linux/arch/x86/xen/enlighten.c
<<
>>
Prefs
   1/*
   2 * Core of Xen paravirt_ops implementation.
   3 *
   4 * This file contains the xen_paravirt_ops structure itself, and the
   5 * implementations for:
   6 * - privileged instructions
   7 * - interrupt flags
   8 * - segment operations
   9 * - booting and setup
  10 *
  11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12 */
  13
  14#include <linux/cpu.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/smp.h>
  18#include <linux/preempt.h>
  19#include <linux/hardirq.h>
  20#include <linux/percpu.h>
  21#include <linux/delay.h>
  22#include <linux/start_kernel.h>
  23#include <linux/sched.h>
  24#include <linux/kprobes.h>
  25#include <linux/bootmem.h>
  26#include <linux/module.h>
  27#include <linux/mm.h>
  28#include <linux/page-flags.h>
  29#include <linux/highmem.h>
  30#include <linux/console.h>
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/memblock.h>
  34#include <linux/edd.h>
  35#include <linux/frame.h>
  36
  37#ifdef CONFIG_KEXEC_CORE
  38#include <linux/kexec.h>
  39#endif
  40
  41#include <xen/xen.h>
  42#include <xen/events.h>
  43#include <xen/interface/xen.h>
  44#include <xen/interface/version.h>
  45#include <xen/interface/physdev.h>
  46#include <xen/interface/vcpu.h>
  47#include <xen/interface/memory.h>
  48#include <xen/interface/nmi.h>
  49#include <xen/interface/xen-mca.h>
  50#include <xen/features.h>
  51#include <xen/page.h>
  52#include <xen/hvm.h>
  53#include <xen/hvc-console.h>
  54#include <xen/acpi.h>
  55
  56#include <asm/paravirt.h>
  57#include <asm/apic.h>
  58#include <asm/page.h>
  59#include <asm/xen/pci.h>
  60#include <asm/xen/hypercall.h>
  61#include <asm/xen/hypervisor.h>
  62#include <asm/fixmap.h>
  63#include <asm/processor.h>
  64#include <asm/proto.h>
  65#include <asm/msr-index.h>
  66#include <asm/traps.h>
  67#include <asm/setup.h>
  68#include <asm/desc.h>
  69#include <asm/pgalloc.h>
  70#include <asm/pgtable.h>
  71#include <asm/tlbflush.h>
  72#include <asm/reboot.h>
  73#include <asm/stackprotector.h>
  74#include <asm/hypervisor.h>
  75#include <asm/mach_traps.h>
  76#include <asm/mwait.h>
  77#include <asm/pci_x86.h>
  78#include <asm/pat.h>
  79#include <asm/cpu.h>
  80
  81#ifdef CONFIG_ACPI
  82#include <linux/acpi.h>
  83#include <asm/acpi.h>
  84#include <acpi/pdc_intel.h>
  85#include <acpi/processor.h>
  86#include <xen/interface/platform.h>
  87#endif
  88
  89#include "xen-ops.h"
  90#include "mmu.h"
  91#include "smp.h"
  92#include "multicalls.h"
  93#include "pmu.h"
  94
  95EXPORT_SYMBOL_GPL(hypercall_page);
  96
  97/*
  98 * Pointer to the xen_vcpu_info structure or
  99 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
 100 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
 101 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
 102 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
 103 * acknowledge pending events.
 104 * Also more subtly it is used by the patched version of irq enable/disable
 105 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
 106 *
 107 * The desire to be able to do those mask/unmask operations as a single
 108 * instruction by using the per-cpu offset held in %gs is the real reason
 109 * vcpu info is in a per-cpu pointer and the original reason for this
 110 * hypercall.
 111 *
 112 */
 113DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
 114
 115/*
 116 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
 117 * hypercall. This can be used both in PV and PVHVM mode. The structure
 118 * overrides the default per_cpu(xen_vcpu, cpu) value.
 119 */
 120DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
 121
 122enum xen_domain_type xen_domain_type = XEN_NATIVE;
 123EXPORT_SYMBOL_GPL(xen_domain_type);
 124
 125unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
 126EXPORT_SYMBOL(machine_to_phys_mapping);
 127unsigned long  machine_to_phys_nr;
 128EXPORT_SYMBOL(machine_to_phys_nr);
 129
 130struct start_info *xen_start_info;
 131EXPORT_SYMBOL_GPL(xen_start_info);
 132
 133struct shared_info xen_dummy_shared_info;
 134
 135void *xen_initial_gdt;
 136
 137RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
 138__read_mostly int xen_have_vector_callback;
 139EXPORT_SYMBOL_GPL(xen_have_vector_callback);
 140
 141/*
 142 * Point at some empty memory to start with. We map the real shared_info
 143 * page as soon as fixmap is up and running.
 144 */
 145struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
 146
 147/*
 148 * Flag to determine whether vcpu info placement is available on all
 149 * VCPUs.  We assume it is to start with, and then set it to zero on
 150 * the first failure.  This is because it can succeed on some VCPUs
 151 * and not others, since it can involve hypervisor memory allocation,
 152 * or because the guest failed to guarantee all the appropriate
 153 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 154 *
 155 * Note that any particular CPU may be using a placed vcpu structure,
 156 * but we can only optimise if the all are.
 157 *
 158 * 0: not available, 1: available
 159 */
 160static int have_vcpu_info_placement = 1;
 161
 162struct tls_descs {
 163        struct desc_struct desc[3];
 164};
 165
 166/*
 167 * Updating the 3 TLS descriptors in the GDT on every task switch is
 168 * surprisingly expensive so we avoid updating them if they haven't
 169 * changed.  Since Xen writes different descriptors than the one
 170 * passed in the update_descriptor hypercall we keep shadow copies to
 171 * compare against.
 172 */
 173static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 174
 175static void clamp_max_cpus(void)
 176{
 177#ifdef CONFIG_SMP
 178        if (setup_max_cpus > MAX_VIRT_CPUS)
 179                setup_max_cpus = MAX_VIRT_CPUS;
 180#endif
 181}
 182
 183static void xen_vcpu_setup(int cpu)
 184{
 185        struct vcpu_register_vcpu_info info;
 186        int err;
 187        struct vcpu_info *vcpup;
 188
 189        BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 190
 191        /*
 192         * This path is called twice on PVHVM - first during bootup via
 193         * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
 194         * hotplugged: cpu_up -> xen_hvm_cpu_notify.
 195         * As we can only do the VCPUOP_register_vcpu_info once lets
 196         * not over-write its result.
 197         *
 198         * For PV it is called during restore (xen_vcpu_restore) and bootup
 199         * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
 200         * use this function.
 201         */
 202        if (xen_hvm_domain()) {
 203                if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
 204                        return;
 205        }
 206        if (cpu < MAX_VIRT_CPUS)
 207                per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
 208
 209        if (!have_vcpu_info_placement) {
 210                if (cpu >= MAX_VIRT_CPUS)
 211                        clamp_max_cpus();
 212                return;
 213        }
 214
 215        vcpup = &per_cpu(xen_vcpu_info, cpu);
 216        info.mfn = arbitrary_virt_to_mfn(vcpup);
 217        info.offset = offset_in_page(vcpup);
 218
 219        /* Check to see if the hypervisor will put the vcpu_info
 220           structure where we want it, which allows direct access via
 221           a percpu-variable.
