linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 *  S390 version
   3 *    Copyright IBM Corp. 1999, 2000
   4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   5 *               Ulrich Weigand (weigand@de.ibm.com)
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 *
   8 *  Derived from "include/asm-i386/pgtable.h"
   9 */
  10
  11#ifndef _ASM_S390_PGTABLE_H
  12#define _ASM_S390_PGTABLE_H
  13
  14/*
  15 * The Linux memory management assumes a three-level page table setup.
  16 * For s390 64 bit we use up to four of the five levels the hardware
  17 * provides (region first tables are not used).
  18 *
  19 * The "pgd_xxx()" functions are trivial for a folded two-level
  20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  21 * into the pgd entry)
  22 *
  23 * This file contains the functions and defines necessary to modify and use
  24 * the S390 page table tree.
  25 */
  26#ifndef __ASSEMBLY__
  27#include <linux/sched.h>
  28#include <linux/mm_types.h>
  29#include <linux/page-flags.h>
  30#include <linux/radix-tree.h>
  31#include <asm/bug.h>
  32#include <asm/page.h>
  33
  34extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  35extern void paging_init(void);
  36extern void vmem_map_init(void);
  37
  38/*
  39 * The S390 doesn't have any external MMU info: the kernel page
  40 * tables contain all the necessary information.
  41 */
  42#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  43#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  44
  45/*
  46 * ZERO_PAGE is a global shared page that is always zero; used
  47 * for zero-mapped memory areas etc..
  48 */
  49
  50extern unsigned long empty_zero_page;
  51extern unsigned long zero_page_mask;
  52
  53#define ZERO_PAGE(vaddr) \
  54        (virt_to_page((void *)(empty_zero_page + \
  55         (((unsigned long)(vaddr)) &zero_page_mask))))
  56#define __HAVE_COLOR_ZERO_PAGE
  57
  58/* TODO: s390 cannot support io_remap_pfn_range... */
  59#endif /* !__ASSEMBLY__ */
  60
  61/*
  62 * PMD_SHIFT determines the size of the area a second-level page
  63 * table can map
  64 * PGDIR_SHIFT determines what a third-level page table entry can map
  65 */
  66#define PMD_SHIFT       20
  67#define PUD_SHIFT       31
  68#define PGDIR_SHIFT     42
  69
  70#define PMD_SIZE        (1UL << PMD_SHIFT)
  71#define PMD_MASK        (~(PMD_SIZE-1))
  72#define PUD_SIZE        (1UL << PUD_SHIFT)
  73#define PUD_MASK        (~(PUD_SIZE-1))
  74#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  75#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  76
  77/*
  78 * entries per page directory level: the S390 is two-level, so
  79 * we don't really have any PMD directory physically.
  80 * for S390 segment-table entries are combined to one PGD
  81 * that leads to 1024 pte per pgd
  82 */
  83#define PTRS_PER_PTE    256
  84#define PTRS_PER_PMD    2048
  85#define PTRS_PER_PUD    2048
  86#define PTRS_PER_PGD    2048
  87
  88#define FIRST_USER_ADDRESS  0UL
  89
  90#define pte_ERROR(e) \
  91        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  92#define pmd_ERROR(e) \
  93        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  94#define pud_ERROR(e) \
  95        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  96#define pgd_ERROR(e) \
  97        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  98
  99#ifndef __ASSEMBLY__
 100/*
 101 * The vmalloc and module area will always be on the topmost area of the
 102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
 103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
 104 * modules will reside. That makes sure that inter module branches always
 105 * happen without trampolines and in addition the placement within a 2GB frame
 106 * is branch prediction unit friendly.
