linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/clockchips.h>
  46#include <linux/init.h>
  47#include <linux/profile.h>
  48#include <linux/cpu.h>
  49#include <linux/security.h>
  50#include <linux/percpu.h>
  51#include <linux/rtc.h>
  52#include <linux/jiffies.h>
  53#include <linux/posix-timers.h>
  54#include <linux/irq.h>
  55#include <linux/delay.h>
  56#include <linux/irq_work.h>
  57#include <linux/clk-provider.h>
  58#include <asm/trace.h>
  59
  60#include <asm/io.h>
  61#include <asm/processor.h>
  62#include <asm/nvram.h>
  63#include <asm/cache.h>
  64#include <asm/machdep.h>
  65#include <asm/uaccess.h>
  66#include <asm/time.h>
  67#include <asm/prom.h>
  68#include <asm/irq.h>
  69#include <asm/div64.h>
  70#include <asm/smp.h>
  71#include <asm/vdso_datapage.h>
  72#include <asm/firmware.h>
  73#include <asm/cputime.h>
  74
  75/* powerpc clocksource/clockevent code */
  76
  77#include <linux/clockchips.h>
  78#include <linux/timekeeper_internal.h>
  79
  80static cycle_t rtc_read(struct clocksource *);
  81static struct clocksource clocksource_rtc = {
  82        .name         = "rtc",
  83        .rating       = 400,
  84        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  85        .mask         = CLOCKSOURCE_MASK(64),
  86        .read         = rtc_read,
  87};
  88
  89static cycle_t timebase_read(struct clocksource *);
  90static struct clocksource clocksource_timebase = {
  91        .name         = "timebase",
  92        .rating       = 400,
  93        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  94        .mask         = CLOCKSOURCE_MASK(64),
  95        .read         = timebase_read,
  96};
  97
  98#define DECREMENTER_MAX 0x7fffffff
  99
 100static int decrementer_set_next_event(unsigned long evt,
 101                                      struct clock_event_device *dev);
 102static int decrementer_shutdown(struct clock_event_device *evt);
 103
 104struct clock_event_device decrementer_clockevent = {
 105        .name                   = "decrementer",
 106        .rating                 = 200,
 107        .irq                    = 0,
 108        .set_next_event         = decrementer_set_next_event,
 109        .set_state_shutdown     = decrementer_shutdown,
 110        .tick_resume            = decrementer_shutdown,
 111        .features               = CLOCK_EVT_FEAT_ONESHOT |
 112                                  CLOCK_EVT_FEAT_C3STOP,
 113};
 114EXPORT_SYMBOL(decrementer_clockevent);
 115
 116DEFINE_PER_CPU(u64, decrementers_next_tb);
 117static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 118
 119#define XSEC_PER_SEC (1024*1024)
 120
 121#ifdef CONFIG_PPC64
 122#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 123#else
 124/* compute ((xsec << 12) * max) >> 32 */
 125#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 126#endif
 127
 128unsigned long tb_ticks_per_jiffy;
 129unsigned long tb_ticks_per_usec = 100; /* sane default */
 130EXPORT_SYMBOL(tb_ticks_per_usec);
 131unsigned long tb_ticks_per_sec;
 132EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 133
 134DEFINE_SPINLOCK(rtc_lock);
 135EXPORT_SYMBOL_GPL(rtc_lock);
 136
 137static u64 tb_to_ns_scale __read_mostly;
 138static unsigned tb_to_ns_shift __read_mostly;
 139static u64 boot_tb __read_mostly;
 140
 141extern struct timezone sys_tz;
 142static long timezone_offset;
 143
 144unsigned long ppc_proc_freq;
 145EXPORT_SYMBOL_GPL(ppc_proc_freq);
 146unsigned long ppc_tb_freq;
 147EXPORT_SYMBOL_GPL(ppc_tb_freq);
 148
 149#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 150/*
 151 * Factors for converting from cputime_t (timebase ticks) to
 152 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 153 * These are all stored as 0.64 fixed-point binary fractions.
