linux/arch/s390/kernel/smp.c
<<
>>
Prefs
   1/*
   2 *  SMP related functions
   3 *
   4 *    Copyright IBM Corp. 1999, 2012
   5 *    Author(s): Denis Joseph Barrow,
   6 *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
   7 *               Heiko Carstens <heiko.carstens@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24#include <linux/mm.h>
  25#include <linux/err.h>
  26#include <linux/spinlock.h>
  27#include <linux/kernel_stat.h>
  28#include <linux/delay.h>
  29#include <linux/interrupt.h>
  30#include <linux/irqflags.h>
  31#include <linux/cpu.h>
  32#include <linux/slab.h>
  33#include <linux/crash_dump.h>
  34#include <linux/memblock.h>
  35#include <asm/asm-offsets.h>
  36#include <asm/diag.h>
  37#include <asm/switch_to.h>
  38#include <asm/facility.h>
  39#include <asm/ipl.h>
  40#include <asm/setup.h>
  41#include <asm/irq.h>
  42#include <asm/tlbflush.h>
  43#include <asm/vtimer.h>
  44#include <asm/lowcore.h>
  45#include <asm/sclp.h>
  46#include <asm/vdso.h>
  47#include <asm/debug.h>
  48#include <asm/os_info.h>
  49#include <asm/sigp.h>
  50#include <asm/idle.h>
  51#include "entry.h"
  52
  53enum {
  54        ec_schedule = 0,
  55        ec_call_function_single,
  56        ec_stop_cpu,
  57};
  58
  59enum {
  60        CPU_STATE_STANDBY,
  61        CPU_STATE_CONFIGURED,
  62};
  63
  64static DEFINE_PER_CPU(struct cpu *, cpu_device);
  65
  66struct pcpu {
  67        struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
  68        unsigned long ec_mask;          /* bit mask for ec_xxx functions */
  69        unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
  70        signed char state;              /* physical cpu state */
  71        signed char polarization;       /* physical polarization */
  72        u16 address;                    /* physical cpu address */
  73};
  74
  75static u8 boot_core_type;
  76static struct pcpu pcpu_devices[NR_CPUS];
  77
  78unsigned int smp_cpu_mt_shift;
  79EXPORT_SYMBOL(smp_cpu_mt_shift);
  80
  81unsigned int smp_cpu_mtid;
  82EXPORT_SYMBOL(smp_cpu_mtid);
  83
  84#ifdef CONFIG_CRASH_DUMP
  85__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  86#endif
  87
  88static unsigned int smp_max_threads __initdata = -1U;
  89
  90static int __init early_nosmt(char *s)
  91{
  92        smp_max_threads = 1;
  93        return 0;
  94}
  95early_param("nosmt", early_nosmt);
  96
  97static int __init early_smt(char *s)
  98{
  99        get_option(&s, &smp_max_threads);
 100        return 0;
 101}
 102early_param("smt", early_smt);
 103
 104/*
 105 * The smp_cpu_state_mutex must be held when changing the state or polarization
 106 * member of a pcpu data structure within the pcpu_devices arreay.
 107 */
 108DEFINE_MUTEX(smp_cpu_state_mutex);
 109
 110/*
 111 * Signal processor helper functions.
 112 */
 113static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 114{
 115        int cc;
 116
 117        while (1) {
 118                cc = __pcpu_sigp(addr, order, parm, NULL);
 119                if (cc != SIGP_CC_BUSY)
 120                        return cc;
 121                cpu_relax();
 122        }
 123}
 124
 125static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 126{
 127        int cc, retry;
 128
 129        for (retry = 0; ; retry++) {
 130                cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 131                if (cc != SIGP_CC_BUSY)
 132                        break;
 133                if (retry >= 3)
 134                        udelay(10);
 135        }
 136        return cc;
 137}
 138
 139static inline int pcpu_stopped(struct pcpu *pcpu)
 140{
 141        u32 uninitialized_var(status);
 142
 143        if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 144                        0, &status) != SIGP_CC_STATUS_STORED)
 145                return 0;
 146        return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 147}
 148
 149static inline int pcpu_running(struct pcpu *pcpu)
 150{
 151        if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 152                        0, NULL) != SIGP_CC_STATUS_STORED)
 153                return 1;
 154        /* Status stored condition code is equivalent to cpu not running. */
 155        return 0;
 156}
 157
 158/*
 159 * Find struct pcpu by cpu address.
