linux/arch/x86/kernel/irq.c
<<
>>
Prefs
   1/*
   2 * Common interrupt code for 32 and 64 bit
   3 */
   4#include <linux/cpu.h>
   5#include <linux/interrupt.h>
   6#include <linux/kernel_stat.h>
   7#include <linux/of.h>
   8#include <linux/seq_file.h>
   9#include <linux/smp.h>
  10#include <linux/ftrace.h>
  11#include <linux/delay.h>
  12#include <linux/export.h>
  13
  14#include <asm/apic.h>
  15#include <asm/io_apic.h>
  16#include <asm/irq.h>
  17#include <asm/idle.h>
  18#include <asm/mce.h>
  19#include <asm/hw_irq.h>
  20#include <asm/desc.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include <asm/trace/irq_vectors.h>
  24
  25DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
  26EXPORT_PER_CPU_SYMBOL(irq_stat);
  27
  28DEFINE_PER_CPU(struct pt_regs *, irq_regs);
  29EXPORT_PER_CPU_SYMBOL(irq_regs);
  30
  31atomic_t irq_err_count;
  32
  33/* Function pointer for generic interrupt vector handling */
  34void (*x86_platform_ipi_callback)(void) = NULL;
  35
  36/*
  37 * 'what should we do if we get a hw irq event on an illegal vector'.
  38 * each architecture has to answer this themselves.
  39 */
  40void ack_bad_irq(unsigned int irq)
  41{
  42        if (printk_ratelimit())
  43                pr_err("unexpected IRQ trap at vector %02x\n", irq);
  44
  45        /*
  46         * Currently unexpected vectors happen only on SMP and APIC.
  47         * We _must_ ack these because every local APIC has only N
  48         * irq slots per priority level, and a 'hanging, unacked' IRQ
  49         * holds up an irq slot - in excessive cases (when multiple
  50         * unexpected vectors occur) that might lock up the APIC
  51         * completely.
  52         * But only ack when the APIC is enabled -AK
  53         */
  54        ack_APIC_irq();
  55}
  56
  57#define irq_stats(x)            (&per_cpu(irq_stat, x))
  58/*
  59 * /proc/interrupts printing for arch specific interrupts
  60 */
  61int arch_show_interrupts(struct seq_file *p, int prec)
  62{
  63        int j;
  64
  65        seq_printf(p, "%*s: ", prec, "NMI");
  66        for_each_online_cpu(j)
  67                seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
  68        seq_puts(p, "  Non-maskable interrupts\n");
  69#ifdef CONFIG_X86_LOCAL_APIC
  70        seq_printf(p, "%*s: ", prec, "LOC");
  71        for_each_online_cpu(j)
  72                seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
  73        seq_puts(p, "  Local timer interrupts\n");
  74
  75        seq_printf(p, "%*s: ", prec, "SPU");
  76        for_each_online_cpu(j)
  77                seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
  78        seq_puts(p, "  Spurious interrupts\n");
  79        seq_printf(p, "%*s: ", prec, "PMI");
  80        for_each_online_cpu(j)
  81                seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
  82        seq_puts(p, "  Performance monitoring interrupts\n");
  83        seq_printf(p, "%*s: ", prec, "IWI");
  84        for_each_online_cpu(j)
  85                seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
  86        seq_puts(p, "  IRQ work interrupts\n");
  87        seq_printf(p, "%*s: ", prec, "RTR");
  88        for_each_online_cpu(j)
  89                seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
  90        seq_puts(p, "  APIC ICR read retries\n");
  91#endif
  92        if (x86_platform_ipi_callback) {
  93                seq_printf(p, "%*s: ", prec, "PLT");
  94                for_each_online_cpu(j)
  95                        seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
  96                seq_puts(p, "  Platform interrupts\n");
  97        }
  98#ifdef CONFIG_SMP
  99        seq_printf(p, "%*s: ", prec, "RES");
 100        for_each_online_cpu(j)
 101                seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
 102        seq_puts(p, "  Rescheduling interrupts\n");
 103        seq_printf(p, "%*s: ", prec, "CAL");
 104        for_each_online_cpu(j)
 105                seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
 106                                        irq_stats(j)->irq_tlb_count);