 154 */
 155u64 __cputime_jiffies_factor;
 156EXPORT_SYMBOL(__cputime_jiffies_factor);
 157u64 __cputime_usec_factor;
 158EXPORT_SYMBOL(__cputime_usec_factor);
 159u64 __cputime_sec_factor;
 160EXPORT_SYMBOL(__cputime_sec_factor);
 161u64 __cputime_clockt_factor;
 162EXPORT_SYMBOL(__cputime_clockt_factor);
 163DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 164DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 165
 166cputime_t cputime_one_jiffy;
 167
 168void (*dtl_consumer)(struct dtl_entry *, u64);
 169
 170static void calc_cputime_factors(void)
 171{
 172        struct div_result res;
 173
 174        div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 175        __cputime_jiffies_factor = res.result_low;
 176        div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 177        __cputime_usec_factor = res.result_low;
 178        div128_by_32(1, 0, tb_ticks_per_sec, &res);
 179        __cputime_sec_factor = res.result_low;
 180        div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 181        __cputime_clockt_factor = res.result_low;
 182}
 183
 184/*
 185 * Read the SPURR on systems that have it, otherwise the PURR,
 186 * or if that doesn't exist return the timebase value passed in.
 187 */
 188static u64 read_spurr(u64 tb)
 189{
 190        if (cpu_has_feature(CPU_FTR_SPURR))
 191                return mfspr(SPRN_SPURR);
 192        if (cpu_has_feature(CPU_FTR_PURR))
 193                return mfspr(SPRN_PURR);
 194        return tb;
 195}
 196
 197#ifdef CONFIG_PPC_SPLPAR
 198
 199/*
 200 * Scan the dispatch trace log and count up the stolen time.
 201 * Should be called with interrupts disabled.
 202 */
 203static u64 scan_dispatch_log(u64 stop_tb)
 204{
 205        u64 i = local_paca->dtl_ridx;
 206        struct dtl_entry *dtl = local_paca->dtl_curr;
 207        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 208        struct lppaca *vpa = local_paca->lppaca_ptr;
 209        u64 tb_delta;
 210        u64 stolen = 0;
 211        u64 dtb;
 212
 213        if (!dtl)
 214                return 0;
 215
 216        if (i == be64_to_cpu(vpa->dtl_idx))
 217                return 0;
 218        while (i < be64_to_cpu(vpa->dtl_idx)) {
 219                dtb = be64_to_cpu(dtl->timebase);
 220                tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
 221                        be32_to_cpu(dtl->ready_to_enqueue_time);
 222                barrier();
 223                if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
 224                        /* buffer has overflowed */
 225                        i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
 226                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 227                        continue;
 228                }
 229                if (dtb > stop_tb)
 230                        break;
 231                if (dtl_consumer)
 232                        dtl_consumer(dtl, i);
 233                stolen += tb_delta;
 234                ++i;
 235                ++dtl;
 236                if (dtl == dtl_end)
 237                        dtl = local_paca->dispatch_log;
 238        }
 239        local_paca->dtl_ridx = i;
 240        local_paca->dtl_curr = dtl;
 241        return stolen;
 242}
 243
 244/*
 245 * Accumulate stolen time by scanning the dispatch trace log.
 246 * Called on entry from user mode.
 247 */
 248void accumulate_stolen_time(void)
 249{
 250        u64 sst, ust;
 251
 252        u8 save_soft_enabled = local_paca->soft_enabled;
 253
 254        /* We are called early in the exception entry, before
 255         * soft/hard_enabled are sync'ed to the expected state
 256         * for the exception. We are hard disabled but the PACA
 257         * needs to reflect that so various debug stuff doesn't
 258         * complain
 259         */
 260        local_paca->soft_enabled = 0;
 261
 262        sst = scan_dispatch_log(local_paca->starttime_user);
 263        ust = scan_dispatch_log(local_paca->starttime);
 264        local_paca->system_time -= sst;
 265        local_paca->user_time -= ust;
 266        local_paca->stolen_time += ust + sst;
 267
 268        local_paca->soft_enabled = save_soft_enabled;
 269}
 270
 271static inline u64 calculate_stolen_time(u64 stop_tb)
 272{
 273        u64 stolen = 0;
 274
 275        if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
 276                stolen = scan_dispatch_log(stop_tb);
 277                get_paca()->system_time -= stolen;
 278        }
 279
 280        stolen += get_paca()->stolen_time;
 281        get_paca()->stolen_time = 0;
 282        return stolen;
 283}
 284
 285#else /* CONFIG_PPC_SPLPAR */
 286static inline u64 calculate_stolen_time(u64 stop_tb)
 287{
 288        return 0;
 289}
 290
 291#endif /* CONFIG_PPC_SPLPAR */
 292
 293/*
 294 * Account time for a transition between system, hard irq
 295 * or soft irq state.
