linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28#include <linux/kgdb.h>
  29
  30#include <asm/head.h>
  31#include <asm/ptrace.h>
  32#include <linux/atomic.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mmu_context.h>
  35#include <asm/cpudata.h>
  36#include <asm/hvtramp.h>
  37#include <asm/io.h>
  38#include <asm/timer.h>
  39#include <asm/setup.h>
  40
  41#include <asm/irq.h>
  42#include <asm/irq_regs.h>
  43#include <asm/page.h>
  44#include <asm/pgtable.h>
  45#include <asm/oplib.h>
  46#include <asm/uaccess.h>
  47#include <asm/starfire.h>
  48#include <asm/tlb.h>
  49#include <asm/sections.h>
  50#include <asm/prom.h>
  51#include <asm/mdesc.h>
  52#include <asm/ldc.h>
  53#include <asm/hypervisor.h>
  54#include <asm/pcr.h>
  55
  56#include "cpumap.h"
  57#include "kernel.h"
  58
  59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  61        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  62
  63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  64        [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  65
  66EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  67EXPORT_SYMBOL(cpu_core_map);
  68EXPORT_SYMBOL(cpu_core_sib_map);
  69
  70static cpumask_t smp_commenced_mask;
  71
  72void smp_info(struct seq_file *m)
  73{
  74        int i;
  75        
  76        seq_printf(m, "State:\n");
  77        for_each_online_cpu(i)
  78                seq_printf(m, "CPU%d:\t\tonline\n", i);
  79}
  80
  81void smp_bogo(struct seq_file *m)
  82{
  83        int i;
  84        
  85        for_each_online_cpu(i)
  86                seq_printf(m,
  87                           "Cpu%dClkTck\t: %016lx\n",
  88                           i, cpu_data(i).clock_tick);
  89}
  90
  91extern void setup_sparc64_timer(void);
  92
  93static volatile unsigned long callin_flag = 0;
  94
  95void smp_callin(void)
  96{
  97        int cpuid = hard_smp_processor_id();
  98
  99        __local_per_cpu_offset = __per_cpu_offset(cpuid);
 100
 101        if (tlb_type == hypervisor)
 102                sun4v_ktsb_register();
 103
 104        __flush_tlb_all();
 105
 106        setup_sparc64_timer();
 107
 108        if (cheetah_pcache_forced_on)
 109                cheetah_enable_pcache();
 110
 111        callin_flag = 1;
 112        __asm__ __volatile__("membar #Sync\n\t"
 113                             "flush  %%g6" : : : "memory");
 114
 115        /* Clear this or we will die instantly when we
 116         * schedule back to this idler...
 117         */
 118        current_thread_info()->new_child = 0;
 119
 120        /* Attach to the address space of init_task. */
 121        atomic_inc(&init_mm.mm_count);
 122        current->active_mm = &init_mm;
 123
 124        /* inform the notifiers about the new cpu */
 125        notify_cpu_starting(cpuid);
 126
 127        while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 128                rmb();
 129
 130        set_cpu_online(cpuid, true);
 131
 132        /* idle thread is expected to have preempt disabled */
 133        preempt_disable();
 134
 135        local_irq_enable();
 136
 137        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 138}
 139
 140void cpu_panic(void)
 141{
 142        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 143        panic("SMP bolixed\n");
 144}
 145
 146/* This tick register synchronization scheme is taken entirely from
 147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 148 *
 149 * The only change I've made is to rework it so that the master
 150 * initiates the synchonization instead of the slave. -DaveM
 151 */
 152
 153#define MASTER  0
 154#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 155
 156#define NUM_ROUNDS      64      /* magic value */
 157#define NUM_ITERS       5       /* likewise */
 158
 159static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 160static unsigned long go[SLAVE + 1];
 161
 162#define DEBUG_TICK_SYNC 0
 163
 164static inline long get_delta (long *rt, long *master)
 165{
 166        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 167        unsigned long tcenter, t0, t1, tm;
 168        unsigned long i;
 169
 170        for (i = 0; i < NUM_ITERS; i++) {
 171                t0 = tick_ops->get_tick();
 172                go[MASTER] = 1;
 173                membar_safe("#StoreLoad");
 174                while (!(tm = go[SLAVE]))
 175                        rmb();
 176                go[SLAVE] = 0;
 177                wmb();
 178                t1 = tick_ops->get_tick();
 179
 180                if (t1 - t0 < best_t1 - best_t0)
 181                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 182        }
 183
 184        *rt = best_t1 - best_t0;
 185        *master = best_tm - best_t0;
 186
 187        /* average best_t0 and best_t1 without overflow: */
 188        tcenter = (best_t0/2 + best_t1/2);
 189        if (best_t0 % 2 + best_t1 % 2 == 2)
 190                tcenter++;
 191        return tcenter - best_tm;
 192}
 193
 194void smp_synchronize_tick_client(void)
 195{
 196        long i, delta, adj, adjust_latency = 0, done = 0;
 197        unsigned long flags, rt, master_time_stamp;
 198#if DEBUG_TICK_SYNC
 199        struct {
 200                long rt;        /* roundtrip time */
 201                long master;    /* master's timestamp */
 202                long diff;      /* difference between midpoint and master's timestamp */
 203                long lat;       /* estimate of itc adjustment latency */
 204        } t[NUM_ROUNDS];
 205#endif
 206
 207        go[MASTER] = 1;
 208
 209        while (go[MASTER])
 210                rmb();
 211
 212        local_irq_save(flags);
 213        {
 214                for (i = 0; i < NUM_ROUNDS; i++) {
 215                        delta = get_delta(&rt, &master_time_stamp);
 216                        if (delta == 0)
 217                                done = 1;       /* let's lock on to this... */
 218
 219                        if (!done) {
 220                                if (i > 0) {
 221                                        adjust_latency += -delta;
 222                                        adj = -delta + adjust_latency/4;
 223                                } else
 224                                        adj = -delta;
 225
 226                                tick_ops->add_tick(adj);