 107        seq_puts(p, "  Function call interrupts\n");
 108        seq_printf(p, "%*s: ", prec, "TLB");
 109        for_each_online_cpu(j)
 110                seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
 111        seq_puts(p, "  TLB shootdowns\n");
 112#endif
 113#ifdef CONFIG_X86_THERMAL_VECTOR
 114        seq_printf(p, "%*s: ", prec, "TRM");
 115        for_each_online_cpu(j)
 116                seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
 117        seq_puts(p, "  Thermal event interrupts\n");
 118#endif
 119#ifdef CONFIG_X86_MCE_THRESHOLD
 120        seq_printf(p, "%*s: ", prec, "THR");
 121        for_each_online_cpu(j)
 122                seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
 123        seq_puts(p, "  Threshold APIC interrupts\n");
 124#endif
 125#ifdef CONFIG_X86_MCE_AMD
 126        seq_printf(p, "%*s: ", prec, "DFR");
 127        for_each_online_cpu(j)
 128                seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
 129        seq_puts(p, "  Deferred Error APIC interrupts\n");
 130#endif
 131#ifdef CONFIG_X86_MCE
 132        seq_printf(p, "%*s: ", prec, "MCE");
 133        for_each_online_cpu(j)
 134                seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
 135        seq_puts(p, "  Machine check exceptions\n");
 136        seq_printf(p, "%*s: ", prec, "MCP");
 137        for_each_online_cpu(j)
 138                seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
 139        seq_puts(p, "  Machine check polls\n");
 140#endif
 141#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
 142        if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
 143                seq_printf(p, "%*s: ", prec, "HYP");
 144                for_each_online_cpu(j)
 145                        seq_printf(p, "%10u ",
 146                                   irq_stats(j)->irq_hv_callback_count);
 147                seq_puts(p, "  Hypervisor callback interrupts\n");
 148        }
 149#endif
 150        seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
 151#if defined(CONFIG_X86_IO_APIC)
 152        seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
 153#endif
 154#ifdef CONFIG_HAVE_KVM
 155        seq_printf(p, "%*s: ", prec, "PIN");
 156        for_each_online_cpu(j)
 157                seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
 158        seq_puts(p, "  Posted-interrupt notification event\n");
 159
 160        seq_printf(p, "%*s: ", prec, "PIW");
 161        for_each_online_cpu(j)
 162                seq_printf(p, "%10u ",
 163                           irq_stats(j)->kvm_posted_intr_wakeup_ipis);
 164        seq_puts(p, "  Posted-interrupt wakeup event\n");
 165#endif
 166        return 0;
 167}
 168
 169/*
 170 * /proc/stat helpers
 171 */
 172u64 arch_irq_stat_cpu(unsigned int cpu)
 173{
 174        u64 sum = irq_stats(cpu)->__nmi_count;
 175
 176#ifdef CONFIG_X86_LOCAL_APIC
 177        sum += irq_stats(cpu)->apic_timer_irqs;
 178        sum += irq_stats(cpu)->irq_spurious_count;
 179        sum += irq_stats(cpu)->apic_perf_irqs;
 180        sum += irq_stats(cpu)->apic_irq_work_irqs;
 181        sum += irq_stats(cpu)->icr_read_retry_count;
 182#endif
 183        if (x86_platform_ipi_callback)
 184                sum += irq_stats(cpu)->x86_platform_ipis;
 185#ifdef CONFIG_SMP
 186        sum += irq_stats(cpu)->irq_resched_count;
 187        sum += irq_stats(cpu)->irq_call_count;
 188#endif
 189#ifdef CONFIG_X86_THERMAL_VECTOR
 190        sum += irq_stats(cpu)->irq_thermal_count;
 191#endif
 192#ifdef CONFIG_X86_MCE_THRESHOLD
 193        sum += irq_stats(cpu)->irq_threshold_count;
 194#endif
 195#ifdef CONFIG_X86_MCE
 196        sum += per_cpu(mce_exception_count, cpu);
 197        sum += per_cpu(mce_poll_count, cpu);
 198#endif
 199        return sum;
 200}
 201
 202u64 arch_irq_stat(void)
 203{
 204        u64 sum = atomic_read(&irq_err_count);
 205        return sum;
 206}
 207
 208
 209/*
 210 * do_IRQ handles all normal device IRQ's (the special
 211 * SMP cross-CPU interrupts have their own specific
 212 * handlers).