 222           N.B. This hypercall can _only_ be called once per CPU. Subsequent
 223           calls will error out with -EINVAL. This is due to the fact that
 224           hypervisor has no unregister variant and this hypercall does not
 225           allow to over-write info.mfn and info.offset.
 226         */
 227        err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
 228
 229        if (err) {
 230                printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
 231                have_vcpu_info_placement = 0;
 232                clamp_max_cpus();
 233        } else {
 234                /* This cpu is using the registered vcpu info, even if
 235                   later ones fail to. */
 236                per_cpu(xen_vcpu, cpu) = vcpup;
 237        }
 238}
 239
 240/*
 241 * On restore, set the vcpu placement up again.
 242 * If it fails, then we're in a bad state, since
 243 * we can't back out from using it...
 244 */
 245void xen_vcpu_restore(void)
 246{
 247        int cpu;
 248
 249        for_each_possible_cpu(cpu) {
 250                bool other_cpu = (cpu != smp_processor_id());
 251                bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
 252
 253                if (other_cpu && is_up &&
 254                    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
 255                        BUG();
 256
 257                xen_setup_runstate_info(cpu);
 258
 259                if (have_vcpu_info_placement)
 260                        xen_vcpu_setup(cpu);
 261
 262                if (other_cpu && is_up &&
 263                    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
 264                        BUG();
 265        }
 266}
 267
 268static void __init xen_banner(void)
 269{
 270        unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 271        struct xen_extraversion extra;
 272        HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 273
 274        pr_info("Booting paravirtualized kernel %son %s\n",
 275                xen_feature(XENFEAT_auto_translated_physmap) ?
 276                        "with PVH extensions " : "", pv_info.name);
 277        printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 278               version >> 16, version & 0xffff, extra.extraversion,
 279               xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 280}
 281/* Check if running on Xen version (major, minor) or later */
 282bool
 283xen_running_on_version_or_later(unsigned int major, unsigned int minor)
 284{
 285        unsigned int version;
 286
 287        if (!xen_domain())
 288                return false;
 289
 290        version = HYPERVISOR_xen_version(XENVER_version, NULL);
 291        if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
 292                ((version >> 16) > major))
 293                return true;
 294        return false;
 295}
 296
 297#define CPUID_THERM_POWER_LEAF 6
 298#define APERFMPERF_PRESENT 0
 299
 300static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
 301static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
 302
 303static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
 304static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 305static __read_mostly unsigned int cpuid_leaf5_edx_val;
 306
 307static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 308                      unsigned int *cx, unsigned int *dx)
 309{
 310        unsigned maskebx = ~0;
 311        unsigned maskecx = ~0;
 312        unsigned maskedx = ~0;
 313        unsigned setecx = 0;
 314        /*
 315         * Mask out inconvenient features, to try and disable as many
 316         * unsupported kernel subsystems as possible.
 317         */
 318        switch (*ax) {
 319        case 1:
 320                maskecx = cpuid_leaf1_ecx_mask;
 321                setecx = cpuid_leaf1_ecx_set_mask;
 322                maskedx = cpuid_leaf1_edx_mask;
 323                break;
 324
 325        case CPUID_MWAIT_LEAF:
 326                /* Synthesize the values.. */
 327                *ax = 0;
 328                *bx = 0;
 329                *cx = cpuid_leaf5_ecx_val;
 330                *dx = cpuid_leaf5_edx_val;
 331                return;
 332
 333        case CPUID_THERM_POWER_LEAF:
 334                /* Disabling APERFMPERF for kernel usage */
 335                maskecx = ~(1 << APERFMPERF_PRESENT);
 336                break;
 337
 338        case 0xb:
 339                /* Suppress extended topology stuff */
 340                maskebx = 0;
 341                break;
 342        }
 343
 344        asm(XEN_EMULATE_PREFIX "cpuid"
 345                : "=a" (*ax),
 346                  "=b" (*bx),
 347                  "=c" (*cx),
 348                  "=d" (*dx)
 349                : "0" (*ax), "2" (*cx));
 350
 351        *bx &= maskebx;
 352        *cx &= maskecx;
 353        *cx |= setecx;
 354        *dx &= maskedx;
 355}
 356STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
 357
 358static bool __init xen_check_mwait(void)
 359{
 360#ifdef CONFIG_ACPI
 361        struct xen_platform_op op = {
 362                .cmd                    = XENPF_set_processor_pminfo,
 363                .u.set_pminfo.id        = -1,
 364                .u.set_pminfo.type      = XEN_PM_PDC,
 365        };
 366        uint32_t buf[3];
 367        unsigned int ax, bx, cx, dx;
 368        unsigned int mwait_mask;
 369
 370        /* We need to determine whether it is OK to expose the MWAIT
 371         * capability to the kernel to harvest deeper than C3 states from ACPI
 372         * _CST using the processor_harvest_xen.c module. For this to work, we
 373         * need to gather the MWAIT_LEAF values (which the cstate.c code
 374         * checks against). The hypervisor won't expose the MWAIT flag because
 375         * it would break backwards compatibility; so we will find out directly
 376         * from the hardware and hypercall.
 377         */
 378        if (!xen_initial_domain())
 379                return false;
 380
 381        /*
 382         * When running under platform earlier than Xen4.2, do not expose
 383         * mwait, to avoid the risk of loading native acpi pad driver
 384         */
 385        if (!xen_running_on_version_or_later(4, 2))
 386                return false;
 387
 388        ax = 1;
 389        cx = 0;
 390
 391        native_cpuid(&ax, &bx, &cx, &dx);
 392
 393        mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 394                     (1 << (X86_FEATURE_MWAIT % 32));
 395
 396        if ((cx & mwait_mask) != mwait_mask)
 397                return false;
 398
 399        /* We need to emulate the MWAIT_LEAF and for that we need both
 400         * ecx and edx. The hypercall provides only partial information.
 401         */
 402
 403        ax = CPUID_MWAIT_LEAF;
 404        bx = 0;
 405        cx = 0;
 406        dx = 0;
 407
 408        native_cpuid(&ax, &bx, &cx, &dx);
 409
 410        /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 411         * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 412         */
 413        buf[0] = ACPI_PDC_REVISION_ID;
 414        buf[1] = 1;
 415        buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 416
 417        set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 418
 419        if ((HYPERVISOR_platform_op(&op) == 0) &&
 420            (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 421                cpuid_leaf5_ecx_val = cx;
 422                cpuid_leaf5_edx_val = dx;
 423        }
 424        return true;
 425#else
 426        return false;
 427#endif
 428}
 429static void __init xen_init_cpuid_mask(void)
 430{
 431        unsigned int ax, bx, cx, dx;
 432        unsigned int xsave_mask;
 433
 434        cpuid_leaf1_edx_mask =
 435                ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
 436                  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
 437
 438        if (!xen_initial_domain())
 439                cpuid_leaf1_edx_mask &=
 440                        ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
 441
 442        cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
 443
 444        ax = 1;
 445        cx = 0;
 446        cpuid(1, &ax, &bx, &cx, &dx);
 447
 448        xsave_mask =
 449                (1 << (X86_FEATURE_XSAVE % 32)) |
 450                (1 << (X86_FEATURE_OSXSAVE % 32));
 451
 452        /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 453        if ((cx & xsave_mask) != xsave_mask)
 454                cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
 455        if (xen_check_mwait())
 456                cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
 457}
 458
 459static void xen_set_debugreg(int reg, unsigned long val)
 460{
 461        HYPERVISOR_set_debugreg(reg, val);
 462}
 463
 464static unsigned long xen_get_debugreg(int reg)
 465{
 466        return HYPERVISOR_get_debugreg(reg);
 467}
 468
 469static void xen_end_context_switch(struct task_struct *next)
 470{
 471        xen_mc_flush();
 472        paravirt_end_context_switch(next);
 473}
 474
 475static unsigned long xen_store_tr(void)
 476{
 477        return 0;
 478}
 479
 480/*
 481 * Set the page permissions for a particular virtual address.  If the
 482 * address is a vmalloc mapping (or other non-linear mapping), then
 483 * find the linear mapping of the page and also set its protections to
 484 * match.
