linux/arch/x86/kernel/crash.c
<<
>>
Prefs
   1/*
   2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
   3 *
   4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
   5 *
   6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
   7 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
   8 * Authors:
   9 *      Vivek Goyal <vgoyal@redhat.com>
  10 *
  11 */
  12
  13#define pr_fmt(fmt)     "kexec: " fmt
  14
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/smp.h>
  18#include <linux/reboot.h>
  19#include <linux/kexec.h>
  20#include <linux/delay.h>
  21#include <linux/elf.h>
  22#include <linux/elfcore.h>
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/vmalloc.h>
  26
  27#include <asm/processor.h>
  28#include <asm/hardirq.h>
  29#include <asm/nmi.h>
  30#include <asm/hw_irq.h>
  31#include <asm/apic.h>
  32#include <asm/io_apic.h>
  33#include <asm/hpet.h>
  34#include <linux/kdebug.h>
  35#include <asm/cpu.h>
  36#include <asm/reboot.h>
  37#include <asm/virtext.h>
  38#include <asm/intel_pt.h>
  39
  40/* Alignment required for elf header segment */
  41#define ELF_CORE_HEADER_ALIGN   4096
  42
  43/* This primarily represents number of split ranges due to exclusion */
  44#define CRASH_MAX_RANGES        16
  45
  46struct crash_mem_range {
  47        u64 start, end;
  48};
  49
  50struct crash_mem {
  51        unsigned int nr_ranges;
  52        struct crash_mem_range ranges[CRASH_MAX_RANGES];
  53};
  54
  55/* Misc data about ram ranges needed to prepare elf headers */
  56struct crash_elf_data {
  57        struct kimage *image;
  58        /*
  59         * Total number of ram ranges we have after various adjustments for
  60         * crash reserved region, etc.
  61         */
  62        unsigned int max_nr_ranges;
  63
  64        /* Pointer to elf header */
  65        void *ehdr;
  66        /* Pointer to next phdr */
  67        void *bufp;
  68        struct crash_mem mem;
  69};
  70
  71/* Used while preparing memory map entries for second kernel */
  72struct crash_memmap_data {
  73        struct boot_params *params;
  74        /* Type of memory */
  75        unsigned int type;
  76};
  77
  78/*
  79 * This is used to VMCLEAR all VMCSs loaded on the
  80 * processor. And when loading kvm_intel module, the
  81 * callback function pointer will be assigned.
  82 *
  83 * protected by rcu.
  84 */
  85crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
  86EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
  87unsigned long crash_zero_bytes;
  88
  89static inline void cpu_crash_vmclear_loaded_vmcss(void)
  90{
  91        crash_vmclear_fn *do_vmclear_operation = NULL;
  92
  93        rcu_read_lock();
  94        do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
  95        if (do_vmclear_operation)
  96                do_vmclear_operation();
  97        rcu_read_unlock();
  98}
  99
 100#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
 101
 102static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
 103{
 104#ifdef CONFIG_X86_32
 105        struct pt_regs fixed_regs;
 106
 107        if (!user_mode(regs)) {
 108                crash_fixup_ss_esp(&fixed_regs, regs);
 109                regs = &fixed_regs;
 110        }
 111#endif
 112        crash_save_cpu(regs, cpu);
 113
 114        /*
 115         * VMCLEAR VMCSs loaded on all cpus if needed.
 116         */
 117        cpu_crash_vmclear_loaded_vmcss();
 118
 119        /* Disable VMX or SVM if needed.
 120         *
 121         * We need to disable virtualization on all CPUs.
 122         * Having VMX or SVM enabled on any CPU may break rebooting
 123         * after the kdump kernel has finished its task.
 124         */
 125        cpu_emergency_vmxoff();
 126        cpu_emergency_svm_disable();
 127
 128        /*
 129         * Disable Intel PT to stop its logging
 130         */
 131        cpu_emergency_stop_pt();
 132
 133        disable_local_APIC();
 134}
 135
 136static void kdump_nmi_shootdown_cpus(void)
 137{
 138        nmi_shootdown_cpus(kdump_nmi_callback);
 139
 140        disable_local_APIC();
 141}
 142
 143#else
 144static void kdump_nmi_shootdown_cpus(void)
 145{
 146        /* There are no cpus to shootdown */
 147}
 148#endif
 149
 150void native_machine_crash_shutdown(struct pt_regs *regs)
 151{
 152        /* This function is only called after the system
 153         * has panicked or is otherwise in a critical state.