 160 */
 161static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 162{
 163        int cpu;
 164
 165        for_each_cpu(cpu, mask)
 166                if (pcpu_devices[cpu].address == address)
 167                        return pcpu_devices + cpu;
 168        return NULL;
 169}
 170
 171static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 172{
 173        int order;
 174
 175        if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 176                return;
 177        order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 178        pcpu->ec_clk = get_tod_clock_fast();
 179        pcpu_sigp_retry(pcpu, order, 0);
 180}
 181
 182#define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 183#define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
 184
 185static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 186{
 187        unsigned long async_stack, panic_stack;
 188        struct lowcore *lc;
 189
 190        if (pcpu != &pcpu_devices[0]) {
 191                pcpu->lowcore = (struct lowcore *)
 192                        __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 193                async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 194                panic_stack = __get_free_page(GFP_KERNEL);
 195                if (!pcpu->lowcore || !panic_stack || !async_stack)
 196                        goto out;
 197        } else {
 198                async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
 199                panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
 200        }
 201        lc = pcpu->lowcore;
 202        memcpy(lc, &S390_lowcore, 512);
 203        memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 204        lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
 205        lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
 206        lc->cpu_nr = cpu;
 207        lc->spinlock_lockval = arch_spin_lockval(cpu);
 208        if (MACHINE_HAS_VX)
 209                lc->vector_save_area_addr =
 210                        (unsigned long) &lc->vector_save_area;
 211        if (vdso_alloc_per_cpu(lc))
 212                goto out;
 213        lowcore_ptr[cpu] = lc;
 214        pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 215        return 0;
 216out:
 217        if (pcpu != &pcpu_devices[0]) {
 218                free_page(panic_stack);
 219                free_pages(async_stack, ASYNC_ORDER);
 220                free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 221        }
 222        return -ENOMEM;
 223}
 224
 225#ifdef CONFIG_HOTPLUG_CPU
 226
 227static void pcpu_free_lowcore(struct pcpu *pcpu)
 228{
 229        pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 230        lowcore_ptr[pcpu - pcpu_devices] = NULL;
 231        vdso_free_per_cpu(pcpu->lowcore);
 232        if (pcpu == &pcpu_devices[0])
 233                return;
 234        free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
 235        free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
 236        free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 237}
 238
 239#endif /* CONFIG_HOTPLUG_CPU */
 240
 241static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 242{
 243        struct lowcore *lc = pcpu->lowcore;
 244
 245        if (MACHINE_HAS_TLB_LC)
 246                cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 247        cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 248        atomic_inc(&init_mm.context.attach_count);
 249        lc->cpu_nr = cpu;
 250        lc->spinlock_lockval = arch_spin_lockval(cpu);
 251        lc->percpu_offset = __per_cpu_offset[cpu];
 252        lc->kernel_asce = S390_lowcore.kernel_asce;
 253        lc->machine_flags = S390_lowcore.machine_flags;
 254        lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 255        __ctl_store(lc->cregs_save_area, 0, 15);
 256        save_access_regs((unsigned int *) lc->access_regs_save_area);
 257        memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 258               MAX_FACILITY_BIT/8);
 259}
 260
 261static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 262{
 263        struct lowcore *lc = pcpu->lowcore;
 264        struct thread_info *ti = task_thread_info(tsk);
 265
 266        lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 267                + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 268        lc->thread_info = (unsigned long) task_thread_info(tsk);
 269        lc->current_task = (unsigned long) tsk;
 270        lc->lpp = LPP_MAGIC;
 271        lc->current_pid = tsk->pid;
 272        lc->user_timer = ti->user_timer;
 273        lc->system_timer = ti->system_timer;
 274        lc->steal_timer = 0;
 275}
 276
 277static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 278{
 279        struct lowcore *lc = pcpu->lowcore;
 280
 281        lc->restart_stack = lc->kernel_stack;
 282        lc->restart_fn = (unsigned long) func;
 283        lc->restart_data = (unsigned long) data;
 284        lc->restart_source = -1UL;
 285        pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 286}
 287
 288/*
 289 * Call function via PSW restart on pcpu and stop the current cpu.
 290 */
 291static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 292                          void *data, unsigned long stack)
 293{
 294        struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 295        unsigned long source_cpu = stap();
 296
 297        __load_psw_mask(PSW_KERNEL_BITS);
 298        if (pcpu->address == source_cpu)
 299                func(data);     /* should not return */
 300        /* Stop target cpu (if func returns this stops the current cpu). */
 301        pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 302        /* Restart func on the target cpu and stop the current cpu. */
 303        mem_assign_absolute(lc->restart_stack, stack);
 304        mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 305        mem_assign_absolute(lc->restart_data, (unsigned long) data);
 306        mem_assign_absolute(lc->restart_source, source_cpu);
 307        asm volatile(
 308                "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
 309                "       brc     2,0b    # busy, try again\n"
 310                "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
 311                "       brc     2,1b    # busy, try again\n"
 312                : : "d" (pcpu->address), "d" (source_cpu),
 313                    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 314                : "0", "1", "cc");
 315        for (;;) ;
 316}
 317
 318/*
 319 * Enable additional logical cpus for multi-threading.