 485 */
 486static void set_aliased_prot(void *v, pgprot_t prot)
 487{
 488        int level;
 489        pte_t *ptep;
 490        pte_t pte;
 491        unsigned long pfn;
 492        struct page *page;
 493        unsigned char dummy;
 494
 495        ptep = lookup_address((unsigned long)v, &level);
 496        BUG_ON(ptep == NULL);
 497
 498        pfn = pte_pfn(*ptep);
 499        page = pfn_to_page(pfn);
 500
 501        pte = pfn_pte(pfn, prot);
 502
 503        /*
 504         * Careful: update_va_mapping() will fail if the virtual address
 505         * we're poking isn't populated in the page tables.  We don't
 506         * need to worry about the direct map (that's always in the page
 507         * tables), but we need to be careful about vmap space.  In
 508         * particular, the top level page table can lazily propagate
 509         * entries between processes, so if we've switched mms since we
 510         * vmapped the target in the first place, we might not have the
 511         * top-level page table entry populated.
 512         *
 513         * We disable preemption because we want the same mm active when
 514         * we probe the target and when we issue the hypercall.  We'll
 515         * have the same nominal mm, but if we're a kernel thread, lazy
 516         * mm dropping could change our pgd.
 517         *
 518         * Out of an abundance of caution, this uses __get_user() to fault
 519         * in the target address just in case there's some obscure case
 520         * in which the target address isn't readable.
 521         */
 522
 523        preempt_disable();
 524
 525        pagefault_disable();    /* Avoid warnings due to being atomic. */
 526        __get_user(dummy, (unsigned char __user __force *)v);
 527        pagefault_enable();
 528
 529        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 530                BUG();
 531
 532        if (!PageHighMem(page)) {
 533                void *av = __va(PFN_PHYS(pfn));
 534
 535                if (av != v)
 536                        if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 537                                BUG();
 538        } else
 539                kmap_flush_unused();
 540
 541        preempt_enable();
 542}
 543
 544static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 545{
 546        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 547        int i;
 548
 549        /*
 550         * We need to mark the all aliases of the LDT pages RO.  We
 551         * don't need to call vm_flush_aliases(), though, since that's
 552         * only responsible for flushing aliases out the TLBs, not the
 553         * page tables, and Xen will flush the TLB for us if needed.
 554         *
 555         * To avoid confusing future readers: none of this is necessary
 556         * to load the LDT.  The hypervisor only checks this when the
 557         * LDT is faulted in due to subsequent descriptor access.
 558         */
 559
 560        for(i = 0; i < entries; i += entries_per_page)
 561                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 562}
 563
 564static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 565{
 566        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 567        int i;
 568
 569        for(i = 0; i < entries; i += entries_per_page)
 570                set_aliased_prot(ldt + i, PAGE_KERNEL);
 571}
 572
 573static void xen_set_ldt(const void *addr, unsigned entries)
 574{
 575        struct mmuext_op *op;
 576        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 577
 578        trace_xen_cpu_set_ldt(addr, entries);
 579
 580        op = mcs.args;
 581        op->cmd = MMUEXT_SET_LDT;
 582        op->arg1.linear_addr = (unsigned long)addr;
 583        op->arg2.nr_ents = entries;
 584
 585        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 586
 587        xen_mc_issue(PARAVIRT_LAZY_CPU);
 588}
 589
 590static void xen_load_gdt(const struct desc_ptr *dtr)
 591{
 592        unsigned long va = dtr->address;
 593        unsigned int size = dtr->size + 1;
 594        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 595        unsigned long frames[pages];
 596        int f;
 597
 598        /*
 599         * A GDT can be up to 64k in size, which corresponds to 8192
 600         * 8-byte entries, or 16 4k pages..
 601         */
 602
 603        BUG_ON(size > 65536);
 604        BUG_ON(va & ~PAGE_MASK);
 605
 606        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 607                int level;
 608                pte_t *ptep;
 609                unsigned long pfn, mfn;
 610                void *virt;
 611
 612                /*
 613                 * The GDT is per-cpu and is in the percpu data area.
 614                 * That can be virtually mapped, so we need to do a
 615                 * page-walk to get the underlying MFN for the
 616                 * hypercall.  The page can also be in the kernel's
 617                 * linear range, so we need to RO that mapping too.
 618                 */
 619                ptep = lookup_address(va, &level);
 620                BUG_ON(ptep == NULL);
 621
 622                pfn = pte_pfn(*ptep);
 623                mfn = pfn_to_mfn(pfn);
 624                virt = __va(PFN_PHYS(pfn));
 625
 626                frames[f] = mfn;
 627
 628                make_lowmem_page_readonly((void *)va);
 629                make_lowmem_page_readonly(virt);
 630        }
 631
 632        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 633                BUG();
 634}
 635
 636/*
 637 * load_gdt for early boot, when the gdt is only mapped once
 638 */
 639static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 640{
 641        unsigned long va = dtr->address;
 642        unsigned int size = dtr->size + 1;
 643        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 644        unsigned long frames[pages];
 645        int f;
 646
 647        /*
 648         * A GDT can be up to 64k in size, which corresponds to 8192
 649         * 8-byte entries, or 16 4k pages..
 650         */
 651
 652        BUG_ON(size > 65536);
 653        BUG_ON(va & ~PAGE_MASK);
 654
 655        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 656                pte_t pte;
 657                unsigned long pfn, mfn;
 658
 659                pfn = virt_to_pfn(va);
 660                mfn = pfn_to_mfn(pfn);
 661
 662                pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 663
 664                if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 665                        BUG();
 666
 667                frames[f] = mfn;
 668        }
 669
 670        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 671                BUG();
 672}
 673
 674static inline bool desc_equal(const struct desc_struct *d1,
 675                              const struct desc_struct *d2)
 676{
 677        return d1->a == d2->a && d1->b == d2->b;
 678}
 679
 680static void load_TLS_descriptor(struct thread_struct *t,
 681                                unsigned int cpu, unsigned int i)
 682{
 683        struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 684        struct desc_struct *gdt;
 685        xmaddr_t maddr;
 686        struct multicall_space mc;
 687
 688        if (desc_equal(shadow, &t->tls_array[i]))
 689                return;
 690
 691        *shadow = t->tls_array[i];
 692
 693        gdt = get_cpu_gdt_table(cpu);
 694        maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 695        mc = __xen_mc_entry(0);
 696
 697        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 698}
 699
 700static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 701{
 702        /*
 703         * XXX sleazy hack: If we're being called in a lazy-cpu zone
 704         * and lazy gs handling is enabled, it means we're in a
 705         * context switch, and %gs has just been saved.  This means we
 706         * can zero it out to prevent faults on exit from the
 707         * hypervisor if the next process has no %gs.  Either way, it
 708         * has been saved, and the new value will get loaded properly.
