linux/arch/x86/kernel/tsc.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
  24#include <asm/geode.h>
  25
  26unsigned int __read_mostly cpu_khz;     /* TSC clocks / usec, not used here */
  27EXPORT_SYMBOL(cpu_khz);
  28
  29unsigned int __read_mostly tsc_khz;
  30EXPORT_SYMBOL(tsc_khz);
  31
  32/*
  33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  34 */
  35static int __read_mostly tsc_unstable;
  36
  37/* native_sched_clock() is called before tsc_init(), so
  38   we must start with the TSC soft disabled to prevent
  39   erroneous rdtsc usage on !cpu_has_tsc processors */
  40static int __read_mostly tsc_disabled = -1;
  41
  42static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  43
  44int tsc_clocksource_reliable;
  45
  46static u32 art_to_tsc_numerator;
  47static u32 art_to_tsc_denominator;
  48static u64 art_to_tsc_offset;
  49struct clocksource *art_related_clocksource;
  50
  51/*
  52 * Use a ring-buffer like data structure, where a writer advances the head by
  53 * writing a new data entry and a reader advances the tail when it observes a
  54 * new entry.
  55 *
  56 * Writers are made to wait on readers until there's space to write a new
  57 * entry.
  58 *
  59 * This means that we can always use an {offset, mul} pair to compute a ns
  60 * value that is 'roughly' in the right direction, even if we're writing a new
  61 * {offset, mul} pair during the clock read.
  62 *
  63 * The down-side is that we can no longer guarantee strict monotonicity anymore
  64 * (assuming the TSC was that to begin with), because while we compute the
  65 * intersection point of the two clock slopes and make sure the time is
  66 * continuous at the point of switching; we can no longer guarantee a reader is
  67 * strictly before or after the switch point.
  68 *
  69 * It does mean a reader no longer needs to disable IRQs in order to avoid
  70 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  71 * no longer run the risk of hitting half-written state.
  72 */
  73
  74struct cyc2ns {
  75        struct cyc2ns_data data[2];     /*  0 + 2*24 = 48 */
  76        struct cyc2ns_data *head;       /* 48 + 8    = 56 */
  77        struct cyc2ns_data *tail;       /* 56 + 8    = 64 */
  78}; /* exactly fits one cacheline */
  79
  80static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  81
  82struct cyc2ns_data *cyc2ns_read_begin(void)
  83{
  84        struct cyc2ns_data *head;
  85
  86        preempt_disable();
  87
  88        head = this_cpu_read(cyc2ns.head);
  89        /*
  90         * Ensure we observe the entry when we observe the pointer to it.
  91         * matches the wmb from cyc2ns_write_end().
  92         */
  93        smp_read_barrier_depends();
  94        head->__count++;
  95        barrier();
  96
  97        return head;
  98}
  99
 100void cyc2ns_read_end(struct cyc2ns_data *head)
 101{
 102        barrier();
 103        /*
 104         * If we're the outer most nested read; update the tail pointer
 105         * when we're done. This notifies possible pending writers
 106         * that we've observed the head pointer and that the other
 107         * entry is now free.
 108         */
 109        if (!--head->__count) {
 110                /*
 111                 * x86-TSO does not reorder writes with older reads;
 112                 * therefore once this write becomes visible to another
 113                 * cpu, we must be finished reading the cyc2ns_data.
 114                 *
 115                 * matches with cyc2ns_write_begin().
 116                 */
 117                this_cpu_write(cyc2ns.tail, head);
 118        }
 119        preempt_enable();
 120}
 121
 122/*
 123 * Begin writing a new @data entry for @cpu.
 124 *
 125 * Assumes some sort of write side lock; currently 'provided' by the assumption
 126 * that cpufreq will call its notifiers sequentially.
 127 */
 128static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 129{
 130        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 131        struct cyc2ns_data *data = c2n->data;
 132
 133        if (data == c2n->head)
 134                data++;
 135
 136        /* XXX send an IPI to @cpu in order to guarantee a read? */
 137
 138        /*
 139         * When we observe the tail write from cyc2ns_read_end(),
 140         * the cpu must be done with that entry and its safe
 141         * to start writing to it.
 142         */
 143        while (c2n->tail == data)
 144                cpu_relax();
 145
 146        return data;
 147}
 148
 149static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 150{
 151        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 152
 153        /*
 154         * Ensure the @data writes are visible before we publish the
 155         * entry. Matches the data-depencency in cyc2ns_read_begin().
 156         */
 157        smp_wmb();
 158
 159        ACCESS_ONCE(c2n->head) = data;
 160}
 161
 162/*
 163 * Accelerators for sched_clock()
 164 * convert from cycles(64bits) => nanoseconds (64bits)
 165 *  basic equation:
 166 *              ns = cycles / (freq / ns_per_sec)
 167 *              ns = cycles * (ns_per_sec / freq)
 168 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 169 *              ns = cycles * (10^6 / cpu_khz)
 170 *
 171 *      Then we use scaling math (suggested by george@mvista.com) to get:
 172 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 173 *              ns = cycles * cyc2ns_scale / SC
 174 *
 175 *      And since SC is a constant power of two, we can convert the div
 176 *  into a shift. The larger SC is, the more accurate the conversion, but
 177 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 178 *  (64-bit result) can be used.