 107 */
 108extern unsigned long VMALLOC_START;
 109extern unsigned long VMALLOC_END;
 110extern struct page *vmemmap;
 111
 112#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
 113
 114extern unsigned long MODULES_VADDR;
 115extern unsigned long MODULES_END;
 116#define MODULES_VADDR   MODULES_VADDR
 117#define MODULES_END     MODULES_END
 118#define MODULES_LEN     (1UL << 31)
 119
 120static inline int is_module_addr(void *addr)
 121{
 122        BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 123        if (addr < (void *)MODULES_VADDR)
 124                return 0;
 125        if (addr > (void *)MODULES_END)
 126                return 0;
 127        return 1;
 128}
 129
 130/*
 131 * A 64 bit pagetable entry of S390 has following format:
 132 * |                     PFRA                         |0IPC|  OS  |
 133 * 0000000000111111111122222222223333333333444444444455555555556666
 134 * 0123456789012345678901234567890123456789012345678901234567890123
 135 *
 136 * I Page-Invalid Bit:    Page is not available for address-translation
 137 * P Page-Protection Bit: Store access not possible for page
 138 * C Change-bit override: HW is not required to set change bit
 139 *
 140 * A 64 bit segmenttable entry of S390 has following format:
 141 * |        P-table origin                              |      TT
 142 * 0000000000111111111122222222223333333333444444444455555555556666
 143 * 0123456789012345678901234567890123456789012345678901234567890123
 144 *
 145 * I Segment-Invalid Bit:    Segment is not available for address-translation
 146 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 147 * P Page-Protection Bit: Store access not possible for page
 148 * TT Type 00
 149 *
 150 * A 64 bit region table entry of S390 has following format:
 151 * |        S-table origin                             |   TF  TTTL
 152 * 0000000000111111111122222222223333333333444444444455555555556666
 153 * 0123456789012345678901234567890123456789012345678901234567890123
 154 *
 155 * I Segment-Invalid Bit:    Segment is not available for address-translation
 156 * TT Type 01
 157 * TF
 158 * TL Table length
 159 *
 160 * The 64 bit regiontable origin of S390 has following format:
 161 * |      region table origon                          |       DTTL
 162 * 0000000000111111111122222222223333333333444444444455555555556666
 163 * 0123456789012345678901234567890123456789012345678901234567890123
 164 *
 165 * X Space-Switch event:
 166 * G Segment-Invalid Bit:  
 167 * P Private-Space Bit:    
 168 * S Storage-Alteration:
 169 * R Real space
 170 * TL Table-Length:
 171 *
 172 * A storage key has the following format:
 173 * | ACC |F|R|C|0|
 174 *  0   3 4 5 6 7
 175 * ACC: access key
 176 * F  : fetch protection bit
 177 * R  : referenced bit
 178 * C  : changed bit
 179 */
 180
 181/* Hardware bits in the page table entry */
 182#define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 183#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 184#define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 185
 186/* Software bits in the page table entry */
 187#define _PAGE_PRESENT   0x001           /* SW pte present bit */
 188#define _PAGE_YOUNG     0x004           /* SW pte young bit */
 189#define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 190#define _PAGE_READ      0x010           /* SW pte read bit */
 191#define _PAGE_WRITE     0x020           /* SW pte write bit */
 192#define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 193#define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 194#define __HAVE_ARCH_PTE_SPECIAL
 195
 196#ifdef CONFIG_MEM_SOFT_DIRTY
 197#define _PAGE_SOFT_DIRTY 0x002          /* SW pte soft dirty bit */
 198#else
 199#define _PAGE_SOFT_DIRTY 0x000
 200#endif
 201
 202/* Set of bits not changed in pte_modify */
 203#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 204                                 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 205
 206/*
 207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 209 * distinguish present from not-present ptes. It is changed only with the page
 210 * table lock held.
 211 *
 212 * The following table gives the different possible bit combinations for
 213 * the pte hardware and software bits in the last 12 bits of a pte
 214 * (. unassigned bit, x don't care, t swap type):
 215 *
 216 *                              842100000000
 217 *                              000084210000
 218 *                              000000008421
 219 *                              .IR.uswrdy.p
 220 * empty                        .10.00000000
 221 * swap                         .11..ttttt.0
 222 * prot-none, clean, old        .11.xx0000.1
 223 * prot-none, clean, young      .11.xx0001.1
 224 * prot-none, dirty, old        .10.xx0010.1
 225 * prot-none, dirty, young      .10.xx0011.1
 226 * read-only, clean, old        .11.xx0100.1
 227 * read-only, clean, young      .01.xx0101.1
 228 * read-only, dirty, old        .11.xx0110.1
 229 * read-only, dirty, young      .01.xx0111.1
 230 * read-write, clean, old       .11.xx1100.1
 231 * read-write, clean, young     .01.xx1101.1
 232 * read-write, dirty, old       .10.xx1110.1
 233 * read-write, dirty, young     .00.xx1111.1
 234 * HW-bits: R read-only, I invalid
 235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 236 *          u unused, l large
 237 *
 238 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 239 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 241 */
 242
 243/* Bits in the segment/region table address-space-control-element */
 244#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 245#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 246#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 247#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 248#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 249#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 250#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 251#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 252#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 253#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 254#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 255