 709         * This will go away as soon as Xen has been modified to not
 710         * save/restore %gs for normal hypercalls.
 711         *
 712         * On x86_64, this hack is not used for %gs, because gs points
 713         * to KERNEL_GS_BASE (and uses it for PDA references), so we
 714         * must not zero %gs on x86_64
 715         *
 716         * For x86_64, we need to zero %fs, otherwise we may get an
 717         * exception between the new %fs descriptor being loaded and
 718         * %fs being effectively cleared at __switch_to().
 719         */
 720        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 721#ifdef CONFIG_X86_32
 722                lazy_load_gs(0);
 723#else
 724                loadsegment(fs, 0);
 725#endif
 726        }
 727
 728        xen_mc_batch();
 729
 730        load_TLS_descriptor(t, cpu, 0);
 731        load_TLS_descriptor(t, cpu, 1);
 732        load_TLS_descriptor(t, cpu, 2);
 733
 734        xen_mc_issue(PARAVIRT_LAZY_CPU);
 735}
 736
 737#ifdef CONFIG_X86_64
 738static void xen_load_gs_index(unsigned int idx)
 739{
 740        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 741                BUG();
 742}
 743#endif
 744
 745static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 746                                const void *ptr)
 747{
 748        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 749        u64 entry = *(u64 *)ptr;
 750
 751        trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 752
 753        preempt_disable();
 754
 755        xen_mc_flush();
 756        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 757                BUG();
 758
 759        preempt_enable();
 760}
 761
 762static int cvt_gate_to_trap(int vector, const gate_desc *val,
 763                            struct trap_info *info)
 764{
 765        unsigned long addr;
 766
 767        if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
 768                return 0;
 769
 770        info->vector = vector;
 771
 772        addr = gate_offset(*val);
 773#ifdef CONFIG_X86_64
 774        /*
 775         * Look for known traps using IST, and substitute them
 776         * appropriately.  The debugger ones are the only ones we care
 777         * about.  Xen will handle faults like double_fault,
 778         * so we should never see them.  Warn if
 779         * there's an unexpected IST-using fault handler.
 780         */
 781        if (addr == (unsigned long)debug)
 782                addr = (unsigned long)xen_debug;
 783        else if (addr == (unsigned long)int3)
 784                addr = (unsigned long)xen_int3;
 785        else if (addr == (unsigned long)stack_segment)
 786                addr = (unsigned long)xen_stack_segment;
 787        else if (addr == (unsigned long)double_fault) {
 788                /* Don't need to handle these */
 789                return 0;
 790#ifdef CONFIG_X86_MCE
 791        } else if (addr == (unsigned long)machine_check) {
 792                /*
 793                 * when xen hypervisor inject vMCE to guest,
 794                 * use native mce handler to handle it
 795                 */
 796                ;
 797#endif
 798        } else if (addr == (unsigned long)nmi)
 799                /*
 800                 * Use the native version as well.
 801                 */
 802                ;
 803        else {
 804                /* Some other trap using IST? */
 805                if (WARN_ON(val->ist != 0))
 806                        return 0;
 807        }
 808#endif  /* CONFIG_X86_64 */
 809        info->address = addr;
 810
 811        info->cs = gate_segment(*val);
 812        info->flags = val->dpl;
 813        /* interrupt gates clear IF */
 814        if (val->type == GATE_INTERRUPT)
 815                info->flags |= 1 << 2;
 816
 817        return 1;
 818}
 819
 820/* Locations of each CPU's IDT */
 821static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 822
 823/* Set an IDT entry.  If the entry is part of the current IDT, then
 824   also update Xen. */
 825static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 826{
 827        unsigned long p = (unsigned long)&dt[entrynum];
 828        unsigned long start, end;
 829
 830        trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 831
 832        preempt_disable();
 833
 834        start = __this_cpu_read(idt_desc.address);
 835        end = start + __this_cpu_read(idt_desc.size) + 1;
 836
 837        xen_mc_flush();
 838
 839        native_write_idt_entry(dt, entrynum, g);
 840
 841        if (p >= start && (p + 8) <= end) {
 842                struct trap_info info[2];
 843
 844                info[1].address = 0;
 845
 846                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 847                        if (HYPERVISOR_set_trap_table(info))
 848                                BUG();
 849        }
 850
 851        preempt_enable();
 852}
 853
 854static void xen_convert_trap_info(const struct desc_ptr *desc,
 855                                  struct trap_info *traps)
 856{
 857        unsigned in, out, count;
 858
 859        count = (desc->size+1) / sizeof(gate_desc);
 860        BUG_ON(count > 256);
 861
 862        for (in = out = 0; in < count; in++) {
 863                gate_desc *entry = (gate_desc*)(desc->address) + in;
 864
 865                if (cvt_gate_to_trap(in, entry, &traps[out]))
 866                        out++;
 867        }
 868        traps[out].address = 0;
 869}
 870
 871void xen_copy_trap_info(struct trap_info *traps)
 872{
 873        const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 874
 875        xen_convert_trap_info(desc, traps);
 876}
 877
 878/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 879   hold a spinlock to protect the static traps[] array (static because
 880   it avoids allocation, and saves stack space). */
 881static void xen_load_idt(const struct desc_ptr *desc)
 882{
 883        static DEFINE_SPINLOCK(lock);
 884        static struct trap_info traps[257];
 885
 886        trace_xen_cpu_load_idt(desc);
 887
 888        spin_lock(&lock);
 889
 890        memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 891
 892        xen_convert_trap_info(desc, traps);
 893
 894        xen_mc_flush();
 895        if (HYPERVISOR_set_trap_table(traps))
 896                BUG();
 897
 898        spin_unlock(&lock);
 899}
 900
 901/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 902   they're handled differently. */
 903static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 904                                const void *desc, int type)
 905{
 906        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 907
 908        preempt_disable();
 909
 910        switch (type) {
 911        case DESC_LDT:
 912        case DESC_TSS:
 913                /* ignore */
 914                break;
 915
 916        default: {
 917                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 918
 919                xen_mc_flush();
 920                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 921                        BUG();
 922        }
 923
 924        }
 925
 926        preempt_enable();
 927}
 928
 929/*
 930 * Version of write_gdt_entry for use at early boot-time needed to
 931 * update an entry as simply as possible.