 179 *
 180 *  We can use khz divisor instead of mhz to keep a better precision.
 181 *  (mathieu.desnoyers@polymtl.ca)
 182 *
 183 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 184 */
 185
 186static void cyc2ns_data_init(struct cyc2ns_data *data)
 187{
 188        data->cyc2ns_mul = 0;
 189        data->cyc2ns_shift = 0;
 190        data->cyc2ns_offset = 0;
 191        data->__count = 0;
 192}
 193
 194static void cyc2ns_init(int cpu)
 195{
 196        struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 197
 198        cyc2ns_data_init(&c2n->data[0]);
 199        cyc2ns_data_init(&c2n->data[1]);
 200
 201        c2n->head = c2n->data;
 202        c2n->tail = c2n->data;
 203}
 204
 205static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 206{
 207        struct cyc2ns_data *data, *tail;
 208        unsigned long long ns;
 209
 210        /*
 211         * See cyc2ns_read_*() for details; replicated in order to avoid
 212         * an extra few instructions that came with the abstraction.
 213         * Notable, it allows us to only do the __count and tail update
 214         * dance when its actually needed.
 215         */
 216
 217        preempt_disable_notrace();
 218        data = this_cpu_read(cyc2ns.head);
 219        tail = this_cpu_read(cyc2ns.tail);
 220
 221        if (likely(data == tail)) {
 222                ns = data->cyc2ns_offset;
 223                ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 224        } else {
 225                data->__count++;
 226
 227                barrier();
 228
 229                ns = data->cyc2ns_offset;
 230                ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 231
 232                barrier();
 233
 234                if (!--data->__count)
 235                        this_cpu_write(cyc2ns.tail, data);
 236        }
 237        preempt_enable_notrace();
 238
 239        return ns;
 240}
 241
 242static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 243{
 244        unsigned long long tsc_now, ns_now;
 245        struct cyc2ns_data *data;
 246        unsigned long flags;
 247
 248        local_irq_save(flags);
 249        sched_clock_idle_sleep_event();
 250
 251        if (!cpu_khz)
 252                goto done;
 253
 254        data = cyc2ns_write_begin(cpu);
 255
 256        tsc_now = rdtsc();
 257        ns_now = cycles_2_ns(tsc_now);
 258
 259        /*
 260         * Compute a new multiplier as per the above comment and ensure our
 261         * time function is continuous; see the comment near struct
 262         * cyc2ns_data.
 263         */
 264        clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
 265                               NSEC_PER_MSEC, 0);
 266
 267        /*
 268         * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 269         * not expected to be greater than 31 due to the original published
 270         * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 271         * value) - refer perf_event_mmap_page documentation in perf_event.h.
 272         */
 273        if (data->cyc2ns_shift == 32) {
 274                data->cyc2ns_shift = 31;
 275                data->cyc2ns_mul >>= 1;
 276        }
 277
 278        data->cyc2ns_offset = ns_now -
 279                mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
 280
 281        cyc2ns_write_end(cpu, data);
 282
 283done:
 284        sched_clock_idle_wakeup_event(0);
 285        local_irq_restore(flags);
 286}
 287/*
 288 * Scheduler clock - returns current time in nanosec units.
 289 */
 290u64 native_sched_clock(void)
 291{
 292        if (static_branch_likely(&__use_tsc)) {
 293                u64 tsc_now = rdtsc();
 294
 295                /* return the value in ns */
 296                return cycles_2_ns(tsc_now);
 297        }
 298
 299        /*
 300         * Fall back to jiffies if there's no TSC available:
 301         * ( But note that we still use it if the TSC is marked
 302         *   unstable. We do this because unlike Time Of Day,
 303         *   the scheduler clock tolerates small errors and it's
 304         *   very important for it to be as fast as the platform
 305         *   can achieve it. )
 306         */
 307
 308        /* No locking but a rare wrong value is not a big deal: */
 309        return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 310}
 311
 312/*
 313 * Generate a sched_clock if you already have a TSC value.