 256/* Bits in the region table entry */
 257#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 258#define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 259#define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 260#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 261#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 262#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 263#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 264#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 265
 266#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 267#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 268#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 269#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 270#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 271#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 272
 273#define _REGION3_ENTRY_LARGE    0x400   /* RTTE-format control, large page  */
 274#define _REGION3_ENTRY_RO       0x200   /* page protection bit              */
 275
 276/* Bits in the segment table entry */
 277#define _SEGMENT_ENTRY_BITS     0xfffffffffffffe33UL
 278#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
 279#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 280#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 281#define _SEGMENT_ENTRY_PROTECT  0x200   /* page protection bit              */
 282#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 283
 284#define _SEGMENT_ENTRY          (0)
 285#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 286
 287#define _SEGMENT_ENTRY_DIRTY    0x2000  /* SW segment dirty bit */
 288#define _SEGMENT_ENTRY_YOUNG    0x1000  /* SW segment young bit */
 289#define _SEGMENT_ENTRY_LARGE    0x0400  /* STE-format control, large page */
 290#define _SEGMENT_ENTRY_READ     0x0002  /* SW segment read bit */
 291#define _SEGMENT_ENTRY_WRITE    0x0001  /* SW segment write bit */
 292
 293#ifdef CONFIG_MEM_SOFT_DIRTY
 294#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 295#else
 296#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 297#endif
 298
 299/*
 300 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
 301 *                              dy..R...I...rw
 302 * prot-none, clean, old        00..1...1...00
 303 * prot-none, clean, young      01..1...1...00
 304 * prot-none, dirty, old        10..1...1...00
 305 * prot-none, dirty, young      11..1...1...00
 306 * read-only, clean, old        00..1...1...10
 307 * read-only, clean, young      01..1...0...10
 308 * read-only, dirty, old        10..1...1...10
 309 * read-only, dirty, young      11..1...0...10
 310 * read-write, clean, old       00..1...1...11
 311 * read-write, clean, young     01..1...0...11
 312 * read-write, dirty, old       10..0...1...11
 313 * read-write, dirty, young     11..0...0...11
 314 * The segment table origin is used to distinguish empty (origin==0) from
 315 * read-write, old segment table entries (origin!=0)
 316 * HW-bits: R read-only, I invalid
 317 * SW-bits: y young, d dirty, r read, w write
 318 */
 319
 320/* Page status table bits for virtualization */
 321#define PGSTE_ACC_BITS  0xf000000000000000UL
 322#define PGSTE_FP_BIT    0x0800000000000000UL
 323#define PGSTE_PCL_BIT   0x0080000000000000UL
 324#define PGSTE_HR_BIT    0x0040000000000000UL
 325#define PGSTE_HC_BIT    0x0020000000000000UL
 326#define PGSTE_GR_BIT    0x0004000000000000UL
 327#define PGSTE_GC_BIT    0x0002000000000000UL
 328#define PGSTE_UC_BIT    0x0000800000000000UL    /* user dirty (migration) */
 329#define PGSTE_IN_BIT    0x0000400000000000UL    /* IPTE notify bit */
 330
 331/* Guest Page State used for virtualization */
 332#define _PGSTE_GPS_ZERO         0x0000000080000000UL
 333#define _PGSTE_GPS_USAGE_MASK   0x0000000003000000UL
 334#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
 335#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
 336
 337/*
 338 * A user page table pointer has the space-switch-event bit, the
 339 * private-space-control bit and the storage-alteration-event-control
 340 * bit set. A kernel page table pointer doesn't need them.
 341 */
 342#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 343                                 _ASCE_ALT_EVENT)
 344
 345/*
 346 * Page protection definitions.
 347 */
 348#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
 349#define PAGE_READ       __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 350                                 _PAGE_INVALID | _PAGE_PROTECT)
 351#define PAGE_WRITE      __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 352                                 _PAGE_INVALID | _PAGE_PROTECT)
 353
 354#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 355                                 _PAGE_YOUNG | _PAGE_DIRTY)
 356#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 357                                 _PAGE_YOUNG | _PAGE_DIRTY)
 358#define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 359                                 _PAGE_PROTECT)
 360
 361/*
 362 * On s390 the page table entry has an invalid bit and a read-only bit.
 363 * Read permission implies execute permission and write permission
 364 * implies read permission.
 365 */
 366         /*xwr*/
 367#define __P000  PAGE_NONE
 368#define __P001  PAGE_READ
 369#define __P010  PAGE_READ
 370#define __P011  PAGE_READ
 371#define __P100  PAGE_READ
 372#define __P101  PAGE_READ
 373#define __P110  PAGE_READ
 374#define __P111  PAGE_READ
 375
 376#define __S000  PAGE_NONE
 377#define __S001  PAGE_READ
 378#define __S010  PAGE_WRITE
 379#define __S011  PAGE_WRITE
 380#define __S100  PAGE_READ
 381#define __S101  PAGE_READ
 382#define __S110  PAGE_WRITE
 383#define __S111  PAGE_WRITE
 384
 385/*
 386 * Segment entry (large page) protection definitions.