 932 */
 933static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 934                                            const void *desc, int type)
 935{
 936        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 937
 938        switch (type) {
 939        case DESC_LDT:
 940        case DESC_TSS:
 941                /* ignore */
 942                break;
 943
 944        default: {
 945                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 946
 947                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 948                        dt[entry] = *(struct desc_struct *)desc;
 949        }
 950
 951        }
 952}
 953
 954static void xen_load_sp0(struct tss_struct *tss,
 955                         struct thread_struct *thread)
 956{
 957        struct multicall_space mcs;
 958
 959        mcs = xen_mc_entry(0);
 960        MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
 961        xen_mc_issue(PARAVIRT_LAZY_CPU);
 962        tss->x86_tss.sp0 = thread->sp0;
 963}
 964
 965void xen_set_iopl_mask(unsigned mask)
 966{
 967        struct physdev_set_iopl set_iopl;
 968
 969        /* Force the change at ring 0. */
 970        set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 971        HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 972}
 973
 974static void xen_io_delay(void)
 975{
 976}
 977
 978static void xen_clts(void)
 979{
 980        struct multicall_space mcs;
 981
 982        mcs = xen_mc_entry(0);
 983
 984        MULTI_fpu_taskswitch(mcs.mc, 0);
 985
 986        xen_mc_issue(PARAVIRT_LAZY_CPU);
 987}
 988
 989static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 990
 991static unsigned long xen_read_cr0(void)
 992{
 993        unsigned long cr0 = this_cpu_read(xen_cr0_value);
 994
 995        if (unlikely(cr0 == 0)) {
 996                cr0 = native_read_cr0();
 997                this_cpu_write(xen_cr0_value, cr0);
 998        }
 999
1000        return cr0;
1001}
1002
1003static void xen_write_cr0(unsigned long cr0)
1004{
1005        struct multicall_space mcs;
1006
1007        this_cpu_write(xen_cr0_value, cr0);
1008
1009        /* Only pay attention to cr0.TS; everything else is
1010           ignored. */
1011        mcs = xen_mc_entry(0);
1012
1013        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1014
1015        xen_mc_issue(PARAVIRT_LAZY_CPU);
1016}
1017
1018static void xen_write_cr4(unsigned long cr4)
1019{
1020        cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1021
1022        native_write_cr4(cr4);
1023}
1024#ifdef CONFIG_X86_64
1025static inline unsigned long xen_read_cr8(void)
1026{
1027        return 0;
1028}
1029static inline void xen_write_cr8(unsigned long val)
1030{
1031        BUG_ON(val);
1032}
1033#endif
1034
1035static u64 xen_read_msr_safe(unsigned int msr, int *err)
1036{
1037        u64 val;
1038
1039        if (pmu_msr_read(msr, &val, err))
1040                return val;
1041
1042        val = native_read_msr_safe(msr, err);
1043        switch (msr) {
1044        case MSR_IA32_APICBASE:
1045#ifdef CONFIG_X86_X2APIC
1046                if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1047#endif
1048                        val &= ~X2APIC_ENABLE;
1049                break;
1050        }
1051        return val;
1052}
1053
1054static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1055{
1056        int ret;
1057
1058        ret = 0;
1059
1060        switch (msr) {
1061#ifdef CONFIG_X86_64
1062                unsigned which;
1063                u64 base;
1064
1065        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1066        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1067        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1068
1069        set:
1070                base = ((u64)high << 32) | low;
1071                if (HYPERVISOR_set_segment_base(which, base) != 0)
1072                        ret = -EIO;
1073                break;
1074#endif
1075
1076        case MSR_STAR:
1077        case MSR_CSTAR:
1078        case MSR_LSTAR:
1079        case MSR_SYSCALL_MASK:
1080        case MSR_IA32_SYSENTER_CS:
1081        case MSR_IA32_SYSENTER_ESP:
1082        case MSR_IA32_SYSENTER_EIP:
1083                /* Fast syscall setup is all done in hypercalls, so
1084                   these are all ignored.  Stub them out here to stop
1085                   Xen console noise. */
1086                break;
1087
1088        default:
1089                if (!pmu_msr_write(msr, low, high, &ret))
1090                        ret = native_write_msr_safe(msr, low, high);
1091        }
1092
1093        return ret;
1094}
1095
1096void xen_setup_shared_info(void)
1097{
1098        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1099                set_fixmap(FIX_PARAVIRT_BOOTMAP,
1100                           xen_start_info->shared_info);
1101
1102                HYPERVISOR_shared_info =
1103                        (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1104        } else
1105                HYPERVISOR_shared_info =
1106                        (struct shared_info *)__va(xen_start_info->shared_info);
1107
1108#ifndef CONFIG_SMP
1109        /* In UP this is as good a place as any to set up shared info */
1110        xen_setup_vcpu_info_placement();
1111#endif
1112
1113        xen_setup_mfn_list_list();
1114}
1115
1116/* This is called once we have the cpu_possible_mask */
1117void xen_setup_vcpu_info_placement(void)
1118{
1119        int cpu;
1120
1121        for_each_possible_cpu(cpu)
1122                xen_vcpu_setup(cpu);
1123
1124        /* xen_vcpu_setup managed to place the vcpu_info within the
1125         * percpu area for all cpus, so make use of it. Note that for
1126         * PVH we want to use native IRQ mechanism. */
1127        if (have_vcpu_info_placement && !xen_pvh_domain()) {
1128                pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1129                pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1130                pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1131                pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1132                pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1133        }
1134}
1135
1136static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1137                          unsigned long addr, unsigned len)
1138{
1139        char *start, *end, *reloc;
1140        unsigned ret;
1141
1142        start = end = reloc = NULL;
1143
1144#define SITE(op, x)                                                     \
1145        case PARAVIRT_PATCH(op.x):                                      \
1146        if (have_vcpu_info_placement) {                                 \
1147                start = (char *)xen_##x##_direct;                       \
1148                end = xen_##x##_direct_end;                             \
1149                reloc = xen_##x##_direct_reloc;                         \
1150        }                                                               \
1151        goto patch_site
1152
1153        switch (type) {
1154                SITE(pv_irq_ops, irq_enable);
1155                SITE(pv_irq_ops, irq_disable);
1156                SITE(pv_irq_ops, save_fl);
1157                SITE(pv_irq_ops, restore_fl);
1158#undef SITE
1159
1160        patch_site:
1161                if (start == NULL || (end-start) > len)
1162                        goto default_patch;
1163
1164                ret = paravirt_patch_insns(insnbuf, len, start, end);
1165
1166                /* Note: because reloc is assigned from something that
1167                   appears to be an array, gcc assumes it's non-null,
1168                   but doesn't know its relationship with start and
1169                   end. */
1170                if (reloc > start && reloc < end) {
1171                        int reloc_off = reloc - start;
1172                        long *relocp = (long *)(insnbuf + reloc_off);
1173                        long delta = start - (char *)addr;
1174
1175                        *relocp += delta;
1176                }
1177                break;
1178
1179        default_patch:
1180        default:
1181                ret = paravirt_patch_default(type, clobbers, insnbuf,
1182                                             addr, len);
1183                break;
1184        }
1185
1186        return ret;
1187}
1188
1189static const struct pv_info xen_info __initconst = {
1190        .paravirt_enabled = 1,
1191        .shared_kernel_pmd = 0,
1192
1193#ifdef CONFIG_X86_64
1194        .extra_user_64bit_cs = FLAT_USER_CS64,