 296 */
 297static u64 vtime_delta(struct task_struct *tsk,
 298                        u64 *sys_scaled, u64 *stolen)
 299{
 300        u64 now, nowscaled, deltascaled;
 301        u64 udelta, delta, user_scaled;
 302
 303        WARN_ON_ONCE(!irqs_disabled());
 304
 305        now = mftb();
 306        nowscaled = read_spurr(now);
 307        get_paca()->system_time += now - get_paca()->starttime;
 308        get_paca()->starttime = now;
 309        deltascaled = nowscaled - get_paca()->startspurr;
 310        get_paca()->startspurr = nowscaled;
 311
 312        *stolen = calculate_stolen_time(now);
 313
 314        delta = get_paca()->system_time;
 315        get_paca()->system_time = 0;
 316        udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 317        get_paca()->utime_sspurr = get_paca()->user_time;
 318
 319        /*
 320         * Because we don't read the SPURR on every kernel entry/exit,
 321         * deltascaled includes both user and system SPURR ticks.
 322         * Apportion these ticks to system SPURR ticks and user
 323         * SPURR ticks in the same ratio as the system time (delta)
 324         * and user time (udelta) values obtained from the timebase
 325         * over the same interval.  The system ticks get accounted here;
 326         * the user ticks get saved up in paca->user_time_scaled to be
 327         * used by account_process_tick.
 328         */
 329        *sys_scaled = delta;
 330        user_scaled = udelta;
 331        if (deltascaled != delta + udelta) {
 332                if (udelta) {
 333                        *sys_scaled = deltascaled * delta / (delta + udelta);
 334                        user_scaled = deltascaled - *sys_scaled;
 335                } else {
 336                        *sys_scaled = deltascaled;
 337                }
 338        }
 339        get_paca()->user_time_scaled += user_scaled;
 340
 341        return delta;
 342}
 343
 344void vtime_account_system(struct task_struct *tsk)
 345{
 346        u64 delta, sys_scaled, stolen;
 347
 348        delta = vtime_delta(tsk, &sys_scaled, &stolen);
 349        account_system_time(tsk, 0, delta, sys_scaled);
 350        if (stolen)
 351                account_steal_time(stolen);
 352}
 353EXPORT_SYMBOL_GPL(vtime_account_system);
 354
 355void vtime_account_idle(struct task_struct *tsk)
 356{
 357        u64 delta, sys_scaled, stolen;
 358
 359        delta = vtime_delta(tsk, &sys_scaled, &stolen);
 360        account_idle_time(delta + stolen);
 361}
 362
 363/*
 364 * Transfer the user time accumulated in the paca
 365 * by the exception entry and exit code to the generic
 366 * process user time records.
 367 * Must be called with interrupts disabled.
 368 * Assumes that vtime_account_system/idle() has been called
 369 * recently (i.e. since the last entry from usermode) so that
 370 * get_paca()->user_time_scaled is up to date.