 387 */
 388#define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 389                                 _SEGMENT_ENTRY_PROTECT)
 390#define SEGMENT_READ    __pgprot(_SEGMENT_ENTRY_PROTECT | \
 391                                 _SEGMENT_ENTRY_READ)
 392#define SEGMENT_WRITE   __pgprot(_SEGMENT_ENTRY_READ | \
 393                                 _SEGMENT_ENTRY_WRITE)
 394
 395static inline int mm_has_pgste(struct mm_struct *mm)
 396{
 397#ifdef CONFIG_PGSTE
 398        if (unlikely(mm->context.has_pgste))
 399                return 1;
 400#endif
 401        return 0;
 402}
 403
 404static inline int mm_alloc_pgste(struct mm_struct *mm)
 405{
 406#ifdef CONFIG_PGSTE
 407        if (unlikely(mm->context.alloc_pgste))
 408                return 1;
 409#endif
 410        return 0;
 411}
 412
 413/*
 414 * In the case that a guest uses storage keys
 415 * faults should no longer be backed by zero pages
 416 */
 417#define mm_forbids_zeropage mm_use_skey
 418static inline int mm_use_skey(struct mm_struct *mm)
 419{
 420#ifdef CONFIG_PGSTE
 421        if (mm->context.use_skey)
 422                return 1;
 423#endif
 424        return 0;
 425}
 426
 427/*
 428 * pgd/pmd/pte query functions
 429 */
 430static inline int pgd_present(pgd_t pgd)
 431{
 432        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 433                return 1;
 434        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 435}
 436
 437static inline int pgd_none(pgd_t pgd)
 438{
 439        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 440                return 0;
 441        return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 442}
 443
 444static inline int pgd_bad(pgd_t pgd)
 445{
 446        /*
 447         * With dynamic page table levels the pgd can be a region table
 448         * entry or a segment table entry. Check for the bit that are
 449         * invalid for either table entry.
 450         */
 451        unsigned long mask =
 452                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 453                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 454        return (pgd_val(pgd) & mask) != 0;
 455}
 456
 457static inline int pud_present(pud_t pud)
 458{
 459        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 460                return 1;
 461        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 462}
 463
 464static inline int pud_none(pud_t pud)
 465{
 466        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 467                return 0;
 468        return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
 469}
 470
 471static inline int pud_large(pud_t pud)
 472{
 473        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 474                return 0;
 475        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 476}
 477
 478static inline int pud_bad(pud_t pud)
 479{
 480        /*
 481         * With dynamic page table levels the pud can be a region table
 482         * entry or a segment table entry. Check for the bit that are
 483         * invalid for either table entry.
 484         */
 485        unsigned long mask =
 486                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
 487                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 488        return (pud_val(pud) & mask) != 0;
 489}
 490
 491static inline int pmd_present(pmd_t pmd)
 492{
 493        return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
 494}
 495
 496static inline int pmd_none(pmd_t pmd)
 497{
 498        return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
 499}
 500
 501static inline int pmd_large(pmd_t pmd)
 502{
 503        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 504}
 505
 506static inline unsigned long pmd_pfn(pmd_t pmd)
 507{
 508        unsigned long origin_mask;
 509
 510        origin_mask = _SEGMENT_ENTRY_ORIGIN;
 511        if (pmd_large(pmd))
 512                origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
 513        return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
 514}
 515
 516static inline int pmd_bad(pmd_t pmd)
 517{
 518        if (pmd_large(pmd))
 519                return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
 520        return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 521}
 522
 523#define __HAVE_ARCH_PMD_WRITE
 524static inline int pmd_write(pmd_t pmd)
 525{
 526        return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 527}
 528
 529static inline int pmd_dirty(pmd_t pmd)
 530{
 531        int dirty = 1;
 532        if (pmd_large(pmd))
 533                dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 534        return dirty;
 535}
 536
 537static inline int pmd_young(pmd_t pmd)
 538{
 539        int young = 1;
 540        if (pmd_large(pmd))
 541                young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 542        return young;
 543}
 544
 545static inline int pte_present(pte_t pte)
 546{
 547        /* Bit pattern: (pte & 0x001) == 0x001 */
 548        return (pte_val(pte) & _PAGE_PRESENT) != 0;
 549}
 550
 551static inline int pte_none(pte_t pte)
 552{
 553        /* Bit pattern: pte == 0x400 */
 554        return pte_val(pte) == _PAGE_INVALID;
 555}
 556
 557static inline int pte_swap(pte_t pte)
 558{
 559        /* Bit pattern: (pte & 0x201) == 0x200 */
 560        return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 561                == _PAGE_PROTECT;
 562}
 563
 564static inline int pte_special(pte_t pte)
 565{
 566        return (pte_val(pte) & _PAGE_SPECIAL);
