
 984 * EEH for all slots/all devices.
 985 *
 986 * The eeh-force-off option disables EEH checking globally, for all slots.
 987 * Even if force-off is set, the EEH hardware is still enabled, so that
 988 * newer systems can boot.
 989 */
 990int eeh_init(void)
 991{
 992        struct pci_controller *hose, *tmp;
 993        struct pci_dn *pdn;
 994        static int cnt = 0;
 995        int ret = 0;
 996
 997        /*
 998         * We have to delay the initialization on PowerNV after
 999         * the PCI hierarchy tree has been built because the PEs
1000         * are figured out based on PCI devices instead of device
1001         * tree nodes
1002         */
1003        if (machine_is(powernv) && cnt++ <= 0)
1004                return ret;
1005
1006        /* Register reboot notifier */
1007        ret = register_reboot_notifier(&eeh_reboot_nb);
1008        if (ret) {
1009                pr_warn("%s: Failed to register notifier (%d)\n",
1010                        __func__, ret);
1011                return ret;
1012        }
1013
1014        /* call platform initialization function */
1015        if (!eeh_ops) {
1016                pr_warn("%s: Platform EEH operation not found\n",
1017                        __func__);
1018                return -EEXIST;
1019        } else if ((ret = eeh_ops->init()))
1020                return ret;
1021
1022        /* Initialize EEH event */
1023        ret = eeh_event_init();
1024        if (ret)
1025                return ret;
1026
1027        /* Enable EEH for all adapters */
1028        list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1029                pdn = hose->pci_data;
1030                traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1031        }
1032
1033        /*
1034         * Call platform post-initialization. Actually, It's good chance
1035         * to inform platform that EEH is ready to supply service if the
1036         * I/O cache stuff has been built up.
1037         */
1038        if (eeh_ops->post_init) {
1039                ret = eeh_ops->post_init();
1040                if (ret)
1041                        return ret;
1042        }
1043
1044        if (eeh_enabled())
1045                pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1046        else
1047                pr_warn("EEH: No capable adapters found\n");
1048
1049        return ret;
1050}
1051
1052core_initcall_sync(eeh_init);
1053
1054/**
1055 * eeh_add_device_early - Enable EEH for the indicated device node
1056 * @pdn: PCI device node for which to set up EEH
1057 *
1058 * This routine must be used to perform EEH initialization for PCI
1059 * devices that were added after system boot (e.g. hotplug, dlpar).
1060 * This routine must be called before any i/o is performed to the
1061 * adapter (inluding any config-space i/o).
1062 * Whether this actually enables EEH or not for this device depends
1063 * on the CEC architecture, type of the device, on earlier boot
1064 * command-line arguments & etc.
1065 */
1066void eeh_add_device_early(struct pci_dn *pdn)
1067{
1068        struct pci_controller *phb;
1069        struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1070
1071        if (!edev || !eeh_enabled())
1072                return;
1073
1074        if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1075                return;
1076
1077        /* USB Bus children of PCI devices will not have BUID's */
1078        phb = edev->phb;
1079        if (NULL == phb ||
1080            (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1081                return;
1082
1083        eeh_ops->probe(pdn, NULL);
1084}
1085
1086/**
1087 * eeh_add_device_tree_early - Enable EEH for the indicated device
1088 * @pdn: PCI device node
1089 *
1090 * This routine must be used to perform EEH initialization for the
1091 * indicated PCI device that was added after system boot (e.g.
1092 * hotplug, dlpar).
1093 */
1094void eeh_add_device_tree_early(struct pci_dn *pdn)
1095{
1096        struct pci_dn *n;
1097
1098        if (!pdn)
1099                return;
1100
1101        list_for_each_entry(n, &pdn->child_list, list)
1102                eeh_add_device_tree_early(n);
1103        eeh_add_device_early(pdn);
1104}
1105EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1106
1107/**
1108 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1109 * @dev: pci device for which to set up EEH
1110 *
1111 * This routine must be used to complete EEH initialization for PCI
1112 * devices that were added after system boot (e.g. hotplug, dlpar).
