linux/arch/tile/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 *
  14 * Support the cycle counter clocksource and tile timer clock event device.
  15 */
  16
  17#include <linux/time.h>
  18#include <linux/timex.h>
  19#include <linux/clocksource.h>
  20#include <linux/clockchips.h>
  21#include <linux/hardirq.h>
  22#include <linux/sched.h>
  23#include <linux/smp.h>
  24#include <linux/delay.h>
  25#include <linux/module.h>
  26#include <linux/timekeeper_internal.h>
  27#include <asm/irq_regs.h>
  28#include <asm/traps.h>
  29#include <asm/vdso.h>
  30#include <hv/hypervisor.h>
  31#include <arch/interrupts.h>
  32#include <arch/spr_def.h>
  33
  34
  35/*
  36 * Define the cycle counter clock source.
  37 */
  38
  39/* How many cycles per second we are running at. */
  40static cycles_t cycles_per_sec __write_once;
  41
  42cycles_t get_clock_rate(void)
  43{
  44        return cycles_per_sec;
  45}
  46
  47#if CHIP_HAS_SPLIT_CYCLE()
  48cycles_t get_cycles(void)
  49{
  50        unsigned int high = __insn_mfspr(SPR_CYCLE_HIGH);
  51        unsigned int low = __insn_mfspr(SPR_CYCLE_LOW);
  52        unsigned int high2 = __insn_mfspr(SPR_CYCLE_HIGH);
  53
  54        while (unlikely(high != high2)) {
  55                low = __insn_mfspr(SPR_CYCLE_LOW);
  56                high = high2;
  57                high2 = __insn_mfspr(SPR_CYCLE_HIGH);
  58        }
  59
  60        return (((cycles_t)high) << 32) | low;
  61}
  62EXPORT_SYMBOL(get_cycles);
  63#endif
  64
  65/*
  66 * We use a relatively small shift value so that sched_clock()
  67 * won't wrap around very often.
  68 */
  69#define SCHED_CLOCK_SHIFT 10
  70
  71static unsigned long sched_clock_mult __write_once;
  72
  73static cycles_t clocksource_get_cycles(struct clocksource *cs)
  74{
  75        return get_cycles();
  76}
  77
  78static struct clocksource cycle_counter_cs = {
  79        .name = "cycle counter",
  80        .rating = 300,
  81        .read = clocksource_get_cycles,
  82        .mask = CLOCKSOURCE_MASK(64),
  83        .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  84};
  85
  86/*
  87 * Called very early from setup_arch() to set cycles_per_sec.
  88 * We initialize it early so we can use it to set up loops_per_jiffy.
  89 */
  90void __init setup_clock(void)
  91{
  92        cycles_per_sec = hv_sysconf(HV_SYSCONF_CPU_SPEED);
  93        sched_clock_mult =
  94                clocksource_hz2mult(cycles_per_sec, SCHED_CLOCK_SHIFT);
  95}
  96
  97void __init calibrate_delay(void)
  98{
  99        loops_per_jiffy = get_clock_rate() / HZ;
 100        pr_info("Clock rate yields %lu.%02lu BogoMIPS (lpj=%lu)\n",
 101                loops_per_jiffy / (500000 / HZ),
 102                (loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy);
 103}
 104
 105/* Called fairly late in init/main.c, but before we go smp. */
 106void __init time_init(void)
 107{
 108        /* Initialize and register the clock source. */
 109        clocksource_register_hz(&cycle_counter_cs, cycles_per_sec);
 110
 111        /* Start up the tile-timer interrupt source on the boot cpu. */
 112        setup_tile_timer();
 113}
 114
 115/*
 116 * Define the tile timer clock event device.  The timer is driven by
 117 * the TILE_TIMER_CONTROL register, which consists of a 31-bit down
 118 * counter, plus bit 31, which signifies that the counter has wrapped
 119 * from zero to (2**31) - 1.  The INT_TILE_TIMER interrupt will be
 120 * raised as long as bit 31 is set.
 121 *
 122 * The TILE_MINSEC value represents the largest range of real-time
 123 * we can possibly cover with the timer, based on MAX_TICK combined
 124 * with the slowest reasonable clock rate we might run at.
 125 */
 126
 127#define MAX_TICK 0x7fffffff   /* we have 31 bits of countdown timer */
 128#define TILE_MINSEC 5         /* timer covers no more than 5 seconds */
 129
 130static int tile_timer_set_next_event(unsigned long ticks,
 131                                     struct clock_event_device *evt)
 132{
 133        BUG_ON(ticks > MAX_TICK);
 134        __insn_mtspr(SPR_TILE_TIMER_CONTROL, ticks);
 135        arch_local_irq_unmask_now(INT_TILE_TIMER);
 136        return 0;
 137}
 138
 139/*
 140 * Whenever anyone tries to change modes, we just mask interrupts
 141 * and wait for the next event to get set.
 142 */
 143static int tile_timer_shutdown(struct clock_event_device *evt)
 144{
 145        arch_local_irq_mask_now(INT_TILE_TIMER);
 146        return 0;
 147}
 148
 149/*
 150 * Set min_delta_ns to 1 microsecond, since it takes about
 151 * that long to fire the interrupt.
