linux/arch/x86/kvm/i8254.c
<<
>>
Prefs
   1/*
   2 * 8253/8254 interval timer emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 * Copyright (c) 2006 Intel Corporation
   6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
   7 * Copyright (c) 2008 Intel Corporation
   8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Permission is hereby granted, free of charge, to any person obtaining a copy
  11 * of this software and associated documentation files (the "Software"), to deal
  12 * in the Software without restriction, including without limitation the rights
  13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  14 * copies of the Software, and to permit persons to whom the Software is
  15 * furnished to do so, subject to the following conditions:
  16 *
  17 * The above copyright notice and this permission notice shall be included in
  18 * all copies or substantial portions of the Software.
  19 *
  20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  26 * THE SOFTWARE.
  27 *
  28 * Authors:
  29 *   Sheng Yang <sheng.yang@intel.com>
  30 *   Based on QEMU and Xen.
  31 */
  32
  33#define pr_fmt(fmt) "pit: " fmt
  34
  35#include <linux/kvm_host.h>
  36#include <linux/slab.h>
  37
  38#include "ioapic.h"
  39#include "irq.h"
  40#include "i8254.h"
  41#include "x86.h"
  42
  43#ifndef CONFIG_X86_64
  44#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  45#else
  46#define mod_64(x, y) ((x) % (y))
  47#endif
  48
  49#define RW_STATE_LSB 1
  50#define RW_STATE_MSB 2
  51#define RW_STATE_WORD0 3
  52#define RW_STATE_WORD1 4
  53
  54static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
  55{
  56        struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
  57
  58        switch (c->mode) {
  59        default:
  60        case 0:
  61        case 4:
  62                /* XXX: just disable/enable counting */
  63                break;
  64        case 1:
  65        case 2:
  66        case 3:
  67        case 5:
  68                /* Restart counting on rising edge. */
  69                if (c->gate < val)
  70                        c->count_load_time = ktime_get();
  71                break;
  72        }
  73
  74        c->gate = val;
  75}
  76
  77static int pit_get_gate(struct kvm_pit *pit, int channel)
  78{
  79        return pit->pit_state.channels[channel].gate;
  80}
  81
  82static s64 __kpit_elapsed(struct kvm_pit *pit)
  83{
  84        s64 elapsed;
  85        ktime_t remaining;
  86        struct kvm_kpit_state *ps = &pit->pit_state;
  87
  88        if (!ps->period)
  89                return 0;
  90
  91        /*
  92         * The Counter does not stop when it reaches zero. In
  93         * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
  94         * the highest count, either FFFF hex for binary counting
  95         * or 9999 for BCD counting, and continues counting.
  96         * Modes 2 and 3 are periodic; the Counter reloads
  97         * itself with the initial count and continues counting
  98         * from there.
  99         */
 100        remaining = hrtimer_get_remaining(&ps->timer);
 101        elapsed = ps->period - ktime_to_ns(remaining);
 102
 103        return elapsed;
 104}
 105
 106static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
 107                        int channel)
 108{
 109        if (channel == 0)
 110                return __kpit_elapsed(pit);
 111
 112        return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
 113}
 114
 115static int pit_get_count(struct kvm_pit *pit, int channel)
 116{
 117        struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
 118        s64 d, t;
 119        int counter;
 120
 121        t = kpit_elapsed(pit, c, channel);
 122        d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
 123
 124        switch (c->mode) {
 125        case 0:
 126        case 1:
 127        case 4:
 128        case 5:
 129                counter = (c->count - d) & 0xffff;
 130                break;
 131        case 3:
 132                /* XXX: may be incorrect for odd counts */
 133                counter = c->count - (mod_64((2 * d), c->count));
 134                break;
 135        default:
 136                counter = c->count - mod_64(d, c->count);
 137                break;
 138        }
 139        return counter;
 140}
 141
 142static int pit_get_out(struct kvm_pit *pit, int channel)
 143{
 144        struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
 145        s64 d, t;
 146        int out;
 147
 148        t = kpit_elapsed(pit, c, channel);
 149        d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
 150
 151        switch (c->mode) {
 152        default:
 153        case 0:
 154                out = (d >= c->count);
 155                break;
 156        case 1:
 157                out = (d < c->count);
 158                break;
 159        case 2:
 160                out = ((mod_64(d, c->count) == 0) && (d != 0));
 161                break;
 162        case 3:
 163                out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
 164                break;
 165        case 4:
 166        case 5:
 167                out = (d == c->count);
 168                break;
 169        }
 170
 171        return out;
 172}
 173
 174static void pit_latch_count(struct kvm_pit *pit, int channel)
 175{
 176        struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
 177
 178        if (!c->count_latched) {
 179                c->latched_count = pit_get_count(pit, channel);
 180                c->count_latched = c->rw_mode;
 181        }
 182}
 183
 184static void pit_latch_status(struct kvm_pit *pit, int channel)
