linux/arch/tile/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/mmzone.h>
  18#include <linux/bootmem.h>
  19#include <linux/module.h>
  20#include <linux/node.h>
  21#include <linux/cpu.h>
  22#include <linux/ioport.h>
  23#include <linux/irq.h>
  24#include <linux/kexec.h>
  25#include <linux/pci.h>
  26#include <linux/swiotlb.h>
  27#include <linux/initrd.h>
  28#include <linux/io.h>
  29#include <linux/highmem.h>
  30#include <linux/smp.h>
  31#include <linux/timex.h>
  32#include <linux/hugetlb.h>
  33#include <linux/start_kernel.h>
  34#include <linux/screen_info.h>
  35#include <linux/tick.h>
  36#include <asm/setup.h>
  37#include <asm/sections.h>
  38#include <asm/cacheflush.h>
  39#include <asm/pgalloc.h>
  40#include <asm/mmu_context.h>
  41#include <hv/hypervisor.h>
  42#include <arch/interrupts.h>
  43
  44/* <linux/smp.h> doesn't provide this definition. */
  45#ifndef CONFIG_SMP
  46#define setup_max_cpus 1
  47#endif
  48
  49static inline int ABS(int x) { return x >= 0 ? x : -x; }
  50
  51/* Chip information */
  52char chip_model[64] __write_once;
  53
  54#ifdef CONFIG_VT
  55struct screen_info screen_info;
  56#endif
  57
  58struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  59EXPORT_SYMBOL(node_data);
  60
  61/* Information on the NUMA nodes that we compute early */
  62unsigned long node_start_pfn[MAX_NUMNODES];
  63unsigned long node_end_pfn[MAX_NUMNODES];
  64unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  65unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  66unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  67
  68static unsigned long __initdata node_percpu[MAX_NUMNODES];
  69
  70/*
  71 * per-CPU stack and boot info.
  72 */
  73DEFINE_PER_CPU(unsigned long, boot_sp) =
  74        (unsigned long)init_stack + THREAD_SIZE - STACK_TOP_DELTA;
  75
  76#ifdef CONFIG_SMP
  77DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
  78#else
  79/*
  80 * The variable must be __initdata since it references __init code.
  81 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
  82 */
  83unsigned long __initdata boot_pc = (unsigned long)start_kernel;
  84#endif
  85
  86#ifdef CONFIG_HIGHMEM
  87/* Page frame index of end of lowmem on each controller. */
  88unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
  89
  90/* Number of pages that can be mapped into lowmem. */
  91static unsigned long __initdata mappable_physpages;
  92#endif
  93
  94/* Data on which physical memory controller corresponds to which NUMA node */
  95int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  96
  97#ifdef CONFIG_HIGHMEM
  98/* Map information from VAs to PAs */
  99unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
 100  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 101EXPORT_SYMBOL(pbase_map);
 102
 103/* Map information from PAs to VAs */
 104void *vbase_map[NR_PA_HIGHBIT_VALUES]
 105  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 106EXPORT_SYMBOL(vbase_map);
 107#endif
 108
 109/* Node number as a function of the high PA bits */
 110int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
 111EXPORT_SYMBOL(highbits_to_node);
 112
 113static unsigned int __initdata maxmem_pfn = -1U;
 114static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
 115        [0 ... MAX_NUMNODES-1] = -1U
 116};
 117static nodemask_t __initdata isolnodes;
 118
 119#if defined(CONFIG_PCI) && !defined(__tilegx__)
 120enum { DEFAULT_PCI_RESERVE_MB = 64 };
 121static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 122unsigned long __initdata pci_reserve_start_pfn = -1U;
 123unsigned long __initdata pci_reserve_end_pfn = -1U;
 124#endif
 125
 126static int __init setup_maxmem(char *str)
 127{
 128        unsigned long long maxmem;
 129        if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
 130                return -EINVAL;
 131
 132        maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
 133        pr_info("Forcing RAM used to no more than %dMB\n",
 134                maxmem_pfn >> (20 - PAGE_SHIFT));
 135        return 0;
 136}
 137early_param("maxmem", setup_maxmem);
 138
 139static int __init setup_maxnodemem(char *str)
 140{
 141        char *endp;
 142        unsigned long long maxnodemem;
 143        long node;
 144
 145        node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 146        if (node >= MAX_NUMNODES || *endp != ':')
 147                return -EINVAL;
 148
 149        maxnodemem = memparse(endp+1, NULL);
 150        maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
 151                (HPAGE_SHIFT - PAGE_SHIFT);
 152        pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 153                node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 154        return 0;
 155}
 156early_param("maxnodemem", setup_maxnodemem);
 157
 158struct memmap_entry {
 159        u64 addr;       /* start of memory segment */
 160        u64 size;       /* size of memory segment */
 161};
 162static struct memmap_entry memmap_map[64];
 163static int memmap_nr;
 164
 165static void add_memmap_region(u64 addr, u64 size)
 166{
 167        if (memmap_nr >= ARRAY_SIZE(memmap_map)) {
 168                pr_err("Ooops! Too many entries in the memory map!\n");
 169                return;
 170        }
 171        memmap_map[memmap_nr].addr = addr;
 172        memmap_map[memmap_nr].size = size;
 173        memmap_nr++;
 174}
 175
 176static int __init setup_memmap(char *p)
 177{
 178        char *oldp;
 179        u64 start_at, mem_size;
 180
 181        if (!p)
 182                return -EINVAL;
 183
 184        if (!strncmp(p, "exactmap", 8)) {
 185                pr_err("\"memmap=exactmap\" not valid on tile\n");
 186                return 0;
 187        }
 188
 189        oldp = p;
 190        mem_size = memparse(p, &p);
 191        if (p == oldp)
 192                return -EINVAL;
 193
 194        if (*p == '@') {
 195                pr_err("\"memmap=nn@ss\" (force RAM) invalid on tile\n");
 196        } else if (*p == '#') {
 197                pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on tile\n");
 198        } else if (*p == '$') {
 199                start_at = memparse(p+1, &p);
 200                add_memmap_region(start_at, mem_size);
 201        } else {
 202                if (mem_size == 0)
 203                        return -EINVAL;
 204                maxmem_pfn = (mem_size >> HPAGE_SHIFT) <<
 205                        (HPAGE_SHIFT - PAGE_SHIFT);
 206        }
 207        return *p == '\0' ? 0 : -EINVAL;
 208}
 209early_param("memmap", setup_memmap);
 210
 211static int __init setup_mem(char *str)
 212{
 213        return setup_maxmem(str);
 214}
 215early_param("mem", setup_mem);  /* compatibility with x86 */
 216
 217static int __init setup_isolnodes(char *str)
 218{
 219        if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 220                return -EINVAL;
 221
 222        pr_info("Set isolnodes value to '%*pbl'\n",
 223                nodemask_pr_args(&isolnodes));
 224        return 0;
 225}
 226early_param("isolnodes", setup_isolnodes);
 227
 228#if defined(CONFIG_PCI) && !defined(__tilegx__)
 229static int __init setup_pci_reserve(char* str)
 230{
 231        if (str == NULL || kstrtouint(str, 0, &pci_reserve_mb) != 0 ||
 232            pci_reserve_mb > 3 * 1024)
 233                return -EINVAL;
 234
 235        pr_info("Reserving %dMB for PCIE root complex mappings\n",
 236                pci_reserve_mb);
 237        return 0;
 238}
 239early_param("pci_reserve", setup_pci_reserve);
 240#endif
 241
 242#ifndef __tilegx__
 243/*
 244 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 245 * This can be used to increase (or decrease) the vmalloc area.