 227                        }
 228#if DEBUG_TICK_SYNC
 229                        t[i].rt = rt;
 230                        t[i].master = master_time_stamp;
 231                        t[i].diff = delta;
 232                        t[i].lat = adjust_latency/4;
 233#endif
 234                }
 235        }
 236        local_irq_restore(flags);
 237
 238#if DEBUG_TICK_SYNC
 239        for (i = 0; i < NUM_ROUNDS; i++)
 240                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 241                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 242#endif
 243
 244        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 245               "(last diff %ld cycles, maxerr %lu cycles)\n",
 246               smp_processor_id(), delta, rt);
 247}
 248
 249static void smp_start_sync_tick_client(int cpu);
 250
 251static void smp_synchronize_one_tick(int cpu)
 252{
 253        unsigned long flags, i;
 254
 255        go[MASTER] = 0;
 256
 257        smp_start_sync_tick_client(cpu);
 258
 259        /* wait for client to be ready */
 260        while (!go[MASTER])
 261                rmb();
 262
 263        /* now let the client proceed into his loop */
 264        go[MASTER] = 0;
 265        membar_safe("#StoreLoad");
 266
 267        raw_spin_lock_irqsave(&itc_sync_lock, flags);
 268        {
 269                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 270                        while (!go[MASTER])
 271                                rmb();
 272                        go[MASTER] = 0;
 273                        wmb();
 274                        go[SLAVE] = tick_ops->get_tick();
 275                        membar_safe("#StoreLoad");
 276                }
 277        }
 278        raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 279}
 280
 281#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 282static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 283                                void **descrp)
 284{
 285        extern unsigned long sparc64_ttable_tl0;
 286        extern unsigned long kern_locked_tte_data;
 287        struct hvtramp_descr *hdesc;
 288        unsigned long trampoline_ra;
 289        struct trap_per_cpu *tb;
 290        u64 tte_vaddr, tte_data;
 291        unsigned long hv_err;
 292        int i;
 293
 294        hdesc = kzalloc(sizeof(*hdesc) +
 295                        (sizeof(struct hvtramp_mapping) *
 296                         num_kernel_image_mappings - 1),
 297                        GFP_KERNEL);
 298        if (!hdesc) {
 299                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 300                       "hvtramp_descr.\n");
 301                return;
 302        }
 303        *descrp = hdesc;
 304
 305        hdesc->cpu = cpu;
 306        hdesc->num_mappings = num_kernel_image_mappings;
 307
 308        tb = &trap_block[cpu];
 309
 310        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 311        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 312
 313        hdesc->thread_reg = thread_reg;
 314
 315        tte_vaddr = (unsigned long) KERNBASE;
 316        tte_data = kern_locked_tte_data;
 317
 318        for (i = 0; i < hdesc->num_mappings; i++) {
 319                hdesc->maps[i].vaddr = tte_vaddr;
 320                hdesc->maps[i].tte   = tte_data;
 321                tte_vaddr += 0x400000;
 322                tte_data  += 0x400000;
 323        }
 324
 325        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 326
 327        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 328                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 329                                 __pa(hdesc));
 330        if (hv_err)
 331                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 332                       "gives error %lu\n", hv_err);
 333}
 334#endif
 335
 336extern unsigned long sparc64_cpu_startup;
 337
 338/* The OBP cpu startup callback truncates the 3rd arg cookie to
 339 * 32-bits (I think) so to be safe we have it read the pointer
 340 * contained here so we work on >4GB machines. -DaveM
 341 */
 342static struct thread_info *cpu_new_thread = NULL;
 343
 344static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 345{
 346        unsigned long entry =
 347                (unsigned long)(&sparc64_cpu_startup);
 348        unsigned long cookie =
 349                (unsigned long)(&cpu_new_thread);
 350        void *descr = NULL;
 351        int timeout, ret;
 352
 353        callin_flag = 0;
 354        cpu_new_thread = task_thread_info(idle);
 355
 356        if (tlb_type == hypervisor) {
 357#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 358                if (ldom_domaining_enabled)
 359                        ldom_startcpu_cpuid(cpu,
 360                                            (unsigned long) cpu_new_thread,
 361                                            &descr);
 362                else
 363#endif
 364                        prom_startcpu_cpuid(cpu, entry, cookie);
 365        } else {
 366                struct device_node *dp = of_find_node_by_cpuid(cpu);
 367
 368                prom_startcpu(dp->phandle, entry, cookie);
 369        }
 370
 371        for (timeout = 0; timeout < 50000; timeout++) {
 372                if (callin_flag)
 373                        break;
 374                udelay(100);
 375        }
 376
 377        if (callin_flag) {
 378                ret = 0;
 379        } else {
 380                printk("Processor %d is stuck.\n", cpu);
 381                ret = -ENODEV;
 382        }
 383        cpu_new_thread = NULL;
 384
 385        kfree(descr);
 386
 387        return ret;
 388}
 389
 390static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 391{
 392        u64 result, target;
 393        int stuck, tmp;
 394
 395        if (this_is_starfire) {
 396                /* map to real upaid */
 397                cpu = (((cpu & 0x3c) << 1) |
 398                        ((cpu & 0x40) >> 4) |
 399                        (cpu & 0x3));
 400        }
 401
 402        target = (cpu << 14) | 0x70;
 403again:
 404        /* Ok, this is the real Spitfire Errata #54.
 405         * One must read back from a UDB internal register
 406         * after writes to the UDB interrupt dispatch, but
 407         * before the membar Sync for that write.