 154         * The minimum amount of code to allow a kexec'd kernel
 155         * to run successfully needs to happen here.
 156         *
 157         * In practice this means shooting down the other cpus in
 158         * an SMP system.
 159         */
 160        /* The kernel is broken so disable interrupts */
 161        local_irq_disable();
 162
 163        kdump_nmi_shootdown_cpus();
 164
 165        /*
 166         * VMCLEAR VMCSs loaded on this cpu if needed.
 167         */
 168        cpu_crash_vmclear_loaded_vmcss();
 169
 170        /* Booting kdump kernel with VMX or SVM enabled won't work,
 171         * because (among other limitations) we can't disable paging
 172         * with the virt flags.
 173         */
 174        cpu_emergency_vmxoff();
 175        cpu_emergency_svm_disable();
 176
 177        /*
 178         * Disable Intel PT to stop its logging
 179         */
 180        cpu_emergency_stop_pt();
 181
 182#ifdef CONFIG_X86_IO_APIC
 183        /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
 184        ioapic_zap_locks();
 185        disable_IO_APIC();
 186#endif
 187        lapic_shutdown();
 188#ifdef CONFIG_HPET_TIMER
 189        hpet_disable();
 190#endif
 191        crash_save_cpu(regs, safe_smp_processor_id());
 192}
 193
 194#ifdef CONFIG_KEXEC_FILE
 195static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
 196{
 197        unsigned int *nr_ranges = arg;
 198
 199        (*nr_ranges)++;
 200        return 0;
 201}
 202
 203
 204/* Gather all the required information to prepare elf headers for ram regions */
 205static void fill_up_crash_elf_data(struct crash_elf_data *ced,
 206                                   struct kimage *image)
 207{
 208        unsigned int nr_ranges = 0;
 209
 210        ced->image = image;
 211
 212        walk_system_ram_res(0, -1, &nr_ranges,
 213                                get_nr_ram_ranges_callback);
 214
 215        ced->max_nr_ranges = nr_ranges;
 216
 217        /* Exclusion of crash region could split memory ranges */
 218        ced->max_nr_ranges++;
 219
 220        /* If crashk_low_res is not 0, another range split possible */
 221        if (crashk_low_res.end)
 222                ced->max_nr_ranges++;
 223}
 224
 225static int exclude_mem_range(struct crash_mem *mem,
 226                unsigned long long mstart, unsigned long long mend)
 227{
 228        int i, j;
 229        unsigned long long start, end;
 230        struct crash_mem_range temp_range = {0, 0};
 231
 232        for (i = 0; i < mem->nr_ranges; i++) {
 233                start = mem->ranges[i].start;
 234                end = mem->ranges[i].end;
 235
 236                if (mstart > end || mend < start)
 237                        continue;
 238
 239                /* Truncate any area outside of range */
 240                if (mstart < start)
 241                        mstart = start;
 242                if (mend > end)
 243                        mend = end;
 244
 245                /* Found completely overlapping range */
 246                if (mstart == start && mend == end) {
 247                        mem->ranges[i].start = 0;
 248                        mem->ranges[i].end = 0;
 249                        if (i < mem->nr_ranges - 1) {
 250                                /* Shift rest of the ranges to left */
 251                                for (j = i; j < mem->nr_ranges - 1; j++) {
 252                                        mem->ranges[j].start =
 253                                                mem->ranges[j+1].start;
 254                                        mem->ranges[j].end =
 255                                                        mem->ranges[j+1].end;
 256                                }
 257                        }
 258                        mem->nr_ranges--;
 259                        return 0;
 260                }
 261
 262                if (mstart > start && mend < end) {
 263                        /* Split original range */
 264                        mem->ranges[i].end = mstart - 1;
 265                        temp_range.start = mend + 1;
 266                        temp_range.end = end;
 267                } else if (mstart != start)
 268                        mem->ranges[i].end = mstart - 1;
 269                else
 270                        mem->ranges[i].start = mend + 1;
 271                break;
 272        }
 273
 274        /* If a split happend, add the split to array */
 275        if (!temp_range.end)
 276                return 0;
 277