 371 */
 372void vtime_account_user(struct task_struct *tsk)
 373{
 374        cputime_t utime, utimescaled;
 375
 376        utime = get_paca()->user_time;
 377        utimescaled = get_paca()->user_time_scaled;
 378        get_paca()->user_time = 0;
 379        get_paca()->user_time_scaled = 0;
 380        get_paca()->utime_sspurr = 0;
 381        account_user_time(tsk, utime, utimescaled);
 382}
 383
 384#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 385#define calc_cputime_factors()
 386#endif
 387
 388void __delay(unsigned long loops)
 389{
 390        unsigned long start;
 391        int diff;
 392
 393        if (__USE_RTC()) {
 394                start = get_rtcl();
 395                do {
 396                        /* the RTCL register wraps at 1000000000 */
 397                        diff = get_rtcl() - start;
 398                        if (diff < 0)
 399                                diff += 1000000000;
 400                } while (diff < loops);
 401        } else {
 402                start = get_tbl();
 403                while (get_tbl() - start < loops)
 404                        HMT_low();
 405                HMT_medium();
 406        }
 407}
 408EXPORT_SYMBOL(__delay);
 409
 410void udelay(unsigned long usecs)
 411{
 412        __delay(tb_ticks_per_usec * usecs);
 413}
 414EXPORT_SYMBOL(udelay);
 415
 416#ifdef CONFIG_SMP
 417unsigned long profile_pc(struct pt_regs *regs)
 418{
 419        unsigned long pc = instruction_pointer(regs);
 420
 421        if (in_lock_functions(pc))
 422                return regs->link;
 423
 424        return pc;
 425}
 426EXPORT_SYMBOL(profile_pc);
 427#endif
 428
 429#ifdef CONFIG_IRQ_WORK
 430
 431/*
 432 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 433 */
 434#ifdef CONFIG_PPC64
 435static inline unsigned long test_irq_work_pending(void)
 436{
 437        unsigned long x;
 438
 439        asm volatile("lbz %0,%1(13)"
 440                : "=r" (x)
 441                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 442        return x;
 443}
 444
 445static inline void set_irq_work_pending_flag(void)
 446{
 447        asm volatile("stb %0,%1(13)" : :
 448                "r" (1),
 449                "i" (offsetof(struct paca_struct, irq_work_pending)));
 450}
 451
 452static inline void clear_irq_work_pending(void)
 453{
 454        asm volatile("stb %0,%1(13)" : :
 455                "r" (0),
 456                "i" (offsetof(struct paca_struct, irq_work_pending)));
 457}
 458
 459#else /* 32-bit */
 460
 461DEFINE_PER_CPU(u8, irq_work_pending);
 462
 463#define set_irq_work_pending_flag()     __this_cpu_write(irq_work_pending, 1)
 464#define test_irq_work_pending()         __this_cpu_read(irq_work_pending)
 465#define clear_irq_work_pending()        __this_cpu_write(irq_work_pending, 0)
 466
 467#endif /* 32 vs 64 bit */
 468
 469void arch_irq_work_raise(void)
 470{
 471        preempt_disable();
 472        set_irq_work_pending_flag();
 473        set_dec(1);
 474        preempt_enable();
 475}
 476
 477#else  /* CONFIG_IRQ_WORK */
 478
 479#define test_irq_work_pending() 0
 480#define clear_irq_work_pending()
 481
 482#endif /* CONFIG_IRQ_WORK */
 483
 484static void __timer_interrupt(void)
 485{
 486        struct pt_regs *regs = get_irq_regs();
 487        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 488        struct clock_event_device *evt = this_cpu_ptr(&decrementers);
 489        u64 now;
 490
 491        trace_timer_interrupt_entry(regs);
 492
 493        if (test_irq_work_pending()) {
 494                clear_irq_work_pending();
 495                irq_work_run();
 496        }
 497
 498        now = get_tb_or_rtc();
 499        if (now >= *next_tb) {
 500                *next_tb = ~(u64)0;
 501                if (evt->event_handler)
 502                        evt->event_handler(evt);
 503                __this_cpu_inc(irq_stat.timer_irqs_event);
 504        } else {
 505                now = *next_tb - now;
 506                if (now <= DECREMENTER_MAX)
 507                        set_dec((int)now);
 508                /* We may have raced with new irq work */
 509                if (test_irq_work_pending())
 510                        set_dec(1);
 511                __this_cpu_inc(irq_stat.timer_irqs_others);
 512        }
 513
 514#ifdef CONFIG_PPC64
 515        /* collect purr register values often, for accurate calculations */
 516        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 517                struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
 518                cu->current_tb = mfspr(SPRN_PURR);
 519        }
 520#endif
 521
 522        trace_timer_interrupt_exit(regs);
 523}
 524
 525/*
 526 * timer_interrupt - gets called when the decrementer overflows,
 527 * with interrupts disabled.
 528 */
 529void timer_interrupt(struct pt_regs * regs)
 530{
 531        struct pt_regs *old_regs;
 532        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 533
 534        /* Ensure a positive value is written to the decrementer, or else
 535         * some CPUs will continue to take decrementer exceptions.