 314 */
 315u64 native_sched_clock_from_tsc(u64 tsc)
 316{
 317        return cycles_2_ns(tsc);
 318}
 319
 320/* We need to define a real function for sched_clock, to override the
 321   weak default version */
 322#ifdef CONFIG_PARAVIRT
 323unsigned long long sched_clock(void)
 324{
 325        return paravirt_sched_clock();
 326}
 327#else
 328unsigned long long
 329sched_clock(void) __attribute__((alias("native_sched_clock")));
 330#endif
 331
 332int check_tsc_unstable(void)
 333{
 334        return tsc_unstable;
 335}
 336EXPORT_SYMBOL_GPL(check_tsc_unstable);
 337
 338int check_tsc_disabled(void)
 339{
 340        return tsc_disabled;
 341}
 342EXPORT_SYMBOL_GPL(check_tsc_disabled);
 343
 344#ifdef CONFIG_X86_TSC
 345int __init notsc_setup(char *str)
 346{
 347        pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 348        tsc_disabled = 1;
 349        return 1;
 350}
 351#else
 352/*
 353 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 354 * in cpu/common.c
 355 */
 356int __init notsc_setup(char *str)
 357{
 358        setup_clear_cpu_cap(X86_FEATURE_TSC);
 359        return 1;
 360}
 361#endif
 362
 363__setup("notsc", notsc_setup);
 364
 365static int no_sched_irq_time;
 366
 367static int __init tsc_setup(char *str)
 368{
 369        if (!strcmp(str, "reliable"))
 370                tsc_clocksource_reliable = 1;
 371        if (!strncmp(str, "noirqtime", 9))
 372                no_sched_irq_time = 1;
 373        return 1;
 374}
 375
 376__setup("tsc=", tsc_setup);
 377
 378#define MAX_RETRIES     5
 379#define SMI_TRESHOLD    50000
 380
 381/*
 382 * Read TSC and the reference counters. Take care of SMI disturbance
 383 */
 384static u64 tsc_read_refs(u64 *p, int hpet)
 385{
 386        u64 t1, t2;
 387        int i;
 388
 389        for (i = 0; i < MAX_RETRIES; i++) {
 390                t1 = get_cycles();
 391                if (hpet)
 392                        *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 393                else
 394                        *p = acpi_pm_read_early();
 395                t2 = get_cycles();
 396                if ((t2 - t1) < SMI_TRESHOLD)
 397                        return t2;
 398        }
 399        return ULLONG_MAX;
 400}
 401
 402/*
 403 * Calculate the TSC frequency from HPET reference
 404 */
 405static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 406{
 407        u64 tmp;
 408
 409        if (hpet2 < hpet1)
 410                hpet2 += 0x100000000ULL;
 411        hpet2 -= hpet1;
 412        tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 413        do_div(tmp, 1000000);
 414        do_div(deltatsc, tmp);
 415
 416        return (unsigned long) deltatsc;
 417}
 418
 419/*
 420 * Calculate the TSC frequency from PMTimer reference
 421 */
 422static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 423{
 424        u64 tmp;
 425
 426        if (!pm1 && !pm2)
 427                return ULONG_MAX;
 428
 429        if (pm2 < pm1)
 430                pm2 += (u64)ACPI_PM_OVRRUN;
 431        pm2 -= pm1;
 432        tmp = pm2 * 1000000000LL;
 433        do_div(tmp, PMTMR_TICKS_PER_SEC);
 434        do_div(deltatsc, tmp);
 435
 436        return (unsigned long) deltatsc;
 437}
 438
 439#define CAL_MS          10
 440#define CAL_LATCH       (PIT_TICK_RATE / (1000 / CAL_MS))
 441#define CAL_PIT_LOOPS   1000
 442
 443#define CAL2_MS         50
 444#define CAL2_LATCH      (PIT_TICK_RATE / (1000 / CAL2_MS))
 445#define CAL2_PIT_LOOPS  5000
 446
 447
 448/*
 449 * Try to calibrate the TSC against the Programmable
 450 * Interrupt Timer and return the frequency of the TSC
 451 * in kHz.
 452 *
 453 * Return ULONG_MAX on failure to calibrate.
 454 */
 455static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 456{
 457        u64 tsc, t1, t2, delta;
 458        unsigned long tscmin, tscmax;
 459        int pitcnt;
 460
 461        /* Set the Gate high, disable speaker */
 462        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 463
 464        /*
 465         * Setup CTC channel 2* for mode 0, (interrupt on terminal
 466         * count mode), binary count. Set the latch register to 50ms
 467         * (LSB then MSB) to begin countdown.
 468         */
 469        outb(0xb0, 0x43);
 470        outb(latch & 0xff, 0x42);
 471        outb(latch >> 8, 0x42);
 472
 473        tsc = t1 = t2 = get_cycles();
 474
 475        pitcnt = 0;
 476        tscmax = 0;
 477        tscmin = ULONG_MAX;
 478        while ((inb(0x61) & 0x20) == 0) {
 479                t2 = get_cycles();
 480                delta = t2 - tsc;
 481                tsc = t2;
 482                if ((unsigned long) delta < tscmin)
 483                        tscmin = (unsigned int) delta;
 484                if ((unsigned long) delta > tscmax)
 485                        tscmax = (unsigned int) delta;
 486                pitcnt++;
 487        }
 488
 489        /*
 490         * Sanity checks:
 491         *
 492         * If we were not able to read the PIT more than loopmin
 493         * times, then we have been hit by a massive SMI
 494         *
 495         * If the maximum is 10 times larger than the minimum,
 496         * then we got hit by an SMI as well.
 497         */
 498        if (pitcnt < loopmin || tscmax > 10 * tscmin)
 499                return ULONG_MAX;
 500
 501        /* Calculate the PIT value */
 502        delta = t2 - t1;
 503        do_div(delta, ms);
 504        return delta;
 505}
 506
 507/*
 508 * This reads the current MSB of the PIT counter, and
 509 * checks if we are running on sufficiently fast and
 510 * non-virtualized hardware.