 320 */
 321static int pcpu_set_smt(unsigned int mtid)
 322{
 323        register unsigned long reg1 asm ("1") = (unsigned long) mtid;
 324        int cc;
 325
 326        if (smp_cpu_mtid == mtid)
 327                return 0;
 328        asm volatile(
 329                "       sigp    %1,0,%2 # sigp set multi-threading\n"
 330                "       ipm     %0\n"
 331                "       srl     %0,28\n"
 332                : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
 333                : "cc");
 334        if (cc == 0) {
 335                smp_cpu_mtid = mtid;
 336                smp_cpu_mt_shift = 0;
 337                while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 338                        smp_cpu_mt_shift++;
 339                pcpu_devices[0].address = stap();
 340        }
 341        return cc;
 342}
 343
 344/*
 345 * Call function on an online CPU.
 346 */
 347void smp_call_online_cpu(void (*func)(void *), void *data)
 348{
 349        struct pcpu *pcpu;
 350
 351        /* Use the current cpu if it is online. */
 352        pcpu = pcpu_find_address(cpu_online_mask, stap());
 353        if (!pcpu)
 354                /* Use the first online cpu. */
 355                pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 356        pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 357}
 358
 359/*
 360 * Call function on the ipl CPU.
 361 */
 362void smp_call_ipl_cpu(void (*func)(void *), void *data)
 363{
 364        pcpu_delegate(&pcpu_devices[0], func, data,
 365                      pcpu_devices->lowcore->panic_stack -
 366                      PANIC_FRAME_OFFSET + PAGE_SIZE);
 367}
 368
 369int smp_find_processor_id(u16 address)
 370{
 371        int cpu;
 372
 373        for_each_present_cpu(cpu)
 374                if (pcpu_devices[cpu].address == address)
 375                        return cpu;
 376        return -1;
 377}
 378
 379int smp_vcpu_scheduled(int cpu)
 380{
 381        return pcpu_running(pcpu_devices + cpu);
 382}
 383
 384void smp_yield_cpu(int cpu)
 385{
 386        if (MACHINE_HAS_DIAG9C) {
 387                diag_stat_inc_norecursion(DIAG_STAT_X09C);
 388                asm volatile("diag %0,0,0x9c"
 389                             : : "d" (pcpu_devices[cpu].address));
 390        } else if (MACHINE_HAS_DIAG44) {
 391                diag_stat_inc_norecursion(DIAG_STAT_X044);
 392                asm volatile("diag 0,0,0x44");
 393        }
 394}
 395
 396/*
 397 * Send cpus emergency shutdown signal. This gives the cpus the
 398 * opportunity to complete outstanding interrupts.
 399 */
 400static void smp_emergency_stop(cpumask_t *cpumask)
 401{
 402        u64 end;
 403        int cpu;
 404
 405        end = get_tod_clock() + (1000000UL << 12);
 406        for_each_cpu(cpu, cpumask) {
 407                struct pcpu *pcpu = pcpu_devices + cpu;
 408                set_bit(ec_stop_cpu, &pcpu->ec_mask);
 409                while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 410                                   0, NULL) == SIGP_CC_BUSY &&
 411                       get_tod_clock() < end)
 412                        cpu_relax();
 413        }
 414        while (get_tod_clock() < end) {
 415                for_each_cpu(cpu, cpumask)
 416                        if (pcpu_stopped(pcpu_devices + cpu))
 417                                cpumask_clear_cpu(cpu, cpumask);
 418                if (cpumask_empty(cpumask))
 419                        break;
 420                cpu_relax();
 421        }
 422}
 423
 424/*
 425 * Stop all cpus but the current one.
 426 */
 427void smp_send_stop(void)
 428{
 429        cpumask_t cpumask;
 430        int cpu;
 431
 432        /* Disable all interrupts/machine checks */
 433        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 434        trace_hardirqs_off();
 435
 436        debug_set_critical();
 437        cpumask_copy(&cpumask, cpu_online_mask);
 438        cpumask_clear_cpu(smp_processor_id(), &cpumask);
 439
 440        if (oops_in_progress)
 441                smp_emergency_stop(&cpumask);
 442
 443        /* stop all processors */
 444        for_each_cpu(cpu, &cpumask) {
 445                struct pcpu *pcpu = pcpu_devices + cpu;
 446                pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 447                while (!pcpu_stopped(pcpu))
 448                        cpu_relax();
 449        }
 450}
 451
 452/*
 453 * This is the main routine where commands issued by other
 454 * cpus are handled.