 408         * So we use the high UDB control register (ASI 0x7f,
 409         * ADDR 0x20) for the dummy read. -DaveM
 410         */
 411        tmp = 0x40;
 412        __asm__ __volatile__(
 413        "wrpr   %1, %2, %%pstate\n\t"
 414        "stxa   %4, [%0] %3\n\t"
 415        "stxa   %5, [%0+%8] %3\n\t"
 416        "add    %0, %8, %0\n\t"
 417        "stxa   %6, [%0+%8] %3\n\t"
 418        "membar #Sync\n\t"
 419        "stxa   %%g0, [%7] %3\n\t"
 420        "membar #Sync\n\t"
 421        "mov    0x20, %%g1\n\t"
 422        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 423        "membar #Sync"
 424        : "=r" (tmp)
 425        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 426          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 427          "r" (0x10), "0" (tmp)
 428        : "g1");
 429
 430        /* NOTE: PSTATE_IE is still clear. */
 431        stuck = 100000;
 432        do {
 433                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 434                        : "=r" (result)
 435                        : "i" (ASI_INTR_DISPATCH_STAT));
 436                if (result == 0) {
 437                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 438                                             : : "r" (pstate));
 439                        return;
 440                }
 441                stuck -= 1;
 442                if (stuck == 0)
 443                        break;
 444        } while (result & 0x1);
 445        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 446                             : : "r" (pstate));
 447        if (stuck == 0) {
 448                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 449                       smp_processor_id(), result);
 450        } else {
 451                udelay(2);
 452                goto again;
 453        }
 454}
 455
 456static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 457{
 458        u64 *mondo, data0, data1, data2;
 459        u16 *cpu_list;
 460        u64 pstate;
 461        int i;
 462
 463        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 464        cpu_list = __va(tb->cpu_list_pa);
 465        mondo = __va(tb->cpu_mondo_block_pa);
 466        data0 = mondo[0];
 467        data1 = mondo[1];
 468        data2 = mondo[2];
 469        for (i = 0; i < cnt; i++)
 470                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 471}
 472
 473/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 474 * packet, but we have no use for that.  However we do take advantage of
 475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 476 */
 477static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 478{
 479        int nack_busy_id, is_jbus, need_more;
 480        u64 *mondo, pstate, ver, busy_mask;
 481        u16 *cpu_list;
 482
 483        cpu_list = __va(tb->cpu_list_pa);
 484        mondo = __va(tb->cpu_mondo_block_pa);
 485
 486        /* Unfortunately, someone at Sun had the brilliant idea to make the
 487         * busy/nack fields hard-coded by ITID number for this Ultra-III
 488         * derivative processor.
 489         */
 490        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 491        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 492                   (ver >> 32) == __SERRANO_ID);
 493
 494        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 495
 496retry:
 497        need_more = 0;
 498        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 499                             : : "r" (pstate), "i" (PSTATE_IE));
 500
 501        /* Setup the dispatch data registers. */
 502        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 503                             "stxa      %1, [%4] %6\n\t"
 504                             "stxa      %2, [%5] %6\n\t"
 505                             "membar    #Sync\n\t"
 506                             : /* no outputs */
 507                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 508                               "r" (0x40), "r" (0x50), "r" (0x60),
 509                               "i" (ASI_INTR_W));
 510
 511        nack_busy_id = 0;
 512        busy_mask = 0;
 513        {
 514                int i;
 515
 516                for (i = 0; i < cnt; i++) {
 517                        u64 target, nr;
 518
 519                        nr = cpu_list[i];
 520                        if (nr == 0xffff)
 521                                continue;
 522
 523                        target = (nr << 14) | 0x70;
 524                        if (is_jbus) {
 525                                busy_mask |= (0x1UL << (nr * 2));
 526                        } else {
 527                                target |= (nack_busy_id << 24);
 528                                busy_mask |= (0x1UL <<
 529                                              (nack_busy_id * 2));
 530                        }
 531                        __asm__ __volatile__(
 532                                "stxa   %%g0, [%0] %1\n\t"
 533                                "membar #Sync\n\t"
 534                                : /* no outputs */
 535                                : "r" (target), "i" (ASI_INTR_W));
 536                        nack_busy_id++;
 537                        if (nack_busy_id == 32) {
 538                                need_more = 1;
 539                                break;
 540                        }
 541                }
 542        }
 543
 544        /* Now, poll for completion. */
 545        {
 546                u64 dispatch_stat, nack_mask;
 547                long stuck;
 548
 549                stuck = 100000 * nack_busy_id;
 550                nack_mask = busy_mask << 1;
 551                do {
 552                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 553                                             : "=r" (dispatch_stat)
 554                                             : "i" (ASI_INTR_DISPATCH_STAT));
 555                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 556                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 557                                                     : : "r" (pstate));
 558                                if (unlikely(need_more)) {
 559                                        int i, this_cnt = 0;
 560                                        for (i = 0; i < cnt; i++) {
 561                                                if (cpu_list[i] == 0xffff)
 562                                                        continue;
 563                                                cpu_list[i] = 0xffff;
 564                                                this_cnt++;
 565                                                if (this_cnt == 32)
 566                                                        break;
 567                                        }
 568                                        goto retry;
 569                                }
 570                                return;
 571                        }
 572                        if (!--stuck)
 573                                break;
 574                } while (dispatch_stat & busy_mask);
 575
 576                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 577                                     : : "r" (pstate));
 578
 579                if (dispatch_stat & busy_mask) {
 580                        /* Busy bits will not clear, continue instead
 581                         * of freezing up on this cpu.
 582                         */
 583                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 584                               smp_processor_id(), dispatch_stat);
 585                } else {
 586                        int i, this_busy_nack = 0;
 587
 588                        /* Delay some random time with interrupts enabled
 589                         * to prevent deadlock.