 536         */
 537        set_dec(DECREMENTER_MAX);
 538
 539        /* Some implementations of hotplug will get timer interrupts while
 540         * offline, just ignore these and we also need to set
 541         * decrementers_next_tb as MAX to make sure __check_irq_replay
 542         * don't replay timer interrupt when return, otherwise we'll trap
 543         * here infinitely :(
 544         */
 545        if (!cpu_online(smp_processor_id())) {
 546                *next_tb = ~(u64)0;
 547                return;
 548        }
 549
 550        /* Conditionally hard-enable interrupts now that the DEC has been
 551         * bumped to its maximum value
 552         */
 553        may_hard_irq_enable();
 554
 555
 556#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
 557        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 558                do_IRQ(regs);
 559#endif
 560
 561        old_regs = set_irq_regs(regs);
 562        irq_enter();
 563
 564        __timer_interrupt();
 565        irq_exit();
 566        set_irq_regs(old_regs);
 567}
 568
 569/*
 570 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 571 * left pending on exit from a KVM guest.  We don't need to do anything
 572 * to clear them, as they are edge-triggered.
 573 */
 574void hdec_interrupt(struct pt_regs *regs)
 575{
 576}
 577
 578#ifdef CONFIG_SUSPEND
 579static void generic_suspend_disable_irqs(void)
 580{
 581        /* Disable the decrementer, so that it doesn't interfere
 582         * with suspending.
 583         */
 584
 585        set_dec(DECREMENTER_MAX);
 586        local_irq_disable();
 587        set_dec(DECREMENTER_MAX);
 588}
 589
 590static void generic_suspend_enable_irqs(void)
 591{
 592        local_irq_enable();
 593}
 594
 595/* Overrides the weak version in kernel/power/main.c */
 596void arch_suspend_disable_irqs(void)
 597{
 598        if (ppc_md.suspend_disable_irqs)
 599                ppc_md.suspend_disable_irqs();
 600        generic_suspend_disable_irqs();
 601}
 602
 603/* Overrides the weak version in kernel/power/main.c */
 604void arch_suspend_enable_irqs(void)
 605{
 606        generic_suspend_enable_irqs();
 607        if (ppc_md.suspend_enable_irqs)
 608                ppc_md.suspend_enable_irqs();
 609}
 610#endif
 611
 612unsigned long long tb_to_ns(unsigned long long ticks)
 613{
 614        return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
 615}
 616EXPORT_SYMBOL_GPL(tb_to_ns);
 617
 618/*
 619 * Scheduler clock - returns current time in nanosec units.
 620 *
 621 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 622 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 623 * are 64-bit unsigned numbers.
 624 */
 625unsigned long long sched_clock(void)
 626{
 627        if (__USE_RTC())
 628                return get_rtc();
 629        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 630}
 631
 632
 633#ifdef CONFIG_PPC_PSERIES
 634
 635/*
 636 * Running clock - attempts to give a view of time passing for a virtualised
 637 * kernels.
 638 * Uses the VTB register if available otherwise a next best guess.
 639 */
 640unsigned long long running_clock(void)
 641{
 642        /*
 643         * Don't read the VTB as a host since KVM does not switch in host
 644         * timebase into the VTB when it takes a guest off the CPU, reading the
 645         * VTB would result in reading 'last switched out' guest VTB.
 646         *
 647         * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
 648         * would be unsafe to rely only on the #ifdef above.
 649         */
 650        if (firmware_has_feature(FW_FEATURE_LPAR) &&
 651            cpu_has_feature(CPU_FTR_ARCH_207S))
 652                return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 653
 654        /*
 655         * This is a next best approximation without a VTB.
 656         * On a host which is running bare metal there should never be any stolen
 657         * time and on a host which doesn't do any virtualisation TB *should* equal
 658         * VTB so it makes no difference anyway.