 455 */
 456static void smp_handle_ext_call(void)
 457{
 458        unsigned long bits;
 459
 460        /* handle bit signal external calls */
 461        bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 462        if (test_bit(ec_stop_cpu, &bits))
 463                smp_stop_cpu();
 464        if (test_bit(ec_schedule, &bits))
 465                scheduler_ipi();
 466        if (test_bit(ec_call_function_single, &bits))
 467                generic_smp_call_function_single_interrupt();
 468}
 469
 470static void do_ext_call_interrupt(struct ext_code ext_code,
 471                                  unsigned int param32, unsigned long param64)
 472{
 473        inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 474        smp_handle_ext_call();
 475}
 476
 477void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 478{
 479        int cpu;
 480
 481        for_each_cpu(cpu, mask)
 482                pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 483}
 484
 485void arch_send_call_function_single_ipi(int cpu)
 486{
 487        pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 488}
 489
 490/*
 491 * this function sends a 'reschedule' IPI to another CPU.
 492 * it goes straight through and wastes no time serializing
 493 * anything. Worst case is that we lose a reschedule ...
 494 */
 495void smp_send_reschedule(int cpu)
 496{
 497        pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 498}
 499
 500/*
 501 * parameter area for the set/clear control bit callbacks
 502 */
 503struct ec_creg_mask_parms {
 504        unsigned long orval;
 505        unsigned long andval;
 506        int cr;
 507};
 508
 509/*
 510 * callback for setting/clearing control bits
 511 */
 512static void smp_ctl_bit_callback(void *info)
 513{
 514        struct ec_creg_mask_parms *pp = info;
 515        unsigned long cregs[16];
 516
 517        __ctl_store(cregs, 0, 15);
 518        cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 519        __ctl_load(cregs, 0, 15);
 520}
 521
 522/*
 523 * Set a bit in a control register of all cpus
 524 */
 525void smp_ctl_set_bit(int cr, int bit)
 526{
 527        struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 528
 529        on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 530}
 531EXPORT_SYMBOL(smp_ctl_set_bit);
 532
 533/*
 534 * Clear a bit in a control register of all cpus
 535 */
 536void smp_ctl_clear_bit(int cr, int bit)
 537{
 538        struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 539
 540        on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 541}
 542EXPORT_SYMBOL(smp_ctl_clear_bit);
 543
 544#ifdef CONFIG_CRASH_DUMP
 545
 546int smp_store_status(int cpu)
 547{
 548        struct pcpu *pcpu = pcpu_devices + cpu;
 549        unsigned long pa;
 550
 551        pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 552        if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 553                              pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 554                return -EIO;
 555        if (!MACHINE_HAS_VX)
 556                return 0;
 557        pa = __pa(pcpu->lowcore->vector_save_area_addr);
 558        if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 559                              pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 560                return -EIO;
 561        return 0;
 562}
 563
 564/*
 565 * Collect CPU state of the previous, crashed system.
 566 * There are four cases:
 567 * 1) standard zfcp dump
 568 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 569 *    The state for all CPUs except the boot CPU needs to be collected
 570 *    with sigp stop-and-store-status. The boot CPU state is located in
 571 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 572 *    will copy the boot CPU state from the HSA.
 573 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 574 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 575 *    The state for all CPUs except the boot CPU needs to be collected
 576 *    with sigp stop-and-store-status. The firmware or the boot-loader
 577 *    stored the registers of the boot CPU in the absolute lowcore in the
 578 *    memory of the old system.
 579 * 3) kdump and the old kernel did not store the CPU state,
 580 *    or stand-alone kdump for DASD
 581 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 582 *    The state for all CPUs except the boot CPU needs to be collected
 583 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 584 *    stored the registers of the boot CPU in the memory of the old system.