 511 *
 512 * Our expectations are:
 513 *
 514 *  - the PIT is running at roughly 1.19MHz
 515 *
 516 *  - each IO is going to take about 1us on real hardware,
 517 *    but we allow it to be much faster (by a factor of 10) or
 518 *    _slightly_ slower (ie we allow up to a 2us read+counter
 519 *    update - anything else implies a unacceptably slow CPU
 520 *    or PIT for the fast calibration to work.
 521 *
 522 *  - with 256 PIT ticks to read the value, we have 214us to
 523 *    see the same MSB (and overhead like doing a single TSC
 524 *    read per MSB value etc).
 525 *
 526 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 527 *    them each to take about a microsecond on real hardware.
 528 *    So we expect a count value of around 100. But we'll be
 529 *    generous, and accept anything over 50.
 530 *
 531 *  - if the PIT is stuck, and we see *many* more reads, we
 532 *    return early (and the next caller of pit_expect_msb()
 533 *    then consider it a failure when they don't see the
 534 *    next expected value).
 535 *
 536 * These expectations mean that we know that we have seen the
 537 * transition from one expected value to another with a fairly
 538 * high accuracy, and we didn't miss any events. We can thus
 539 * use the TSC value at the transitions to calculate a pretty
 540 * good value for the TSC frequencty.
 541 */
 542static inline int pit_verify_msb(unsigned char val)
 543{
 544        /* Ignore LSB */
 545        inb(0x42);
 546        return inb(0x42) == val;
 547}
 548
 549static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 550{
 551        int count;
 552        u64 tsc = 0, prev_tsc = 0;
 553
 554        for (count = 0; count < 50000; count++) {
 555                if (!pit_verify_msb(val))
 556                        break;
 557                prev_tsc = tsc;
 558                tsc = get_cycles();
 559        }
 560        *deltap = get_cycles() - prev_tsc;
 561        *tscp = tsc;
 562
 563        /*
 564         * We require _some_ success, but the quality control
 565         * will be based on the error terms on the TSC values.
 566         */
 567        return count > 5;
 568}
 569
 570/*
 571 * How many MSB values do we want to see? We aim for
 572 * a maximum error rate of 500ppm (in practice the
 573 * real error is much smaller), but refuse to spend
 574 * more than 50ms on it.
 575 */
 576#define MAX_QUICK_PIT_MS 50
 577#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 578
 579static unsigned long quick_pit_calibrate(void)
 580{
 581        int i;
 582        u64 tsc, delta;
 583        unsigned long d1, d2;
 584
 585        /* Set the Gate high, disable speaker */
 586        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 587
 588        /*
 589         * Counter 2, mode 0 (one-shot), binary count
 590         *
 591         * NOTE! Mode 2 decrements by two (and then the
 592         * output is flipped each time, giving the same
 593         * final output frequency as a decrement-by-one),
 594         * so mode 0 is much better when looking at the
 595         * individual counts.
 596         */
 597        outb(0xb0, 0x43);
 598
 599        /* Start at 0xffff */
 600        outb(0xff, 0x42);
 601        outb(0xff, 0x42);
 602
 603        /*
 604         * The PIT starts counting at the next edge, so we
 605         * need to delay for a microsecond. The easiest way
 606         * to do that is to just read back the 16-bit counter
 607         * once from the PIT.
 608         */
 609        pit_verify_msb(0);
 610
 611        if (pit_expect_msb(0xff, &tsc, &d1)) {
 612                for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 613                        if (!pit_expect_msb(0xff-i, &delta, &d2))
 614                                break;
 615
 616                        delta -= tsc;
 617
 618                        /*
 619                         * Extrapolate the error and fail fast if the error will
 620                         * never be below 500 ppm.
 621                         */
 622                        if (i == 1 &&
 623                            d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 624                                return 0;
 625
 626                        /*
 627                         * Iterate until the error is less than 500 ppm
 628                         */
 629                        if (d1+d2 >= delta >> 11)
 630                                continue;
 631
 632                        /*
 633                         * Check the PIT one more time to verify that
 634                         * all TSC reads were stable wrt the PIT.
 635                         *
 636                         * This also guarantees serialization of the
 637                         * last cycle read ('d2') in pit_expect_msb.
 638                         */
 639                        if (!pit_verify_msb(0xfe - i))
 640                                break;
 641                        goto success;
 642                }
 643        }
 644        pr_info("Fast TSC calibration failed\n");
 645        return 0;
 646
 647success:
 648        /*
 649         * Ok, if we get here, then we've seen the
 650         * MSB of the PIT decrement 'i' times, and the
 651         * error has shrunk to less than 500 ppm.
 652         *
 653         * As a result, we can depend on there not being
 654         * any odd delays anywhere, and the TSC reads are
 655         * reliable (within the error).