 152 */
 153static DEFINE_PER_CPU(struct clock_event_device, tile_timer) = {
 154        .name = "tile timer",
 155        .features = CLOCK_EVT_FEAT_ONESHOT,
 156        .min_delta_ns = 1000,
 157        .rating = 100,
 158        .irq = -1,
 159        .set_next_event = tile_timer_set_next_event,
 160        .set_state_shutdown = tile_timer_shutdown,
 161        .set_state_oneshot = tile_timer_shutdown,
 162        .tick_resume = tile_timer_shutdown,
 163};
 164
 165void setup_tile_timer(void)
 166{
 167        struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
 168
 169        /* Fill in fields that are speed-specific. */
 170        clockevents_calc_mult_shift(evt, cycles_per_sec, TILE_MINSEC);
 171        evt->max_delta_ns = clockevent_delta2ns(MAX_TICK, evt);
 172
 173        /* Mark as being for this cpu only. */
 174        evt->cpumask = cpumask_of(smp_processor_id());
 175
 176        /* Start out with timer not firing. */
 177        arch_local_irq_mask_now(INT_TILE_TIMER);
 178
 179        /* Register tile timer. */
 180        clockevents_register_device(evt);
 181}
 182
 183/* Called from the interrupt vector. */
 184void do_timer_interrupt(struct pt_regs *regs, int fault_num)
 185{
 186        struct pt_regs *old_regs = set_irq_regs(regs);
 187        struct clock_event_device *evt = this_cpu_ptr(&tile_timer);
 188
 189        /*
 190         * Mask the timer interrupt here, since we are a oneshot timer
 191         * and there are now by definition no events pending.
 192         */
 193        arch_local_irq_mask(INT_TILE_TIMER);
 194
 195        /* Track time spent here in an interrupt context */
 196        irq_enter();
 197
 198        /* Track interrupt count. */
 199        __this_cpu_inc(irq_stat.irq_timer_count);
 200
 201        /* Call the generic timer handler */
 202        evt->event_handler(evt);
 203
 204        /*
 205         * Track time spent against the current process again and
 206         * process any softirqs if they are waiting.
 207         */
 208        irq_exit();
 209
 210        set_irq_regs(old_regs);
 211}
 212
 213/*
 214 * Scheduler clock - returns current time in nanosec units.
 215 * Note that with LOCKDEP, this is called during lockdep_init(), and
 216 * we will claim that sched_clock() is zero for a little while, until
 217 * we run setup_clock(), above.
 218 */
 219unsigned long long sched_clock(void)
 220{
 221        return clocksource_cyc2ns(get_cycles(),
 222                                  sched_clock_mult, SCHED_CLOCK_SHIFT);
 223}
 224
 225int setup_profiling_timer(unsigned int multiplier)
 226{
 227        return -EINVAL;
 228}
 229
 230/*
 231 * Use the tile timer to convert nsecs to core clock cycles, relying
 232 * on it having the same frequency as SPR_CYCLE.
 233 */
 234cycles_t ns2cycles(unsigned long nsecs)
 235{
 236        /*
 237         * We do not have to disable preemption here as each core has the same
 238         * clock frequency.
 239         */
 240        struct clock_event_device *dev = raw_cpu_ptr(&tile_timer);
 241
 242        /*
 243         * as in clocksource.h and x86's timer.h, we split the calculation
 244         * into 2 parts to avoid unecessary overflow of the intermediate
 245         * value. This will not lead to any loss of precision.
 246         */
 247        u64 quot = (u64)nsecs >> dev->shift;
 248        u64 rem  = (u64)nsecs & ((1ULL << dev->shift) - 1);
 249        return quot * dev->mult + ((rem * dev->mult) >> dev->shift);
 250}
 251
 252void update_vsyscall_tz(void)
 253{
 254        write_seqcount_begin(&vdso_data->tz_seq);
 255        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 256        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 257        write_seqcount_end(&vdso_data->tz_seq);
 258}
 259
 260void update_vsyscall(struct timekeeper *tk)
 261{
 262        if (tk->tkr_mono.clock != &cycle_counter_cs)
 263                return;
 264
 265        write_seqcount_begin(&vdso_data->tb_seq);
 266
 267        vdso_data->cycle_last           = tk->tkr_mono.cycle_last;
 268        vdso_data->mask                 = tk->tkr_mono.mask;
 269        vdso_data->mult                 = tk->tkr_mono.mult;
 270        vdso_data->shift                = tk->tkr_mono.shift;
 271
 272        vdso_data->wall_time_sec        = tk->xtime_sec;
 273        vdso_data->wall_time_snsec      = tk->tkr_mono.xtime_nsec;
 274
 275        vdso_data->monotonic_time_sec   = tk->xtime_sec
 276                                        + tk->wall_to_monotonic.tv_sec;
 277        vdso_data->monotonic_time_snsec = tk->tkr_mono.xtime_nsec
 278                                        + ((u64)tk->wall_to_monotonic.tv_nsec
 279                                                << tk->tkr_mono.shift);
 280        while (vdso_data->monotonic_time_snsec >=
 281                                        (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 282                vdso_data->monotonic_time_snsec -=
 283                                        ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
 284                vdso_data->monotonic_time_sec++;
 285        }
 286
 287        vdso_data->wall_time_coarse_sec = tk->xtime_sec;
 288        vdso_data->wall_time_coarse_nsec = (long)(tk->tkr_mono.xtime_nsec >>
 289                                                 tk->tkr_mono.shift);
 290
 291        vdso_data->monotonic_time_coarse_sec =
 292                vdso_data->wall_time_coarse_sec + tk->wall_to_monotonic.tv_sec;
 293        vdso_data->monotonic_time_coarse_nsec =
 294                vdso_data->wall_time_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
 295
 296        while (vdso_data->monotonic_time_coarse_nsec >= NSEC_PER_SEC) {
 297                vdso_data->monotonic_time_coarse_nsec -= NSEC_PER_SEC;
 298                vdso_data->monotonic_time_coarse_sec++;
 299        }
 300
 301        write_seqcount_end(&vdso_data->tb_seq);
 302}
 303