 185{
 186        struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
 187
 188        if (!c->status_latched) {
 189                /* TODO: Return NULL COUNT (bit 6). */
 190                c->status = ((pit_get_out(pit, channel) << 7) |
 191                                (c->rw_mode << 4) |
 192                                (c->mode << 1) |
 193                                c->bcd);
 194                c->status_latched = 1;
 195        }
 196}
 197
 198static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
 199{
 200        return container_of(ps, struct kvm_pit, pit_state);
 201}
 202
 203static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
 204{
 205        struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
 206                                                 irq_ack_notifier);
 207        struct kvm_pit *pit = pit_state_to_pit(ps);
 208
 209        atomic_set(&ps->irq_ack, 1);
 210        /* irq_ack should be set before pending is read.  Order accesses with
 211         * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
 212         */
 213        smp_mb();
 214        if (atomic_dec_if_positive(&ps->pending) > 0)
 215                queue_kthread_work(&pit->worker, &pit->expired);
 216}
 217
 218void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
 219{
 220        struct kvm_pit *pit = vcpu->kvm->arch.vpit;
 221        struct hrtimer *timer;
 222
 223        if (!kvm_vcpu_is_bsp(vcpu) || !pit)
 224                return;
 225
 226        timer = &pit->pit_state.timer;
 227        mutex_lock(&pit->pit_state.lock);
 228        if (hrtimer_cancel(timer))
 229                hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 230        mutex_unlock(&pit->pit_state.lock);
 231}
 232
 233static void destroy_pit_timer(struct kvm_pit *pit)
 234{
 235        hrtimer_cancel(&pit->pit_state.timer);
 236        flush_kthread_work(&pit->expired);
 237}
 238
 239static void pit_do_work(struct kthread_work *work)
 240{
 241        struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
 242        struct kvm *kvm = pit->kvm;
 243        struct kvm_vcpu *vcpu;
 244        int i;
 245        struct kvm_kpit_state *ps = &pit->pit_state;
 246
 247        if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
 248                return;
 249
 250        kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
 251        kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
 252
 253        /*
 254         * Provides NMI watchdog support via Virtual Wire mode.
 255         * The route is: PIT -> LVT0 in NMI mode.
 256         *
 257         * Note: Our Virtual Wire implementation does not follow
 258         * the MP specification.  We propagate a PIT interrupt to all
 259         * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
 260         * also be simultaneously delivered through PIC and IOAPIC.
 261         */
 262        if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
 263                kvm_for_each_vcpu(i, vcpu, kvm)
 264                        kvm_apic_nmi_wd_deliver(vcpu);
 265}
 266
 267static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
 268{
 269        struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
 270        struct kvm_pit *pt = pit_state_to_pit(ps);
 271
 272        if (atomic_read(&ps->reinject))
 273                atomic_inc(&ps->pending);
 274
 275        queue_kthread_work(&pt->worker, &pt->expired);
 276
 277        if (ps->is_periodic) {
 278                hrtimer_add_expires_ns(&ps->timer, ps->period);
 279                return HRTIMER_RESTART;
 280        } else
 281                return HRTIMER_NORESTART;
 282}
 283
 284static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
 285{
 286        atomic_set(&pit->pit_state.pending, 0);
 287        atomic_set(&pit->pit_state.irq_ack, 1);
 288}
 289
 290void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
 291{
 292        struct kvm_kpit_state *ps = &pit->pit_state;
 293        struct kvm *kvm = pit->kvm;
 294
 295        if (atomic_read(&ps->reinject) == reinject)
 296                return;
 297
 298        if (reinject) {
 299                /* The initial state is preserved while ps->reinject == 0. */
 300                kvm_pit_reset_reinject(pit);
 301                kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
 302                kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
 303        } else {
 304                kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
 305                kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
 306        }
 307
 308        atomic_set(&ps->reinject, reinject);
 309}
 310
 311static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
 312{
 313        struct kvm_kpit_state *ps = &pit->pit_state;
 314        struct kvm *kvm = pit->kvm;
 315        s64 interval;
 316
 317        if (!ioapic_in_kernel(kvm) ||
 318            ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
 319                return;
 320
 321        interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
 322
 323        pr_debug("create pit timer, interval is %llu nsec\n", interval);
 324
 325        /* TODO The new value only affected after the retriggered */
 326        hrtimer_cancel(&ps->timer);
 327        flush_kthread_work(&pit->expired);
 328        ps->period = interval;
 329        ps->is_periodic = is_period;
 330
 331        kvm_pit_reset_reinject(pit);
 332
 333        /*
 334         * Do not allow the guest to program periodic timers with small
 335         * interval, since the hrtimers are not throttled by the host
 336         * scheduler.