 213 */
 214__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
 215{
 216        struct pt_regs *old_regs = set_irq_regs(regs);
 217        struct irq_desc * desc;
 218        /* high bit used in ret_from_ code  */
 219        unsigned vector = ~regs->orig_ax;
 220
 221        /*
 222         * NB: Unlike exception entries, IRQ entries do not reliably
 223         * handle context tracking in the low-level entry code.  This is
 224         * because syscall entries execute briefly with IRQs on before
 225         * updating context tracking state, so we can take an IRQ from
 226         * kernel mode with CONTEXT_USER.  The low-level entry code only
 227         * updates the context if we came from user mode, so we won't
 228         * switch to CONTEXT_KERNEL.  We'll fix that once the syscall
 229         * code is cleaned up enough that we can cleanly defer enabling
 230         * IRQs.
 231         */
 232
 233        entering_irq();
 234
 235        /* entering_irq() tells RCU that we're not quiescent.  Check it. */
 236        RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
 237
 238        desc = __this_cpu_read(vector_irq[vector]);
 239
 240        if (!handle_irq(desc, regs)) {
 241                ack_APIC_irq();
 242
 243                if (desc != VECTOR_RETRIGGERED) {
 244                        pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
 245                                             __func__, smp_processor_id(),
 246                                             vector);
 247                } else {
 248                        __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
 249                }
 250        }
 251
 252        exiting_irq();
 253
 254        set_irq_regs(old_regs);
 255        return 1;
 256}
 257
 258/*
 259 * Handler for X86_PLATFORM_IPI_VECTOR.
 260 */
 261void __smp_x86_platform_ipi(void)
 262{
 263        inc_irq_stat(x86_platform_ipis);
 264
 265        if (x86_platform_ipi_callback)
 266                x86_platform_ipi_callback();
 267}
 268
 269__visible void smp_x86_platform_ipi(struct pt_regs *regs)
 270{
 271        struct pt_regs *old_regs = set_irq_regs(regs);
 272
 273        entering_ack_irq();
 274        __smp_x86_platform_ipi();
 275        exiting_irq();
 276        set_irq_regs(old_regs);
 277}
 278
 279#ifdef CONFIG_HAVE_KVM
 280static void dummy_handler(void) {}
 281static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
 282
 283void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
 284{
 285        if (handler)
 286                kvm_posted_intr_wakeup_handler = handler;
 287        else
 288                kvm_posted_intr_wakeup_handler = dummy_handler;
 289}
 290EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
 291
 292/*
 293 * Handler for POSTED_INTERRUPT_VECTOR.
 294 */
 295__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
 296{
 297        struct pt_regs *old_regs = set_irq_regs(regs);
 298
 299        entering_ack_irq();
 300        inc_irq_stat(kvm_posted_intr_ipis);
 301        exiting_irq();
 302        set_irq_regs(old_regs);
 303}
 304
 305/*
 306 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
 307 */
 308__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
 309{
 310        struct pt_regs *old_regs = set_irq_regs(regs);
 311
 312        entering_ack_irq();
 313        inc_irq_stat(kvm_posted_intr_wakeup_ipis);
 314        kvm_posted_intr_wakeup_handler();
 315        exiting_irq();
 316        set_irq_regs(old_regs);
 317}
 318#endif
 319
 320__visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
 321{
 322        struct pt_regs *old_regs = set_irq_regs(regs);
 323
 324        entering_ack_irq();
 325        trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
 326        __smp_x86_platform_ipi();
 327        trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
 328        exiting_irq();
 329        set_irq_regs(old_regs);
 330}
 331
 332EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
 333
 334#ifdef CONFIG_HOTPLUG_CPU
 335
 336/* These two declarations are only used in check_irq_vectors_for_cpu_disable()
 337 * below, which is protected by stop_machine().  Putting them on the stack
 338 * results in a stack frame overflow.  Dynamically allocating could result in a
 339 * failure so declare these two cpumasks as global.