 246 */
 247static int __init parse_vmalloc(char *arg)
 248{
 249        if (!arg)
 250                return -EINVAL;
 251
 252        VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 253
 254        /* See validate_va() for more on this test. */
 255        if ((long)_VMALLOC_START >= 0)
 256                early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 257                            VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 258
 259        return 0;
 260}
 261early_param("vmalloc", parse_vmalloc);
 262#endif
 263
 264#ifdef CONFIG_HIGHMEM
 265/*
 266 * Determine for each controller where its lowmem is mapped and how much of
 267 * it is mapped there.  On controller zero, the first few megabytes are
 268 * already mapped in as code at MEM_SV_START, so in principle we could
 269 * start our data mappings higher up, but for now we don't bother, to avoid
 270 * additional confusion.
 271 *
 272 * One question is whether, on systems with more than 768 Mb and
 273 * controllers of different sizes, to map in a proportionate amount of
 274 * each one, or to try to map the same amount from each controller.
 275 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 276 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 277 * MB, and 128 MB respectively?)  For now we use a proportionate
 278 * solution like the latter.
 279 *
 280 * The VA/PA mapping demands that we align our decisions at 16 MB
 281 * boundaries so that we can rapidly convert VA to PA.
 282 */
 283static void *__init setup_pa_va_mapping(void)
 284{
 285        unsigned long curr_pages = 0;
 286        unsigned long vaddr = PAGE_OFFSET;
 287        nodemask_t highonlynodes = isolnodes;
 288        int i, j;
 289
 290        memset(pbase_map, -1, sizeof(pbase_map));
 291        memset(vbase_map, -1, sizeof(vbase_map));
 292
 293        /* Node zero cannot be isolated for LOWMEM purposes. */
 294        node_clear(0, highonlynodes);
 295
 296        /* Count up the number of pages on non-highonlynodes controllers. */
 297        mappable_physpages = 0;
 298        for_each_online_node(i) {
 299                if (!node_isset(i, highonlynodes))
 300                        mappable_physpages +=
 301                                node_end_pfn[i] - node_start_pfn[i];
 302        }
 303
 304        for_each_online_node(i) {
 305                unsigned long start = node_start_pfn[i];
 306                unsigned long end = node_end_pfn[i];
 307                unsigned long size = end - start;
 308                unsigned long vaddr_end;
 309
 310                if (node_isset(i, highonlynodes)) {
 311                        /* Mark this controller as having no lowmem. */
 312                        node_lowmem_end_pfn[i] = start;
 313                        continue;
 314                }
 315
 316                curr_pages += size;
 317                if (mappable_physpages > MAXMEM_PFN) {
 318                        vaddr_end = PAGE_OFFSET +
 319                                (((u64)curr_pages * MAXMEM_PFN /
 320                                  mappable_physpages)
 321                                 << PAGE_SHIFT);
 322                } else {
 323                        vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 324                }
 325                for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 326                        unsigned long this_pfn =
 327                                start + (j << HUGETLB_PAGE_ORDER);
 328                        pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 329                        if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 330                            (void *)-1)
 331                                vbase_map[__pfn_to_highbits(this_pfn)] =
 332                                        (void *)(vaddr & HPAGE_MASK);
 333                }
 334                node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 335                BUG_ON(node_lowmem_end_pfn[i] > end);
 336        }
 337
 338        /* Return highest address of any mapped memory. */
 339        return (void *)vaddr;
 340}
 341#endif /* CONFIG_HIGHMEM */
 342
 343/*
 344 * Register our most important memory mappings with the debug stub.
 345 *
 346 * This is up to 4 mappings for lowmem, one mapping per memory
 347 * controller, plus one for our text segment.
 348 */
 349static void store_permanent_mappings(void)
 350{
 351        int i;
 352
 353        for_each_online_node(i) {
 354                HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 355#ifdef CONFIG_HIGHMEM
 356                HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 357#else
 358                HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 359#endif
 360
 361                unsigned long pages = high_mapped_pa - node_start_pfn[i];
 362                HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 363                hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 364        }
 365
 366        hv_store_mapping((HV_VirtAddr)_text,
 367                         (uint32_t)(_einittext - _text), 0);
 368}
 369
 370/*
 371 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 372 * and node_online_map, doing suitable sanity-checking.
 373 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 374 */
 375static void __init setup_memory(void)
 376{
 377        int i, j;
 378        int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 379#ifdef CONFIG_HIGHMEM
 380        long highmem_pages;
 381#endif
 382#ifndef __tilegx__
 383        int cap;
 384#endif
 385#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 386        long lowmem_pages;
 387#endif
 388        unsigned long physpages = 0;
 389
 390        /* We are using a char to hold the cpu_2_node[] mapping */
 391        BUILD_BUG_ON(MAX_NUMNODES > 127);
 392
 393        /* Discover the ranges of memory available to us */
 394        for (i = 0; ; ++i) {
 395                unsigned long start, size, end, highbits;
 396                HV_PhysAddrRange range = hv_inquire_physical(i);
 397                if (range.size == 0)
 398                        break;
 399#ifdef CONFIG_FLATMEM
 400                if (i > 0) {
 401                        pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 402                               range.size, range.start + range.size);
 403                        continue;
 404                }
 405#endif
 406#ifndef __tilegx__
 407                if ((unsigned long)range.start) {
 408                        pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 409                               range.start, range.start + range.size);
 410                        continue;
 411                }
 412#endif
 413                if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 414                    (range.size & (HPAGE_SIZE-1)) != 0) {
 415                        unsigned long long start_pa = range.start;
 416                        unsigned long long orig_size = range.size;
 417                        range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 418                        range.size -= (range.start - start_pa);
 419                        range.size &= HPAGE_MASK;
 420                        pr_err("Range not hugepage-aligned: %#llx..%#llx: now %#llx-%#llx\n",
 421                               start_pa, start_pa + orig_size,
 422                               range.start, range.start + range.size);
 423                }
 424                highbits = __pa_to_highbits(range.start);
 425                if (highbits >= NR_PA_HIGHBIT_VALUES) {
 426                        pr_err("PA high bits too high: %#llx..%#llx\n",
 427                               range.start, range.start + range.size);
 428                        continue;
 429                }
 430                if (highbits_seen[highbits]) {
 431                        pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 432                               range.start, range.start + range.size);
 433                        continue;
 434                }
 435                highbits_seen[highbits] = 1;
 436                if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 437                        int max_size = maxnodemem_pfn[i];
 438                        if (max_size > 0) {
 439                                pr_err("Maxnodemem reduced node %d to %d pages\n",
 440                                       i, max_size);
 441                                range.size = PFN_PHYS(max_size);
 442                        } else {
 443                                pr_err("Maxnodemem disabled node %d\n", i);
 444                                continue;
 445                        }
 446                }
 447                if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 448                        int max_size = maxmem_pfn - physpages;
 449                        if (max_size > 0) {
 450                                pr_err("Maxmem reduced node %d to %d pages\n",
 451                                       i, max_size);
 452                                range.size = PFN_PHYS(max_size);
 453                        } else {
 454                                pr_err("Maxmem disabled node %d\n", i);
 455                                continue;
 456                        }
 457                }
 458                if (i >= MAX_NUMNODES) {
 459                        pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 460                               i, range.size, range.size + range.start);
 461                        continue;
 462                }
 463
 464                start = range.start >> PAGE_SHIFT;
 465                size = range.size >> PAGE_SHIFT;
 466                end = start + size;
 467
 468#ifndef __tilegx__
 469                if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 470                    (range.start + range.size)) {
 471                        pr_err("PAs too high to represent: %#llx..%#llx\n",
 472                               range.start, range.start + range.size);
 473                        continue;
 474                }
 475#endif
 476#if defined(CONFIG_PCI) && !defined(__tilegx__)
 477                /*
 478                 * Blocks that overlap the pci reserved region must
 479                 * have enough space to hold the maximum percpu data
 480                 * region at the top of the range.  If there isn't
 481                 * enough space above the reserved region, just
 482                 * truncate the node.