 585 * 4) kdump and the old kernel stored the CPU state
 586 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 587 *    This case does not exist for s390 anymore, setup_arch explicitly
 588 *    deactivates the elfcorehdr= kernel parameter
 589 */
 590static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 591                                     bool is_boot_cpu, unsigned long page)
 592{
 593        __vector128 *vxrs = (__vector128 *) page;
 594
 595        if (is_boot_cpu)
 596                vxrs = boot_cpu_vector_save_area;
 597        else
 598                __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 599        save_area_add_vxrs(sa, vxrs);
 600}
 601
 602static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 603                                     bool is_boot_cpu, unsigned long page)
 604{
 605        void *regs = (void *) page;
 606
 607        if (is_boot_cpu)
 608                copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 609        else
 610                __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 611        save_area_add_regs(sa, regs);
 612}
 613
 614void __init smp_save_dump_cpus(void)
 615{
 616        int addr, boot_cpu_addr, max_cpu_addr;
 617        struct save_area *sa;
 618        unsigned long page;
 619        bool is_boot_cpu;
 620
 621        if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 622                /* No previous system present, normal boot. */
 623                return;
 624        /* Allocate a page as dumping area for the store status sigps */
 625        page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
 626        /* Set multi-threading state to the previous system. */
 627        pcpu_set_smt(sclp.mtid_prev);
 628        boot_cpu_addr = stap();
 629        max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 630        for (addr = 0; addr <= max_cpu_addr; addr++) {
 631                if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 632                    SIGP_CC_NOT_OPERATIONAL)
 633                        continue;
 634                is_boot_cpu = (addr == boot_cpu_addr);
 635                /* Allocate save area */
 636                sa = save_area_alloc(is_boot_cpu);
 637                if (!sa)
 638                        panic("could not allocate memory for save area\n");
 639                if (MACHINE_HAS_VX)
 640                        /* Get the vector registers */
 641                        smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 642                /*
 643                 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 644                 * of the boot CPU are stored in the HSA. To retrieve
 645                 * these registers an SCLP request is required which is
 646                 * done by drivers/s390/char/zcore.c:init_cpu_info()
 647                 */
 648                if (!is_boot_cpu || OLDMEM_BASE)
 649                        /* Get the CPU registers */
 650                        smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 651        }
 652        memblock_free(page, PAGE_SIZE);
 653        diag308_reset();
 654        pcpu_set_smt(0);
 655}
 656#endif /* CONFIG_CRASH_DUMP */
 657
 658void smp_cpu_set_polarization(int cpu, int val)
 659{
 660        pcpu_devices[cpu].polarization = val;
 661}
 662
 663int smp_cpu_get_polarization(int cpu)
 664{
 665        return pcpu_devices[cpu].polarization;
 666}
 667
 668static struct sclp_core_info *smp_get_core_info(void)
 669{
 670        static int use_sigp_detection;
 671        struct sclp_core_info *info;
 672        int address;
 673
 674        info = kzalloc(sizeof(*info), GFP_KERNEL);
 675        if (info && (use_sigp_detection || sclp_get_core_info(info))) {
 676                use_sigp_detection = 1;
 677                for (address = 0;
 678                     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 679                     address += (1U << smp_cpu_mt_shift)) {
 680                        if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 681                            SIGP_CC_NOT_OPERATIONAL)
 682                                continue;
 683                        info->core[info->configured].core_id =
 684                                address >> smp_cpu_mt_shift;
 685                        info->configured++;
 686                }
 687                info->combined = info->configured;
 688        }
 689        return info;
 690}
 691
 692static int smp_add_present_cpu(int cpu);
 693
 694static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
 695{
 696        struct pcpu *pcpu;
 697        cpumask_t avail;
 698        int cpu, nr, i, j;
 699        u16 address;
 700
 701        nr = 0;
 702        cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 703        cpu = cpumask_first(&avail);
 704        for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 705                if (sclp.has_core_type && info->core[i].type != boot_core_type)
 706                        continue;
 707                address = info->core[i].core_id << smp_cpu_mt_shift;
 708                for (j = 0; j <= smp_cpu_mtid; j++) {
 709                        if (pcpu_find_address(cpu_present_mask, address + j))
 710                                continue;
 711                        pcpu = pcpu_devices + cpu;
 712                        pcpu->address = address + j;
 713                        pcpu->state =
 714                                (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
 715                                CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 716                        smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 717                        set_cpu_present(cpu, true);
 718                        if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 719                                set_cpu_present(cpu, false);
 720                        else
 721                                nr++;
 722                        cpu = cpumask_next(cpu, &avail);
 723                        if (cpu >= nr_cpu_ids)
 724                                break;
 725                }
 726        }
 727        return nr;
 728}
 729
 730static void __init smp_detect_cpus(void)
 731{
 732        unsigned int cpu, mtid, c_cpus, s_cpus;
 733        struct sclp_core_info *info;
 734        u16 address;
 735
 736        /* Get CPU information */
 737        info = smp_get_core_info();
 738        if (!info)
 739                panic("smp_detect_cpus failed to allocate memory\n");
 740
 741        /* Find boot CPU type */
 742        if (sclp.has_core_type) {
 743                address = stap();
 744                for (cpu = 0; cpu < info->combined; cpu++)
 745                        if (info->core[cpu].core_id == address) {
 746                                /* The boot cpu dictates the cpu type. */
 747                                boot_core_type = info->core[cpu].type;
 748                                break;
 749                        }
 750                if (cpu >= info->combined)
 751                        panic("Could not find boot CPU type");
 752        }
 753
 754        /* Set multi-threading state for the current system */
 755        mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 756        mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 757        pcpu_set_smt(mtid);
 758
 759        /* Print number of CPUs */
 760        c_cpus = s_cpus = 0;
 761        for (cpu = 0; cpu < info->combined; cpu++) {
 762                if (sclp.has_core_type &&
 763                    info->core[cpu].type != boot_core_type)
 764                        continue;
 765                if (cpu < info->configured)
 766                        c_cpus += smp_cpu_mtid + 1;
 767                else
 768                        s_cpus += smp_cpu_mtid + 1;
 769        }
 770        pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 771
 772        /* Add CPUs present at boot */
 773        get_online_cpus();
 774        __smp_rescan_cpus(info, 0);
 775        put_online_cpus();
 776        kfree(info);
 777}
 778
 779/*
 780 *      Activate a secondary processor.