 567}
 568
 569#define __HAVE_ARCH_PTE_SAME
 570static inline int pte_same(pte_t a, pte_t b)
 571{
 572        return pte_val(a) == pte_val(b);
 573}
 574
 575#ifdef CONFIG_NUMA_BALANCING
 576static inline int pte_protnone(pte_t pte)
 577{
 578        return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 579}
 580
 581static inline int pmd_protnone(pmd_t pmd)
 582{
 583        /* pmd_large(pmd) implies pmd_present(pmd) */
 584        return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 585}
 586#endif
 587
 588static inline int pte_soft_dirty(pte_t pte)
 589{
 590        return pte_val(pte) & _PAGE_SOFT_DIRTY;
 591}
 592#define pte_swp_soft_dirty pte_soft_dirty
 593
 594static inline pte_t pte_mksoft_dirty(pte_t pte)
 595{
 596        pte_val(pte) |= _PAGE_SOFT_DIRTY;
 597        return pte;
 598}
 599#define pte_swp_mksoft_dirty pte_mksoft_dirty
 600
 601static inline pte_t pte_clear_soft_dirty(pte_t pte)
 602{
 603        pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
 604        return pte;
 605}
 606#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 607
 608static inline int pmd_soft_dirty(pmd_t pmd)
 609{
 610        return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 611}
 612
 613static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 614{
 615        pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
 616        return pmd;
 617}
 618
 619static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 620{
 621        pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
 622        return pmd;
 623}
 624
 625/*
 626 * query functions pte_write/pte_dirty/pte_young only work if
 627 * pte_present() is true. Undefined behaviour if not..
 628 */
 629static inline int pte_write(pte_t pte)
 630{
 631        return (pte_val(pte) & _PAGE_WRITE) != 0;
 632}
 633
 634static inline int pte_dirty(pte_t pte)
 635{
 636        return (pte_val(pte) & _PAGE_DIRTY) != 0;
 637}
 638
 639static inline int pte_young(pte_t pte)
 640{
 641        return (pte_val(pte) & _PAGE_YOUNG) != 0;
 642}
 643
 644#define __HAVE_ARCH_PTE_UNUSED
 645static inline int pte_unused(pte_t pte)
 646{
 647        return pte_val(pte) & _PAGE_UNUSED;
 648}
 649
 650/*
 651 * pgd/pmd/pte modification functions
 652 */
 653
 654static inline void pgd_clear(pgd_t *pgd)
 655{
 656        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 657                pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 658}
 659
 660static inline void pud_clear(pud_t *pud)
 661{
 662        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 663                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 664}
 665
 666static inline void pmd_clear(pmd_t *pmdp)
 667{
 668        pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
 669}
 670
 671static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 672{
 673        pte_val(*ptep) = _PAGE_INVALID;
 674}
 675
 676/*
 677 * The following pte modification functions only work if
 678 * pte_present() is true. Undefined behaviour if not..
 679 */
 680static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 681{
 682        pte_val(pte) &= _PAGE_CHG_MASK;
 683        pte_val(pte) |= pgprot_val(newprot);
 684        /*
 685         * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
 686         * invalid bit set, clear it again for readable, young pages
 687         */
 688        if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 689                pte_val(pte) &= ~_PAGE_INVALID;
 690        /*
 691         * newprot for PAGE_READ and PAGE_WRITE has the page protection
 692         * bit set, clear it again for writable, dirty pages
 693         */
 694        if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 695                pte_val(pte) &= ~_PAGE_PROTECT;
 696        return pte;
 697}
 698
 699static inline pte_t pte_wrprotect(pte_t pte)
 700{
 701        pte_val(pte) &= ~_PAGE_WRITE;
 702        pte_val(pte) |= _PAGE_PROTECT;
 703        return pte;
 704}
 705
 706static inline pte_t pte_mkwrite(pte_t pte)
 707{
 708        pte_val(pte) |= _PAGE_WRITE;
 709        if (pte_val(pte) & _PAGE_DIRTY)
 710                pte_val(pte) &= ~_PAGE_PROTECT;
 711        return pte;
 712}
 713
 714static inline pte_t pte_mkclean(pte_t pte)
 715{
 716        pte_val(pte) &= ~_PAGE_DIRTY;
 717        pte_val(pte) |= _PAGE_PROTECT;
 718        return pte;
 719}
 720
 721static inline pte_t pte_mkdirty(pte_t pte)
 722{
 723        pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
 724        if (pte_val(pte) & _PAGE_WRITE)
 725                pte_val(pte) &= ~_PAGE_PROTECT;
 726        return pte;
 727}
 728
 729static inline pte_t pte_mkold(pte_t pte)
 730{
 731        pte_val(pte) &= ~_PAGE_YOUNG;
 732        pte_val(pte) |= _PAGE_INVALID;
 733        return pte;
 734}
 735
 736static inline pte_t pte_mkyoung(pte_t pte)
 737{
 738        pte_val(pte) |= _PAGE_YOUNG;
 739        if (pte_val(pte) & _PAGE_READ)
 740                pte_val(pte) &= ~_PAGE_INVALID;
 741        return pte;
 742}
 743
 744static inline pte_t pte_mkspecial(pte_t pte)
 745{
 746        pte_val(pte) |= _PAGE_SPECIAL;
 747        return pte;
 748}
 749
 750#ifdef CONFIG_HUGETLB_PAGE
 751static inline pte_t pte_mkhuge(pte_t pte)
 752{
 753        pte_val(pte) |= _PAGE_LARGE;
 754        return pte;
 755}
 756#endif
 757
 758static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
 759{
 760        unsigned long pto = (unsigned long) ptep;
 761
 762        /* Invalidation + global TLB flush for the pte */
 763        asm volatile(