1113 */
1114void eeh_add_device_late(struct pci_dev *dev)
1115{
1116        struct pci_dn *pdn;
1117        struct eeh_dev *edev;
1118
1119        if (!dev || !eeh_enabled())
1120                return;
1121
1122        pr_debug("EEH: Adding device %s\n", pci_name(dev));
1123
1124        pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1125        edev = pdn_to_eeh_dev(pdn);
1126        if (edev->pdev == dev) {
1127                pr_debug("EEH: Already referenced !\n");
1128                return;
1129        }
1130
1131        /*
1132         * The EEH cache might not be removed correctly because of
1133         * unbalanced kref to the device during unplug time, which
1134         * relies on pcibios_release_device(). So we have to remove
1135         * that here explicitly.
1136         */
1137        if (edev->pdev) {
1138                eeh_rmv_from_parent_pe(edev);
1139                eeh_addr_cache_rmv_dev(edev->pdev);
1140                eeh_sysfs_remove_device(edev->pdev);
1141                edev->mode &= ~EEH_DEV_SYSFS;
1142
1143                /*
1144                 * We definitely should have the PCI device removed
1145                 * though it wasn't correctly. So we needn't call
1146                 * into error handler afterwards.
1147                 */
1148                edev->mode |= EEH_DEV_NO_HANDLER;
1149
1150                edev->pdev = NULL;
1151                dev->dev.archdata.edev = NULL;
1152        }
1153
1154        if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1155                eeh_ops->probe(pdn, NULL);
1156
1157        edev->pdev = dev;
1158        dev->dev.archdata.edev = edev;
1159
1160        eeh_addr_cache_insert_dev(dev);
1161}
1162
1163/**
1164 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1165 * @bus: PCI bus
1166 *
1167 * This routine must be used to perform EEH initialization for PCI
1168 * devices which are attached to the indicated PCI bus. The PCI bus
1169 * is added after system boot through hotplug or dlpar.
1170 */
1171void eeh_add_device_tree_late(struct pci_bus *bus)
1172{
1173        struct pci_dev *dev;
1174
1175        list_for_each_entry(dev, &bus->devices, bus_list) {
1176                eeh_add_device_late(dev);
1177                if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1178                        struct pci_bus *subbus = dev->subordinate;
1179                        if (subbus)
1180                                eeh_add_device_tree_late(subbus);
1181                }
1182        }
1183}
1184EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1185
1186/**
1187 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1188 * @bus: PCI bus
1189 *
1190 * This routine must be used to add EEH sysfs files for PCI
1191 * devices which are attached to the indicated PCI bus. The PCI bus
1192 * is added after system boot through hotplug or dlpar.
1193 */
1194void eeh_add_sysfs_files(struct pci_bus *bus)
1195{
1196        struct pci_dev *dev;
1197
1198        list_for_each_entry(dev, &bus->devices, bus_list) {
1199                eeh_sysfs_add_device(dev);
1200                if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1201                        struct pci_bus *subbus = dev->subordinate;
1202                        if (subbus)
1203                                eeh_add_sysfs_files(subbus);
1204                }
1205        }
1206}
1207EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1208
1209/**
1210 * eeh_remove_device - Undo EEH setup for the indicated pci device
1211 * @dev: pci device to be removed
1212 *
1213 * This routine should be called when a device is removed from
1214 * a running system (e.g. by hotplug or dlpar).  It unregisters
1215 * the PCI device from the EEH subsystem.  I/O errors affecting
1216 * this device will no longer be detected after this call; thus,
1217 * i/o errors affecting this slot may leave this device unusable.
1218 */
1219void eeh_remove_device(struct pci_dev *dev)
1220{
1221        struct eeh_dev *edev;
1222
1223        if (!dev || !eeh_enabled())
1224                return;
1225        edev = pci_dev_to_eeh_dev(dev);
1226
1227        /* Unregister the device with the EEH/PCI address search system */
1228        pr_debug("EEH: Removing device %s\n", pci_name(dev));
1229
1230        if (!edev || !edev->pdev || !edev->pe) {
1231                pr_debug("EEH: Not referenced !\n");
1232                return;
1233        }
1234
1235        /*
1236         * During the hotplug for EEH error recovery, we need the EEH
1237         * device attached to the parent PE in order for BAR restore
1238         * a bit later. So we keep it for BAR restore and remove it
1239         * from the parent PE during the BAR resotre.
1240         */
1241        edev->pdev = NULL;
1242
1243        /*
1244         * The flag "in_error" is used to trace EEH devices for VFs
1245         * in error state or not. It's set in eeh_report_error(). If
1246         * it's not set, eeh_report_{reset,resume}() won't be called
1247         * for the VF EEH device.