1195#endif
1196        .features = 0,
1197        .name = "Xen",
1198};
1199
1200static const struct pv_init_ops xen_init_ops __initconst = {
1201        .patch = xen_patch,
1202};
1203
1204static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1205        .cpuid = xen_cpuid,
1206
1207        .set_debugreg = xen_set_debugreg,
1208        .get_debugreg = xen_get_debugreg,
1209
1210        .clts = xen_clts,
1211
1212        .read_cr0 = xen_read_cr0,
1213        .write_cr0 = xen_write_cr0,
1214
1215        .read_cr4 = native_read_cr4,
1216        .read_cr4_safe = native_read_cr4_safe,
1217        .write_cr4 = xen_write_cr4,
1218
1219#ifdef CONFIG_X86_64
1220        .read_cr8 = xen_read_cr8,
1221        .write_cr8 = xen_write_cr8,
1222#endif
1223
1224        .wbinvd = native_wbinvd,
1225
1226        .read_msr = xen_read_msr_safe,
1227        .write_msr = xen_write_msr_safe,
1228
1229        .read_pmc = xen_read_pmc,
1230
1231        .iret = xen_iret,
1232#ifdef CONFIG_X86_64
1233        .usergs_sysret64 = xen_sysret64,
1234#endif
1235
1236        .load_tr_desc = paravirt_nop,
1237        .set_ldt = xen_set_ldt,
1238        .load_gdt = xen_load_gdt,
1239        .load_idt = xen_load_idt,
1240        .load_tls = xen_load_tls,
1241#ifdef CONFIG_X86_64
1242        .load_gs_index = xen_load_gs_index,
1243#endif
1244
1245        .alloc_ldt = xen_alloc_ldt,
1246        .free_ldt = xen_free_ldt,
1247
1248        .store_idt = native_store_idt,
1249        .store_tr = xen_store_tr,
1250
1251        .write_ldt_entry = xen_write_ldt_entry,
1252        .write_gdt_entry = xen_write_gdt_entry,
1253        .write_idt_entry = xen_write_idt_entry,
1254        .load_sp0 = xen_load_sp0,
1255
1256        .set_iopl_mask = xen_set_iopl_mask,
1257        .io_delay = xen_io_delay,
1258
1259        /* Xen takes care of %gs when switching to usermode for us */
1260        .swapgs = paravirt_nop,
1261
1262        .start_context_switch = paravirt_start_context_switch,
1263        .end_context_switch = xen_end_context_switch,
1264};
1265
1266static void xen_reboot(int reason)
1267{
1268        struct sched_shutdown r = { .reason = reason };
1269        int cpu;
1270
1271        for_each_online_cpu(cpu)
1272                xen_pmu_finish(cpu);
1273
1274        if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1275                BUG();
1276}
1277
1278static void xen_restart(char *msg)
1279{
1280        xen_reboot(SHUTDOWN_reboot);
1281}
1282
1283static void xen_emergency_restart(void)
1284{
1285        xen_reboot(SHUTDOWN_reboot);
1286}
1287
1288static void xen_machine_halt(void)
1289{
1290        xen_reboot(SHUTDOWN_poweroff);
1291}
1292
1293static void xen_machine_power_off(void)
1294{
1295        if (pm_power_off)
1296                pm_power_off();
1297        xen_reboot(SHUTDOWN_poweroff);
1298}
1299
1300static void xen_crash_shutdown(struct pt_regs *regs)
1301{
1302        xen_reboot(SHUTDOWN_crash);
1303}
1304
1305static int
1306xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1307{
1308        xen_reboot(SHUTDOWN_crash);
1309        return NOTIFY_DONE;
1310}
1311
1312static struct notifier_block xen_panic_block = {
1313        .notifier_call= xen_panic_event,
1314        .priority = INT_MIN
1315};
1316
1317int xen_panic_handler_init(void)
1318{
1319        atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1320        return 0;
1321}
1322
1323static const struct machine_ops xen_machine_ops __initconst = {
1324        .restart = xen_restart,
1325        .halt = xen_machine_halt,
1326        .power_off = xen_machine_power_off,
1327        .shutdown = xen_machine_halt,
1328        .crash_shutdown = xen_crash_shutdown,
1329        .emergency_restart = xen_emergency_restart,
1330};
1331
1332static unsigned char xen_get_nmi_reason(void)
1333{
1334        unsigned char reason = 0;
1335
1336        /* Construct a value which looks like it came from port 0x61. */
1337        if (test_bit(_XEN_NMIREASON_io_error,
1338                     &HYPERVISOR_shared_info->arch.nmi_reason))
1339                reason |= NMI_REASON_IOCHK;
1340        if (test_bit(_XEN_NMIREASON_pci_serr,
1341                     &HYPERVISOR_shared_info->arch.nmi_reason))
1342                reason |= NMI_REASON_SERR;
1343
1344        return reason;
1345}
1346
1347static void __init xen_boot_params_init_edd(void)
1348{
1349#if IS_ENABLED(CONFIG_EDD)
1350        struct xen_platform_op op;
1351        struct edd_info *edd_info;
1352        u32 *mbr_signature;
1353        unsigned nr;
1354        int ret;
1355
1356        edd_info = boot_params.eddbuf;
1357        mbr_signature = boot_params.edd_mbr_sig_buffer;
1358
1359        op.cmd = XENPF_firmware_info;
1360
1361        op.u.firmware_info.type = XEN_FW_DISK_INFO;
1362        for (nr = 0; nr < EDDMAXNR; nr++) {
1363                struct edd_info *info = edd_info + nr;
1364
1365                op.u.firmware_info.index = nr;
1366                info->params.length = sizeof(info->params);
1367                set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1368                                     &info->params);
1369                ret = HYPERVISOR_platform_op(&op);
1370                if (ret)
1371                        break;
1372
1373#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1374                C(device);
1375                C(version);
1376                C(interface_support);
1377                C(legacy_max_cylinder);
1378                C(legacy_max_head);
1379                C(legacy_sectors_per_track);
1380#undef C
1381        }
1382        boot_params.eddbuf_entries = nr;
1383
1384        op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1385        for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1386                op.u.firmware_info.index = nr;
1387                ret = HYPERVISOR_platform_op(&op);
1388                if (ret)
1389                        break;
1390                mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1391        }
1392        boot_params.edd_mbr_sig_buf_entries = nr;
1393#endif
1394}
1395
1396/*
1397 * Set up the GDT and segment registers for -fstack-protector.  Until
1398 * we do this, we have to be careful not to call any stack-protected
1399 * function, which is most of the kernel.
1400 *
1401 * Note, that it is __ref because the only caller of this after init
1402 * is PVH which is not going to use xen_load_gdt_boot or other
1403 * __init functions.
1404 */
1405static void __ref xen_setup_gdt(int cpu)
1406{
1407        if (xen_feature(XENFEAT_auto_translated_physmap)) {
1408#ifdef CONFIG_X86_64
1409                unsigned long dummy;
1410
1411                load_percpu_segment(cpu); /* We need to access per-cpu area */
1412                switch_to_new_gdt(cpu); /* GDT and GS set */
1413
1414                /* We are switching of the Xen provided GDT to our HVM mode
1415                 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1416                 * and we are jumping to reload it.
1417                 */
1418                asm volatile ("pushq %0\n"
1419                              "leaq 1f(%%rip),%0\n"
1420                              "pushq %0\n"
1421                              "lretq\n"
1422                              "1:\n"
1423                              : "=&r" (dummy) : "0" (__KERNEL_CS));
1424
1425                /*
1426                 * While not needed, we also set the %es, %ds, and %fs
1427                 * to zero. We don't care about %ss as it is NULL.
1428                 * Strictly speaking this is not needed as Xen zeros those
1429                 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1430                 *
1431                 * Linux zeros them in cpu_init() and in secondary_startup_64
1432                 * (for BSP).
1433                 */
1434                loadsegment(es, 0);
1435                loadsegment(ds, 0);
1436                loadsegment(fs, 0);
1437#else
1438                /* PVH: TODO Implement. */
1439                BUG();
1440#endif
1441                return; /* PVH does not need any PV GDT ops. */
1442        }
1443        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1444        pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1445
1446        setup_stack_canary_segment(0);
1447        switch_to_new_gdt(0);
1448
1449        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1450        pv_cpu_ops.load_gdt = xen_load_gdt;
1451}
1452
1453#ifdef CONFIG_XEN_PVH
1454/*
1455 * A PV guest starts with default flags that are not set for PVH, set them
1456 * here asap.