 656         *
 657         * kHz = ticks / time-in-seconds / 1000;
 658         * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 659         * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 660         */
 661        delta *= PIT_TICK_RATE;
 662        do_div(delta, i*256*1000);
 663        pr_info("Fast TSC calibration using PIT\n");
 664        return delta;
 665}
 666
 667/**
 668 * native_calibrate_tsc - calibrate the tsc on boot
 669 */
 670unsigned long native_calibrate_tsc(void)
 671{
 672        u64 tsc1, tsc2, delta, ref1, ref2;
 673        unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 674        unsigned long flags, latch, ms, fast_calibrate;
 675        int hpet = is_hpet_enabled(), i, loopmin;
 676
 677        /* Calibrate TSC using MSR for Intel Atom SoCs */
 678        local_irq_save(flags);
 679        fast_calibrate = try_msr_calibrate_tsc();
 680        local_irq_restore(flags);
 681        if (fast_calibrate)
 682                return fast_calibrate;
 683
 684        local_irq_save(flags);
 685        fast_calibrate = quick_pit_calibrate();
 686        local_irq_restore(flags);
 687        if (fast_calibrate)
 688                return fast_calibrate;
 689
 690        /*
 691         * Run 5 calibration loops to get the lowest frequency value
 692         * (the best estimate). We use two different calibration modes
 693         * here:
 694         *
 695         * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 696         * load a timeout of 50ms. We read the time right after we
 697         * started the timer and wait until the PIT count down reaches
 698         * zero. In each wait loop iteration we read the TSC and check
 699         * the delta to the previous read. We keep track of the min
 700         * and max values of that delta. The delta is mostly defined
 701         * by the IO time of the PIT access, so we can detect when a
 702         * SMI/SMM disturbance happened between the two reads. If the
 703         * maximum time is significantly larger than the minimum time,
 704         * then we discard the result and have another try.
 705         *
 706         * 2) Reference counter. If available we use the HPET or the
 707         * PMTIMER as a reference to check the sanity of that value.
 708         * We use separate TSC readouts and check inside of the
 709         * reference read for a SMI/SMM disturbance. We dicard
 710         * disturbed values here as well. We do that around the PIT
 711         * calibration delay loop as we have to wait for a certain
 712         * amount of time anyway.
 713         */
 714
 715        /* Preset PIT loop values */
 716        latch = CAL_LATCH;
 717        ms = CAL_MS;
 718        loopmin = CAL_PIT_LOOPS;
 719
 720        for (i = 0; i < 3; i++) {
 721                unsigned long tsc_pit_khz;
 722
 723                /*
 724                 * Read the start value and the reference count of
 725                 * hpet/pmtimer when available. Then do the PIT
 726                 * calibration, which will take at least 50ms, and
 727                 * read the end value.
 728                 */
 729                local_irq_save(flags);
 730                tsc1 = tsc_read_refs(&ref1, hpet);
 731                tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 732                tsc2 = tsc_read_refs(&ref2, hpet);
 733                local_irq_restore(flags);
 734
 735                /* Pick the lowest PIT TSC calibration so far */
 736                tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 737
 738                /* hpet or pmtimer available ? */
 739                if (ref1 == ref2)
 740                        continue;
 741
 742                /* Check, whether the sampling was disturbed by an SMI */
 743                if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 744                        continue;
 745
 746                tsc2 = (tsc2 - tsc1) * 1000000LL;
 747                if (hpet)
 748                        tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 749                else
 750                        tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 751
 752                tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 753
 754                /* Check the reference deviation */
 755                delta = ((u64) tsc_pit_min) * 100;
 756                do_div(delta, tsc_ref_min);
 757
 758                /*
 759                 * If both calibration results are inside a 10% window
 760                 * then we can be sure, that the calibration
 761                 * succeeded. We break out of the loop right away. We
 762                 * use the reference value, as it is more precise.
 763                 */
 764                if (delta >= 90 && delta <= 110) {
 765                        pr_info("PIT calibration matches %s. %d loops\n",
 766                                hpet ? "HPET" : "PMTIMER", i + 1);
 767                        return tsc_ref_min;
 768                }
 769
 770                /*
 771                 * Check whether PIT failed more than once. This
 772                 * happens in virtualized environments. We need to
 773                 * give the virtual PC a slightly longer timeframe for
 774                 * the HPET/PMTIMER to make the result precise.
 775                 */
 776                if (i == 1 && tsc_pit_min == ULONG_MAX) {
 777                        latch = CAL2_LATCH;
 778                        ms = CAL2_MS;
 779                        loopmin = CAL2_PIT_LOOPS;
 780                }
 781        }
 782
 783        /*
 784         * Now check the results.