 659         */
 660        return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
 661}
 662#endif
 663
 664static int __init get_freq(char *name, int cells, unsigned long *val)
 665{
 666        struct device_node *cpu;
 667        const __be32 *fp;
 668        int found = 0;
 669
 670        /* The cpu node should have timebase and clock frequency properties */
 671        cpu = of_find_node_by_type(NULL, "cpu");
 672
 673        if (cpu) {
 674                fp = of_get_property(cpu, name, NULL);
 675                if (fp) {
 676                        found = 1;
 677                        *val = of_read_ulong(fp, cells);
 678                }
 679
 680                of_node_put(cpu);
 681        }
 682
 683        return found;
 684}
 685
 686static void start_cpu_decrementer(void)
 687{
 688#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 689        /* Clear any pending timer interrupts */
 690        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 691
 692        /* Enable decrementer interrupt */
 693        mtspr(SPRN_TCR, TCR_DIE);
 694#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 695}
 696
 697void __init generic_calibrate_decr(void)
 698{
 699        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 700
 701        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 702            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 703
 704                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 705                                "(not found)\n");
 706        }
 707
 708        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 709
 710        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 711            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 712
 713                printk(KERN_ERR "WARNING: Estimating processor frequency "
 714                                "(not found)\n");
 715        }
 716}
 717
 718int update_persistent_clock(struct timespec now)
 719{
 720        struct rtc_time tm;
 721
 722        if (!ppc_md.set_rtc_time)
 723                return -ENODEV;
 724
 725        to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 726        tm.tm_year -= 1900;
 727        tm.tm_mon -= 1;
 728
 729        return ppc_md.set_rtc_time(&tm);
 730}
 731
 732static void __read_persistent_clock(struct timespec *ts)
 733{
 734        struct rtc_time tm;
 735        static int first = 1;
 736
 737        ts->tv_nsec = 0;
 738        /* XXX this is a litle fragile but will work okay in the short term */
 739        if (first) {
 740                first = 0;
 741                if (ppc_md.time_init)
 742                        timezone_offset = ppc_md.time_init();
 743
 744                /* get_boot_time() isn't guaranteed to be safe to call late */
 745                if (ppc_md.get_boot_time) {
 746                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 747                        return;
 748                }
 749        }
 750        if (!ppc_md.get_rtc_time) {
 751                ts->tv_sec = 0;
 752                return;
 753        }
 754        ppc_md.get_rtc_time(&tm);
 755
 756        ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 757                            tm.tm_hour, tm.tm_min, tm.tm_sec);
 758}
 759
 760void read_persistent_clock(struct timespec *ts)
 761{
 762        __read_persistent_clock(ts);
 763
 764        /* Sanitize it in case real time clock is set below EPOCH */
 765        if (ts->tv_sec < 0) {
 766                ts->tv_sec = 0;
 767                ts->tv_nsec = 0;
 768        }
 769                
 770}
 771
 772/* clocksource code */
 773static cycle_t rtc_read(struct clocksource *cs)
 774{
 775        return (cycle_t)get_rtc();
 776}
 777
 778static cycle_t timebase_read(struct clocksource *cs)
 779{
 780        return (cycle_t)get_tb();
 781}
 782
 783void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 784                         struct clocksource *clock, u32 mult, cycle_t cycle_last)
 785{
 786        u64 new_tb_to_xs, new_stamp_xsec;
 787        u32 frac_sec;
 788
 789        if (clock != &clocksource_timebase)
 790                return;
 791
 792        /* Make userspace gettimeofday spin until we're done. */
 793        ++vdso_data->tb_update_count;
 794        smp_mb();
 795
 796        /* 19342813113834067 ~= 2^(20+64) / 1e9 */
 797        new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 798        new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 799        do_div(new_stamp_xsec, 1000000000);
 800        new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 801
 802        BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 803        /* this is tv_nsec / 1e9 as a 0.32 fraction */
 804        frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 805
 806        /*
 807         * tb_update_count is used to allow the userspace gettimeofday code
 808         * to assure itself that it sees a consistent view of the tb_to_xs and
 809         * stamp_xsec variables.  It reads the tb_update_count, then reads
 810         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 811         * the two values of tb_update_count match and are even then the
 812         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 813         * loops back and reads them again until this criteria is met.
 814         * We expect the caller to have done the first increment of
 815         * vdso_data->tb_update_count already.