 483                 */
 484                if (start <= pci_reserve_start_pfn &&
 485                    end > pci_reserve_start_pfn) {
 486                        unsigned int per_cpu_size =
 487                                __per_cpu_end - __per_cpu_start;
 488                        unsigned int percpu_pages =
 489                                NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 490                        if (end < pci_reserve_end_pfn + percpu_pages) {
 491                                end = pci_reserve_start_pfn;
 492                                pr_err("PCI mapping region reduced node %d to %ld pages\n",
 493                                       i, end - start);
 494                        }
 495                }
 496#endif
 497
 498                for (j = __pfn_to_highbits(start);
 499                     j <= __pfn_to_highbits(end - 1); j++)
 500                        highbits_to_node[j] = i;
 501
 502                node_start_pfn[i] = start;
 503                node_end_pfn[i] = end;
 504                node_controller[i] = range.controller;
 505                physpages += size;
 506                max_pfn = end;
 507
 508                /* Mark node as online */
 509                node_set(i, node_online_map);
 510                node_set(i, node_possible_map);
 511        }
 512
 513#ifndef __tilegx__
 514        /*
 515         * For 4KB pages, mem_map "struct page" data is 1% of the size
 516         * of the physical memory, so can be quite big (640 MB for
 517         * four 16G zones).  These structures must be mapped in
 518         * lowmem, and since we currently cap out at about 768 MB,
 519         * it's impractical to try to use this much address space.
 520         * For now, arbitrarily cap the amount of physical memory
 521         * we're willing to use at 8 million pages (32GB of 4KB pages).
 522         */
 523        cap = 8 * 1024 * 1024;  /* 8 million pages */
 524        if (physpages > cap) {
 525                int num_nodes = num_online_nodes();
 526                int cap_each = cap / num_nodes;
 527                unsigned long dropped_pages = 0;
 528                for (i = 0; i < num_nodes; ++i) {
 529                        int size = node_end_pfn[i] - node_start_pfn[i];
 530                        if (size > cap_each) {
 531                                dropped_pages += (size - cap_each);
 532                                node_end_pfn[i] = node_start_pfn[i] + cap_each;
 533                        }
 534                }
 535                physpages -= dropped_pages;
 536                pr_warn("Only using %ldMB memory - ignoring %ldMB\n",
 537                        physpages >> (20 - PAGE_SHIFT),
 538                        dropped_pages >> (20 - PAGE_SHIFT));
 539                pr_warn("Consider using a larger page size\n");
 540        }
 541#endif
 542
 543        /* Heap starts just above the last loaded address. */
 544        min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 545
 546#ifdef CONFIG_HIGHMEM
 547        /* Find where we map lowmem from each controller. */
 548        high_memory = setup_pa_va_mapping();
 549
 550        /* Set max_low_pfn based on what node 0 can directly address. */
 551        max_low_pfn = node_lowmem_end_pfn[0];
 552
 553        lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 554                MAXMEM_PFN : mappable_physpages;
 555        highmem_pages = (long) (physpages - lowmem_pages);
 556
 557        pr_notice("%ldMB HIGHMEM available\n",
 558                  pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 559        pr_notice("%ldMB LOWMEM available\n", pages_to_mb(lowmem_pages));
 560#else
 561        /* Set max_low_pfn based on what node 0 can directly address. */
 562        max_low_pfn = node_end_pfn[0];
 563
 564#ifndef __tilegx__
 565        if (node_end_pfn[0] > MAXMEM_PFN) {
 566                pr_warn("Only using %ldMB LOWMEM\n", MAXMEM >> 20);
 567                pr_warn("Use a HIGHMEM enabled kernel\n");
 568                max_low_pfn = MAXMEM_PFN;
 569                max_pfn = MAXMEM_PFN;
 570                node_end_pfn[0] = MAXMEM_PFN;
 571        } else {
 572                pr_notice("%ldMB memory available\n",
 573                          pages_to_mb(node_end_pfn[0]));
 574        }
 575        for (i = 1; i < MAX_NUMNODES; ++i) {
 576                node_start_pfn[i] = 0;
 577                node_end_pfn[i] = 0;
 578        }
 579        high_memory = __va(node_end_pfn[0]);
 580#else
 581        lowmem_pages = 0;
 582        for (i = 0; i < MAX_NUMNODES; ++i) {
 583                int pages = node_end_pfn[i] - node_start_pfn[i];
 584                lowmem_pages += pages;
 585                if (pages)
 586                        high_memory = pfn_to_kaddr(node_end_pfn[i]);
 587        }
 588        pr_notice("%ldMB memory available\n", pages_to_mb(lowmem_pages));
 589#endif
 590#endif
 591}
 592
 593/*
 594 * On 32-bit machines, we only put bootmem on the low controller,
 595 * since PAs > 4GB can't be used in bootmem.  In principle one could
 596 * imagine, e.g., multiple 1 GB controllers all of which could support
 597 * bootmem, but in practice using controllers this small isn't a
 598 * particularly interesting scenario, so we just keep it simple and
 599 * use only the first controller for bootmem on 32-bit machines.
 600 */
 601static inline int node_has_bootmem(int nid)
 602{
 603#ifdef CONFIG_64BIT
 604        return 1;
 605#else
 606        return nid == 0;
 607#endif
 608}
 609
 610static inline unsigned long alloc_bootmem_pfn(int nid,
 611                                              unsigned long size,
 612                                              unsigned long goal)
 613{
 614        void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
 615                                         PAGE_SIZE, goal);
 616        unsigned long pfn = kaddr_to_pfn(kva);
 617        BUG_ON(goal && PFN_PHYS(pfn) != goal);
 618        return pfn;
 619}
 620
 621static void __init setup_bootmem_allocator_node(int i)
 622{
 623        unsigned long start, end, mapsize, mapstart;
 624
 625        if (node_has_bootmem(i)) {
 626                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 627        } else {
 628                /* Share controller zero's bdata for now. */
 629                NODE_DATA(i)->bdata = &bootmem_node_data[0];
 630                return;
 631        }
 632
 633        /* Skip up to after the bss in node 0. */
 634        start = (i == 0) ? min_low_pfn : node_start_pfn[i];
 635
 636        /* Only lowmem, if we're a HIGHMEM build. */
 637#ifdef CONFIG_HIGHMEM
 638        end = node_lowmem_end_pfn[i];
 639#else
 640        end = node_end_pfn[i];
 641#endif
 642
 643        /* No memory here. */
 644        if (end == start)
 645                return;
 646
 647        /* Figure out where the bootmem bitmap is located. */
 648        mapsize = bootmem_bootmap_pages(end - start);
 649        if (i == 0) {
 650                /* Use some space right before the heap on node 0. */
 651                mapstart = start;
 652                start += mapsize;
 653        } else {
 654                /* Allocate bitmap on node 0 to avoid page table issues. */
 655                mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
 656        }
 657
 658        /* Initialize a node. */
 659        init_bootmem_node(NODE_DATA(i), mapstart, start, end);
 660
 661        /* Free all the space back into the allocator. */
 662        free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
 663
 664#if defined(CONFIG_PCI) && !defined(__tilegx__)
 665        /*
 666         * Throw away any memory aliased by the PCI region.