1248         */
1249        edev->in_error = false;
1250        dev->dev.archdata.edev = NULL;
1251        if (!(edev->pe->state & EEH_PE_KEEP))
1252                eeh_rmv_from_parent_pe(edev);
1253        else
1254                edev->mode |= EEH_DEV_DISCONNECTED;
1255
1256        /*
1257         * We're removing from the PCI subsystem, that means
1258         * the PCI device driver can't support EEH or not
1259         * well. So we rely on hotplug completely to do recovery
1260         * for the specific PCI device.
1261         */
1262        edev->mode |= EEH_DEV_NO_HANDLER;
1263
1264        eeh_addr_cache_rmv_dev(dev);
1265        eeh_sysfs_remove_device(dev);
1266        edev->mode &= ~EEH_DEV_SYSFS;
1267}
1268
1269int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1270{
1271        int ret;
1272
1273        ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1274        if (ret) {
1275                pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1276                        __func__, ret, pe->phb->global_number, pe->addr);
1277                return ret;
1278        }
1279
1280        ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1281        if (ret) {
1282                pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1283                        __func__, ret, pe->phb->global_number, pe->addr);
1284                return ret;
1285        }
1286
1287        /* Clear software isolated state */
1288        if (sw_state && (pe->state & EEH_PE_ISOLATED))
1289                eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1290
1291        return ret;
1292}
1293
1294
1295static struct pci_device_id eeh_reset_ids[] = {
1296        { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE     */
1297        { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1298        { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1299        { 0 }
1300};
1301
1302static int eeh_pe_change_owner(struct eeh_pe *pe)
1303{
1304        struct eeh_dev *edev, *tmp;
1305        struct pci_dev *pdev;
1306        struct pci_device_id *id;
1307        int flags, ret;
1308
1309        /* Check PE state */
1310        flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1311        ret = eeh_ops->get_state(pe, NULL);
1312        if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1313                return 0;
1314
1315        /* Unfrozen PE, nothing to do */
1316        if ((ret & flags) == flags)
1317                return 0;
1318
1319        /* Frozen PE, check if it needs PE level reset */
1320        eeh_pe_for_each_dev(pe, edev, tmp) {
1321                pdev = eeh_dev_to_pci_dev(edev);
1322                if (!pdev)
1323                        continue;
1324
1325                for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1326                        if (id->vendor != PCI_ANY_ID &&
1327                            id->vendor != pdev->vendor)
1328                                continue;
1329                        if (id->device != PCI_ANY_ID &&
1330                            id->device != pdev->device)
1331                                continue;
1332                        if (id->subvendor != PCI_ANY_ID &&
1333                            id->subvendor != pdev->subsystem_vendor)
1334                                continue;
1335                        if (id->subdevice != PCI_ANY_ID &&
1336                            id->subdevice != pdev->subsystem_device)
1337                                continue;
1338
1339                        goto reset;
1340                }
1341        }
1342
1343        return eeh_unfreeze_pe(pe, true);
1344
1345reset:
1346        return eeh_pe_reset_and_recover(pe);
1347}
1348
1349/**
1350 * eeh_dev_open - Increase count of pass through devices for PE
1351 * @pdev: PCI device
1352 *
1353 * Increase count of passed through devices for the indicated
1354 * PE. In the result, the EEH errors detected on the PE won't be
1355 * reported. The PE owner will be responsible for detection
1356 * and recovery.
1357 */
1358int eeh_dev_open(struct pci_dev *pdev)
1359{
1360        struct eeh_dev *edev;
1361        int ret = -ENODEV;
1362
1363        mutex_lock(&eeh_dev_mutex);
1364
1365        /* No PCI device ? */
1366        if (!pdev)
1367                goto out;
1368
1369        /* No EEH device or PE ? */
1370        edev = pci_dev_to_eeh_dev(pdev);
1371        if (!edev || !edev->pe)
1372                goto out;
1373
1374        /*
1375         * The PE might have been put into frozen state, but we
1376         * didn't detect that yet. The passed through PCI devices
1377         * in frozen PE won't work properly. Clear the frozen state
1378         * in advance.