 785         */
 786        if (tsc_pit_min == ULONG_MAX) {
 787                /* PIT gave no useful value */
 788                pr_warn("Unable to calibrate against PIT\n");
 789
 790                /* We don't have an alternative source, disable TSC */
 791                if (!hpet && !ref1 && !ref2) {
 792                        pr_notice("No reference (HPET/PMTIMER) available\n");
 793                        return 0;
 794                }
 795
 796                /* The alternative source failed as well, disable TSC */
 797                if (tsc_ref_min == ULONG_MAX) {
 798                        pr_warn("HPET/PMTIMER calibration failed\n");
 799                        return 0;
 800                }
 801
 802                /* Use the alternative source */
 803                pr_info("using %s reference calibration\n",
 804                        hpet ? "HPET" : "PMTIMER");
 805
 806                return tsc_ref_min;
 807        }
 808
 809        /* We don't have an alternative source, use the PIT calibration value */
 810        if (!hpet && !ref1 && !ref2) {
 811                pr_info("Using PIT calibration value\n");
 812                return tsc_pit_min;
 813        }
 814
 815        /* The alternative source failed, use the PIT calibration value */
 816        if (tsc_ref_min == ULONG_MAX) {
 817                pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 818                return tsc_pit_min;
 819        }
 820
 821        /*
 822         * The calibration values differ too much. In doubt, we use
 823         * the PIT value as we know that there are PMTIMERs around
 824         * running at double speed. At least we let the user know:
 825         */
 826        pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 827                hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 828        pr_info("Using PIT calibration value\n");
 829        return tsc_pit_min;
 830}
 831
 832int recalibrate_cpu_khz(void)
 833{
 834#ifndef CONFIG_SMP
 835        unsigned long cpu_khz_old = cpu_khz;
 836
 837        if (cpu_has_tsc) {
 838                tsc_khz = x86_platform.calibrate_tsc();
 839                cpu_khz = tsc_khz;
 840                cpu_data(0).loops_per_jiffy =
 841                        cpufreq_scale(cpu_data(0).loops_per_jiffy,
 842                                        cpu_khz_old, cpu_khz);
 843                return 0;
 844        } else
 845                return -ENODEV;
 846#else
 847        return -ENODEV;
 848#endif
 849}
 850
 851EXPORT_SYMBOL(recalibrate_cpu_khz);
 852
 853
 854static unsigned long long cyc2ns_suspend;
 855
 856void tsc_save_sched_clock_state(void)
 857{
 858        if (!sched_clock_stable())
 859                return;
 860
 861        cyc2ns_suspend = sched_clock();
 862}
 863
 864/*
 865 * Even on processors with invariant TSC, TSC gets reset in some the
 866 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 867 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 868 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 869 * that sched_clock() continues from the point where it was left off during
 870 * suspend.
 871 */
 872void tsc_restore_sched_clock_state(void)
 873{
 874        unsigned long long offset;
 875        unsigned long flags;
 876        int cpu;
 877
 878        if (!sched_clock_stable())
 879                return;
 880
 881        local_irq_save(flags);
 882
 883        /*
 884         * We're coming out of suspend, there's no concurrency yet; don't
 885         * bother being nice about the RCU stuff, just write to both
 886         * data fields.
 887         */
 888
 889        this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 890        this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 891
 892        offset = cyc2ns_suspend - sched_clock();
 893
 894        for_each_possible_cpu(cpu) {
 895                per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 896                per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 897        }
 898
 899        local_irq_restore(flags);
 900}
 901
 902#ifdef CONFIG_CPU_FREQ
 903
 904/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 905 * changes.
 906 *
 907 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 908 * not that important because current Opteron setups do not support
 909 * scaling on SMP anyroads.
 910 *
 911 * Should fix up last_tsc too. Currently gettimeofday in the
 912 * first tick after the change will be slightly wrong.
 913 */
 914
 915static unsigned int  ref_freq;
 916static unsigned long loops_per_jiffy_ref;
 917static unsigned long tsc_khz_ref;
 918
 919static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 920                                void *data)
 921{
 922        struct cpufreq_freqs *freq = data;
 923        unsigned long *lpj;
 924
 925        if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 926                return 0;
 927
 928        lpj = &boot_cpu_data.loops_per_jiffy;
 929#ifdef CONFIG_SMP
 930        if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 931                lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 932#endif
 933
 934        if (!ref_freq) {
 935                ref_freq = freq->old;
 936                loops_per_jiffy_ref = *lpj;
 937                tsc_khz_ref = tsc_khz;
 938        }
 939        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 940                        (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 941                *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 942
 943                tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 944                if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 945                        mark_tsc_unstable("cpufreq changes");
 946
 947                set_cyc2ns_scale(tsc_khz, freq->cpu);
 948        }
 949
 950        return 0;
 951}
 952
 953static struct notifier_block time_cpufreq_notifier_block = {
 954        .notifier_call  = time_cpufreq_notifier
 955};
 956
 957static int __init cpufreq_tsc(void)
 958{
 959        if (!cpu_has_tsc)
 960                return 0;
 961        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 962                return 0;
 963        cpufreq_register_notifier(&time_cpufreq_notifier_block,
 964                                CPUFREQ_TRANSITION_NOTIFIER);
 965        return 0;
 966}
 967
 968core_initcall(cpufreq_tsc);
 969
 970#endif /* CONFIG_CPU_FREQ */
 971
 972#define ART_CPUID_LEAF (0x15)
 973#define ART_MIN_DENOMINATOR (1)
 974
 975
 976/*
 977 * If ART is present detect the numerator:denominator to convert to TSC
 978 */
 979static void detect_art(void)
 980{
 981        unsigned int unused[2];
 982
 983        if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
 984                return;
 985
 986        cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
 987              &art_to_tsc_numerator, unused, unused+1);
 988
 989        /* Don't enable ART in a VM, non-stop TSC required */
 990        if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
 991            !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
 992            art_to_tsc_denominator < ART_MIN_DENOMINATOR)
 993                return;
 994
 995        if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
 996                return;
 997
 998        /* Make this sticky over multiple CPU init calls */
 999        setup_force_cpu_cap(X86_FEATURE_ART);
1000}
1001
1002
1003/* clocksource code */
1004
1005static struct clocksource clocksource_tsc;
1006
1007/*
1008 * We used to compare the TSC to the cycle_last value in the clocksource
1009 * structure to avoid a nasty time-warp. This can be observed in a
1010 * very small window right after one CPU updated cycle_last under
1011 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1012 * is smaller than the cycle_last reference value due to a TSC which
1013 * is slighty behind. This delta is nowhere else observable, but in
1014 * that case it results in a forward time jump in the range of hours
1015 * due to the unsigned delta calculation of the time keeping core
1016 * code, which is necessary to support wrapping clocksources like pm
1017 * timer.