 667         */
 668        if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
 669                start = max(pci_reserve_start_pfn, start);
 670                end = min(pci_reserve_end_pfn, end);
 671                reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
 672                                BOOTMEM_EXCLUSIVE);
 673        }
 674#endif
 675}
 676
 677static void __init setup_bootmem_allocator(void)
 678{
 679        int i;
 680        for (i = 0; i < MAX_NUMNODES; ++i)
 681                setup_bootmem_allocator_node(i);
 682
 683        /* Reserve any memory excluded by "memmap" arguments. */
 684        for (i = 0; i < memmap_nr; ++i) {
 685                struct memmap_entry *m = &memmap_map[i];
 686                reserve_bootmem(m->addr, m->size, BOOTMEM_DEFAULT);
 687        }
 688
 689#ifdef CONFIG_BLK_DEV_INITRD
 690        if (initrd_start) {
 691                /* Make sure the initrd memory region is not modified. */
 692                if (reserve_bootmem(initrd_start, initrd_end - initrd_start,
 693                                    BOOTMEM_EXCLUSIVE)) {
 694                        pr_crit("The initrd memory region has been polluted. Disabling it.\n");
 695                        initrd_start = 0;
 696                        initrd_end = 0;
 697                } else {
 698                        /*
 699                         * Translate initrd_start & initrd_end from PA to VA for
 700                         * future access.
 701                         */
 702                        initrd_start += PAGE_OFFSET;
 703                        initrd_end += PAGE_OFFSET;
 704                }
 705        }
 706#endif
 707
 708#ifdef CONFIG_KEXEC
 709        if (crashk_res.start != crashk_res.end)
 710                reserve_bootmem(crashk_res.start, resource_size(&crashk_res),
 711                                BOOTMEM_DEFAULT);
 712#endif
 713}
 714
 715void *__init alloc_remap(int nid, unsigned long size)
 716{
 717        int pages = node_end_pfn[nid] - node_start_pfn[nid];
 718        void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 719        BUG_ON(size != pages * sizeof(struct page));
 720        memset(map, 0, size);
 721        return map;
 722}
 723
 724static int __init percpu_size(void)
 725{
 726        int size = __per_cpu_end - __per_cpu_start;
 727        size += PERCPU_MODULE_RESERVE;
 728        size += PERCPU_DYNAMIC_EARLY_SIZE;
 729        if (size < PCPU_MIN_UNIT_SIZE)
 730                size = PCPU_MIN_UNIT_SIZE;
 731        size = roundup(size, PAGE_SIZE);
 732
 733        /* In several places we assume the per-cpu data fits on a huge page. */
 734        BUG_ON(kdata_huge && size > HPAGE_SIZE);
 735        return size;
 736}
 737
 738static void __init zone_sizes_init(void)
 739{
 740        unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 741        int size = percpu_size();
 742        int num_cpus = smp_height * smp_width;
 743        const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
 744
 745        int i;
 746
 747        for (i = 0; i < num_cpus; ++i)
 748                node_percpu[cpu_to_node(i)] += size;
 749
 750        for_each_online_node(i) {
 751                unsigned long start = node_start_pfn[i];
 752                unsigned long end = node_end_pfn[i];
 753#ifdef CONFIG_HIGHMEM
 754                unsigned long lowmem_end = node_lowmem_end_pfn[i];
 755#else
 756                unsigned long lowmem_end = end;
 757#endif
 758                int memmap_size = (end - start) * sizeof(struct page);
 759                node_free_pfn[i] = start;
 760
 761                /*
 762                 * Set aside pages for per-cpu data and the mem_map array.
 763                 *
 764                 * Since the per-cpu data requires special homecaching,
 765                 * if we are in kdata_huge mode, we put it at the end of
 766                 * the lowmem region.  If we're not in kdata_huge mode,
 767                 * we take the per-cpu pages from the bottom of the
 768                 * controller, since that avoids fragmenting a huge page
 769                 * that users might want.  We always take the memmap
 770                 * from the bottom of the controller, since with
 771                 * kdata_huge that lets it be under a huge TLB entry.
 772                 *
 773                 * If the user has requested isolnodes for a controller,
 774                 * though, there'll be no lowmem, so we just alloc_bootmem
 775                 * the memmap.  There will be no percpu memory either.
 776                 */
 777                if (i != 0 && node_isset(i, isolnodes)) {
 778                        node_memmap_pfn[i] =
 779                                alloc_bootmem_pfn(0, memmap_size, 0);
 780                        BUG_ON(node_percpu[i] != 0);
 781                } else if (node_has_bootmem(start)) {
 782                        unsigned long goal = 0;
 783                        node_memmap_pfn[i] =
 784                                alloc_bootmem_pfn(i, memmap_size, 0);
 785                        if (kdata_huge)
 786                                goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 787                        if (node_percpu[i])
 788                                node_percpu_pfn[i] =
 789                                        alloc_bootmem_pfn(i, node_percpu[i],
 790                                                          goal);
 791                } else {
 792                        /* In non-bootmem zones, just reserve some pages. */
 793                        node_memmap_pfn[i] = node_free_pfn[i];
 794                        node_free_pfn[i] += PFN_UP(memmap_size);
 795                        if (!kdata_huge) {
 796                                node_percpu_pfn[i] = node_free_pfn[i];
 797                                node_free_pfn[i] += PFN_UP(node_percpu[i]);
 798                        } else {
 799                                node_percpu_pfn[i] =
 800                                        lowmem_end - PFN_UP(node_percpu[i]);
 801                        }
 802                }
 803
 804#ifdef CONFIG_HIGHMEM
 805                if (start > lowmem_end) {
 806                        zones_size[ZONE_NORMAL] = 0;
 807                        zones_size[ZONE_HIGHMEM] = end - start;
 808                } else {
 809                        zones_size[ZONE_NORMAL] = lowmem_end - start;
 810                        zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 811                }
 812#else
 813                zones_size[ZONE_NORMAL] = end - start;
 814#endif
 815
 816                if (start < dma_end) {
 817                        zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
 818                                                   dma_end - start);
 819                        zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
 820                } else {
 821                        zones_size[ZONE_DMA] = 0;
 822                }
 823
 824                /* Take zone metadata from controller 0 if we're isolnode. */
 825                if (node_isset(i, isolnodes))
 826                        NODE_DATA(i)->bdata = &bootmem_node_data[0];
 827
 828                free_area_init_node(i, zones_size, start, NULL);
 829                printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 830                       PFN_UP(node_percpu[i]));
 831
 832                /* Track the type of memory on each node */
 833                if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
 834                        node_set_state(i, N_NORMAL_MEMORY);
 835#ifdef CONFIG_HIGHMEM
 836                if (end != start)
 837                        node_set_state(i, N_HIGH_MEMORY);
 838#endif
 839
 840                node_set_online(i);
 841        }
 842}
 843
 844#ifdef CONFIG_NUMA
 845
 846/* which logical CPUs are on which nodes */
 847struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 848EXPORT_SYMBOL(node_2_cpu_mask);
 849
 850/* which node each logical CPU is on */
 851char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 852EXPORT_SYMBOL(cpu_2_node);
 853
 854/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 855static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 856{
 857        if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 858                return -1;
 859        else
 860                return cpu_to_node(cpu);
 861}
 862
 863/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 864static int __init node_neighbors(int node, int cpu,
 865                                 struct cpumask *unbound_cpus)
 866{
 867        int neighbors = 0;
 868        int w = smp_width;
 869        int h = smp_height;
 870        int x = cpu % w;
 871        int y = cpu / w;
 872        if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 873                ++neighbors;