1379         */
1380        ret = eeh_pe_change_owner(edev->pe);
1381        if (ret)
1382                goto out;
1383
1384        /* Increase PE's pass through count */
1385        atomic_inc(&edev->pe->pass_dev_cnt);
1386        mutex_unlock(&eeh_dev_mutex);
1387
1388        return 0;
1389out:
1390        mutex_unlock(&eeh_dev_mutex);
1391        return ret;
1392}
1393EXPORT_SYMBOL_GPL(eeh_dev_open);
1394
1395/**
1396 * eeh_dev_release - Decrease count of pass through devices for PE
1397 * @pdev: PCI device
1398 *
1399 * Decrease count of pass through devices for the indicated PE. If
1400 * there is no passed through device in PE, the EEH errors detected
1401 * on the PE will be reported and handled as usual.
1402 */
1403void eeh_dev_release(struct pci_dev *pdev)
1404{
1405        struct eeh_dev *edev;
1406
1407        mutex_lock(&eeh_dev_mutex);
1408
1409        /* No PCI device ? */
1410        if (!pdev)
1411                goto out;
1412
1413        /* No EEH device ? */
1414        edev = pci_dev_to_eeh_dev(pdev);
1415        if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1416                goto out;
1417
1418        /* Decrease PE's pass through count */
1419        WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1420        eeh_pe_change_owner(edev->pe);
1421out:
1422        mutex_unlock(&eeh_dev_mutex);
1423}
1424EXPORT_SYMBOL(eeh_dev_release);
1425
1426#ifdef CONFIG_IOMMU_API
1427
1428static int dev_has_iommu_table(struct device *dev, void *data)
1429{
1430        struct pci_dev *pdev = to_pci_dev(dev);
1431        struct pci_dev **ppdev = data;
1432
1433        if (!dev)
1434                return 0;
1435
1436        if (dev->iommu_group) {
1437                *ppdev = pdev;
1438                return 1;
1439        }
1440
1441        return 0;
1442}
1443
1444/**
1445 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1446 * @group: IOMMU group
1447 *
1448 * The routine is called to convert IOMMU group to EEH PE.
1449 */
1450struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1451{
1452        struct pci_dev *pdev = NULL;
1453        struct eeh_dev *edev;
1454        int ret;
1455
1456        /* No IOMMU group ? */
1457        if (!group)
1458                return NULL;
1459
1460        ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1461        if (!ret || !pdev)
1462                return NULL;
1463
1464        /* No EEH device or PE ? */
1465        edev = pci_dev_to_eeh_dev(pdev);
1466        if (!edev || !edev->pe)
1467                return NULL;
1468
1469        return edev->pe;
1470}
1471EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1472
1473#endif /* CONFIG_IOMMU_API */
1474
1475/**
1476 * eeh_pe_set_option - Set options for the indicated PE
1477 * @pe: EEH PE
1478 * @option: requested option
1479 *
1480 * The routine is called to enable or disable EEH functionality
1481 * on the indicated PE, to enable IO or DMA for the frozen PE.
1482 */
1483int eeh_pe_set_option(struct eeh_pe *pe, int option)
1484{
1485        int ret = 0;
1486
1487        /* Invalid PE ? */
1488        if (!pe)
1489                return -ENODEV;
1490
1491        /*
1492         * EEH functionality could possibly be disabled, just
1493         * return error for the case. And the EEH functinality
1494         * isn't expected to be disabled on one specific PE.
1495         */
1496        switch (option) {
1497        case EEH_OPT_ENABLE:
1498                if (eeh_enabled()) {
1499                        ret = eeh_pe_change_owner(pe);
1500                        break;
1501                }
1502                ret = -EIO;
1503                break;
1504        case EEH_OPT_DISABLE:
1505                break;
1506        case EEH_OPT_THAW_MMIO:
1507        case EEH_OPT_THAW_DMA:
1508                if (!eeh_ops || !eeh_ops->set_option) {
1509                        ret = -ENOENT;
1510                        break;
1511                }
1512
1513                ret = eeh_pci_enable(pe, option);
1514                break;
1515        default:
1516                pr_debug("%s: Option %d out of range (%d, %d)\n",
1517                        __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1518                ret = -EINVAL;
1519        }
1520
1521        return ret;
1522}
1523EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1524
1525/**
1526 * eeh_pe_get_state - Retrieve PE's state
1527 * @pe: EEH PE
1528 *
1529 * Retrieve the PE's state, which includes 3 aspects: enabled
1530 * DMA, enabled IO and asserted reset.