1018 *
1019 * This sanity check is now done in the core timekeeping code.
1020 * checking the result of read_tsc() - cycle_last for being negative.
1021 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1022 */
1023static cycle_t read_tsc(struct clocksource *cs)
1024{
1025        return (cycle_t)rdtsc_ordered();
1026}
1027
1028/*
1029 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1030 */
1031static struct clocksource clocksource_tsc = {
1032        .name                   = "tsc",
1033        .rating                 = 300,
1034        .read                   = read_tsc,
1035        .mask                   = CLOCKSOURCE_MASK(64),
1036        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1037                                  CLOCK_SOURCE_MUST_VERIFY,
1038        .archdata               = { .vclock_mode = VCLOCK_TSC },
1039};
1040
1041void mark_tsc_unstable(char *reason)
1042{
1043        if (!tsc_unstable) {
1044                tsc_unstable = 1;
1045                clear_sched_clock_stable();
1046                disable_sched_clock_irqtime();
1047                pr_info("Marking TSC unstable due to %s\n", reason);
1048                /* Change only the rating, when not registered */
1049                if (clocksource_tsc.mult)
1050                        clocksource_mark_unstable(&clocksource_tsc);
1051                else {
1052                        clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1053                        clocksource_tsc.rating = 0;
1054                }
1055        }
1056}
1057
1058EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1059
1060static void __init check_system_tsc_reliable(void)
1061{
1062#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1063        if (is_geode_lx()) {
1064                /* RTSC counts during suspend */
1065#define RTSC_SUSP 0x100
1066                unsigned long res_low, res_high;
1067
1068                rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1069                /* Geode_LX - the OLPC CPU has a very reliable TSC */
1070                if (res_low & RTSC_SUSP)
1071                        tsc_clocksource_reliable = 1;
1072        }
1073#endif
1074        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1075                tsc_clocksource_reliable = 1;
1076}
1077
1078/*
1079 * Make an educated guess if the TSC is trustworthy and synchronized
1080 * over all CPUs.
1081 */
1082int unsynchronized_tsc(void)
1083{
1084        if (!cpu_has_tsc || tsc_unstable)
1085                return 1;
1086
1087#ifdef CONFIG_SMP
1088        if (apic_is_clustered_box())
1089                return 1;
1090#endif
1091
1092        if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1093                return 0;
1094
1095        if (tsc_clocksource_reliable)
1096                return 0;
1097        /*
1098         * Intel systems are normally all synchronized.
1099         * Exceptions must mark TSC as unstable:
1100         */
1101        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1102                /* assume multi socket systems are not synchronized: */
1103                if (num_possible_cpus() > 1)
1104                        return 1;
1105        }
1106
1107        return 0;
1108}
1109
1110/*
1111 * Convert ART to TSC given numerator/denominator found in detect_art()
1112 */
1113struct system_counterval_t convert_art_to_tsc(cycle_t art)
1114{
1115        u64 tmp, res, rem;
1116
1117        rem = do_div(art, art_to_tsc_denominator);
1118
1119        res = art * art_to_tsc_numerator;
1120        tmp = rem * art_to_tsc_numerator;
1121
1122        do_div(tmp, art_to_tsc_denominator);
1123        res += tmp + art_to_tsc_offset;
1124
1125        return (struct system_counterval_t) {.cs = art_related_clocksource,
1126                        .cycles = res};
1127}
1128EXPORT_SYMBOL(convert_art_to_tsc);
1129
1130static void tsc_refine_calibration_work(struct work_struct *work);
1131static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1132/**
1133 * tsc_refine_calibration_work - Further refine tsc freq calibration
1134 * @work - ignored.
1135 *
1136 * This functions uses delayed work over a period of a
1137 * second to further refine the TSC freq value. Since this is
1138 * timer based, instead of loop based, we don't block the boot
1139 * process while this longer calibration is done.
1140 *
1141 * If there are any calibration anomalies (too many SMIs, etc),
1142 * or the refined calibration is off by 1% of the fast early
1143 * calibration, we throw out the new calibration and use the
1144 * early calibration.
1145 */
1146static void tsc_refine_calibration_work(struct work_struct *work)
1147{
1148        static u64 tsc_start = -1, ref_start;
1149        static int hpet;
1150        u64 tsc_stop, ref_stop, delta;
1151        unsigned long freq;
1152
1153        /* Don't bother refining TSC on unstable systems */
1154        if (check_tsc_unstable())
1155                goto out;
1156
1157        /*
1158         * Since the work is started early in boot, we may be
1159         * delayed the first time we expire. So set the workqueue
1160         * again once we know timers are working.