 874        if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 875                ++neighbors;
 876        if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 877                ++neighbors;
 878        if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 879                ++neighbors;
 880        return neighbors;
 881}
 882
 883static void __init setup_numa_mapping(void)
 884{
 885        u8 distance[MAX_NUMNODES][NR_CPUS];
 886        HV_Coord coord;
 887        int cpu, node, cpus, i, x, y;
 888        int num_nodes = num_online_nodes();
 889        struct cpumask unbound_cpus;
 890        nodemask_t default_nodes;
 891
 892        cpumask_clear(&unbound_cpus);
 893
 894        /* Get set of nodes we will use for defaults */
 895        nodes_andnot(default_nodes, node_online_map, isolnodes);
 896        if (nodes_empty(default_nodes)) {
 897                BUG_ON(!node_isset(0, node_online_map));
 898                pr_err("Forcing NUMA node zero available as a default node\n");
 899                node_set(0, default_nodes);
 900        }
 901
 902        /* Populate the distance[] array */
 903        memset(distance, -1, sizeof(distance));
 904        cpu = 0;
 905        for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 906                for (coord.x = 0; coord.x < smp_width;
 907                     ++coord.x, ++cpu) {
 908                        BUG_ON(cpu >= nr_cpu_ids);
 909                        if (!cpu_possible(cpu)) {
 910                                cpu_2_node[cpu] = -1;
 911                                continue;
 912                        }
 913                        for_each_node_mask(node, default_nodes) {
 914                                HV_MemoryControllerInfo info =
 915                                        hv_inquire_memory_controller(
 916                                                coord, node_controller[node]);
 917                                distance[node][cpu] =
 918                                        ABS(info.coord.x) + ABS(info.coord.y);
 919                        }
 920                        cpumask_set_cpu(cpu, &unbound_cpus);
 921                }
 922        }
 923        cpus = cpu;
 924
 925        /*
 926         * Round-robin through the NUMA nodes until all the cpus are
 927         * assigned.  We could be more clever here (e.g. create four
 928         * sorted linked lists on the same set of cpu nodes, and pull
 929         * off them in round-robin sequence, removing from all four
 930         * lists each time) but given the relatively small numbers
 931         * involved, O(n^2) seem OK for a one-time cost.
 932         */
 933        node = first_node(default_nodes);
 934        while (!cpumask_empty(&unbound_cpus)) {
 935                int best_cpu = -1;
 936                int best_distance = INT_MAX;
 937                for (cpu = 0; cpu < cpus; ++cpu) {
 938                        if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 939                                /*
 940                                 * Compute metric, which is how much
 941                                 * closer the cpu is to this memory
 942                                 * controller than the others, shifted
 943                                 * up, and then the number of
 944                                 * neighbors already in the node as an
 945                                 * epsilon adjustment to try to keep
 946                                 * the nodes compact.
 947                                 */
 948                                int d = distance[node][cpu] * num_nodes;
 949                                for_each_node_mask(i, default_nodes) {
 950                                        if (i != node)
 951                                                d -= distance[i][cpu];
 952                                }
 953                                d *= 8;  /* allow space for epsilon */
 954                                d -= node_neighbors(node, cpu, &unbound_cpus);
 955                                if (d < best_distance) {
 956                                        best_cpu = cpu;
 957                                        best_distance = d;
 958                                }
 959                        }
 960                }
 961                BUG_ON(best_cpu < 0);
 962                cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 963                cpu_2_node[best_cpu] = node;
 964                cpumask_clear_cpu(best_cpu, &unbound_cpus);
 965                node = next_node(node, default_nodes);
 966                if (node == MAX_NUMNODES)
 967                        node = first_node(default_nodes);
 968        }
 969
 970        /* Print out node assignments and set defaults for disabled cpus */
 971        cpu = 0;
 972        for (y = 0; y < smp_height; ++y) {
 973                printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 974                for (x = 0; x < smp_width; ++x, ++cpu) {
 975                        if (cpu_to_node(cpu) < 0) {
 976                                pr_cont(" -");
 977                                cpu_2_node[cpu] = first_node(default_nodes);
 978                        } else {
 979                                pr_cont(" %d", cpu_to_node(cpu));
 980                        }
 981                }
 982                pr_cont("\n");
 983        }
 984}
 985
 986static struct cpu cpu_devices[NR_CPUS];
 987
 988static int __init topology_init(void)
 989{
 990        int i;
 991
 992        for_each_online_node(i)
 993                register_one_node(i);
 994
 995        for (i = 0; i < smp_height * smp_width; ++i)
 996                register_cpu(&cpu_devices[i], i);
 997
 998        return 0;
 999}
1000
1001subsys_initcall(topology_init);
1002
1003#else /* !CONFIG_NUMA */
1004
1005#define setup_numa_mapping() do { } while (0)
1006
1007#endif /* CONFIG_NUMA */
1008
1009/*
1010 * Initialize hugepage support on this cpu.  We do this on all cores
1011 * early in boot: before argument parsing for the boot cpu, and after
1012 * argument parsing but before the init functions run on the secondaries.
1013 * So the values we set up here in the hypervisor may be overridden on
1014 * the boot cpu as arguments are parsed.
1015 */
1016static void init_super_pages(void)
1017{
1018#ifdef CONFIG_HUGETLB_SUPER_PAGES
1019        int i;
1020        for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
1021                hv_set_pte_super_shift(i, huge_shift[i]);
1022#endif
1023}
1024
1025/**
1026 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
1027 * @boot: Is this the boot cpu?
1028 *
1029 * Called from setup_arch() on the boot cpu, or online_secondary().
1030 */
1031void setup_cpu(int boot)
1032{
1033        /* The boot cpu sets up its permanent mappings much earlier. */
1034        if (!boot)
1035                store_permanent_mappings();
1036
1037        /* Allow asynchronous TLB interrupts. */
1038#if CHIP_HAS_TILE_DMA()
1039        arch_local_irq_unmask(INT_DMATLB_MISS);
1040        arch_local_irq_unmask(INT_DMATLB_ACCESS);
1041#endif
1042#ifdef __tilegx__
1043        arch_local_irq_unmask(INT_SINGLE_STEP_K);
1044#endif
1045
1046        /*
1047         * Allow user access to many generic SPRs, like the cycle
1048         * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
1049         */
1050        __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
1051
1052#if CHIP_HAS_SN()
1053        /* Static network is not restricted. */
1054        __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
1055#endif
1056
1057        /*
1058         * Set the MPL for interrupt control 0 & 1 to the corresponding
1059         * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
1060         * SPRs, as well as the interrupt mask.
1061         */
1062        __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
1063        __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
1064
1065        /* Initialize IRQ support for this cpu. */
1066        setup_irq_regs();
1067
1068#ifdef CONFIG_HARDWALL
1069        /* Reset the network state on this cpu. */
1070        reset_network_state();
1071#endif
1072
1073        init_super_pages();
1074}
1075
1076#ifdef CONFIG_BLK_DEV_INITRD
1077
1078static int __initdata set_initramfs_file;
1079static char __initdata initramfs_file[128] = "initramfs";
1080
1081static int __init setup_initramfs_file(char *str)
1082{
1083        if (str == NULL)
1084                return -EINVAL;
1085        strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1086        set_initramfs_file = 1;
1087
1088        return 0;
1089}
1090early_param("initramfs_file", setup_initramfs_file);
1091
1092/*
1093 * We look for a file called "initramfs" in the hvfs.  If there is one, we
1094 * allocate some memory for it and it will be unpacked to the initramfs.