 337         */
 338        if (ps->is_periodic) {
 339                s64 min_period = min_timer_period_us * 1000LL;
 340
 341                if (ps->period < min_period) {
 342                        pr_info_ratelimited(
 343                            "kvm: requested %lld ns "
 344                            "i8254 timer period limited to %lld ns\n",
 345                            ps->period, min_period);
 346                        ps->period = min_period;
 347                }
 348        }
 349
 350        hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
 351                      HRTIMER_MODE_ABS);
 352}
 353
 354static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
 355{
 356        struct kvm_kpit_state *ps = &pit->pit_state;
 357
 358        pr_debug("load_count val is %d, channel is %d\n", val, channel);
 359
 360        /*
 361         * The largest possible initial count is 0; this is equivalent
 362         * to 216 for binary counting and 104 for BCD counting.
 363         */
 364        if (val == 0)
 365                val = 0x10000;
 366
 367        ps->channels[channel].count = val;
 368
 369        if (channel != 0) {
 370                ps->channels[channel].count_load_time = ktime_get();
 371                return;
 372        }
 373
 374        /* Two types of timer
 375         * mode 1 is one shot, mode 2 is period, otherwise del timer */
 376        switch (ps->channels[0].mode) {
 377        case 0:
 378        case 1:
 379        /* FIXME: enhance mode 4 precision */
 380        case 4:
 381                create_pit_timer(pit, val, 0);
 382                break;
 383        case 2:
 384        case 3:
 385                create_pit_timer(pit, val, 1);
 386                break;
 387        default:
 388                destroy_pit_timer(pit);
 389        }
 390}
 391
 392void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
 393                int hpet_legacy_start)
 394{
 395        u8 saved_mode;
 396
 397        WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
 398
 399        if (hpet_legacy_start) {
 400                /* save existing mode for later reenablement */
 401                WARN_ON(channel != 0);
 402                saved_mode = pit->pit_state.channels[0].mode;
 403                pit->pit_state.channels[0].mode = 0xff; /* disable timer */
 404                pit_load_count(pit, channel, val);
 405                pit->pit_state.channels[0].mode = saved_mode;
 406        } else {
 407                pit_load_count(pit, channel, val);
 408        }
 409}
 410
 411static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
 412{
 413        return container_of(dev, struct kvm_pit, dev);
 414}
 415
 416static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
 417{
 418        return container_of(dev, struct kvm_pit, speaker_dev);
 419}
 420
 421static inline int pit_in_range(gpa_t addr)
 422{
 423        return ((addr >= KVM_PIT_BASE_ADDRESS) &&
 424                (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
 425}
 426
 427static int pit_ioport_write(struct kvm_vcpu *vcpu,
 428                                struct kvm_io_device *this,
 429                            gpa_t addr, int len, const void *data)
 430{
 431        struct kvm_pit *pit = dev_to_pit(this);
 432        struct kvm_kpit_state *pit_state = &pit->pit_state;
 433        int channel, access;
 434        struct kvm_kpit_channel_state *s;
 435        u32 val = *(u32 *) data;
 436        if (!pit_in_range(addr))
 437                return -EOPNOTSUPP;
 438
 439        val  &= 0xff;
 440        addr &= KVM_PIT_CHANNEL_MASK;
 441
 442        mutex_lock(&pit_state->lock);
 443
 444        if (val != 0)
 445                pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
 446                         (unsigned int)addr, len, val);
 447
 448        if (addr == 3) {
 449                channel = val >> 6;
 450                if (channel == 3) {
 451                        /* Read-Back Command. */
 452                        for (channel = 0; channel < 3; channel++) {
 453                                s = &pit_state->channels[channel];
 454                                if (val & (2 << channel)) {
 455                                        if (!(val & 0x20))
 456                                                pit_latch_count(pit, channel);
 457                                        if (!(val & 0x10))
 458                                                pit_latch_status(pit, channel);
 459                                }
 460                        }
 461                } else {
 462                        /* Select Counter <channel>. */
 463                        s = &pit_state->channels[channel];
 464                        access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
 465                        if (access == 0) {
 466                                pit_latch_count(pit, channel);
 467                        } else {
 468                                s->rw_mode = access;