1161         */
1162        if (tsc_start == -1) {
1163                /*
1164                 * Only set hpet once, to avoid mixing hardware
1165                 * if the hpet becomes enabled later.
1166                 */
1167                hpet = is_hpet_enabled();
1168                schedule_delayed_work(&tsc_irqwork, HZ);
1169                tsc_start = tsc_read_refs(&ref_start, hpet);
1170                return;
1171        }
1172
1173        tsc_stop = tsc_read_refs(&ref_stop, hpet);
1174
1175        /* hpet or pmtimer available ? */
1176        if (ref_start == ref_stop)
1177                goto out;
1178
1179        /* Check, whether the sampling was disturbed by an SMI */
1180        if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1181                goto out;
1182
1183        delta = tsc_stop - tsc_start;
1184        delta *= 1000000LL;
1185        if (hpet)
1186                freq = calc_hpet_ref(delta, ref_start, ref_stop);
1187        else
1188                freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1189
1190        /* Make sure we're within 1% */
1191        if (abs(tsc_khz - freq) > tsc_khz/100)
1192                goto out;
1193
1194        tsc_khz = freq;
1195        pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1196                (unsigned long)tsc_khz / 1000,
1197                (unsigned long)tsc_khz % 1000);
1198
1199out:
1200        if (boot_cpu_has(X86_FEATURE_ART))
1201                art_related_clocksource = &clocksource_tsc;
1202        clocksource_register_khz(&clocksource_tsc, tsc_khz);
1203}
1204
1205
1206static int __init init_tsc_clocksource(void)
1207{
1208        if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1209                return 0;
1210
1211        if (tsc_clocksource_reliable)
1212                clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1213        /* lower the rating if we already know its unstable: */
1214        if (check_tsc_unstable()) {
1215                clocksource_tsc.rating = 0;
1216                clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1217        }
1218
1219        if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1220                clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1221
1222        /*
1223         * Trust the results of the earlier calibration on systems
1224         * exporting a reliable TSC.
1225         */
1226        if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1227                clocksource_register_khz(&clocksource_tsc, tsc_khz);
1228                return 0;
1229        }
1230
1231        schedule_delayed_work(&tsc_irqwork, 0);
1232        return 0;
1233}
1234/*
1235 * We use device_initcall here, to ensure we run after the hpet
1236 * is fully initialized, which may occur at fs_initcall time.
1237 */
1238device_initcall(init_tsc_clocksource);
1239
1240void __init tsc_init(void)
1241{
1242        u64 lpj;
1243        int cpu;
1244
1245        if (!cpu_has_tsc) {
1246                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1247                return;
1248        }
1249
1250        tsc_khz = x86_platform.calibrate_tsc();
1251        cpu_khz = tsc_khz;
1252
1253        if (!tsc_khz) {
1254                mark_tsc_unstable("could not calculate TSC khz");
1255                setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1256                return;
1257        }
1258
1259        pr_info("Detected %lu.%03lu MHz processor\n",
1260                (unsigned long)cpu_khz / 1000,
1261                (unsigned long)cpu_khz % 1000);
1262
1263        /*
1264         * Secondary CPUs do not run through tsc_init(), so set up
1265         * all the scale factors for all CPUs, assuming the same
1266         * speed as the bootup CPU. (cpufreq notifiers will fix this
1267         * up if their speed diverges)
1268         */
1269        for_each_possible_cpu(cpu) {
1270                cyc2ns_init(cpu);
1271                set_cyc2ns_scale(cpu_khz, cpu);
1272        }
1273
1274        if (tsc_disabled > 0)
1275                return;
1276
1277        /* now allow native_sched_clock() to use rdtsc */
1278
1279        tsc_disabled = 0;
1280        static_branch_enable(&__use_tsc);
1281
1282        if (!no_sched_irq_time)
1283                enable_sched_clock_irqtime();
1284
1285        lpj = ((u64)tsc_khz * 1000);
1286        do_div(lpj, HZ);
1287        lpj_fine = lpj;
1288
1289        use_tsc_delay();
1290
1291        if (unsynchronized_tsc())
1292                mark_tsc_unstable("TSCs unsynchronized");
1293
1294        check_system_tsc_reliable();
1295
1296        detect_art();
1297}
1298
1299#ifdef CONFIG_SMP
1300/*
1301 * If we have a constant TSC and are using the TSC for the delay loop,
1302 * we can skip clock calibration if another cpu in the same socket has already
1303 * been calibrated. This assumes that CONSTANT_TSC applies to all
1304 * cpus in the socket - this should be a safe assumption.
1305 */
1306unsigned long calibrate_delay_is_known(void)
1307{
1308        int sibling, cpu = smp_processor_id();
1309        struct cpumask *mask = topology_core_cpumask(cpu);
1310
1311        if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1312                return 0;
1313
1314        if (!mask)
1315                return 0;
1316
1317        sibling = cpumask_any_but(mask, cpu);
1318        if (sibling < nr_cpu_ids)
1319                return cpu_data(sibling).loops_per_jiffy;
1320        return 0;
1321}
1322#endif
1323