 278        /* Split happened */
 279        if (i == CRASH_MAX_RANGES - 1) {
 280                pr_err("Too many crash ranges after split\n");
 281                return -ENOMEM;
 282        }
 283
 284        /* Location where new range should go */
 285        j = i + 1;
 286        if (j < mem->nr_ranges) {
 287                /* Move over all ranges one slot towards the end */
 288                for (i = mem->nr_ranges - 1; i >= j; i--)
 289                        mem->ranges[i + 1] = mem->ranges[i];
 290        }
 291
 292        mem->ranges[j].start = temp_range.start;
 293        mem->ranges[j].end = temp_range.end;
 294        mem->nr_ranges++;
 295        return 0;
 296}
 297
 298/*
 299 * Look for any unwanted ranges between mstart, mend and remove them. This
 300 * might lead to split and split ranges are put in ced->mem.ranges[] array
 301 */
 302static int elf_header_exclude_ranges(struct crash_elf_data *ced,
 303                unsigned long long mstart, unsigned long long mend)
 304{
 305        struct crash_mem *cmem = &ced->mem;
 306        int ret = 0;
 307
 308        memset(cmem->ranges, 0, sizeof(cmem->ranges));
 309
 310        cmem->ranges[0].start = mstart;
 311        cmem->ranges[0].end = mend;
 312        cmem->nr_ranges = 1;
 313
 314        /* Exclude crashkernel region */
 315        ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
 316        if (ret)
 317                return ret;
 318
 319        if (crashk_low_res.end) {
 320                ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
 321                if (ret)
 322                        return ret;
 323        }
 324
 325        return ret;
 326}
 327
 328static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
 329{
 330        struct crash_elf_data *ced = arg;
 331        Elf64_Ehdr *ehdr;
 332        Elf64_Phdr *phdr;
 333        unsigned long mstart, mend;
 334        struct kimage *image = ced->image;
 335        struct crash_mem *cmem;
 336        int ret, i;
 337
 338        ehdr = ced->ehdr;
 339
 340        /* Exclude unwanted mem ranges */
 341        ret = elf_header_exclude_ranges(ced, start, end);
 342        if (ret)
 343                return ret;
 344
 345        /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
 346        cmem = &ced->mem;
 347
 348        for (i = 0; i < cmem->nr_ranges; i++) {
 349                mstart = cmem->ranges[i].start;
 350                mend = cmem->ranges[i].end;
 351
 352                phdr = ced->bufp;
 353                ced->bufp += sizeof(Elf64_Phdr);
 354
 355                phdr->p_type = PT_LOAD;
 356                phdr->p_flags = PF_R|PF_W|PF_X;
 357                phdr->p_offset  = mstart;
 358
 359                /*
 360                 * If a range matches backup region, adjust offset to backup
 361                 * segment.
 362                 */
 363                if (mstart == image->arch.backup_src_start &&
 364                    (mend - mstart + 1) == image->arch.backup_src_sz)
 365                        phdr->p_offset = image->arch.backup_load_addr;
 366
 367                phdr->p_paddr = mstart;
 368                phdr->p_vaddr = (unsigned long long) __va(mstart);
 369                phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
 370                phdr->p_align = 0;
 371                ehdr->e_phnum++;
 372                pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
 373                        phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
 374                        ehdr->e_phnum, phdr->p_offset);
 375        }
 376
 377        return ret;
 378}
 379
 380static int prepare_elf64_headers(struct crash_elf_data *ced,
 381                void **addr, unsigned long *sz)
 382{
 383        Elf64_Ehdr *ehdr;
 384        Elf64_Phdr *phdr;
 385        unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
 386        unsigned char *buf, *bufp;
 387        unsigned int cpu;
 388        unsigned long long notes_addr;
 389        int ret;
 390
 391        /* extra phdr for vmcoreinfo elf note */
 392        nr_phdr = nr_cpus + 1;
 393        nr_phdr += ced->max_nr_ranges;
 394
 395        /*
 396         * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
 397         * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
 398         * I think this is required by tools like gdb. So same physical
 399         * memory will be mapped in two elf headers. One will contain kernel
 400         * text virtual addresses and other will have __va(physical) addresses.
