linux/arch/x86/kernel/process.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/errno.h>
   4#include <linux/kernel.h>
   5#include <linux/mm.h>
   6#include <linux/smp.h>
   7#include <linux/prctl.h>
   8#include <linux/slab.h>
   9#include <linux/sched.h>
  10#include <linux/module.h>
  11#include <linux/pm.h>
  12#include <linux/tick.h>
  13#include <linux/random.h>
  14#include <linux/user-return-notifier.h>
  15#include <linux/dmi.h>
  16#include <linux/utsname.h>
  17#include <linux/stackprotector.h>
  18#include <linux/tick.h>
  19#include <linux/cpuidle.h>
  20#include <trace/events/power.h>
  21#include <linux/hw_breakpoint.h>
  22#include <asm/cpu.h>
  23#include <asm/apic.h>
  24#include <asm/syscalls.h>
  25#include <asm/idle.h>
  26#include <asm/uaccess.h>
  27#include <asm/mwait.h>
  28#include <asm/fpu/internal.h>
  29#include <asm/debugreg.h>
  30#include <asm/nmi.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mce.h>
  33#include <asm/vm86.h>
  34
  35/*
  36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  38 * so they are allowed to end up in the .data..cacheline_aligned
  39 * section. Since TSS's are completely CPU-local, we want them
  40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  41 */
  42__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  43        .x86_tss = {
  44                .sp0 = TOP_OF_INIT_STACK,
  45#ifdef CONFIG_X86_32
  46                .ss0 = __KERNEL_DS,
  47                .ss1 = __KERNEL_CS,
  48                .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  49#endif
  50         },
  51#ifdef CONFIG_X86_32
  52         /*
  53          * Note that the .io_bitmap member must be extra-big. This is because
  54          * the CPU will access an additional byte beyond the end of the IO
  55          * permission bitmap. The extra byte must be all 1 bits, and must
  56          * be within the limit.
  57          */
  58        .io_bitmap              = { [0 ... IO_BITMAP_LONGS] = ~0 },
  59#endif
  60#ifdef CONFIG_X86_32
  61        .SYSENTER_stack_canary  = STACK_END_MAGIC,
  62#endif
  63};
  64EXPORT_PER_CPU_SYMBOL(cpu_tss);
  65
  66#ifdef CONFIG_X86_64
  67static DEFINE_PER_CPU(unsigned char, is_idle);
  68static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  69
  70void idle_notifier_register(struct notifier_block *n)
  71{
  72        atomic_notifier_chain_register(&idle_notifier, n);
  73}
  74EXPORT_SYMBOL_GPL(idle_notifier_register);
  75
  76void idle_notifier_unregister(struct notifier_block *n)
  77{
  78        atomic_notifier_chain_unregister(&idle_notifier, n);
  79}
  80EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  81#endif
  82
  83/*
  84 * this gets called so that we can store lazy state into memory and copy the
  85 * current task into the new thread.
  86 */
  87int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  88{
  89        memcpy(dst, src, arch_task_struct_size);
  90#ifdef CONFIG_VM86
  91        dst->thread.vm86 = NULL;
  92#endif
  93
  94        return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  95}
  96
  97/*
  98 * Free current thread data structures etc..
  99 */
 100void exit_thread(void)
 101{
 102        struct task_struct *me = current;
 103        struct thread_struct *t = &me->thread;
 104        unsigned long *bp = t->io_bitmap_ptr;
 105        struct fpu *fpu = &t->fpu;
 106
 107        if (bp) {
 108                struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 109
 110                t->io_bitmap_ptr = NULL;
 111                clear_thread_flag(TIF_IO_BITMAP);
 112                /*
 113                 * Careful, clear this in the TSS too:
 114                 */
 115                memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 116                t->io_bitmap_max = 0;
 117                put_cpu();
 118                kfree(bp);
 119        }
 120
 121        free_vm86(t);
 122
 123        fpu__drop(fpu);
 124}
 125
 126void flush_thread(void)
 127{
 128        struct task_struct *tsk = current;
 129
 130        flush_ptrace_hw_breakpoint(tsk);
 131        memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 132
 133        fpu__clear(&tsk->thread.fpu);
 134}
 135
 136static void hard_disable_TSC(void)
 137{
 138        cr4_set_bits(X86_CR4_TSD);
 139}
 140
 141void disable_TSC(void)
 142{
 143        preempt_disable();
 144        if (!test_and_set_thread_flag(TIF_NOTSC))
 145                /*
 146                 * Must flip the CPU state synchronously with
 147                 * TIF_NOTSC in the current running context.