1095 * If it's compressed, the initd code will uncompress it first.
1096 */
1097static void __init load_hv_initrd(void)
1098{
1099        HV_FS_StatInfo stat;
1100        int fd, rc;
1101        void *initrd;
1102
1103        /* If initrd has already been set, skip initramfs file in hvfs. */
1104        if (initrd_start)
1105                return;
1106
1107        fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1108        if (fd == HV_ENOENT) {
1109                if (set_initramfs_file) {
1110                        pr_warn("No such hvfs initramfs file '%s'\n",
1111                                initramfs_file);
1112                        return;
1113                } else {
1114                        /* Try old backwards-compatible name. */
1115                        fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
1116                        if (fd == HV_ENOENT)
1117                                return;
1118                }
1119        }
1120        BUG_ON(fd < 0);
1121        stat = hv_fs_fstat(fd);
1122        BUG_ON(stat.size < 0);
1123        if (stat.flags & HV_FS_ISDIR) {
1124                pr_warn("Ignoring hvfs file '%s': it's a directory\n",
1125                        initramfs_file);
1126                return;
1127        }
1128        initrd = alloc_bootmem_pages(stat.size);
1129        rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1130        if (rc != stat.size) {
1131                pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1132                       stat.size, initramfs_file, rc);
1133                free_initrd_mem((unsigned long) initrd, stat.size);
1134                return;
1135        }
1136        initrd_start = (unsigned long) initrd;
1137        initrd_end = initrd_start + stat.size;
1138}
1139
1140void __init free_initrd_mem(unsigned long begin, unsigned long end)
1141{
1142        free_bootmem_late(__pa(begin), end - begin);
1143}
1144
1145static int __init setup_initrd(char *str)
1146{
1147        char *endp;
1148        unsigned long initrd_size;
1149
1150        initrd_size = str ? simple_strtoul(str, &endp, 0) : 0;
1151        if (initrd_size == 0 || *endp != '@')
1152                return -EINVAL;
1153
1154        initrd_start = simple_strtoul(endp+1, &endp, 0);
1155        if (initrd_start == 0)
1156                return -EINVAL;
1157
1158        initrd_end = initrd_start + initrd_size;
1159
1160        return 0;
1161}
1162early_param("initrd", setup_initrd);
1163
1164#else
1165static inline void load_hv_initrd(void) {}
1166#endif /* CONFIG_BLK_DEV_INITRD */
1167
1168static void __init validate_hv(void)
1169{
1170        /*
1171         * It may already be too late, but let's check our built-in
1172         * configuration against what the hypervisor is providing.
1173         */
1174        unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1175        int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1176        int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1177        HV_ASIDRange asid_range;
1178
1179#ifndef CONFIG_SMP
1180        HV_Topology topology = hv_inquire_topology();
1181        BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1182        if (topology.width != 1 || topology.height != 1) {
1183                pr_warn("Warning: booting UP kernel on %dx%d grid; will ignore all but first tile\n",
1184                        topology.width, topology.height);
1185        }
1186#endif
1187
1188        if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1189                early_panic("Hypervisor glue size %ld is too big!\n",
1190                            glue_size);
1191        if (hv_page_size != PAGE_SIZE)
1192                early_panic("Hypervisor page size %#x != our %#lx\n",
1193                            hv_page_size, PAGE_SIZE);
1194        if (hv_hpage_size != HPAGE_SIZE)
1195                early_panic("Hypervisor huge page size %#x != our %#lx\n",
1196                            hv_hpage_size, HPAGE_SIZE);
1197
1198#ifdef CONFIG_SMP
1199        /*
1200         * Some hypervisor APIs take a pointer to a bitmap array
1201         * whose size is at least the number of cpus on the chip.
1202         * We use a struct cpumask for this, so it must be big enough.
1203         */
1204        if ((smp_height * smp_width) > nr_cpu_ids)
1205                early_panic("Hypervisor %d x %d grid too big for Linux NR_CPUS %d\n",
1206                            smp_height, smp_width, nr_cpu_ids);
1207#endif
1208
1209        /*
1210         * Check that we're using allowed ASIDs, and initialize the
1211         * various asid variables to their appropriate initial states.
1212         */
1213        asid_range = hv_inquire_asid(0);
1214        min_asid = asid_range.start;
1215        __this_cpu_write(current_asid, min_asid);
1216        max_asid = asid_range.start + asid_range.size - 1;
1217
1218        if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1219                       sizeof(chip_model)) < 0) {
1220                pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1221                strlcpy(chip_model, "unknown", sizeof(chip_model));
1222        }
1223}
1224
1225static void __init validate_va(void)
1226{
1227#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1228        /*
1229         * Similarly, make sure we're only using allowed VAs.
1230         * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_START,
1231         * and 0 .. KERNEL_HIGH_VADDR.
1232         * In addition, make sure we CAN'T use the end of memory, since
1233         * we use the last chunk of each pgd for the pgd_list.
1234         */
1235        int i, user_kernel_ok = 0;
1236        unsigned long max_va = 0;
1237        unsigned long list_va =
1238                ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1239
1240        for (i = 0; ; ++i) {
1241                HV_VirtAddrRange range = hv_inquire_virtual(i);
1242                if (range.size == 0)
1243                        break;
1244                if (range.start <= MEM_USER_INTRPT &&
1245                    range.start + range.size >= MEM_HV_START)
1246                        user_kernel_ok = 1;
1247                if (range.start == 0)
1248                        max_va = range.size;
1249                BUG_ON(range.start + range.size > list_va);
1250        }
1251        if (!user_kernel_ok)
1252                early_panic("Hypervisor not configured for user/kernel VAs\n");
1253        if (max_va == 0)
1254                early_panic("Hypervisor not configured for low VAs\n");
1255        if (max_va < KERNEL_HIGH_VADDR)
1256                early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1257                            max_va, KERNEL_HIGH_VADDR);
1258
1259        /* Kernel PCs must have their high bit set; see intvec.S. */
1260        if ((long)VMALLOC_START >= 0)
1261                early_panic("Linux VMALLOC region below the 2GB line (%#lx)!\n"
1262                            "Reconfigure the kernel with smaller VMALLOC_RESERVE\n",
1263                            VMALLOC_START);
1264#endif
1265}
1266
1267/*
1268 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1269 * to cache data on at a page level, i.e. what cpus can be placed in
1270 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1271 * cpus plus any other cpus that are willing to share their cache.
1272 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1273 */
1274struct cpumask __write_once cpu_lotar_map;
1275EXPORT_SYMBOL(cpu_lotar_map);
1276
1277/*
1278 * hash_for_home_map lists all the tiles that hash-for-home data
1279 * will be cached on.  Note that this may includes tiles that are not
1280 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1281 * device is being shared between multiple supervisors).
1282 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1283 */
1284struct cpumask hash_for_home_map;
1285EXPORT_SYMBOL(hash_for_home_map);
1286
1287/*
1288 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1289 * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1290 * hash_for_home_map, and it is what should be passed to
1291 * hv_flush_remote() to flush all caches.  Note that if there are
1292 * dedicated hypervisor driver tiles that have authorized use of their
1293 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1294 * cpu_cacheable_map, as they are a special case.