 401         */
 402
 403        nr_phdr++;
 404        elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
 405        elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
 406
 407        buf = vzalloc(elf_sz);
 408        if (!buf)
 409                return -ENOMEM;
 410
 411        bufp = buf;
 412        ehdr = (Elf64_Ehdr *)bufp;
 413        bufp += sizeof(Elf64_Ehdr);
 414        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
 415        ehdr->e_ident[EI_CLASS] = ELFCLASS64;
 416        ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
 417        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 418        ehdr->e_ident[EI_OSABI] = ELF_OSABI;
 419        memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
 420        ehdr->e_type = ET_CORE;
 421        ehdr->e_machine = ELF_ARCH;
 422        ehdr->e_version = EV_CURRENT;
 423        ehdr->e_phoff = sizeof(Elf64_Ehdr);
 424        ehdr->e_ehsize = sizeof(Elf64_Ehdr);
 425        ehdr->e_phentsize = sizeof(Elf64_Phdr);
 426
 427        /* Prepare one phdr of type PT_NOTE for each present cpu */
 428        for_each_present_cpu(cpu) {
 429                phdr = (Elf64_Phdr *)bufp;
 430                bufp += sizeof(Elf64_Phdr);
 431                phdr->p_type = PT_NOTE;
 432                notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
 433                phdr->p_offset = phdr->p_paddr = notes_addr;
 434                phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
 435                (ehdr->e_phnum)++;
 436        }
 437
 438        /* Prepare one PT_NOTE header for vmcoreinfo */
 439        phdr = (Elf64_Phdr *)bufp;
 440        bufp += sizeof(Elf64_Phdr);
 441        phdr->p_type = PT_NOTE;
 442        phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
 443        phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
 444        (ehdr->e_phnum)++;
 445
 446#ifdef CONFIG_X86_64
 447        /* Prepare PT_LOAD type program header for kernel text region */
 448        phdr = (Elf64_Phdr *)bufp;
 449        bufp += sizeof(Elf64_Phdr);
 450        phdr->p_type = PT_LOAD;
 451        phdr->p_flags = PF_R|PF_W|PF_X;
 452        phdr->p_vaddr = (Elf64_Addr)_text;
 453        phdr->p_filesz = phdr->p_memsz = _end - _text;
 454        phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
 455        (ehdr->e_phnum)++;
 456#endif
 457
 458        /* Prepare PT_LOAD headers for system ram chunks. */
 459        ced->ehdr = ehdr;
 460        ced->bufp = bufp;
 461        ret = walk_system_ram_res(0, -1, ced,
 462                        prepare_elf64_ram_headers_callback);
 463        if (ret < 0)
 464                return ret;
 465
 466        *addr = buf;
 467        *sz = elf_sz;
 468        return 0;
 469}
 470
 471/* Prepare elf headers. Return addr and size */
 472static int prepare_elf_headers(struct kimage *image, void **addr,
 473                                        unsigned long *sz)
 474{
 475        struct crash_elf_data *ced;
 476        int ret;
 477
 478        ced = kzalloc(sizeof(*ced), GFP_KERNEL);
 479        if (!ced)
 480                return -ENOMEM;
 481
 482        fill_up_crash_elf_data(ced, image);
 483
 484        /* By default prepare 64bit headers */
 485        ret =  prepare_elf64_headers(ced, addr, sz);
 486        kfree(ced);
 487        return ret;
 488}
 489
 490static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
 491{
 492        unsigned int nr_e820_entries;
 493
 494        nr_e820_entries = params->e820_entries;
 495        if (nr_e820_entries >= E820MAX)
 496                return 1;
 497
 498        memcpy(&params->e820_map[nr_e820_entries], entry,
 499                        sizeof(struct e820entry));
 500        params->e820_entries++;
 501        return 0;
 502}
 503
 504static int memmap_entry_callback(u64 start, u64 end, void *arg)
 505{
 506        struct crash_memmap_data *cmd = arg;
 507        struct boot_params *params = cmd->params;
 508        struct e820entry ei;
 509
 510        ei.addr = start;
 511        ei.size = end - start + 1;
 512        ei.type = cmd->type;
 513        add_e820_entry(params, &ei);
 514
 515        return 0;
 516}
 517
 518static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
 519                                 unsigned long long mstart,
 520                                 unsigned long long mend)
 521{
 522        unsigned long start, end;
 523        int ret = 0;
 524
 525        cmem->ranges[0].start = mstart;
 526        cmem->ranges[0].end = mend;
 527        cmem->nr_ranges = 1;
 528
 529        /* Exclude Backup region */
 530        start = image->arch.backup_load_addr;
 531        end = start + image->arch.backup_src_sz - 1;
 532        ret = exclude_mem_range(cmem, start, end);
 533        if (ret)
 534                return ret;
 535
 536        /* Exclude elf header region */
 537        start = image->arch.elf_load_addr;
 538        end = start + image->arch.elf_headers_sz - 1;
 539        return exclude_mem_range(cmem, start, end);