 590                         */
 591                        udelay(2 * nack_busy_id);
 592
 593                        /* Clear out the mask bits for cpus which did not
 594                         * NACK us.
 595                         */
 596                        for (i = 0; i < cnt; i++) {
 597                                u64 check_mask, nr;
 598
 599                                nr = cpu_list[i];
 600                                if (nr == 0xffff)
 601                                        continue;
 602
 603                                if (is_jbus)
 604                                        check_mask = (0x2UL << (2*nr));
 605                                else
 606                                        check_mask = (0x2UL <<
 607                                                      this_busy_nack);
 608                                if ((dispatch_stat & check_mask) == 0)
 609                                        cpu_list[i] = 0xffff;
 610                                this_busy_nack += 2;
 611                                if (this_busy_nack == 64)
 612                                        break;
 613                        }
 614
 615                        goto retry;
 616                }
 617        }
 618}
 619
 620/* Multi-cpu list version.  */
 621static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 622{
 623        int retries, this_cpu, prev_sent, i, saw_cpu_error;
 624        unsigned long status;
 625        u16 *cpu_list;
 626
 627        this_cpu = smp_processor_id();
 628
 629        cpu_list = __va(tb->cpu_list_pa);
 630
 631        saw_cpu_error = 0;
 632        retries = 0;
 633        prev_sent = 0;
 634        do {
 635                int forward_progress, n_sent;
 636
 637                status = sun4v_cpu_mondo_send(cnt,
 638                                              tb->cpu_list_pa,
 639                                              tb->cpu_mondo_block_pa);
 640
 641                /* HV_EOK means all cpus received the xcall, we're done.  */
 642                if (likely(status == HV_EOK))
 643                        break;
 644
 645                /* First, see if we made any forward progress.
 646                 *
 647                 * The hypervisor indicates successful sends by setting
 648                 * cpu list entries to the value 0xffff.
 649                 */
 650                n_sent = 0;
 651                for (i = 0; i < cnt; i++) {
 652                        if (likely(cpu_list[i] == 0xffff))
 653                                n_sent++;
 654                }
 655
 656                forward_progress = 0;
 657                if (n_sent > prev_sent)
 658                        forward_progress = 1;
 659
 660                prev_sent = n_sent;
 661
 662                /* If we get a HV_ECPUERROR, then one or more of the cpus
 663                 * in the list are in error state.  Use the cpu_state()
 664                 * hypervisor call to find out which cpus are in error state.
 665                 */
 666                if (unlikely(status == HV_ECPUERROR)) {
 667                        for (i = 0; i < cnt; i++) {
 668                                long err;
 669                                u16 cpu;
 670
 671                                cpu = cpu_list[i];
 672                                if (cpu == 0xffff)
 673                                        continue;
 674
 675                                err = sun4v_cpu_state(cpu);
 676                                if (err == HV_CPU_STATE_ERROR) {
 677                                        saw_cpu_error = (cpu + 1);
 678                                        cpu_list[i] = 0xffff;
 679                                }
 680                        }
 681                } else if (unlikely(status != HV_EWOULDBLOCK))
 682                        goto fatal_mondo_error;
 683
 684                /* Don't bother rewriting the CPU list, just leave the
 685                 * 0xffff and non-0xffff entries in there and the
 686                 * hypervisor will do the right thing.
 687                 *
 688                 * Only advance timeout state if we didn't make any
 689                 * forward progress.
 690                 */
 691                if (unlikely(!forward_progress)) {
 692                        if (unlikely(++retries > 10000))
 693                                goto fatal_mondo_timeout;
 694
 695                        /* Delay a little bit to let other cpus catch up
 696                         * on their cpu mondo queue work.
 697                         */
 698                        udelay(2 * cnt);
 699                }
 700        } while (1);
 701
 702        if (unlikely(saw_cpu_error))
 703                goto fatal_mondo_cpu_error;
 704
 705        return;
 706
 707fatal_mondo_cpu_error:
 708        printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 709               "(including %d) were in error state\n",
 710               this_cpu, saw_cpu_error - 1);
 711        return;
 712
 713fatal_mondo_timeout:
 714        printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 715               " progress after %d retries.\n",
 716               this_cpu, retries);
 717        goto dump_cpu_list_and_out;
 718
 719fatal_mondo_error:
 720        printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 721               this_cpu, status);
 722        printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 723               "mondo_block_pa(%lx)\n",
 724               this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 725
 726dump_cpu_list_and_out:
 727        printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 728        for (i = 0; i < cnt; i++)
 729                printk("%u ", cpu_list[i]);
 730        printk("]\n");
 731}
 732
 733static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 734
 735static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 736{
 737        struct trap_per_cpu *tb;
 738        int this_cpu, i, cnt;
 739        unsigned long flags;
 740        u16 *cpu_list;
 741        u64 *mondo;
 742
 743        /* We have to do this whole thing with interrupts fully disabled.
 744         * Otherwise if we send an xcall from interrupt context it will
 745         * corrupt both our mondo block and cpu list state.
 746         *
 747         * One consequence of this is that we cannot use timeout mechanisms
 748         * that depend upon interrupts being delivered locally.  So, for
 749         * example, we cannot sample jiffies and expect it to advance.
 750         *
 751         * Fortunately, udelay() uses %stick/%tick so we can use that.
 752         */
 753        local_irq_save(flags);
 754
 755        this_cpu = smp_processor_id();
 756        tb = &trap_block[this_cpu];
 757
 758        mondo = __va(tb->cpu_mondo_block_pa);
 759        mondo[0] = data0;
 760        mondo[1] = data1;
 761        mondo[2] = data2;
 762        wmb();
 763
 764        cpu_list = __va(tb->cpu_list_pa);
 765
 766        /* Setup the initial cpu list.  */
 767        cnt = 0;
 768        for_each_cpu(i, mask) {
 769                if (i == this_cpu || !cpu_online(i))
 770                        continue;
 771                cpu_list[cnt++] = i;
 772        }
 773
 774        if (cnt)
 775                xcall_deliver_impl(tb, cnt);
 776
 777        local_irq_restore(flags);
 778}
 779
 780/* Send cross call to all processors mentioned in MASK_P
 781 * except self.  Really, there are only two cases currently,
 782 * "cpu_online_mask" and "mm_cpumask(mm)".