1457 */
1458static void xen_pvh_set_cr_flags(int cpu)
1459{
1460
1461        /* Some of these are setup in 'secondary_startup_64'. The others:
1462         * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1463         * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1464        write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1465
1466        if (!cpu)
1467                return;
1468        /*
1469         * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1470         * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1471        */
1472        if (cpu_has_pse)
1473                cr4_set_bits_and_update_boot(X86_CR4_PSE);
1474
1475        if (cpu_has_pge)
1476                cr4_set_bits_and_update_boot(X86_CR4_PGE);
1477}
1478
1479/*
1480 * Note, that it is ref - because the only caller of this after init
1481 * is PVH which is not going to use xen_load_gdt_boot or other
1482 * __init functions.
1483 */
1484void __ref xen_pvh_secondary_vcpu_init(int cpu)
1485{
1486        xen_setup_gdt(cpu);
1487        xen_pvh_set_cr_flags(cpu);
1488}
1489
1490static void __init xen_pvh_early_guest_init(void)
1491{
1492        if (!xen_feature(XENFEAT_auto_translated_physmap))
1493                return;
1494
1495        if (!xen_feature(XENFEAT_hvm_callback_vector))
1496                return;
1497
1498        xen_have_vector_callback = 1;
1499
1500        xen_pvh_early_cpu_init(0, false);
1501        xen_pvh_set_cr_flags(0);
1502
1503#ifdef CONFIG_X86_32
1504        BUG(); /* PVH: Implement proper support. */
1505#endif
1506}
1507#endif    /* CONFIG_XEN_PVH */
1508
1509/* First C function to be called on Xen boot */
1510asmlinkage __visible void __init xen_start_kernel(void)
1511{
1512        struct physdev_set_iopl set_iopl;
1513        unsigned long initrd_start = 0;
1514        u64 pat;
1515        int rc;
1516
1517        if (!xen_start_info)
1518                return;
1519
1520        xen_domain_type = XEN_PV_DOMAIN;
1521
1522        xen_setup_features();
1523#ifdef CONFIG_XEN_PVH
1524        xen_pvh_early_guest_init();
1525#endif
1526        xen_setup_machphys_mapping();
1527
1528        /* Install Xen paravirt ops */
1529        pv_info = xen_info;
1530        if (xen_initial_domain())
1531                pv_info.features |= PV_SUPPORTED_RTC;
1532        pv_init_ops = xen_init_ops;
1533        if (!xen_pvh_domain()) {
1534                pv_cpu_ops = xen_cpu_ops;
1535
1536                x86_platform.get_nmi_reason = xen_get_nmi_reason;
1537        }
1538
1539        if (xen_feature(XENFEAT_auto_translated_physmap))
1540                x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1541        else
1542                x86_init.resources.memory_setup = xen_memory_setup;
1543        x86_init.oem.arch_setup = xen_arch_setup;
1544        x86_init.oem.banner = xen_banner;
1545
1546        xen_init_time_ops();
1547
1548        /*
1549         * Set up some pagetable state before starting to set any ptes.
1550         */
1551
1552        xen_init_mmu_ops();
1553
1554        /* Prevent unwanted bits from being set in PTEs. */
1555        __supported_pte_mask &= ~_PAGE_GLOBAL;
1556
1557        /*
1558         * Prevent page tables from being allocated in highmem, even
1559         * if CONFIG_HIGHPTE is enabled.
1560         */
1561        __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1562
1563        /* Work out if we support NX */
1564        x86_configure_nx();
1565
1566        /* Get mfn list */
1567        xen_build_dynamic_phys_to_machine();
1568
1569        /*
1570         * Set up kernel GDT and segment registers, mainly so that
1571         * -fstack-protector code can be executed.
1572         */
1573        xen_setup_gdt(0);
1574
1575        xen_init_irq_ops();
1576        xen_init_cpuid_mask();
1577
1578#ifdef CONFIG_X86_LOCAL_APIC
1579        /*
1580         * set up the basic apic ops.
1581         */
1582        xen_init_apic();
1583#endif
1584
1585        if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1586                pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1587                pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1588        }
1589
1590        machine_ops = xen_machine_ops;
1591
1592        /*
1593         * The only reliable way to retain the initial address of the
1594         * percpu gdt_page is to remember it here, so we can go and
1595         * mark it RW later, when the initial percpu area is freed.
1596         */
1597        xen_initial_gdt = &per_cpu(gdt_page, 0);
1598
1599        xen_smp_init();
1600
1601#ifdef CONFIG_ACPI_NUMA
1602        /*
1603         * The pages we from Xen are not related to machine pages, so
1604         * any NUMA information the kernel tries to get from ACPI will
1605         * be meaningless.  Prevent it from trying.
1606         */
1607        acpi_numa = -1;
1608#endif
1609        /* Don't do the full vcpu_info placement stuff until we have a
1610           possible map and a non-dummy shared_info. */
1611        per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1612
1613        local_irq_disable();
1614        early_boot_irqs_disabled = true;
1615
1616        xen_raw_console_write("mapping kernel into physical memory\n");
1617        xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1618                                   xen_start_info->nr_pages);
1619        xen_reserve_special_pages();
1620
1621        /*
1622         * Modify the cache mode translation tables to match Xen's PAT
1623         * configuration.
1624         */
1625        rdmsrl(MSR_IA32_CR_PAT, pat);
1626        pat_init_cache_modes(pat);
1627
1628        /* keep using Xen gdt for now; no urgent need to change it */
1629
1630#ifdef CONFIG_X86_32
1631        pv_info.kernel_rpl = 1;
1632        if (xen_feature(XENFEAT_supervisor_mode_kernel))
1633                pv_info.kernel_rpl = 0;
1634#else
1635        pv_info.kernel_rpl = 0;
1636#endif
1637        /* set the limit of our address space */
1638        xen_reserve_top();
1639
1640        /* PVH: runs at default kernel iopl of 0 */
1641        if (!xen_pvh_domain()) {
1642                /*
1643                 * We used to do this in xen_arch_setup, but that is too late
1644                 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1645                 * early_amd_init which pokes 0xcf8 port.