 781 */
 782static void smp_start_secondary(void *cpuvoid)
 783{
 784        S390_lowcore.last_update_clock = get_tod_clock();
 785        S390_lowcore.restart_stack = (unsigned long) restart_stack;
 786        S390_lowcore.restart_fn = (unsigned long) do_restart;
 787        S390_lowcore.restart_data = 0;
 788        S390_lowcore.restart_source = -1UL;
 789        restore_access_regs(S390_lowcore.access_regs_save_area);
 790        __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 791        __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 792        cpu_init();
 793        preempt_disable();
 794        init_cpu_timer();
 795        vtime_init();
 796        pfault_init();
 797        notify_cpu_starting(smp_processor_id());
 798        set_cpu_online(smp_processor_id(), true);
 799        inc_irq_stat(CPU_RST);
 800        local_irq_enable();
 801        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 802}
 803
 804/* Upping and downing of CPUs */
 805int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 806{
 807        struct pcpu *pcpu;
 808        int base, i, rc;
 809
 810        pcpu = pcpu_devices + cpu;
 811        if (pcpu->state != CPU_STATE_CONFIGURED)
 812                return -EIO;
 813        base = cpu - (cpu % (smp_cpu_mtid + 1));
 814        for (i = 0; i <= smp_cpu_mtid; i++) {
 815                if (base + i < nr_cpu_ids)
 816                        if (cpu_online(base + i))
 817                                break;
 818        }
 819        /*
 820         * If this is the first CPU of the core to get online
 821         * do an initial CPU reset.
 822         */
 823        if (i > smp_cpu_mtid &&
 824            pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 825            SIGP_CC_ORDER_CODE_ACCEPTED)
 826                return -EIO;
 827
 828        rc = pcpu_alloc_lowcore(pcpu, cpu);
 829        if (rc)
 830                return rc;
 831        pcpu_prepare_secondary(pcpu, cpu);
 832        pcpu_attach_task(pcpu, tidle);
 833        pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 834        /* Wait until cpu puts itself in the online & active maps */
 835        while (!cpu_online(cpu) || !cpu_active(cpu))
 836                cpu_relax();
 837        return 0;
 838}
 839
 840static unsigned int setup_possible_cpus __initdata;
 841
 842static int __init _setup_possible_cpus(char *s)
 843{
 844        get_option(&s, &setup_possible_cpus);
 845        return 0;
 846}
 847early_param("possible_cpus", _setup_possible_cpus);
 848
 849#ifdef CONFIG_HOTPLUG_CPU
 850
 851int __cpu_disable(void)
 852{
 853        unsigned long cregs[16];
 854
 855        /* Handle possible pending IPIs */
 856        smp_handle_ext_call();
 857        set_cpu_online(smp_processor_id(), false);
 858        /* Disable pseudo page faults on this cpu. */
 859        pfault_fini();
 860        /* Disable interrupt sources via control register. */
 861        __ctl_store(cregs, 0, 15);
 862        cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
 863        cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
 864        cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
 865        __ctl_load(cregs, 0, 15);
 866        clear_cpu_flag(CIF_NOHZ_DELAY);
 867        return 0;
 868}
 869
 870void __cpu_die(unsigned int cpu)
 871{
 872        struct pcpu *pcpu;
 873
 874        /* Wait until target cpu is down */
 875        pcpu = pcpu_devices + cpu;
 876        while (!pcpu_stopped(pcpu))
 877                cpu_relax();
 878        pcpu_free_lowcore(pcpu);
 879        atomic_dec(&init_mm.context.attach_count);
 880        cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 881        if (MACHINE_HAS_TLB_LC)
 882                cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 883}
 884
 885void __noreturn cpu_die(void)
 886{
 887        idle_task_exit();
 888        pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 889        for (;;) ;
 890}
 891
 892#endif /* CONFIG_HOTPLUG_CPU */
 893
 894void __init smp_fill_possible_mask(void)
 895{
 896        unsigned int possible, sclp_max, cpu;
 897
 898        sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 899        sclp_max = min(smp_max_threads, sclp_max);
 900        sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids;
 901        possible = setup_possible_cpus ?: nr_cpu_ids;
 902        possible = min(possible, sclp_max);
 903        for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 904                set_cpu_possible(cpu, true);