 783 */
 784static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 785{
 786        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 787
 788        xcall_deliver(data0, data1, data2, mask);
 789}
 790
 791/* Send cross call to all processors except self. */
 792static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 793{
 794        smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 795}
 796
 797extern unsigned long xcall_sync_tick;
 798
 799static void smp_start_sync_tick_client(int cpu)
 800{
 801        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 802                      cpumask_of(cpu));
 803}
 804
 805extern unsigned long xcall_call_function;
 806
 807void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 808{
 809        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 810}
 811
 812extern unsigned long xcall_call_function_single;
 813
 814void arch_send_call_function_single_ipi(int cpu)
 815{
 816        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 817                      cpumask_of(cpu));
 818}
 819
 820void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 821{
 822        clear_softint(1 << irq);
 823        irq_enter();
 824        generic_smp_call_function_interrupt();
 825        irq_exit();
 826}
 827
 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 829{
 830        clear_softint(1 << irq);
 831        irq_enter();
 832        generic_smp_call_function_single_interrupt();
 833        irq_exit();
 834}
 835
 836static void tsb_sync(void *info)
 837{
 838        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 839        struct mm_struct *mm = info;
 840
 841        /* It is not valid to test "current->active_mm == mm" here.
 842         *
 843         * The value of "current" is not changed atomically with
 844         * switch_mm().  But that's OK, we just need to check the
 845         * current cpu's trap block PGD physical address.
 846         */
 847        if (tp->pgd_paddr == __pa(mm->pgd))
 848                tsb_context_switch(mm);
 849}
 850
 851void smp_tsb_sync(struct mm_struct *mm)
 852{
 853        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 854}
 855
 856extern unsigned long xcall_flush_tlb_mm;
 857extern unsigned long xcall_flush_tlb_page;
 858extern unsigned long xcall_flush_tlb_kernel_range;
 859extern unsigned long xcall_fetch_glob_regs;
 860extern unsigned long xcall_fetch_glob_pmu;
 861extern unsigned long xcall_fetch_glob_pmu_n4;
 862extern unsigned long xcall_receive_signal;
 863extern unsigned long xcall_new_mmu_context_version;
 864#ifdef CONFIG_KGDB
 865extern unsigned long xcall_kgdb_capture;
 866#endif
 867
 868#ifdef DCACHE_ALIASING_POSSIBLE
 869extern unsigned long xcall_flush_dcache_page_cheetah;
 870#endif
 871extern unsigned long xcall_flush_dcache_page_spitfire;
 872
 873static inline void __local_flush_dcache_page(struct page *page)
 874{
 875#ifdef DCACHE_ALIASING_POSSIBLE
 876        __flush_dcache_page(page_address(page),
 877                            ((tlb_type == spitfire) &&
 878                             page_mapping(page) != NULL));
 879#else
 880        if (page_mapping(page) != NULL &&
 881            tlb_type == spitfire)
 882                __flush_icache_page(__pa(page_address(page)));
 883#endif
 884}
 885
 886void smp_flush_dcache_page_impl(struct page *page, int cpu)
 887{
 888        int this_cpu;
 889
 890        if (tlb_type == hypervisor)
 891                return;
 892
 893#ifdef CONFIG_DEBUG_DCFLUSH
 894        atomic_inc(&dcpage_flushes);
 895#endif
 896
 897        this_cpu = get_cpu();
 898
 899        if (cpu == this_cpu) {
 900                __local_flush_dcache_page(page);
 901        } else if (cpu_online(cpu)) {
 902                void *pg_addr = page_address(page);
 903                u64 data0 = 0;
 904
 905                if (tlb_type == spitfire) {
 906                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 907                        if (page_mapping(page) != NULL)
 908                                data0 |= ((u64)1 << 32);
 909                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 910#ifdef DCACHE_ALIASING_POSSIBLE
 911                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 912#endif
 913                }
 914                if (data0) {
 915                        xcall_deliver(data0, __pa(pg_addr),
 916                                      (u64) pg_addr, cpumask_of(cpu));
 917#ifdef CONFIG_DEBUG_DCFLUSH
 918                        atomic_inc(&dcpage_flushes_xcall);
 919#endif
 920                }
 921        }
 922
 923        put_cpu();
 924}
 925
 926void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 927{
 928        void *pg_addr;
 929        u64 data0;
 930
 931        if (tlb_type == hypervisor)
 932                return;
 933
 934        preempt_disable();
 935
 936#ifdef CONFIG_DEBUG_DCFLUSH
 937        atomic_inc(&dcpage_flushes);
 938#endif
 939        data0 = 0;
 940        pg_addr = page_address(page);
 941        if (tlb_type == spitfire) {
 942                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 943                if (page_mapping(page) != NULL)
 944                        data0 |= ((u64)1 << 32);
 945        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 946#ifdef DCACHE_ALIASING_POSSIBLE
 947                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 948#endif
 949        }
 950        if (data0) {
 951                xcall_deliver(data0, __pa(pg_addr),
 952                              (u64) pg_addr, cpu_online_mask);
 953#ifdef CONFIG_DEBUG_DCFLUSH
 954                atomic_inc(&dcpage_flushes_xcall);
 955#endif
 956        }
 957        __local_flush_dcache_page(page);
 958
 959        preempt_enable();
 960}
 961
 962void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 963{
 964        struct mm_struct *mm;
 965        unsigned long flags;
 966
 967        clear_softint(1 << irq);
 968
 969        /* See if we need to allocate a new TLB context because
 970         * the version of the one we are using is now out of date.