1295 */
1296struct cpumask __write_once cpu_cacheable_map;
1297EXPORT_SYMBOL(cpu_cacheable_map);
1298
1299static __initdata struct cpumask disabled_map;
1300
1301static int __init disabled_cpus(char *str)
1302{
1303        int boot_cpu = smp_processor_id();
1304
1305        if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1306                return -EINVAL;
1307        if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1308                pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1309                cpumask_clear_cpu(boot_cpu, &disabled_map);
1310        }
1311        return 0;
1312}
1313
1314early_param("disabled_cpus", disabled_cpus);
1315
1316void __init print_disabled_cpus(void)
1317{
1318        if (!cpumask_empty(&disabled_map))
1319                pr_info("CPUs not available for Linux: %*pbl\n",
1320                        cpumask_pr_args(&disabled_map));
1321}
1322
1323static void __init setup_cpu_maps(void)
1324{
1325        struct cpumask hv_disabled_map, cpu_possible_init;
1326        int boot_cpu = smp_processor_id();
1327        int cpus, i, rc;
1328
1329        /* Learn which cpus are allowed by the hypervisor. */
1330        rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1331                              (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1332                              sizeof(cpu_cacheable_map));
1333        if (rc < 0)
1334                early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1335        if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1336                early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1337
1338        /* Compute the cpus disabled by the hvconfig file. */
1339        cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1340
1341        /* Include them with the cpus disabled by "disabled_cpus". */
1342        cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1343
1344        /*
1345         * Disable every cpu after "setup_max_cpus".  But don't mark
1346         * as disabled the cpus that are outside of our initial rectangle,
1347         * since that turns out to be confusing.
1348         */
1349        cpus = 1;                          /* this cpu */
1350        cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1351        for (i = 0; cpus < setup_max_cpus; ++i)
1352                if (!cpumask_test_cpu(i, &disabled_map))
1353                        ++cpus;
1354        for (; i < smp_height * smp_width; ++i)
1355                cpumask_set_cpu(i, &disabled_map);
1356        cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1357        for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1358                cpumask_clear_cpu(i, &disabled_map);
1359
1360        /*
1361         * Setup cpu_possible map as every cpu allocated to us, minus
1362         * the results of any "disabled_cpus" settings.
1363         */
1364        cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1365        init_cpu_possible(&cpu_possible_init);
1366
1367        /* Learn which cpus are valid for LOTAR caching. */
1368        rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1369                              (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1370                              sizeof(cpu_lotar_map));
1371        if (rc < 0) {
1372                pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1373                cpu_lotar_map = *cpu_possible_mask;
1374        }
1375
1376        /* Retrieve set of CPUs used for hash-for-home caching */
1377        rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1378                              (HV_VirtAddr) hash_for_home_map.bits,
1379                              sizeof(hash_for_home_map));
1380        if (rc < 0)
1381                early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1382        cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1383}
1384
1385
1386static int __init dataplane(char *str)
1387{
1388        pr_warn("WARNING: dataplane support disabled in this kernel\n");
1389        return 0;
1390}
1391
1392early_param("dataplane", dataplane);
1393
1394#ifdef CONFIG_NO_HZ_FULL
1395/* Warn if hypervisor shared cpus are marked as nohz_full. */
1396static int __init check_nohz_full_cpus(void)
1397{
1398        struct cpumask shared;
1399        int cpu;
1400
1401        if (hv_inquire_tiles(HV_INQ_TILES_SHARED,
1402                             (HV_VirtAddr) shared.bits, sizeof(shared)) < 0) {
1403                pr_warn("WARNING: No support for inquiring hv shared tiles\n");
1404                return 0;
1405        }
1406        for_each_cpu(cpu, &shared) {
1407                if (tick_nohz_full_cpu(cpu))
1408                        pr_warn("WARNING: nohz_full cpu %d receives hypervisor interrupts!\n",
1409                               cpu);
1410        }
1411        return 0;
1412}
1413arch_initcall(check_nohz_full_cpus);
1414#endif
1415
1416#ifdef CONFIG_CMDLINE_BOOL
1417static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1418#endif
1419
1420void __init setup_arch(char **cmdline_p)
1421{
1422        int len;
1423
1424#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1425        len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1426                                  COMMAND_LINE_SIZE);
1427        if (boot_command_line[0])
1428                pr_warn("WARNING: ignoring dynamic command line \"%s\"\n",
1429                        boot_command_line);
1430        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1431#else
1432        char *hv_cmdline;
1433#if defined(CONFIG_CMDLINE_BOOL)
1434        if (builtin_cmdline[0]) {
1435                int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1436                                          COMMAND_LINE_SIZE);
1437                if (builtin_len < COMMAND_LINE_SIZE-1)
1438                        boot_command_line[builtin_len++] = ' ';
1439                hv_cmdline = &boot_command_line[builtin_len];
1440                len = COMMAND_LINE_SIZE - builtin_len;
1441        } else
1442#endif
1443        {
1444                hv_cmdline = boot_command_line;
1445                len = COMMAND_LINE_SIZE;
1446        }
1447        len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1448        if (len < 0 || len > COMMAND_LINE_SIZE)
1449                early_panic("hv_get_command_line failed: %d\n", len);
1450#endif
1451
1452        *cmdline_p = boot_command_line;
1453
1454        /* Set disabled_map and setup_max_cpus very early */
1455        parse_early_param();
1456
1457        /* Make sure the kernel is compatible with the hypervisor. */
1458        validate_hv();
1459        validate_va();
1460
1461        setup_cpu_maps();
1462
1463
1464#if defined(CONFIG_PCI) && !defined(__tilegx__)
1465        /*
1466         * Initialize the PCI structures.  This is done before memory
1467         * setup so that we know whether or not a pci_reserve region
1468         * is necessary.
1469         */
1470        if (tile_pci_init() == 0)
1471                pci_reserve_mb = 0;
1472
1473        /* PCI systems reserve a region just below 4GB for mapping iomem. */
1474        pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1475        pci_reserve_start_pfn = pci_reserve_end_pfn -
1476                (pci_reserve_mb << (20 - PAGE_SHIFT));
1477#endif
1478
1479        init_mm.start_code = (unsigned long) _text;
1480        init_mm.end_code = (unsigned long) _etext;
1481        init_mm.end_data = (unsigned long) _edata;
1482        init_mm.brk = (unsigned long) _end;
1483
1484        setup_memory();
1485        store_permanent_mappings();
1486        setup_bootmem_allocator();
1487
1488        /*
1489         * NOTE: before this point _nobody_ is allowed to allocate
1490         * any memory using the bootmem allocator.
1491         */
1492
1493#ifdef CONFIG_SWIOTLB
1494        swiotlb_init(0);
1495#endif
1496
1497        paging_init();
1498        setup_numa_mapping();
1499        zone_sizes_init();
1500        set_page_homes();
1501        setup_cpu(1);
1502        setup_clock();
1503        load_hv_initrd();
1504}
1505
1506
1507/*
1508 * Set up per-cpu memory.
1509 */
1510
1511unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1512EXPORT_SYMBOL(__per_cpu_offset);
1513
1514static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1515static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1516
1517/*
1518 * As the percpu code allocates pages, we return the pages from the
1519 * end of the node for the specified cpu.