 148                 */
 149                hard_disable_TSC();
 150        preempt_enable();
 151}
 152
 153static void hard_enable_TSC(void)
 154{
 155        cr4_clear_bits(X86_CR4_TSD);
 156}
 157
 158static void enable_TSC(void)
 159{
 160        preempt_disable();
 161        if (test_and_clear_thread_flag(TIF_NOTSC))
 162                /*
 163                 * Must flip the CPU state synchronously with
 164                 * TIF_NOTSC in the current running context.
 165                 */
 166                hard_enable_TSC();
 167        preempt_enable();
 168}
 169
 170int get_tsc_mode(unsigned long adr)
 171{
 172        unsigned int val;
 173
 174        if (test_thread_flag(TIF_NOTSC))
 175                val = PR_TSC_SIGSEGV;
 176        else
 177                val = PR_TSC_ENABLE;
 178
 179        return put_user(val, (unsigned int __user *)adr);
 180}
 181
 182int set_tsc_mode(unsigned int val)
 183{
 184        if (val == PR_TSC_SIGSEGV)
 185                disable_TSC();
 186        else if (val == PR_TSC_ENABLE)
 187                enable_TSC();
 188        else
 189                return -EINVAL;
 190
 191        return 0;
 192}
 193
 194void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 195                      struct tss_struct *tss)
 196{
 197        struct thread_struct *prev, *next;
 198
 199        prev = &prev_p->thread;
 200        next = &next_p->thread;
 201
 202        if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
 203            test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
 204                unsigned long debugctl = get_debugctlmsr();
 205
 206                debugctl &= ~DEBUGCTLMSR_BTF;
 207                if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
 208                        debugctl |= DEBUGCTLMSR_BTF;
 209
 210                update_debugctlmsr(debugctl);
 211        }
 212
 213        if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
 214            test_tsk_thread_flag(next_p, TIF_NOTSC)) {
 215                /* prev and next are different */
 216                if (test_tsk_thread_flag(next_p, TIF_NOTSC))
 217                        hard_disable_TSC();
 218                else
 219                        hard_enable_TSC();
 220        }
 221
 222        if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 223                /*
 224                 * Copy the relevant range of the IO bitmap.
 225                 * Normally this is 128 bytes or less:
 226                 */
 227                memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 228                       max(prev->io_bitmap_max, next->io_bitmap_max));
 229        } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 230                /*
 231                 * Clear any possible leftover bits:
 232                 */
 233                memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 234        }
 235        propagate_user_return_notify(prev_p, next_p);
 236}
 237
 238/*
 239 * Idle related variables and functions
 240 */
 241unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 242EXPORT_SYMBOL(boot_option_idle_override);
 243
 244static void (*x86_idle)(void);
 245
 246#ifndef CONFIG_SMP
 247static inline void play_dead(void)
 248{
 249        BUG();
 250}
 251#endif
 252
 253#ifdef CONFIG_X86_64
 254void enter_idle(void)
 255{
 256        this_cpu_write(is_idle, 1);
 257        atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 258}
 259
 260static void __exit_idle(void)
 261{
 262        if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
 263                return;
 264        atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 265}
 266
 267/* Called from interrupts to signify idle end */
 268void exit_idle(void)
 269{
 270        /* idle loop has pid 0 */
 271        if (current->pid)
 272                return;
 273        __exit_idle();
 274}
 275#endif
 276
 277void arch_cpu_idle_enter(void)
 278{
 279        local_touch_nmi();
 280        enter_idle();
 281}
 282
 283void arch_cpu_idle_exit(void)
 284{
 285        __exit_idle();
 286}
 287
 288void arch_cpu_idle_dead(void)
 289{
 290        play_dead();
 291}
 292
 293/*
 294 * Called from the generic idle code.