 971         */
 972        mm = current->active_mm;
 973        if (unlikely(!mm || (mm == &init_mm)))
 974                return;
 975
 976        spin_lock_irqsave(&mm->context.lock, flags);
 977
 978        if (unlikely(!CTX_VALID(mm->context)))
 979                get_new_mmu_context(mm);
 980
 981        spin_unlock_irqrestore(&mm->context.lock, flags);
 982
 983        load_secondary_context(mm);
 984        __flush_tlb_mm(CTX_HWBITS(mm->context),
 985                       SECONDARY_CONTEXT);
 986}
 987
 988void smp_new_mmu_context_version(void)
 989{
 990        smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 991}
 992
 993#ifdef CONFIG_KGDB
 994void kgdb_roundup_cpus(unsigned long flags)
 995{
 996        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 997}
 998#endif
 999
1000void smp_fetch_global_regs(void)
1001{
1002        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003}
1004
1005void smp_fetch_global_pmu(void)
1006{
1007        if (tlb_type == hypervisor &&
1008            sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009                smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010        else
1011                smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012}
1013
1014/* We know that the window frames of the user have been flushed
1015 * to the stack before we get here because all callers of us
1016 * are flush_tlb_*() routines, and these run after flush_cache_*()
1017 * which performs the flushw.
1018 *
1019 * The SMP TLB coherency scheme we use works as follows:
1020 *
1021 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022 *    space has (potentially) executed on, this is the heuristic
1023 *    we use to avoid doing cross calls.
1024 *
1025 *    Also, for flushing from kswapd and also for clones, we
1026 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1027 *
1028 * 2) TLB context numbers are shared globally across all processors
1029 *    in the system, this allows us to play several games to avoid
1030 *    cross calls.
1031 *
1032 *    One invariant is that when a cpu switches to a process, and
1033 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1034 *    current cpu's bit set, that tlb context is flushed locally.
1035 *
1036 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1037 *    cross calls when we want to flush the currently running process's
1038 *    tlb state.  This is done by clearing all cpu bits except the current
1039 *    processor's in current->mm->cpu_vm_mask and performing the
1040 *    flush locally only.  This will force any subsequent cpus which run
1041 *    this task to flush the context from the local tlb if the process
1042 *    migrates to another cpu (again).
1043 *
1044 * 3) For shared address spaces (threads) and swapping we bite the
1045 *    bullet for most cases and perform the cross call (but only to
1046 *    the cpus listed in cpu_vm_mask).
1047 *
1048 *    The performance gain from "optimizing" away the cross call for threads is
1049 *    questionable (in theory the big win for threads is the massive sharing of
1050 *    address space state across processors).
1051 */
1052
1053/* This currently is only used by the hugetlb arch pre-fault
1054 * hook on UltraSPARC-III+ and later when changing the pagesize
1055 * bits of the context register for an address space.
1056 */
1057void smp_flush_tlb_mm(struct mm_struct *mm)
1058{
1059        u32 ctx = CTX_HWBITS(mm->context);
1060        int cpu = get_cpu();
1061
1062        if (atomic_read(&mm->mm_users) == 1) {
1063                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064                goto local_flush_and_out;
1065        }
1066
1067        smp_cross_call_masked(&xcall_flush_tlb_mm,
1068                              ctx, 0, 0,
1069                              mm_cpumask(mm));
1070
1071local_flush_and_out:
1072        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074        put_cpu();
1075}
1076
1077struct tlb_pending_info {
1078        unsigned long ctx;
1079        unsigned long nr;
1080        unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085        struct tlb_pending_info *t = info;
1086
1087        __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092        u32 ctx = CTX_HWBITS(mm->context);
1093        struct tlb_pending_info info;
1094        int cpu = get_cpu();
1095
1096        info.ctx = ctx;
1097        info.nr = nr;
1098        info.vaddrs = vaddrs;
1099
1100        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1101                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1102        else
1103                smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104                                       &info, 1);
1105
1106        __flush_tlb_pending(ctx, nr, vaddrs);
1107
1108        put_cpu();
1109}
1110
1111void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112{
1113        unsigned long context = CTX_HWBITS(mm->context);
1114        int cpu = get_cpu();
1115
1116        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1117                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1118        else
1119                smp_cross_call_masked(&xcall_flush_tlb_page,
1120                                      context, vaddr, 0,
1121                                      mm_cpumask(mm));
1122        __flush_tlb_page(context, vaddr);
1123
1124        put_cpu();
1125}
1126
1127void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1128{
1129        start &= PAGE_MASK;
1130        end    = PAGE_ALIGN(end);
1131        if (start != end) {
1132                smp_cross_call(&xcall_flush_tlb_kernel_range,
1133                               0, start, end);
1134
1135                __flush_tlb_kernel_range(start, end);
1136        }
1137}
1138
1139/* CPU capture. */
1140/* #define CAPTURE_DEBUG */
1141extern unsigned long xcall_capture;
1142
1143static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1144static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1145static unsigned long penguins_are_doing_time;
1146
1147void smp_capture(void)
1148{
1149        int result = atomic_add_return(1, &smp_capture_depth);
1150
1151        if (result == 1) {
1152                int ncpus = num_online_cpus();
1153
1154#ifdef CAPTURE_DEBUG
1155                printk("CPU[%d]: Sending penguins to jail...",
1156                       smp_processor_id());
1157#endif
1158                penguins_are_doing_time = 1;
1159                atomic_inc(&smp_capture_registry);
1160                smp_cross_call(&xcall_capture, 0, 0, 0);
1161                while (atomic_read(&smp_capture_registry) != ncpus)
1162                        rmb();
1163#ifdef CAPTURE_DEBUG
1164                printk("done\n");
1165#endif
1166        }
1167}
1168
1169void smp_release(void)
1170{
1171        if (atomic_dec_and_test(&smp_capture_depth)) {
1172#ifdef CAPTURE_DEBUG
1173                printk("CPU[%d]: Giving pardon to "
1174                       "imprisoned penguins\n",
1175                       smp_processor_id());
1176#endif
1177                penguins_are_doing_time = 0;
1178                membar_safe("#StoreLoad");
1179                atomic_dec(&smp_capture_registry);
1180        }
1181}
1182
1183/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1184 * set, so they can service tlb flush xcalls...