1520 */
1521static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1522{
1523        int nid = cpu_to_node(cpu);
1524        unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1525
1526        BUG_ON(size % PAGE_SIZE != 0);
1527        pfn_offset[nid] += size / PAGE_SIZE;
1528        BUG_ON(node_percpu[nid] < size);
1529        node_percpu[nid] -= size;
1530        if (percpu_pfn[cpu] == 0)
1531                percpu_pfn[cpu] = pfn;
1532        return pfn_to_kaddr(pfn);
1533}
1534
1535/*
1536 * Pages reserved for percpu memory are not freeable, and in any case we are
1537 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1538 */
1539static void __init pcpu_fc_free(void *ptr, size_t size)
1540{
1541}
1542
1543/*
1544 * Set up vmalloc page tables using bootmem for the percpu code.
1545 */
1546static void __init pcpu_fc_populate_pte(unsigned long addr)
1547{
1548        pgd_t *pgd;
1549        pud_t *pud;
1550        pmd_t *pmd;
1551        pte_t *pte;
1552
1553        BUG_ON(pgd_addr_invalid(addr));
1554        if (addr < VMALLOC_START || addr >= VMALLOC_END)
1555                panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx; try increasing CONFIG_VMALLOC_RESERVE\n",
1556                      addr, VMALLOC_START, VMALLOC_END);
1557
1558        pgd = swapper_pg_dir + pgd_index(addr);
1559        pud = pud_offset(pgd, addr);
1560        BUG_ON(!pud_present(*pud));
1561        pmd = pmd_offset(pud, addr);
1562        if (pmd_present(*pmd)) {
1563                BUG_ON(pmd_huge_page(*pmd));
1564        } else {
1565                pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1566                                      HV_PAGE_TABLE_ALIGN, 0);
1567                pmd_populate_kernel(&init_mm, pmd, pte);
1568        }
1569}
1570
1571void __init setup_per_cpu_areas(void)
1572{
1573        struct page *pg;
1574        unsigned long delta, pfn, lowmem_va;
1575        unsigned long size = percpu_size();
1576        char *ptr;
1577        int rc, cpu, i;
1578
1579        rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1580                                   pcpu_fc_free, pcpu_fc_populate_pte);
1581        if (rc < 0)
1582                panic("Cannot initialize percpu area (err=%d)", rc);
1583
1584        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1585        for_each_possible_cpu(cpu) {
1586                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1587
1588                /* finv the copy out of cache so we can change homecache */
1589                ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1590                __finv_buffer(ptr, size);
1591                pfn = percpu_pfn[cpu];
1592
1593                /* Rewrite the page tables to cache on that cpu */
1594                pg = pfn_to_page(pfn);
1595                for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1596
1597                        /* Update the vmalloc mapping and page home. */
1598                        unsigned long addr = (unsigned long)ptr + i;
1599                        pte_t *ptep = virt_to_kpte(addr);
1600                        pte_t pte = *ptep;
1601                        BUG_ON(pfn != pte_pfn(pte));
1602                        pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1603                        pte = set_remote_cache_cpu(pte, cpu);
1604                        set_pte_at(&init_mm, addr, ptep, pte);
1605
1606                        /* Update the lowmem mapping for consistency. */
1607                        lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1608                        ptep = virt_to_kpte(lowmem_va);
1609                        if (pte_huge(*ptep)) {
1610                                printk(KERN_DEBUG "early shatter of huge page at %#lx\n",
1611                                       lowmem_va);
1612                                shatter_pmd((pmd_t *)ptep);
1613                                ptep = virt_to_kpte(lowmem_va);
1614                                BUG_ON(pte_huge(*ptep));
1615                        }
1616                        BUG_ON(pfn != pte_pfn(*ptep));
1617                        set_pte_at(&init_mm, lowmem_va, ptep, pte);
1618                }
1619        }
1620
1621        /* Set our thread pointer appropriately. */
1622        set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1623
1624        /* Make sure the finv's have completed. */
1625        mb_incoherent();
1626
1627        /* Flush the TLB so we reference it properly from here on out. */
1628        local_flush_tlb_all();
1629}
1630
1631static struct resource data_resource = {
1632        .name   = "Kernel data",
1633        .start  = 0,
1634        .end    = 0,
1635        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
1636};
1637
1638static struct resource code_resource = {
1639        .name   = "Kernel code",
1640        .start  = 0,
1641        .end    = 0,
1642        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
1643};
1644
1645/*
1646 * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1647 * mappings above 4GB.
1648 */
1649#if defined(CONFIG_PCI) && !defined(__tilegx__)
1650static struct resource* __init
1651insert_non_bus_resource(void)
1652{
1653        struct resource *res =
1654                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1655        if (!res)
1656                return NULL;
1657        res->name = "Non-Bus Physical Address Space";
1658        res->start = (1ULL << 32);
1659        res->end = -1LL;
1660        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1661        if (insert_resource(&iomem_resource, res)) {
1662                kfree(res);
1663                return NULL;
1664        }
1665        return res;
1666}
1667#endif
1668
1669static struct resource* __init
1670insert_ram_resource(u64 start_pfn, u64 end_pfn, bool reserved)
1671{
1672        struct resource *res =
1673                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1674        if (!res)
1675                return NULL;
1676        res->start = start_pfn << PAGE_SHIFT;
1677        res->end = (end_pfn << PAGE_SHIFT) - 1;
1678        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1679        if (reserved) {
1680                res->name = "Reserved";
1681        } else {
1682                res->name = "System RAM";
1683                res->flags |= IORESOURCE_SYSRAM;
1684        }
1685        if (insert_resource(&iomem_resource, res)) {
1686                kfree(res);
1687                return NULL;
1688        }
1689        return res;
1690}
1691
1692/*
1693 * Request address space for all standard resources
1694 *
1695 * If the system includes PCI root complex drivers, we need to create
1696 * a window just below 4GB where PCI BARs can be mapped.
1697 */
1698static int __init request_standard_resources(void)
1699{
1700        int i;
1701        enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
1702
1703#if defined(CONFIG_PCI) && !defined(__tilegx__)
1704        insert_non_bus_resource();
1705#endif
1706
1707        for_each_online_node(i) {
1708                u64 start_pfn = node_start_pfn[i];
1709                u64 end_pfn = node_end_pfn[i];
1710
1711#if defined(CONFIG_PCI) && !defined(__tilegx__)
1712                if (start_pfn <= pci_reserve_start_pfn &&
1713                    end_pfn > pci_reserve_start_pfn) {
1714                        if (end_pfn > pci_reserve_end_pfn)
1715                                insert_ram_resource(pci_reserve_end_pfn,
1716                                                    end_pfn, 0);
1717                        end_pfn = pci_reserve_start_pfn;
1718                }
1719#endif
1720                insert_ram_resource(start_pfn, end_pfn, 0);
1721        }
1722
1723        code_resource.start = __pa(_text - CODE_DELTA);
1724        code_resource.end = __pa(_etext - CODE_DELTA)-1;
1725        data_resource.start = __pa(_sdata);
1726        data_resource.end = __pa(_end)-1;
1727
1728        insert_resource(&iomem_resource, &code_resource);
1729        insert_resource(&iomem_resource, &data_resource);
1730
1731        /* Mark any "memmap" regions busy for the resource manager. */
1732        for (i = 0; i < memmap_nr; ++i) {
1733                struct memmap_entry *m = &memmap_map[i];
1734                insert_ram_resource(PFN_DOWN(m->addr),
1735                                    PFN_UP(m->addr + m->size - 1), 1);
1736        }
1737
1738#ifdef CONFIG_KEXEC
1739        insert_resource(&iomem_resource, &crashk_res);
1740#endif
1741
1742        return 0;
1743}
1744
1745subsys_initcall(request_standard_resources);
1746