 295 */
 296void arch_cpu_idle(void)
 297{
 298        x86_idle();
 299}
 300
 301/*
 302 * We use this if we don't have any better idle routine..
 303 */
 304void default_idle(void)
 305{
 306        trace_cpu_idle_rcuidle(1, smp_processor_id());
 307        safe_halt();
 308        trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 309}
 310#ifdef CONFIG_APM_MODULE
 311EXPORT_SYMBOL(default_idle);
 312#endif
 313
 314#ifdef CONFIG_XEN
 315bool xen_set_default_idle(void)
 316{
 317        bool ret = !!x86_idle;
 318
 319        x86_idle = default_idle;
 320
 321        return ret;
 322}
 323#endif
 324void stop_this_cpu(void *dummy)
 325{
 326        local_irq_disable();
 327        /*
 328         * Remove this CPU:
 329         */
 330        set_cpu_online(smp_processor_id(), false);
 331        disable_local_APIC();
 332        mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 333
 334        for (;;)
 335                halt();
 336}
 337
 338bool amd_e400_c1e_detected;
 339EXPORT_SYMBOL(amd_e400_c1e_detected);
 340
 341static cpumask_var_t amd_e400_c1e_mask;
 342
 343void amd_e400_remove_cpu(int cpu)
 344{
 345        if (amd_e400_c1e_mask != NULL)
 346                cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 347}
 348
 349/*
 350 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
 351 * pending message MSR. If we detect C1E, then we handle it the same
 352 * way as C3 power states (local apic timer and TSC stop)
 353 */
 354static void amd_e400_idle(void)
 355{
 356        if (!amd_e400_c1e_detected) {
 357                u32 lo, hi;
 358
 359                rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 360
 361                if (lo & K8_INTP_C1E_ACTIVE_MASK) {
 362                        amd_e400_c1e_detected = true;
 363                        if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 364                                mark_tsc_unstable("TSC halt in AMD C1E");
 365                        pr_info("System has AMD C1E enabled\n");
 366                }
 367        }
 368
 369        if (amd_e400_c1e_detected) {
 370                int cpu = smp_processor_id();
 371
 372                if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
 373                        cpumask_set_cpu(cpu, amd_e400_c1e_mask);
 374                        /* Force broadcast so ACPI can not interfere. */
 375                        tick_broadcast_force();
 376                        pr_info("Switch to broadcast mode on CPU%d\n", cpu);
 377                }
 378                tick_broadcast_enter();
 379
 380                default_idle();
 381
 382                /*
 383                 * The switch back from broadcast mode needs to be
 384                 * called with interrupts disabled.
 385                 */
 386                local_irq_disable();
 387                tick_broadcast_exit();
 388                local_irq_enable();
 389        } else
 390                default_idle();
 391}
 392
 393/*
 394 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 395 * We can't rely on cpuidle installing MWAIT, because it will not load
 396 * on systems that support only C1 -- so the boot default must be MWAIT.
 397 *
 398 * Some AMD machines are the opposite, they depend on using HALT.
 399 *
 400 * So for default C1, which is used during boot until cpuidle loads,
 401 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 402 */
 403static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 404{
 405        if (c->x86_vendor != X86_VENDOR_INTEL)
 406                return 0;
 407
 408        if (!cpu_has(c, X86_FEATURE_MWAIT))
 409                return 0;
 410
 411        return 1;
 412}
 413
 414/*
 415 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 416 * with interrupts enabled and no flags, which is backwards compatible with the
 417 * original MWAIT implementation.