 340 */
 341static struct cpumask affinity_new, online_new;
 342
 343/*
 344 * This cpu is going to be removed and its vectors migrated to the remaining
 345 * online cpus.  Check to see if there are enough vectors in the remaining cpus.
 346 * This function is protected by stop_machine().
 347 */
 348int check_irq_vectors_for_cpu_disable(void)
 349{
 350        unsigned int this_cpu, vector, this_count, count;
 351        struct irq_desc *desc;
 352        struct irq_data *data;
 353        int cpu;
 354
 355        this_cpu = smp_processor_id();
 356        cpumask_copy(&online_new, cpu_online_mask);
 357        cpumask_clear_cpu(this_cpu, &online_new);
 358
 359        this_count = 0;
 360        for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
 361                desc = __this_cpu_read(vector_irq[vector]);
 362                if (IS_ERR_OR_NULL(desc))
 363                        continue;
 364                /*
 365                 * Protect against concurrent action removal, affinity
 366                 * changes etc.
 367                 */
 368                raw_spin_lock(&desc->lock);
 369                data = irq_desc_get_irq_data(desc);
 370                cpumask_copy(&affinity_new,
 371                             irq_data_get_affinity_mask(data));
 372                cpumask_clear_cpu(this_cpu, &affinity_new);
 373
 374                /* Do not count inactive or per-cpu irqs. */
 375                if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
 376                        raw_spin_unlock(&desc->lock);
 377                        continue;
 378                }
 379
 380                raw_spin_unlock(&desc->lock);
 381                /*
 382                 * A single irq may be mapped to multiple cpu's
 383                 * vector_irq[] (for example IOAPIC cluster mode).  In
 384                 * this case we have two possibilities:
 385                 *
 386                 * 1) the resulting affinity mask is empty; that is
 387                 * this the down'd cpu is the last cpu in the irq's
 388                 * affinity mask, or
 389                 *
 390                 * 2) the resulting affinity mask is no longer a
 391                 * subset of the online cpus but the affinity mask is
 392                 * not zero; that is the down'd cpu is the last online
 393                 * cpu in a user set affinity mask.
 394                 */
 395                if (cpumask_empty(&affinity_new) ||
 396                    !cpumask_subset(&affinity_new, &online_new))
 397                        this_count++;
 398        }
 399
 400        count = 0;
 401        for_each_online_cpu(cpu) {
 402                if (cpu == this_cpu)
 403                        continue;
 404                /*
 405                 * We scan from FIRST_EXTERNAL_VECTOR to first system
 406                 * vector. If the vector is marked in the used vectors
 407                 * bitmap or an irq is assigned to it, we don't count
 408                 * it as available.
 409                 *
 410                 * As this is an inaccurate snapshot anyway, we can do
 411                 * this w/o holding vector_lock.