 469                                s->read_state = access;
 470                                s->write_state = access;
 471                                s->mode = (val >> 1) & 7;
 472                                if (s->mode > 5)
 473                                        s->mode -= 4;
 474                                s->bcd = val & 1;
 475                        }
 476                }
 477        } else {
 478                /* Write Count. */
 479                s = &pit_state->channels[addr];
 480                switch (s->write_state) {
 481                default:
 482                case RW_STATE_LSB:
 483                        pit_load_count(pit, addr, val);
 484                        break;
 485                case RW_STATE_MSB:
 486                        pit_load_count(pit, addr, val << 8);
 487                        break;
 488                case RW_STATE_WORD0:
 489                        s->write_latch = val;
 490                        s->write_state = RW_STATE_WORD1;
 491                        break;
 492                case RW_STATE_WORD1:
 493                        pit_load_count(pit, addr, s->write_latch | (val << 8));
 494                        s->write_state = RW_STATE_WORD0;
 495                        break;
 496                }
 497        }
 498
 499        mutex_unlock(&pit_state->lock);
 500        return 0;
 501}
 502
 503static int pit_ioport_read(struct kvm_vcpu *vcpu,
 504                           struct kvm_io_device *this,
 505                           gpa_t addr, int len, void *data)
 506{
 507        struct kvm_pit *pit = dev_to_pit(this);
 508        struct kvm_kpit_state *pit_state = &pit->pit_state;
 509        int ret, count;
 510        struct kvm_kpit_channel_state *s;
 511        if (!pit_in_range(addr))
 512                return -EOPNOTSUPP;
 513
 514        addr &= KVM_PIT_CHANNEL_MASK;
 515        if (addr == 3)
 516                return 0;
 517
 518        s = &pit_state->channels[addr];
 519
 520        mutex_lock(&pit_state->lock);
 521
 522        if (s->status_latched) {
 523                s->status_latched = 0;
 524                ret = s->status;
 525        } else if (s->count_latched) {
 526                switch (s->count_latched) {
 527                default:
 528                case RW_STATE_LSB:
 529                        ret = s->latched_count & 0xff;
 530                        s->count_latched = 0;
 531                        break;
 532                case RW_STATE_MSB:
 533                        ret = s->latched_count >> 8;
 534                        s->count_latched = 0;
 535                        break;
 536                case RW_STATE_WORD0:
 537                        ret = s->latched_count & 0xff;
 538                        s->count_latched = RW_STATE_MSB;
 539                        break;
 540                }
 541        } else {
 542                switch (s->read_state) {
 543                default:
 544                case RW_STATE_LSB:
 545                        count = pit_get_count(pit, addr);
 546                        ret = count & 0xff;
 547                        break;
 548                case RW_STATE_MSB:
 549                        count = pit_get_count(pit, addr);
 550                        ret = (count >> 8) & 0xff;
 551                        break;
 552                case RW_STATE_WORD0:
 553                        count = pit_get_count(pit, addr);
 554                        ret = count & 0xff;
 555                        s->read_state = RW_STATE_WORD1;
 556                        break;
 557                case RW_STATE_WORD1:
 558                        count = pit_get_count(pit, addr);
 559                        ret = (count >> 8) & 0xff;
 560                        s->read_state = RW_STATE_WORD0;
 561                        break;
 562                }
 563        }
 564
 565        if (len > sizeof(ret))
 566                len = sizeof(ret);
 567        memcpy(data, (char *)&ret, len);
 568
 569        mutex_unlock(&pit_state->lock);
 570        return 0;
 571}
 572
 573static int speaker_ioport_write(struct kvm_vcpu *vcpu,
 574                                struct kvm_io_device *this,
 575                                gpa_t addr, int len, const void *data)
 576{
 577        struct kvm_pit *pit = speaker_to_pit(this);
 578        struct kvm_kpit_state *pit_state = &pit->pit_state;
 579        u32 val = *(u32 *) data;
 580        if (addr != KVM_SPEAKER_BASE_ADDRESS)
 581                return -EOPNOTSUPP;
 582
 583        mutex_lock(&pit_state->lock);
 584        pit_state->speaker_data_on = (val >> 1) & 1;
 585        pit_set_gate(pit, 2, val & 1);
 586        mutex_unlock(&pit_state->lock);
 587        return 0;
 588}
 589
 590static int speaker_ioport_read(struct kvm_vcpu *vcpu,
 591                                   struct kvm_io_device *this,
 592                                   gpa_t addr, int len, void *data)
 593{