 418 */
 419static void mwait_idle(void)
 420{
 421        if (!current_set_polling_and_test()) {
 422                trace_cpu_idle_rcuidle(1, smp_processor_id());
 423                if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 424                        mb(); /* quirk */
 425                        clflush((void *)&current_thread_info()->flags);
 426                        mb(); /* quirk */
 427                }
 428
 429                __monitor((void *)&current_thread_info()->flags, 0, 0);
 430                if (!need_resched())
 431                        __sti_mwait(0, 0);
 432                else
 433                        local_irq_enable();
 434                trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 435        } else {
 436                local_irq_enable();
 437        }
 438        __current_clr_polling();
 439}
 440
 441void select_idle_routine(const struct cpuinfo_x86 *c)
 442{
 443#ifdef CONFIG_SMP
 444        if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 445                pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 446#endif
 447        if (x86_idle || boot_option_idle_override == IDLE_POLL)
 448                return;
 449
 450        if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
 451                /* E400: APIC timer interrupt does not wake up CPU from C1e */
 452                pr_info("using AMD E400 aware idle routine\n");
 453                x86_idle = amd_e400_idle;
 454        } else if (prefer_mwait_c1_over_halt(c)) {
 455                pr_info("using mwait in idle threads\n");
 456                x86_idle = mwait_idle;
 457        } else
 458                x86_idle = default_idle;
 459}
 460
 461void __init init_amd_e400_c1e_mask(void)
 462{
 463        /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
 464        if (x86_idle == amd_e400_idle)
 465                zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 466}
 467
 468static int __init idle_setup(char *str)
 469{
 470        if (!str)
 471                return -EINVAL;
 472
 473        if (!strcmp(str, "poll")) {
 474                pr_info("using polling idle threads\n");
 475                boot_option_idle_override = IDLE_POLL;
 476                cpu_idle_poll_ctrl(true);
 477        } else if (!strcmp(str, "halt")) {
 478                /*
 479                 * When the boot option of idle=halt is added, halt is
 480                 * forced to be used for CPU idle. In such case CPU C2/C3
 481                 * won't be used again.
 482                 * To continue to load the CPU idle driver, don't touch
 483                 * the boot_option_idle_override.
 484                 */
 485                x86_idle = default_idle;
 486                boot_option_idle_override = IDLE_HALT;
 487        } else if (!strcmp(str, "nomwait")) {
 488                /*
 489                 * If the boot option of "idle=nomwait" is added,
 490                 * it means that mwait will be disabled for CPU C2/C3
 491                 * states. In such case it won't touch the variable
 492                 * of boot_option_idle_override.
 493                 */
 494                boot_option_idle_override = IDLE_NOMWAIT;
 495        } else
 496                return -1;
 497
 498        return 0;
 499}
 500early_param("idle", idle_setup);
 501
 502unsigned long arch_align_stack(unsigned long sp)
 503{
 504        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 505                sp -= get_random_int() % 8192;
 506        return sp & ~0xf;
 507}
 508
 509unsigned long arch_randomize_brk(struct mm_struct *mm)
 510{
 511        unsigned long range_end = mm->brk + 0x02000000;
 512        return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 513}
 514
 515/*
 516 * Called from fs/proc with a reference on @p to find the function
 517 * which called into schedule(). This needs to be done carefully
 518 * because the task might wake up and we might look at a stack
 519 * changing under us.
 520 */
 521unsigned long get_wchan(struct task_struct *p)
 522{
 523        unsigned long start, bottom, top, sp, fp, ip;
 524        int count = 0;
 525
 526        if (!p || p == current || p->state == TASK_RUNNING)
 527                return 0;
 528
 529        start = (unsigned long)task_stack_page(p);
 530        if (!start)
 531                return 0;
 532
 533        /*
 534         * Layout of the stack page:
 535         *
 536         * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 537         * PADDING
 538         * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 539         * stack
 540         * ----------- bottom = start + sizeof(thread_info)
 541         * thread_info
 542         * ----------- start
 543         *
 544         * The tasks stack pointer points at the location where the
 545         * framepointer is stored. The data on the stack is:
 546         * ... IP FP ... IP FP
 547         *
 548         * We need to read FP and IP, so we need to adjust the upper
 549         * bound by another unsigned long.
 550         */
 551        top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 552        top -= 2 * sizeof(unsigned long);
 553        bottom = start + sizeof(struct thread_info);
 554
 555        sp = READ_ONCE(p->thread.sp);
 556        if (sp < bottom || sp > top)
 557                return 0;
 558
 559        fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
 560        do {
 561                if (fp < bottom || fp > top)
 562                        return 0;
 563                ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 564                if (!in_sched_functions(ip))
 565                        return ip;
 566                fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 567        } while (count++ < 16 && p->state != TASK_RUNNING);
 568        return 0;
 569}
 570