 412                 */
 413                for (vector = FIRST_EXTERNAL_VECTOR;
 414                     vector < first_system_vector; vector++) {
 415                        if (!test_bit(vector, used_vectors) &&
 416                            IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector]))
 417                            count++;
 418                }
 419        }
 420
 421        if (count < this_count) {
 422                pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
 423                        this_cpu, this_count, count);
 424                return -ERANGE;
 425        }
 426        return 0;
 427}
 428
 429/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
 430void fixup_irqs(void)
 431{
 432        unsigned int irq, vector;
 433        static int warned;
 434        struct irq_desc *desc;
 435        struct irq_data *data;
 436        struct irq_chip *chip;
 437        int ret;
 438
 439        for_each_irq_desc(irq, desc) {
 440                int break_affinity = 0;
 441                int set_affinity = 1;
 442                const struct cpumask *affinity;
 443
 444                if (!desc)
 445                        continue;
 446                if (irq == 2)
 447                        continue;
 448
 449                /* interrupt's are disabled at this point */
 450                raw_spin_lock(&desc->lock);
 451
 452                data = irq_desc_get_irq_data(desc);
 453                affinity = irq_data_get_affinity_mask(data);
 454                if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
 455                    cpumask_subset(affinity, cpu_online_mask)) {
 456                        raw_spin_unlock(&desc->lock);
 457                        continue;
 458                }
 459
 460                /*
 461                 * Complete the irq move. This cpu is going down and for
 462                 * non intr-remapping case, we can't wait till this interrupt
 463                 * arrives at this cpu before completing the irq move.
 464                 */
 465                irq_force_complete_move(desc);
 466
 467                if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
 468                        break_affinity = 1;
 469                        affinity = cpu_online_mask;
 470                }
 471
 472                chip = irq_data_get_irq_chip(data);
 473                /*
 474                 * The interrupt descriptor might have been cleaned up
 475                 * already, but it is not yet removed from the radix tree
 476                 */
 477                if (!chip) {
 478                        raw_spin_unlock(&desc->lock);
 479                        continue;
 480                }
 481
 482                if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
 483                        chip->irq_mask(data);
 484
 485                if (chip->irq_set_affinity) {
 486                        ret = chip->irq_set_affinity(data, affinity, true);
 487                        if (ret == -ENOSPC)
 488                                pr_crit("IRQ %d set affinity failed because there are no available vectors.  The device assigned to this IRQ is unstable.\n", irq);
 489                } else {
 490                        if (!(warned++))
 491                                set_affinity = 0;
 492                }
 493
 494                /*
 495                 * We unmask if the irq was not marked masked by the
 496                 * core code. That respects the lazy irq disable
 497                 * behaviour.
 498                 */
 499                if (!irqd_can_move_in_process_context(data) &&
 500                    !irqd_irq_masked(data) && chip->irq_unmask)
 501                        chip->irq_unmask(data);
 502
 503                raw_spin_unlock(&desc->lock);
 504
 505                if (break_affinity && set_affinity)
 506                        pr_notice("Broke affinity for irq %i\n", irq);
 507                else if (!set_affinity)
 508                        pr_notice("Cannot set affinity for irq %i\n", irq);
 509        }
 510
 511        /*
 512         * We can remove mdelay() and then send spuriuous interrupts to
 513         * new cpu targets for all the irqs that were handled previously by
 514         * this cpu. While it works, I have seen spurious interrupt messages
 515         * (nothing wrong but still...).
 516         *
 517         * So for now, retain mdelay(1) and check the IRR and then send those
 518         * interrupts to new targets as this cpu is already offlined...
 519         */
 520        mdelay(1);
 521
 522        /*
 523         * We can walk the vector array of this cpu without holding
 524         * vector_lock because the cpu is already marked !online, so
 525         * nothing else will touch it.
 526         */
 527        for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
 528                unsigned int irr;
 529
 530                if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
 531                        continue;
 532
 533                irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
 534                if (irr  & (1 << (vector % 32))) {
 535                        desc = __this_cpu_read(vector_irq[vector]);
 536
 537                        raw_spin_lock(&desc->lock);
 538                        data = irq_desc_get_irq_data(desc);
 539                        chip = irq_data_get_irq_chip(data);
 540                        if (chip->irq_retrigger) {
 541                                chip->irq_retrigger(data);
 542                                __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
 543                        }
 544                        raw_spin_unlock(&desc->lock);
 545                }
 546                if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
 547                        __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
 548        }
 549}
 550#endif
 551