 764                "       ipte    %2,%3"
 765                : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
 766}
 767
 768static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
 769{
 770        unsigned long pto = (unsigned long) ptep;
 771
 772        /* Invalidation + local TLB flush for the pte */
 773        asm volatile(
 774                "       .insn rrf,0xb2210000,%2,%3,0,1"
 775                : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
 776}
 777
 778static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
 779{
 780        unsigned long pto = (unsigned long) ptep;
 781
 782        /* Invalidate a range of ptes + global TLB flush of the ptes */
 783        do {
 784                asm volatile(
 785                        "       .insn rrf,0xb2210000,%2,%0,%1,0"
 786                        : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
 787        } while (nr != 255);
 788}
 789
 790/*
 791 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
 792 * both clear the TLB for the unmapped pte. The reason is that
 793 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
 794 * to modify an active pte. The sequence is
 795 *   1) ptep_get_and_clear
 796 *   2) set_pte_at
 797 *   3) flush_tlb_range
 798 * On s390 the tlb needs to get flushed with the modification of the pte
 799 * if the pte is active. The only way how this can be implemented is to
 800 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
 801 * is a nop.
 802 */
 803pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
 804pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
 805
 806#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 807static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 808                                            unsigned long addr, pte_t *ptep)
 809{
 810        pte_t pte = *ptep;
 811
 812        pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
 813        return pte_young(pte);
 814}
 815
 816#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 817static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
 818                                         unsigned long address, pte_t *ptep)
 819{
 820        return ptep_test_and_clear_young(vma, address, ptep);
 821}
 822
 823#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 824static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 825                                       unsigned long addr, pte_t *ptep)
 826{
 827        return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
 828}
 829
 830#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 831pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
 832void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
 833
 834#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
 835static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
 836                                     unsigned long addr, pte_t *ptep)
 837{
 838        return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
 839}
 840
 841/*
 842 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
 843 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
 844 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
 845 * cannot be accessed while the batched unmap is running. In this case
 846 * full==1 and a simple pte_clear is enough. See tlb.h.
 847 */
 848#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 849static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 850                                            unsigned long addr,
 851                                            pte_t *ptep, int full)
 852{
 853        if (full) {
 854                pte_t pte = *ptep;
 855                *ptep = __pte(_PAGE_INVALID);
 856                return pte;
 857        }
 858        return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
 859}
 860
 861#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 862static inline void ptep_set_wrprotect(struct mm_struct *mm,
 863                                      unsigned long addr, pte_t *ptep)
 864{
 865        pte_t pte = *ptep;
 866
 867        if (pte_write(pte))
 868                ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
 869}
 870
 871#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 872static inline int ptep_set_access_flags(struct vm_area_struct *vma,
 873                                        unsigned long addr, pte_t *ptep,
 874                                        pte_t entry, int dirty)
 875{
 876        if (pte_same(*ptep, entry))
 877                return 0;
 878        ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
 879        return 1;
 880}
 881
 882/*
 883 * Additional functions to handle KVM guest page tables
 884 */
 885void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
 886                     pte_t *ptep, pte_t entry);
 887void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
 888void ptep_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
 889void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
 890                     pte_t *ptep , int reset);
 891void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
 892
 893bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
 894int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
 895                          unsigned char key, bool nq);
 896unsigned char get_guest_storage_key(struct mm_struct *mm, unsigned long addr);
 897
 898/*
 899 * Certain architectures need to do special things when PTEs
 900 * within a page table are directly modified.  Thus, the following
 901 * hook is made available.