1646                 */
1647                set_iopl.iopl = 1;
1648                rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1649                if (rc != 0)
1650                        xen_raw_printk("physdev_op failed %d\n", rc);
1651        }
1652
1653#ifdef CONFIG_X86_32
1654        /* set up basic CPUID stuff */
1655        cpu_detect(&new_cpu_data);
1656        set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1657        new_cpu_data.wp_works_ok = 1;
1658        new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1659#endif
1660
1661        if (xen_start_info->mod_start) {
1662            if (xen_start_info->flags & SIF_MOD_START_PFN)
1663                initrd_start = PFN_PHYS(xen_start_info->mod_start);
1664            else
1665                initrd_start = __pa(xen_start_info->mod_start);
1666        }
1667
1668        /* Poke various useful things into boot_params */
1669        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1670        boot_params.hdr.ramdisk_image = initrd_start;
1671        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1672        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1673
1674        if (!xen_initial_domain()) {
1675                add_preferred_console("xenboot", 0, NULL);
1676                add_preferred_console("tty", 0, NULL);
1677                add_preferred_console("hvc", 0, NULL);
1678                if (pci_xen)
1679                        x86_init.pci.arch_init = pci_xen_init;
1680        } else {
1681                const struct dom0_vga_console_info *info =
1682                        (void *)((char *)xen_start_info +
1683                                 xen_start_info->console.dom0.info_off);
1684                struct xen_platform_op op = {
1685                        .cmd = XENPF_firmware_info,
1686                        .interface_version = XENPF_INTERFACE_VERSION,
1687                        .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1688                };
1689
1690                xen_init_vga(info, xen_start_info->console.dom0.info_size);
1691                xen_start_info->console.domU.mfn = 0;
1692                xen_start_info->console.domU.evtchn = 0;
1693
1694                if (HYPERVISOR_platform_op(&op) == 0)
1695                        boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1696
1697                /* Make sure ACS will be enabled */
1698                pci_request_acs();
1699
1700                xen_acpi_sleep_register();
1701
1702                /* Avoid searching for BIOS MP tables */
1703                x86_init.mpparse.find_smp_config = x86_init_noop;
1704                x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1705
1706                xen_boot_params_init_edd();
1707        }
1708#ifdef CONFIG_PCI
1709        /* PCI BIOS service won't work from a PV guest. */
1710        pci_probe &= ~PCI_PROBE_BIOS;
1711#endif
1712        xen_raw_console_write("about to get started...\n");
1713
1714        xen_setup_runstate_info(0);
1715
1716        xen_efi_init();
1717
1718        /* Start the world */
1719#ifdef CONFIG_X86_32
1720        i386_start_kernel();
1721#else
1722        cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1723        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1724#endif
1725}
1726
1727void __ref xen_hvm_init_shared_info(void)
1728{
1729        int cpu;
1730        struct xen_add_to_physmap xatp;
1731        static struct shared_info *shared_info_page = 0;
1732
1733        if (!shared_info_page)
1734                shared_info_page = (struct shared_info *)
1735                        extend_brk(PAGE_SIZE, PAGE_SIZE);
1736        xatp.domid = DOMID_SELF;
1737        xatp.idx = 0;
1738        xatp.space = XENMAPSPACE_shared_info;
1739        xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1740        if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1741                BUG();
1742
1743        HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1744
1745        /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1746         * page, we use it in the event channel upcall and in some pvclock
1747         * related functions. We don't need the vcpu_info placement
1748         * optimizations because we don't use any pv_mmu or pv_irq op on
1749         * HVM.
1750         * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1751         * online but xen_hvm_init_shared_info is run at resume time too and
1752         * in that case multiple vcpus might be online. */
1753        for_each_online_cpu(cpu) {
1754                /* Leave it to be NULL. */
1755                if (cpu >= MAX_VIRT_CPUS)
1756                        continue;
1757                per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1758        }
1759}
1760
1761#ifdef CONFIG_XEN_PVHVM
1762static void __init init_hvm_pv_info(void)
1763{
1764        int major, minor;
1765        uint32_t eax, ebx, ecx, edx, pages, msr, base;
1766        u64 pfn;
1767
1768        base = xen_cpuid_base();
1769        cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1770
1771        major = eax >> 16;
1772        minor = eax & 0xffff;
1773        printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1774
1775        cpuid(base + 2, &pages, &msr, &ecx, &edx);
1776
1777        pfn = __pa(hypercall_page);
1778        wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1779
1780        xen_setup_features();
1781
1782        pv_info.name = "Xen HVM";
1783
1784        xen_domain_type = XEN_HVM_DOMAIN;
1785}
1786
1787static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1788                              void *hcpu)
1789{
1790        int cpu = (long)hcpu;
1791        switch (action) {
1792        case CPU_UP_PREPARE:
1793                xen_vcpu_setup(cpu);
1794                if (xen_have_vector_callback) {
1795                        if (xen_feature(XENFEAT_hvm_safe_pvclock))
1796                                xen_setup_timer(cpu);
1797                }
1798                break;
1799        default:
1800                break;
1801        }
1802        return NOTIFY_OK;
1803}
1804
1805static struct notifier_block xen_hvm_cpu_notifier = {
1806        .notifier_call  = xen_hvm_cpu_notify,
1807};
1808
1809#ifdef CONFIG_KEXEC_CORE
1810static void xen_hvm_shutdown(void)
1811{
1812        native_machine_shutdown();
1813        if (kexec_in_progress)
1814                xen_reboot(SHUTDOWN_soft_reset);
1815}
1816
1817static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1818{
1819        native_machine_crash_shutdown(regs);
1820        xen_reboot(SHUTDOWN_soft_reset);
1821}
1822#endif
1823
1824static void __init xen_hvm_guest_init(void)
1825{
1826        if (xen_pv_domain())
1827                return;
1828
1829        init_hvm_pv_info();
1830
1831        xen_hvm_init_shared_info();
1832
1833        xen_panic_handler_init();
1834
1835        if (xen_feature(XENFEAT_hvm_callback_vector))
1836                xen_have_vector_callback = 1;
1837        xen_hvm_smp_init();
1838        register_cpu_notifier(&xen_hvm_cpu_notifier);
1839        xen_unplug_emulated_devices();
1840        x86_init.irqs.intr_init = xen_init_IRQ;
1841        xen_hvm_init_time_ops();
1842        xen_hvm_init_mmu_ops();
1843#ifdef CONFIG_KEXEC_CORE
1844        machine_ops.shutdown = xen_hvm_shutdown;
1845        machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1846#endif
1847}
1848#endif
1849
1850static bool xen_nopv = false;
1851static __init int xen_parse_nopv(char *arg)
1852{
1853       xen_nopv = true;
1854       return 0;
1855}
1856early_param("xen_nopv", xen_parse_nopv);
1857
1858static uint32_t __init xen_platform(void)
1859{
1860        if (xen_nopv)
1861                return 0;
1862
1863        return xen_cpuid_base();
1864}
1865
1866bool xen_hvm_need_lapic(void)
1867{
1868        if (xen_nopv)
1869                return false;
1870        if (xen_pv_domain())
1871                return false;
1872        if (!xen_hvm_domain())
1873                return false;
1874        if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1875                return false;
1876        return true;
1877}
1878EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1879
1880static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1881{
1882        if (xen_pv_domain()) {
1883                clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1884                set_cpu_cap(c, X86_FEATURE_XENPV);
1885        }
1886}
1887
1888const struct hypervisor_x86 x86_hyper_xen = {
1889        .name                   = "Xen",
1890        .detect                 = xen_platform,
1891#ifdef CONFIG_XEN_PVHVM
1892        .init_platform          = xen_hvm_guest_init,
1893#endif
1894        .x2apic_available       = xen_x2apic_para_available,
1895        .set_cpu_features       = xen_set_cpu_features,
1896};
1897EXPORT_SYMBOL(x86_hyper_xen);
1898
1899#ifdef CONFIG_HOTPLUG_CPU
1900void xen_arch_register_cpu(int num)
1901{
1902        arch_register_cpu(num);
1903}
1904EXPORT_SYMBOL(xen_arch_register_cpu);
1905
1906void xen_arch_unregister_cpu(int num)
1907{
1908        arch_unregister_cpu(num);
1909}
1910EXPORT_SYMBOL(xen_arch_unregister_cpu);
1911#endif
1912