 816         */
 817        vdso_data->tb_orig_stamp = cycle_last;
 818        vdso_data->stamp_xsec = new_stamp_xsec;
 819        vdso_data->tb_to_xs = new_tb_to_xs;
 820        vdso_data->wtom_clock_sec = wtm->tv_sec;
 821        vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 822        vdso_data->stamp_xtime = *wall_time;
 823        vdso_data->stamp_sec_fraction = frac_sec;
 824        smp_wmb();
 825        ++(vdso_data->tb_update_count);
 826}
 827
 828void update_vsyscall_tz(void)
 829{
 830        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 831        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 832}
 833
 834static void __init clocksource_init(void)
 835{
 836        struct clocksource *clock;
 837
 838        if (__USE_RTC())
 839                clock = &clocksource_rtc;
 840        else
 841                clock = &clocksource_timebase;
 842
 843        if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 844                printk(KERN_ERR "clocksource: %s is already registered\n",
 845                       clock->name);
 846                return;
 847        }
 848
 849        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 850               clock->name, clock->mult, clock->shift);
 851}
 852
 853static int decrementer_set_next_event(unsigned long evt,
 854                                      struct clock_event_device *dev)
 855{
 856        __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
 857        set_dec(evt);
 858
 859        /* We may have raced with new irq work */
 860        if (test_irq_work_pending())
 861                set_dec(1);
 862
 863        return 0;
 864}
 865
 866static int decrementer_shutdown(struct clock_event_device *dev)
 867{
 868        decrementer_set_next_event(DECREMENTER_MAX, dev);
 869        return 0;
 870}
 871
 872/* Interrupt handler for the timer broadcast IPI */
 873void tick_broadcast_ipi_handler(void)
 874{
 875        u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
 876
 877        *next_tb = get_tb_or_rtc();
 878        __timer_interrupt();
 879}
 880
 881static void register_decrementer_clockevent(int cpu)
 882{
 883        struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 884
 885        *dec = decrementer_clockevent;
 886        dec->cpumask = cpumask_of(cpu);
 887
 888        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 889                    dec->name, dec->mult, dec->shift, cpu);
 890
 891        clockevents_register_device(dec);
 892}
 893
 894static void __init init_decrementer_clockevent(void)
 895{
 896        int cpu = smp_processor_id();
 897
 898        clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 899
 900        decrementer_clockevent.max_delta_ns =
 901                clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 902        decrementer_clockevent.min_delta_ns =
 903                clockevent_delta2ns(2, &decrementer_clockevent);
 904
 905        register_decrementer_clockevent(cpu);
 906}
 907
 908void secondary_cpu_time_init(void)
 909{
 910        /* Start the decrementer on CPUs that have manual control
 911         * such as BookE
 912         */
 913        start_cpu_decrementer();
 914
 915        /* FIME: Should make unrelatred change to move snapshot_timebase
 916         * call here ! */
 917        register_decrementer_clockevent(smp_processor_id());
 918}
 919
 920/* This function is only called on the boot processor */
 921void __init time_init(void)
 922{
 923        struct div_result res;
 924        u64 scale;
 925        unsigned shift;
 926
 927        if (__USE_RTC()) {
 928                /* 601 processor: dec counts down by 128 every 128ns */
 929                ppc_tb_freq = 1000000000;
 930        } else {
 931                /* Normal PowerPC with timebase register */
 932                ppc_md.calibrate_decr();
 933                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 934                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 935                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 936                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 937        }
 938
 939        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 940        tb_ticks_per_sec = ppc_tb_freq;
 941        tb_ticks_per_usec = ppc_tb_freq / 1000000;
 942        calc_cputime_factors();
 943        setup_cputime_one_jiffy();
 944
 945        /*
 946         * Compute scale factor for sched_clock.
 947         * The calibrate_decr() function has set tb_ticks_per_sec,
 948         * which is the timebase frequency.
 949         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 950         * the 128-bit result as a 64.64 fixed-point number.
 951         * We then shift that number right until it is less than 1.0,
 952         * giving us the scale factor and shift count to use in
 953         * sched_clock().