 905}
 906
 907void __init smp_prepare_cpus(unsigned int max_cpus)
 908{
 909        /* request the 0x1201 emergency signal external interrupt */
 910        if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 911                panic("Couldn't request external interrupt 0x1201");
 912        /* request the 0x1202 external call external interrupt */
 913        if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 914                panic("Couldn't request external interrupt 0x1202");
 915        smp_detect_cpus();
 916}
 917
 918void __init smp_prepare_boot_cpu(void)
 919{
 920        struct pcpu *pcpu = pcpu_devices;
 921
 922        pcpu->state = CPU_STATE_CONFIGURED;
 923        pcpu->address = stap();
 924        pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
 925        S390_lowcore.percpu_offset = __per_cpu_offset[0];
 926        smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 927        set_cpu_present(0, true);
 928        set_cpu_online(0, true);
 929}
 930
 931void __init smp_cpus_done(unsigned int max_cpus)
 932{
 933}
 934
 935void __init smp_setup_processor_id(void)
 936{
 937        S390_lowcore.cpu_nr = 0;
 938        S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 939}
 940
 941/*
 942 * the frequency of the profiling timer can be changed
 943 * by writing a multiplier value into /proc/profile.
 944 *
 945 * usually you want to run this on all CPUs ;)
 946 */
 947int setup_profiling_timer(unsigned int multiplier)
 948{
 949        return 0;
 950}
 951
 952#ifdef CONFIG_HOTPLUG_CPU
 953static ssize_t cpu_configure_show(struct device *dev,
 954                                  struct device_attribute *attr, char *buf)
 955{
 956        ssize_t count;
 957
 958        mutex_lock(&smp_cpu_state_mutex);
 959        count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 960        mutex_unlock(&smp_cpu_state_mutex);
 961        return count;
 962}
 963
 964static ssize_t cpu_configure_store(struct device *dev,
 965                                   struct device_attribute *attr,
 966                                   const char *buf, size_t count)
 967{
 968        struct pcpu *pcpu;
 969        int cpu, val, rc, i;
 970        char delim;
 971
 972        if (sscanf(buf, "%d %c", &val, &delim) != 1)
 973                return -EINVAL;
 974        if (val != 0 && val != 1)
 975                return -EINVAL;
 976        get_online_cpus();
 977        mutex_lock(&smp_cpu_state_mutex);
 978        rc = -EBUSY;
 979        /* disallow configuration changes of online cpus and cpu 0 */
 980        cpu = dev->id;
 981        cpu -= cpu % (smp_cpu_mtid + 1);
 982        if (cpu == 0)
 983                goto out;
 984        for (i = 0; i <= smp_cpu_mtid; i++)
 985                if (cpu_online(cpu + i))
 986                        goto out;
 987        pcpu = pcpu_devices + cpu;
 988        rc = 0;
 989        switch (val) {
 990        case 0:
 991                if (pcpu->state != CPU_STATE_CONFIGURED)
 992                        break;
 993                rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
 994                if (rc)
 995                        break;
 996                for (i = 0; i <= smp_cpu_mtid; i++) {
 997                        if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
 998                                continue;
 999                        pcpu[i].state = CPU_STATE_STANDBY;
1000                        smp_cpu_set_polarization(cpu + i,
1001                                                 POLARIZATION_UNKNOWN);
1002                }
1003                topology_expect_change();
1004                break;
1005        case 1:
1006                if (pcpu->state != CPU_STATE_STANDBY)
1007                        break;
1008                rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1009                if (rc)
1010                        break;
1011                for (i = 0; i <= smp_cpu_mtid; i++) {
1012                        if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1013                                continue;
1014                        pcpu[i].state = CPU_STATE_CONFIGURED;
1015                        smp_cpu_set_polarization(cpu + i,
1016                                                 POLARIZATION_UNKNOWN);
1017                }
1018                topology_expect_change();
1019                break;
1020        default:
1021                break;
1022        }
1023out:
1024        mutex_unlock(&smp_cpu_state_mutex);