 594        struct kvm_pit *pit = speaker_to_pit(this);
 595        struct kvm_kpit_state *pit_state = &pit->pit_state;
 596        unsigned int refresh_clock;
 597        int ret;
 598        if (addr != KVM_SPEAKER_BASE_ADDRESS)
 599                return -EOPNOTSUPP;
 600
 601        /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
 602        refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
 603
 604        mutex_lock(&pit_state->lock);
 605        ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
 606                (pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
 607        if (len > sizeof(ret))
 608                len = sizeof(ret);
 609        memcpy(data, (char *)&ret, len);
 610        mutex_unlock(&pit_state->lock);
 611        return 0;
 612}
 613
 614static void kvm_pit_reset(struct kvm_pit *pit)
 615{
 616        int i;
 617        struct kvm_kpit_channel_state *c;
 618
 619        pit->pit_state.flags = 0;
 620        for (i = 0; i < 3; i++) {
 621                c = &pit->pit_state.channels[i];
 622                c->mode = 0xff;
 623                c->gate = (i != 2);
 624                pit_load_count(pit, i, 0);
 625        }
 626
 627        kvm_pit_reset_reinject(pit);
 628}
 629
 630static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
 631{
 632        struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
 633
 634        if (!mask)
 635                kvm_pit_reset_reinject(pit);
 636}
 637
 638static const struct kvm_io_device_ops pit_dev_ops = {
 639        .read     = pit_ioport_read,
 640        .write    = pit_ioport_write,
 641};
 642
 643static const struct kvm_io_device_ops speaker_dev_ops = {
 644        .read     = speaker_ioport_read,
 645        .write    = speaker_ioport_write,
 646};
 647
 648/* Caller must hold slots_lock */
 649struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
 650{
 651        struct kvm_pit *pit;
 652        struct kvm_kpit_state *pit_state;
 653        struct pid *pid;
 654        pid_t pid_nr;
 655        int ret;
 656
 657        pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
 658        if (!pit)
 659                return NULL;
 660
 661        pit->irq_source_id = kvm_request_irq_source_id(kvm);
 662        if (pit->irq_source_id < 0)
 663                goto fail_request;
 664
 665        mutex_init(&pit->pit_state.lock);
 666
 667        pid = get_pid(task_tgid(current));
 668        pid_nr = pid_vnr(pid);
 669        put_pid(pid);
 670
 671        init_kthread_worker(&pit->worker);
 672        pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
 673                                       "kvm-pit/%d", pid_nr);
 674        if (IS_ERR(pit->worker_task))
 675                goto fail_kthread;
 676
 677        init_kthread_work(&pit->expired, pit_do_work);
 678
 679        pit->kvm = kvm;
 680
 681        pit_state = &pit->pit_state;
 682        hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 683        pit_state->timer.function = pit_timer_fn;
 684
 685        pit_state->irq_ack_notifier.gsi = 0;
 686        pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
 687        pit->mask_notifier.func = pit_mask_notifer;
 688
 689        kvm_pit_reset(pit);
 690
 691        kvm_pit_set_reinject(pit, true);
 692
 693        kvm_iodevice_init(&pit->dev, &pit_dev_ops);
 694        ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
 695                                      KVM_PIT_MEM_LENGTH, &pit->dev);
 696        if (ret < 0)
 697                goto fail_register_pit;
 698
 699        if (flags & KVM_PIT_SPEAKER_DUMMY) {
 700                kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
 701                ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
 702                                              KVM_SPEAKER_BASE_ADDRESS, 4,
 703                                              &pit->speaker_dev);
 704                if (ret < 0)
 705                        goto fail_register_speaker;
 706        }
 707
 708        return pit;
 709
 710fail_register_speaker:
 711        kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
 712fail_register_pit:
 713        kvm_pit_set_reinject(pit, false);
 714        kthread_stop(pit->worker_task);
 715fail_kthread:
 716        kvm_free_irq_source_id(kvm, pit->irq_source_id);
 717fail_request:
 718        kfree(pit);
 719        return NULL;
 720}
 721
 722void kvm_free_pit(struct kvm *kvm)
 723{
 724        struct kvm_pit *pit = kvm->arch.vpit;
 725
 726        if (pit) {
 727                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
 728                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
 729                kvm_pit_set_reinject(pit, false);
 730                hrtimer_cancel(&pit->pit_state.timer);
 731                flush_kthread_work(&pit->expired);
 732                kthread_stop(pit->worker_task);
 733                kvm_free_irq_source_id(kvm, pit->irq_source_id);
 734                kfree(pit);
 735        }
 736}
 737