 540}
 541
 542/* Prepare memory map for crash dump kernel */
 543int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
 544{
 545        int i, ret = 0;
 546        unsigned long flags;
 547        struct e820entry ei;
 548        struct crash_memmap_data cmd;
 549        struct crash_mem *cmem;
 550
 551        cmem = vzalloc(sizeof(struct crash_mem));
 552        if (!cmem)
 553                return -ENOMEM;
 554
 555        memset(&cmd, 0, sizeof(struct crash_memmap_data));
 556        cmd.params = params;
 557
 558        /* Add first 640K segment */
 559        ei.addr = image->arch.backup_src_start;
 560        ei.size = image->arch.backup_src_sz;
 561        ei.type = E820_RAM;
 562        add_e820_entry(params, &ei);
 563
 564        /* Add ACPI tables */
 565        cmd.type = E820_ACPI;
 566        flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 567        walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
 568                       memmap_entry_callback);
 569
 570        /* Add ACPI Non-volatile Storage */
 571        cmd.type = E820_NVS;
 572        walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
 573                        memmap_entry_callback);
 574
 575        /* Add crashk_low_res region */
 576        if (crashk_low_res.end) {
 577                ei.addr = crashk_low_res.start;
 578                ei.size = crashk_low_res.end - crashk_low_res.start + 1;
 579                ei.type = E820_RAM;
 580                add_e820_entry(params, &ei);
 581        }
 582
 583        /* Exclude some ranges from crashk_res and add rest to memmap */
 584        ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
 585                                                crashk_res.end);
 586        if (ret)
 587                goto out;
 588
 589        for (i = 0; i < cmem->nr_ranges; i++) {
 590                ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
 591
 592                /* If entry is less than a page, skip it */
 593                if (ei.size < PAGE_SIZE)
 594                        continue;
 595                ei.addr = cmem->ranges[i].start;
 596                ei.type = E820_RAM;
 597                add_e820_entry(params, &ei);
 598        }
 599
 600out:
 601        vfree(cmem);
 602        return ret;
 603}
 604
 605static int determine_backup_region(u64 start, u64 end, void *arg)
 606{
 607        struct kimage *image = arg;
 608
 609        image->arch.backup_src_start = start;
 610        image->arch.backup_src_sz = end - start + 1;
 611
 612        /* Expecting only one range for backup region */
 613        return 1;
 614}
 615
 616int crash_load_segments(struct kimage *image)
 617{
 618        unsigned long src_start, src_sz, elf_sz;
 619        void *elf_addr;
 620        int ret;
 621
 622        /*
 623         * Determine and load a segment for backup area. First 640K RAM
 624         * region is backup source
 625         */
 626
 627        ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
 628                                image, determine_backup_region);
 629
 630        /* Zero or postive return values are ok */
 631        if (ret < 0)
 632                return ret;
 633
 634        src_start = image->arch.backup_src_start;
 635        src_sz = image->arch.backup_src_sz;
 636
 637        /* Add backup segment. */
 638        if (src_sz) {
 639                /*
 640                 * Ideally there is no source for backup segment. This is
 641                 * copied in purgatory after crash. Just add a zero filled
 642                 * segment for now to make sure checksum logic works fine.
 643                 */
 644                ret = kexec_add_buffer(image, (char *)&crash_zero_bytes,
 645                                       sizeof(crash_zero_bytes), src_sz,
 646                                       PAGE_SIZE, 0, -1, 0,
 647                                       &image->arch.backup_load_addr);
 648                if (ret)
 649                        return ret;
 650                pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
 651                         image->arch.backup_load_addr, src_start, src_sz);
 652        }
 653
 654        /* Prepare elf headers and add a segment */
 655        ret = prepare_elf_headers(image, &elf_addr, &elf_sz);
 656        if (ret)
 657                return ret;
 658
 659        image->arch.elf_headers = elf_addr;
 660        image->arch.elf_headers_sz = elf_sz;
 661
 662        ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz,
 663                        ELF_CORE_HEADER_ALIGN, 0, -1, 0,
 664                        &image->arch.elf_load_addr);
 665        if (ret) {
 666                vfree((void *)image->arch.elf_headers);
 667                return ret;
 668        }
 669        pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
 670                 image->arch.elf_load_addr, elf_sz, elf_sz);
 671
 672        return ret;
 673}
 674#endif /* CONFIG_KEXEC_FILE */
 675