1531 */
1532int eeh_pe_get_state(struct eeh_pe *pe)
1533{
1534        int result, ret = 0;
1535        bool rst_active, dma_en, mmio_en;
1536
1537        /* Existing PE ? */
1538        if (!pe)
1539                return -ENODEV;
1540
1541        if (!eeh_ops || !eeh_ops->get_state)
1542                return -ENOENT;
1543
1544        /*
1545         * If the parent PE is owned by the host kernel and is undergoing
1546         * error recovery, we should return the PE state as temporarily
1547         * unavailable so that the error recovery on the guest is suspended
1548         * until the recovery completes on the host.
1549         */
1550        if (pe->parent &&
1551            !(pe->state & EEH_PE_REMOVED) &&
1552            (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1553                return EEH_PE_STATE_UNAVAIL;
1554
1555        result = eeh_ops->get_state(pe, NULL);
1556        rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1557        dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1558        mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1559
1560        if (rst_active)
1561                ret = EEH_PE_STATE_RESET;
1562        else if (dma_en && mmio_en)
1563                ret = EEH_PE_STATE_NORMAL;
1564        else if (!dma_en && !mmio_en)
1565                ret = EEH_PE_STATE_STOPPED_IO_DMA;
1566        else if (!dma_en && mmio_en)
1567                ret = EEH_PE_STATE_STOPPED_DMA;
1568        else
1569                ret = EEH_PE_STATE_UNAVAIL;
1570
1571        return ret;
1572}
1573EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1574
1575static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1576{
1577        struct eeh_dev *edev, *tmp;
1578        struct pci_dev *pdev;
1579        int ret = 0;
1580
1581        /* Restore config space */
1582        eeh_pe_restore_bars(pe);
1583
1584        /*
1585         * Reenable PCI devices as the devices passed
1586         * through are always enabled before the reset.
1587         */
1588        eeh_pe_for_each_dev(pe, edev, tmp) {
1589                pdev = eeh_dev_to_pci_dev(edev);
1590                if (!pdev)
1591                        continue;
1592
1593                ret = pci_reenable_device(pdev);
1594                if (ret) {
1595                        pr_warn("%s: Failure %d reenabling %s\n",
1596                                __func__, ret, pci_name(pdev));
1597                        return ret;
1598                }
1599        }
1600
1601        /* The PE is still in frozen state */
1602        return eeh_unfreeze_pe(pe, true);
1603}
1604
1605/**
1606 * eeh_pe_reset - Issue PE reset according to specified type
1607 * @pe: EEH PE
1608 * @option: reset type
1609 *
1610 * The routine is called to reset the specified PE with the
1611 * indicated type, either fundamental reset or hot reset.
1612 * PE reset is the most important part for error recovery.
1613 */
1614int eeh_pe_reset(struct eeh_pe *pe, int option)
1615{
1616        int ret = 0;
1617
1618        /* Invalid PE ? */
1619        if (!pe)
1620                return -ENODEV;
1621
1622        if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1623                return -ENOENT;
1624
1625        switch (option) {
1626        case EEH_RESET_DEACTIVATE:
1627                ret = eeh_ops->reset(pe, option);
1628                eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1629                if (ret)
1630                        break;
1631
1632                ret = eeh_pe_reenable_devices(pe);
1633                break;
1634        case EEH_RESET_HOT:
1635        case EEH_RESET_FUNDAMENTAL:
1636                /*
1637                 * Proactively freeze the PE to drop all MMIO access
1638                 * during reset, which should be banned as it's always
1639                 * cause recursive EEH error.
1640                 */
1641                eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1642
1643                eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1644                ret = eeh_ops->reset(pe, option);
1645                break;
1646        default:
1647                pr_debug("%s: Unsupported option %d\n",
1648                        __func__, option);
1649                ret = -EINVAL;
1650        }
1651
1652        return ret;
1653}
1654EXPORT_SYMBOL_GPL(eeh_pe_reset);
1655
1656/**
1657 * eeh_pe_configure - Configure PCI bridges after PE reset
1658 * @pe: EEH PE
1659 *
1660 * The routine is called to restore the PCI config space for
1661 * those PCI devices, especially PCI bridges affected by PE
1662 * reset issued previously.