 902 */
 903static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 904                              pte_t *ptep, pte_t entry)
 905{
 906        if (mm_has_pgste(mm))
 907                ptep_set_pte_at(mm, addr, ptep, entry);
 908        else
 909                *ptep = entry;
 910}
 911
 912/*
 913 * Conversion functions: convert a page and protection to a page entry,
 914 * and a page entry and page directory to the page they refer to.
 915 */
 916static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
 917{
 918        pte_t __pte;
 919        pte_val(__pte) = physpage + pgprot_val(pgprot);
 920        return pte_mkyoung(__pte);
 921}
 922
 923static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
 924{
 925        unsigned long physpage = page_to_phys(page);
 926        pte_t __pte = mk_pte_phys(physpage, pgprot);
 927
 928        if (pte_write(__pte) && PageDirty(page))
 929                __pte = pte_mkdirty(__pte);
 930        return __pte;
 931}
 932
 933#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 934#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
 935#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 936#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
 937
 938#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
 939#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 940
 941#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
 942#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
 943#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
 944
 945static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
 946{
 947        pud_t *pud = (pud_t *) pgd;
 948        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 949                pud = (pud_t *) pgd_deref(*pgd);
 950        return pud  + pud_index(address);
 951}
 952
 953static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
 954{
 955        pmd_t *pmd = (pmd_t *) pud;
 956        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 957                pmd = (pmd_t *) pud_deref(*pud);
 958        return pmd + pmd_index(address);
 959}
 960
 961#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
 962#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
 963#define pte_page(x) pfn_to_page(pte_pfn(x))
 964
 965#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
 966
 967/* Find an entry in the lowest level page table.. */
 968#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
 969#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
 970#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
 971#define pte_unmap(pte) do { } while (0)
 972
 973#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
 974static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
 975{
 976        /*
 977         * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
 978         * Convert to segment table entry format.
 979         */
 980        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
 981                return pgprot_val(SEGMENT_NONE);
 982        if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
 983                return pgprot_val(SEGMENT_READ);
 984        return pgprot_val(SEGMENT_WRITE);
 985}
 986
 987static inline pmd_t pmd_wrprotect(pmd_t pmd)
 988{
 989        pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
 990        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
 991        return pmd;
 992}
 993
 994static inline pmd_t pmd_mkwrite(pmd_t pmd)
 995{
 996        pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
 997        if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
 998                return pmd;
 999        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1000        return pmd;
1001}
1002
1003static inline pmd_t pmd_mkclean(pmd_t pmd)
1004{
1005        if (pmd_large(pmd)) {
1006                pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1007                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1008        }
1009        return pmd;
1010}
1011
1012static inline pmd_t pmd_mkdirty(pmd_t pmd)
1013{
1014        if (pmd_large(pmd)) {
1015                pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1016                                _SEGMENT_ENTRY_SOFT_DIRTY;
1017                if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1018                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1019        }
1020        return pmd;
1021}
1022
1023static inline pmd_t pmd_mkyoung(pmd_t pmd)
1024{
1025        if (pmd_large(pmd)) {
1026                pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1027                if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1028                        pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1029        }
1030        return pmd;
1031}
1032
1033static inline pmd_t pmd_mkold(pmd_t pmd)
1034{
1035        if (pmd_large(pmd)) {
1036                pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1037                pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1038        }
1039        return pmd;
1040}
1041
1042static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1043{
1044        if (pmd_large(pmd)) {
1045                pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1046                        _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1047                        _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1048                pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1049                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1050                        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1051                if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1052                        pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1053                return pmd;
1054        }
1055        pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1056        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1057        return pmd;
1058}
1059
1060static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1061{
1062        pmd_t __pmd;
1063        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1064        return __pmd;
1065}
1066
1067#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1068
1069static inline void __pmdp_csp(pmd_t *pmdp)
1070{
1071        register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1072        register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1073                                               _SEGMENT_ENTRY_INVALID;
1074        register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1075
1076        asm volatile(
1077                "       csp %1,%3"
1078                : "=m" (*pmdp)
1079                : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1080}
1081
1082static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1083{
1084        unsigned long sto;
1085
1086        sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1087        asm volatile(
1088                "       .insn   rrf,0xb98e0000,%2,%3,0,0"
1089                : "=m" (*pmdp)
1090                : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1091                : "cc" );
1092}
1093
1094static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1095{
1096        unsigned long sto;
1097
1098        sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1099        asm volatile(
1100                "       .insn   rrf,0xb98e0000,%2,%3,0,1"