1025        put_online_cpus();
1026        return rc ? rc : count;
1027}
1028static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1029#endif /* CONFIG_HOTPLUG_CPU */
1030
1031static ssize_t show_cpu_address(struct device *dev,
1032                                struct device_attribute *attr, char *buf)
1033{
1034        return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1035}
1036static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1037
1038static struct attribute *cpu_common_attrs[] = {
1039#ifdef CONFIG_HOTPLUG_CPU
1040        &dev_attr_configure.attr,
1041#endif
1042        &dev_attr_address.attr,
1043        NULL,
1044};
1045
1046static struct attribute_group cpu_common_attr_group = {
1047        .attrs = cpu_common_attrs,
1048};
1049
1050static struct attribute *cpu_online_attrs[] = {
1051        &dev_attr_idle_count.attr,
1052        &dev_attr_idle_time_us.attr,
1053        NULL,
1054};
1055
1056static struct attribute_group cpu_online_attr_group = {
1057        .attrs = cpu_online_attrs,
1058};
1059
1060static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1061                          void *hcpu)
1062{
1063        unsigned int cpu = (unsigned int)(long)hcpu;
1064        struct device *s = &per_cpu(cpu_device, cpu)->dev;
1065        int err = 0;
1066
1067        switch (action & ~CPU_TASKS_FROZEN) {
1068        case CPU_ONLINE:
1069                err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1070                break;
1071        case CPU_DEAD:
1072                sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1073                break;
1074        }
1075        return notifier_from_errno(err);
1076}
1077
1078static int smp_add_present_cpu(int cpu)
1079{
1080        struct device *s;
1081        struct cpu *c;
1082        int rc;
1083
1084        c = kzalloc(sizeof(*c), GFP_KERNEL);
1085        if (!c)
1086                return -ENOMEM;
1087        per_cpu(cpu_device, cpu) = c;
1088        s = &c->dev;
1089        c->hotpluggable = 1;
1090        rc = register_cpu(c, cpu);
1091        if (rc)
1092                goto out;
1093        rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1094        if (rc)
1095                goto out_cpu;
1096        if (cpu_online(cpu)) {
1097                rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1098                if (rc)
1099                        goto out_online;
1100        }
1101        rc = topology_cpu_init(c);
1102        if (rc)
1103                goto out_topology;
1104        return 0;
1105
1106out_topology:
1107        if (cpu_online(cpu))
1108                sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1109out_online:
1110        sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1111out_cpu:
1112#ifdef CONFIG_HOTPLUG_CPU
1113        unregister_cpu(c);
1114#endif
1115out:
1116        return rc;
1117}
1118
1119#ifdef CONFIG_HOTPLUG_CPU
1120
1121int __ref smp_rescan_cpus(void)
1122{
1123        struct sclp_core_info *info;
1124        int nr;
1125
1126        info = smp_get_core_info();
1127        if (!info)
1128                return -ENOMEM;
1129        get_online_cpus();
1130        mutex_lock(&smp_cpu_state_mutex);
1131        nr = __smp_rescan_cpus(info, 1);
1132        mutex_unlock(&smp_cpu_state_mutex);
1133        put_online_cpus();
1134        kfree(info);
1135        if (nr)
1136                topology_schedule_update();
1137        return 0;
1138}
1139
1140static ssize_t __ref rescan_store(struct device *dev,
1141                                  struct device_attribute *attr,
1142                                  const char *buf,
1143                                  size_t count)
1144{
1145        int rc;
1146
1147        rc = smp_rescan_cpus();
1148        return rc ? rc : count;
1149}
1150static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1151#endif /* CONFIG_HOTPLUG_CPU */
1152
1153static int __init s390_smp_init(void)
1154{
1155        int cpu, rc = 0;
1156
1157#ifdef CONFIG_HOTPLUG_CPU
1158        rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1159        if (rc)
1160                return rc;
1161#endif
1162        cpu_notifier_register_begin();
1163        for_each_present_cpu(cpu) {
1164                rc = smp_add_present_cpu(cpu);
1165                if (rc)
1166                        goto out;
1167        }
1168
1169        __hotcpu_notifier(smp_cpu_notify, 0);
1170
1171out:
1172        cpu_notifier_register_done();
1173        return rc;
1174}
1175subsys_initcall(s390_smp_init);
1176