 954         */
 955        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 956        scale = res.result_low;
 957        for (shift = 0; res.result_high != 0; ++shift) {
 958                scale = (scale >> 1) | (res.result_high << 63);
 959                res.result_high >>= 1;
 960        }
 961        tb_to_ns_scale = scale;
 962        tb_to_ns_shift = shift;
 963        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 964        boot_tb = get_tb_or_rtc();
 965
 966        /* If platform provided a timezone (pmac), we correct the time */
 967        if (timezone_offset) {
 968                sys_tz.tz_minuteswest = -timezone_offset / 60;
 969                sys_tz.tz_dsttime = 0;
 970        }
 971
 972        vdso_data->tb_update_count = 0;
 973        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 974
 975        /* Start the decrementer on CPUs that have manual control
 976         * such as BookE
 977         */
 978        start_cpu_decrementer();
 979
 980        /* Register the clocksource */
 981        clocksource_init();
 982
 983        init_decrementer_clockevent();
 984        tick_setup_hrtimer_broadcast();
 985
 986#ifdef CONFIG_COMMON_CLK
 987        of_clk_init(NULL);
 988#endif
 989}
 990
 991
 992#define FEBRUARY        2
 993#define STARTOFTIME     1970
 994#define SECDAY          86400L
 995#define SECYR           (SECDAY * 365)
 996#define leapyear(year)          ((year) % 4 == 0 && \
 997                                 ((year) % 100 != 0 || (year) % 400 == 0))
 998#define days_in_year(a)         (leapyear(a) ? 366 : 365)
 999#define days_in_month(a)        (month_days[(a) - 1])
1000
1001static int month_days[12] = {
1002        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1003};
1004
1005void to_tm(int tim, struct rtc_time * tm)
1006{
1007        register int    i;
1008        register long   hms, day;
1009
1010        day = tim / SECDAY;
1011        hms = tim % SECDAY;
1012
1013        /* Hours, minutes, seconds are easy */
1014        tm->tm_hour = hms / 3600;
1015        tm->tm_min = (hms % 3600) / 60;
1016        tm->tm_sec = (hms % 3600) % 60;
1017
1018        /* Number of years in days */
1019        for (i = STARTOFTIME; day >= days_in_year(i); i++)
1020                day -= days_in_year(i);
1021        tm->tm_year = i;
1022
1023        /* Number of months in days left */
1024        if (leapyear(tm->tm_year))
1025                days_in_month(FEBRUARY) = 29;
1026        for (i = 1; day >= days_in_month(i); i++)
1027                day -= days_in_month(i);
1028        days_in_month(FEBRUARY) = 28;
1029        tm->tm_mon = i;
1030
1031        /* Days are what is left over (+1) from all that. */
1032        tm->tm_mday = day + 1;
1033
1034        /*
1035         * No-one uses the day of the week.
1036         */
1037        tm->tm_wday = -1;
1038}
1039EXPORT_SYMBOL(to_tm);
1040
1041/*
1042 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1043 * result.
1044 */
1045void div128_by_32(u64 dividend_high, u64 dividend_low,
1046                  unsigned divisor, struct div_result *dr)
1047{
1048        unsigned long a, b, c, d;
1049        unsigned long w, x, y, z;
1050        u64 ra, rb, rc;
1051
1052        a = dividend_high >> 32;
1053        b = dividend_high & 0xffffffff;
1054        c = dividend_low >> 32;
1055        d = dividend_low & 0xffffffff;
1056
1057        w = a / divisor;
1058        ra = ((u64)(a - (w * divisor)) << 32) + b;
1059
1060        rb = ((u64) do_div(ra, divisor) << 32) + c;
1061        x = ra;
1062
1063        rc = ((u64) do_div(rb, divisor) << 32) + d;
1064        y = rb;
1065
1066        do_div(rc, divisor);
1067        z = rc;
1068
1069        dr->result_high = ((u64)w << 32) + x;
1070        dr->result_low  = ((u64)y << 32) + z;
1071
1072}
1073
1074/* We don't need to calibrate delay, we use the CPU timebase for that */
1075void calibrate_delay(void)
1076{
1077        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1078         * as the number of __delay(1) in a jiffy, so make it so
1079         */
1080        loops_per_jiffy = tb_ticks_per_jiffy;
1081}
1082
1083static int __init rtc_init(void)
1084{
1085        struct platform_device *pdev;
1086
1087        if (!ppc_md.get_rtc_time)
1088                return -ENODEV;
1089
1090        pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1091
1092        return PTR_ERR_OR_ZERO(pdev);
1093}
1094
1095device_initcall(rtc_init);
1096