1101                : "=m" (*pmdp)
1102                : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1103                : "cc" );
1104}
1105
1106pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1107pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1108
1109#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1110
1111#define __HAVE_ARCH_PGTABLE_DEPOSIT
1112void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1113                                pgtable_t pgtable);
1114
1115#define __HAVE_ARCH_PGTABLE_WITHDRAW
1116pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1117
1118#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1119static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1120                                        unsigned long addr, pmd_t *pmdp,
1121                                        pmd_t entry, int dirty)
1122{
1123        VM_BUG_ON(addr & ~HPAGE_MASK);
1124
1125        entry = pmd_mkyoung(entry);
1126        if (dirty)
1127                entry = pmd_mkdirty(entry);
1128        if (pmd_val(*pmdp) == pmd_val(entry))
1129                return 0;
1130        pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1131        return 1;
1132}
1133
1134#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1135static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1136                                            unsigned long addr, pmd_t *pmdp)
1137{
1138        pmd_t pmd = *pmdp;
1139
1140        pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1141        return pmd_young(pmd);
1142}
1143
1144#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1145static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1146                                         unsigned long addr, pmd_t *pmdp)
1147{
1148        VM_BUG_ON(addr & ~HPAGE_MASK);
1149        return pmdp_test_and_clear_young(vma, addr, pmdp);
1150}
1151
1152static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1153                              pmd_t *pmdp, pmd_t entry)
1154{
1155        *pmdp = entry;
1156}
1157
1158static inline pmd_t pmd_mkhuge(pmd_t pmd)
1159{
1160        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1161        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1162        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1163        return pmd;
1164}
1165
1166#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1167static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1168                                            unsigned long addr, pmd_t *pmdp)
1169{
1170        return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1171}
1172
1173#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1174static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1175                                                 unsigned long addr,
1176                                                 pmd_t *pmdp, int full)
1177{
1178        if (full) {
1179                pmd_t pmd = *pmdp;
1180                *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
1181                return pmd;
1182        }
1183        return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1184}
1185
1186#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1187static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1188                                          unsigned long addr, pmd_t *pmdp)
1189{
1190        return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1191}
1192
1193#define __HAVE_ARCH_PMDP_INVALIDATE
1194static inline void pmdp_invalidate(struct vm_area_struct *vma,
1195                                   unsigned long addr, pmd_t *pmdp)
1196{
1197        pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1198}
1199
1200#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1201static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1202                                      unsigned long addr, pmd_t *pmdp)
1203{
1204        pmd_t pmd = *pmdp;
1205
1206        if (pmd_write(pmd))
1207                pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1208}
1209
1210static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1211                                        unsigned long address,
1212                                        pmd_t *pmdp)
1213{
1214        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1215}
1216#define pmdp_collapse_flush pmdp_collapse_flush
1217
1218#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1219#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1220
1221static inline int pmd_trans_huge(pmd_t pmd)
1222{
1223        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1224}
1225
1226static inline int has_transparent_hugepage(void)
1227{
1228        return MACHINE_HAS_HPAGE ? 1 : 0;
1229}
1230#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1231
1232/*
1233 * 64 bit swap entry format:
1234 * A page-table entry has some bits we have to treat in a special way.
1235 * Bits 52 and bit 55 have to be zero, otherwise a specification
1236 * exception will occur instead of a page translation exception. The
1237 * specification exception has the bad habit not to store necessary
1238 * information in the lowcore.
1239 * Bits 54 and 63 are used to indicate the page type.
1240 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1241 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1242 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1243 * for the offset.
1244 * |                      offset                        |01100|type |00|
1245 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1246 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1247 */
1248
1249#define __SWP_OFFSET_MASK       ((1UL << 52) - 1)
1250#define __SWP_OFFSET_SHIFT      12
1251#define __SWP_TYPE_MASK         ((1UL << 5) - 1)
1252#define __SWP_TYPE_SHIFT        2
1253
1254static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1255{
1256        pte_t pte;
1257
1258        pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1259        pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1260        pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1261        return pte;
1262}
1263
1264static inline unsigned long __swp_type(swp_entry_t entry)
1265{
1266        return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1267}
1268
1269static inline unsigned long __swp_offset(swp_entry_t entry)
1270{
1271        return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1272}
1273
1274static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1275{
1276        return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1277}
1278
1279#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1280#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1281
1282#endif /* !__ASSEMBLY__ */
1283
1284#define kern_addr_valid(addr)   (1)
1285
1286extern int vmem_add_mapping(unsigned long start, unsigned long size);
1287extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1288extern int s390_enable_sie(void);
1289extern int s390_enable_skey(void);
1290extern void s390_reset_cmma(struct mm_struct *mm);
1291
1292/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1293#define HAVE_ARCH_UNMAPPED_AREA
1294#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1295
1296/*
1297 * No page table caches to initialise
1298 */
1299static inline void pgtable_cache_init(void) { }
1300static inline void check_pgt_cache(void) { }
1301
1302#include <asm-generic/pgtable.h>
1303
1304#endif /* _S390_PAGE_H */
1305