1185 */
1186extern void prom_world(int);
1187
1188void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1189{
1190        clear_softint(1 << irq);
1191
1192        preempt_disable();
1193
1194        __asm__ __volatile__("flushw");
1195        prom_world(1);
1196        atomic_inc(&smp_capture_registry);
1197        membar_safe("#StoreLoad");
1198        while (penguins_are_doing_time)
1199                rmb();
1200        atomic_dec(&smp_capture_registry);
1201        prom_world(0);
1202
1203        preempt_enable();
1204}
1205
1206/* /proc/profile writes can call this, don't __init it please. */
1207int setup_profiling_timer(unsigned int multiplier)
1208{
1209        return -EINVAL;
1210}
1211
1212void __init smp_prepare_cpus(unsigned int max_cpus)
1213{
1214}
1215
1216void smp_prepare_boot_cpu(void)
1217{
1218}
1219
1220void __init smp_setup_processor_id(void)
1221{
1222        if (tlb_type == spitfire)
1223                xcall_deliver_impl = spitfire_xcall_deliver;
1224        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1225                xcall_deliver_impl = cheetah_xcall_deliver;
1226        else
1227                xcall_deliver_impl = hypervisor_xcall_deliver;
1228}
1229
1230void smp_fill_in_sib_core_maps(void)
1231{
1232        unsigned int i;
1233
1234        for_each_present_cpu(i) {
1235                unsigned int j;
1236
1237                cpumask_clear(&cpu_core_map[i]);
1238                if (cpu_data(i).core_id == 0) {
1239                        cpumask_set_cpu(i, &cpu_core_map[i]);
1240                        continue;
1241                }
1242
1243                for_each_present_cpu(j) {
1244                        if (cpu_data(i).core_id ==
1245                            cpu_data(j).core_id)
1246                                cpumask_set_cpu(j, &cpu_core_map[i]);
1247                }
1248        }
1249
1250        for_each_present_cpu(i)  {
1251                unsigned int j;
1252
1253                for_each_present_cpu(j)  {
1254                        if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1255                                cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1256                }
1257        }
1258
1259        for_each_present_cpu(i) {
1260                unsigned int j;
1261
1262                cpumask_clear(&per_cpu(cpu_sibling_map, i));
1263                if (cpu_data(i).proc_id == -1) {
1264                        cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1265                        continue;
1266                }
1267
1268                for_each_present_cpu(j) {
1269                        if (cpu_data(i).proc_id ==
1270                            cpu_data(j).proc_id)
1271                                cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1272                }
1273        }
1274}
1275
1276int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1277{
1278        int ret = smp_boot_one_cpu(cpu, tidle);
1279
1280        if (!ret) {
1281                cpumask_set_cpu(cpu, &smp_commenced_mask);
1282                while (!cpu_online(cpu))
1283                        mb();
1284                if (!cpu_online(cpu)) {
1285                        ret = -ENODEV;
1286                } else {
1287                        /* On SUN4V, writes to %tick and %stick are
1288                         * not allowed.
1289                         */
1290                        if (tlb_type != hypervisor)
1291                                smp_synchronize_one_tick(cpu);
1292                }
1293        }
1294        return ret;
1295}
1296
1297#ifdef CONFIG_HOTPLUG_CPU
1298void cpu_play_dead(void)
1299{
1300        int cpu = smp_processor_id();
1301        unsigned long pstate;
1302
1303        idle_task_exit();
1304
1305        if (tlb_type == hypervisor) {
1306                struct trap_per_cpu *tb = &trap_block[cpu];
1307
1308                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309                                tb->cpu_mondo_pa, 0);
1310                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311                                tb->dev_mondo_pa, 0);
1312                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313                                tb->resum_mondo_pa, 0);
1314                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315                                tb->nonresum_mondo_pa, 0);
1316        }
1317
1318        cpumask_clear_cpu(cpu, &smp_commenced_mask);
1319        membar_safe("#Sync");
1320
1321        local_irq_disable();
1322
1323        __asm__ __volatile__(
1324                "rdpr   %%pstate, %0\n\t"
1325                "wrpr   %0, %1, %%pstate"
1326                : "=r" (pstate)
1327                : "i" (PSTATE_IE));
1328
1329        while (1)
1330                barrier();
1331}
1332
1333int __cpu_disable(void)
1334{
1335        int cpu = smp_processor_id();
1336        cpuinfo_sparc *c;
1337        int i;
1338
1339        for_each_cpu(i, &cpu_core_map[cpu])
1340                cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1341        cpumask_clear(&cpu_core_map[cpu]);
1342
1343        for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1344                cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1345        cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1346
1347        c = &cpu_data(cpu);
1348
1349        c->core_id = 0;
1350        c->proc_id = -1;
1351
1352        smp_wmb();
1353
1354        /* Make sure no interrupts point to this cpu.  */
1355        fixup_irqs();
1356
1357        local_irq_enable();
1358        mdelay(1);
1359        local_irq_disable();
1360
1361        set_cpu_online(cpu, false);
1362
1363        cpu_map_rebuild();
1364
1365        return 0;
1366}
1367
1368void __cpu_die(unsigned int cpu)
1369{
1370        int i;
1371
1372        for (i = 0; i < 100; i++) {
1373                smp_rmb();
1374                if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1375                        break;
1376                msleep(100);
1377        }
1378        if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1379                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380        } else {
1381#if defined(CONFIG_SUN_LDOMS)
1382                unsigned long hv_err;
1383                int limit = 100;
1384
1385                do {