1663 */
1664int eeh_pe_configure(struct eeh_pe *pe)
1665{
1666        int ret = 0;
1667
1668        /* Invalid PE ? */
1669        if (!pe)
1670                return -ENODEV;
1671
1672        return ret;
1673}
1674EXPORT_SYMBOL_GPL(eeh_pe_configure);
1675
1676/**
1677 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1678 * @pe: the indicated PE
1679 * @type: error type
1680 * @function: error function
1681 * @addr: address
1682 * @mask: address mask
1683 *
1684 * The routine is called to inject the specified PCI error, which
1685 * is determined by @type and @function, to the indicated PE for
1686 * testing purpose.
1687 */
1688int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1689                      unsigned long addr, unsigned long mask)
1690{
1691        /* Invalid PE ? */
1692        if (!pe)
1693                return -ENODEV;
1694
1695        /* Unsupported operation ? */
1696        if (!eeh_ops || !eeh_ops->err_inject)
1697                return -ENOENT;
1698
1699        /* Check on PCI error type */
1700        if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1701                return -EINVAL;
1702
1703        /* Check on PCI error function */
1704        if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1705                return -EINVAL;
1706
1707        return eeh_ops->err_inject(pe, type, func, addr, mask);
1708}
1709EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1710
1711static int proc_eeh_show(struct seq_file *m, void *v)
1712{
1713        if (!eeh_enabled()) {
1714                seq_printf(m, "EEH Subsystem is globally disabled\n");
1715                seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1716        } else {
1717                seq_printf(m, "EEH Subsystem is enabled\n");
1718                seq_printf(m,
1719                                "no device=%llu\n"
1720                                "no device node=%llu\n"
1721                                "no config address=%llu\n"
1722                                "check not wanted=%llu\n"
1723                                "eeh_total_mmio_ffs=%llu\n"
1724                                "eeh_false_positives=%llu\n"
1725                                "eeh_slot_resets=%llu\n",
1726                                eeh_stats.no_device,
1727                                eeh_stats.no_dn,
1728                                eeh_stats.no_cfg_addr,
1729                                eeh_stats.ignored_check,
1730                                eeh_stats.total_mmio_ffs,
1731                                eeh_stats.false_positives,
1732                                eeh_stats.slot_resets);
1733        }
1734
1735        return 0;
1736}
1737
1738static int proc_eeh_open(struct inode *inode, struct file *file)
1739{
1740        return single_open(file, proc_eeh_show, NULL);
1741}
1742
1743static const struct file_operations proc_eeh_operations = {
1744        .open      = proc_eeh_open,
1745        .read      = seq_read,
1746        .llseek    = seq_lseek,
1747        .release   = single_release,
1748};
1749
1750#ifdef CONFIG_DEBUG_FS
1751static int eeh_enable_dbgfs_set(void *data, u64 val)
1752{
1753        if (val)
1754                eeh_clear_flag(EEH_FORCE_DISABLED);
1755        else
1756                eeh_add_flag(EEH_FORCE_DISABLED);
1757
1758        /* Notify the backend */
1759        if (eeh_ops->post_init)
1760                eeh_ops->post_init();
1761
1762        return 0;
1763}
1764
1765static int eeh_enable_dbgfs_get(void *data, u64 *val)
1766{
1767        if (eeh_enabled())
1768                *val = 0x1ul;
1769        else
1770                *val = 0x0ul;
1771        return 0;
1772}
1773
1774static int eeh_freeze_dbgfs_set(void *data, u64 val)
1775{
1776        eeh_max_freezes = val;
1777        return 0;
1778}
1779
1780static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1781{
1782        *val = eeh_max_freezes;
1783        return 0;
1784}
1785
1786DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1787                        eeh_enable_dbgfs_set, "0x%llx\n");
1788DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1789                        eeh_freeze_dbgfs_set, "0x%llx\n");
1790#endif
1791
1792static int __init eeh_init_proc(void)
1793{
1794        if (machine_is(pseries) || machine_is(powernv)) {
1795                proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1796#ifdef CONFIG_DEBUG_FS
1797                debugfs_create_file("eeh_enable", 0600,
1798                                    powerpc_debugfs_root, NULL,
1799                                    &eeh_enable_dbgfs_ops);
1800                debugfs_create_file("eeh_max_freezes", 0600,
1801                                    powerpc_debugfs_root, NULL,
1802                                    &eeh_freeze_dbgfs_ops);
1803#endif
1804        }
1805
1806        return 0;
1807}
1808__initcall(eeh_init_proc);
1809