1386                        hv_err = sun4v_cpu_stop(cpu);
1387                        if (hv_err == HV_EOK) {
1388                                set_cpu_present(cpu, false);
1389                                break;
1390                        }
1391                } while (--limit > 0);
1392                if (limit <= 0) {
1393                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394                               hv_err);
1395                }
1396#endif
1397        }
1398}
1399#endif
1400
1401void __init smp_cpus_done(unsigned int max_cpus)
1402{
1403}
1404
1405void smp_send_reschedule(int cpu)
1406{
1407        if (cpu == smp_processor_id()) {
1408                WARN_ON_ONCE(preemptible());
1409                set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1410        } else {
1411                xcall_deliver((u64) &xcall_receive_signal,
1412                              0, 0, cpumask_of(cpu));
1413        }
1414}
1415
1416void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1417{
1418        clear_softint(1 << irq);
1419        scheduler_ipi();
1420}
1421
1422static void stop_this_cpu(void *dummy)
1423{
1424        prom_stopself();
1425}
1426
1427void smp_send_stop(void)
1428{
1429        int cpu;
1430
1431        if (tlb_type == hypervisor) {
1432                for_each_online_cpu(cpu) {
1433                        if (cpu == smp_processor_id())
1434                                continue;
1435#ifdef CONFIG_SUN_LDOMS
1436                        if (ldom_domaining_enabled) {
1437                                unsigned long hv_err;
1438                                hv_err = sun4v_cpu_stop(cpu);
1439                                if (hv_err)
1440                                        printk(KERN_ERR "sun4v_cpu_stop() "
1441                                               "failed err=%lu\n", hv_err);
1442                        } else
1443#endif
1444                                prom_stopcpu_cpuid(cpu);
1445                }
1446        } else
1447                smp_call_function(stop_this_cpu, NULL, 0);
1448}
1449
1450/**
1451 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1452 * @cpu: cpu to allocate for
1453 * @size: size allocation in bytes
1454 * @align: alignment
1455 *
1456 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1457 * does the right thing for NUMA regardless of the current
1458 * configuration.
1459 *
1460 * RETURNS:
1461 * Pointer to the allocated area on success, NULL on failure.
1462 */
1463static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1464                                        size_t align)
1465{
1466        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1467#ifdef CONFIG_NEED_MULTIPLE_NODES
1468        int node = cpu_to_node(cpu);
1469        void *ptr;
1470
1471        if (!node_online(node) || !NODE_DATA(node)) {
1472                ptr = __alloc_bootmem(size, align, goal);
1473                pr_info("cpu %d has no node %d or node-local memory\n",
1474                        cpu, node);
1475                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1476                         cpu, size, __pa(ptr));
1477        } else {
1478                ptr = __alloc_bootmem_node(NODE_DATA(node),
1479                                           size, align, goal);
1480                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1481                         "%016lx\n", cpu, size, node, __pa(ptr));
1482        }
1483        return ptr;
1484#else
1485        return __alloc_bootmem(size, align, goal);
1486#endif
1487}
1488
1489static void __init pcpu_free_bootmem(void *ptr, size_t size)
1490{
1491        free_bootmem(__pa(ptr), size);
1492}
1493
1494static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1495{
1496        if (cpu_to_node(from) == cpu_to_node(to))
1497                return LOCAL_DISTANCE;
1498        else
1499                return REMOTE_DISTANCE;
1500}
1501
1502static void __init pcpu_populate_pte(unsigned long addr)
1503{
1504        pgd_t *pgd = pgd_offset_k(addr);
1505        pud_t *pud;
1506        pmd_t *pmd;
1507
1508        if (pgd_none(*pgd)) {
1509                pud_t *new;
1510
1511                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1512                pgd_populate(&init_mm, pgd, new);
1513        }
1514
1515        pud = pud_offset(pgd, addr);
1516        if (pud_none(*pud)) {
1517                pmd_t *new;
1518
1519                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1520                pud_populate(&init_mm, pud, new);
1521        }
1522
1523        pmd = pmd_offset(pud, addr);
1524        if (!pmd_present(*pmd)) {
1525                pte_t *new;
1526
1527                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528                pmd_populate_kernel(&init_mm, pmd, new);
1529        }
1530}
1531
1532void __init setup_per_cpu_areas(void)
1533{
1534        unsigned long delta;
1535        unsigned int cpu;
1536        int rc = -EINVAL;
1537
1538        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541                                            pcpu_cpu_distance,
1542                                            pcpu_alloc_bootmem,
1543                                            pcpu_free_bootmem);
1544                if (rc)
1545                        pr_warning("PERCPU: %s allocator failed (%d), "
1546                                   "falling back to page size\n",
1547                                   pcpu_fc_names[pcpu_chosen_fc], rc);
1548        }
1549        if (rc < 0)
1550                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1551                                           pcpu_alloc_bootmem,
1552                                           pcpu_free_bootmem,
1553                                           pcpu_populate_pte);
1554        if (rc < 0)
1555                panic("cannot initialize percpu area (err=%d)", rc);
1556
1557        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1558        for_each_possible_cpu(cpu)
1559                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1560
1561        /* Setup %g5 for the boot cpu.  */
1562        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1563
1564        of_fill_in_cpu_data();
1565        if (tlb_type == hypervisor)
1566                mdesc_fill_in_cpu_data(cpu_all_mask);
1567}
1568