linux/arch/x86/xen/mmu.c
<<
>>
Prefs
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/module.h>
  47#include <linux/gfp.h>
  48#include <linux/memblock.h>
  49#include <linux/seq_file.h>
  50#include <linux/crash_dump.h>
  51
  52#include <trace/events/xen.h>
  53
  54#include <asm/pgtable.h>
  55#include <asm/tlbflush.h>
  56#include <asm/fixmap.h>
  57#include <asm/mmu_context.h>
  58#include <asm/setup.h>
  59#include <asm/paravirt.h>
  60#include <asm/e820.h>
  61#include <asm/linkage.h>
  62#include <asm/page.h>
  63#include <asm/init.h>
  64#include <asm/pat.h>
  65#include <asm/smp.h>
  66
  67#include <asm/xen/hypercall.h>
  68#include <asm/xen/hypervisor.h>
  69
  70#include <xen/xen.h>
  71#include <xen/page.h>
  72#include <xen/interface/xen.h>
  73#include <xen/interface/hvm/hvm_op.h>
  74#include <xen/interface/version.h>
  75#include <xen/interface/memory.h>
  76#include <xen/hvc-console.h>
  77
  78#include "multicalls.h"
  79#include "mmu.h"
  80#include "debugfs.h"
  81
  82/*
  83 * Protects atomic reservation decrease/increase against concurrent increases.
  84 * Also protects non-atomic updates of current_pages and balloon lists.
  85 */
  86DEFINE_SPINLOCK(xen_reservation_lock);
  87
  88#ifdef CONFIG_X86_32
  89/*
  90 * Identity map, in addition to plain kernel map.  This needs to be
  91 * large enough to allocate page table pages to allocate the rest.
  92 * Each page can map 2MB.
  93 */
  94#define LEVEL1_IDENT_ENTRIES    (PTRS_PER_PTE * 4)
  95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  96#endif
  97#ifdef CONFIG_X86_64
  98/* l3 pud for userspace vsyscall mapping */
  99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 100#endif /* CONFIG_X86_64 */
 101
 102/*
 103 * Note about cr3 (pagetable base) values:
 104 *
 105 * xen_cr3 contains the current logical cr3 value; it contains the
 106 * last set cr3.  This may not be the current effective cr3, because
 107 * its update may be being lazily deferred.  However, a vcpu looking
 108 * at its own cr3 can use this value knowing that it everything will
 109 * be self-consistent.
 110 *
 111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 112 * hypercall to set the vcpu cr3 is complete (so it may be a little
 113 * out of date, but it will never be set early).  If one vcpu is
 114 * looking at another vcpu's cr3 value, it should use this variable.
 115 */
 116DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 117DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 118
 119static phys_addr_t xen_pt_base, xen_pt_size __initdata;
 120
 121/*
 122 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 123 * redzone above it, so round it up to a PGD boundary.
 124 */
 125#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 126
 127unsigned long arbitrary_virt_to_mfn(void *vaddr)
 128{
 129        xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 130
 131        return PFN_DOWN(maddr.maddr);
 132}
 133
 134xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 135{
 136        unsigned long address = (unsigned long)vaddr;
 137        unsigned int level;
 138        pte_t *pte;
 139        unsigned offset;
 140
 141        /*
 142         * if the PFN is in the linear mapped vaddr range, we can just use
 143         * the (quick) virt_to_machine() p2m lookup
 144         */
 145        if (virt_addr_valid(vaddr))
 146                return virt_to_machine(vaddr);
 147
 148        /* otherwise we have to do a (slower) full page-table walk */
 149
 150        pte = lookup_address(address, &level);
 151        BUG_ON(pte == NULL);
 152        offset = address & ~PAGE_MASK;
 153        return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 154}
 155EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 156
 157void make_lowmem_page_readonly(void *vaddr)
 158{
 159        pte_t *pte, ptev;
 160        unsigned long address = (unsigned long)vaddr;
 161        unsigned int level;
 162
 163        pte = lookup_address(address, &level);
 164        if (pte == NULL)
 165                return;         /* vaddr missing */
 166
 167        ptev = pte_wrprotect(*pte);
 168
 169        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 170                BUG();
 171}
 172
 173void make_lowmem_page_readwrite(void *vaddr)
 174{
 175        pte_t *pte, ptev;
 176        unsigned long address = (unsigned long)vaddr;
 177        unsigned int level;
 178
 179        pte = lookup_address(address, &level);
 180        if (pte == NULL)
 181                return;         /* vaddr missing */
 182
 183        ptev = pte_mkwrite(*pte);
 184
 185        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 186                BUG();
 187}
 188
 189
 190static bool xen_page_pinned(void *ptr)
 191{
 192        struct page *page = virt_to_page(ptr);
 193
 194        return PagePinned(page);
 195}
 196
 197void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 198{
 199        struct multicall_space mcs;
 200        struct mmu_update *u;
 201
 202        trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 203
 204        mcs = xen_mc_entry(sizeof(*u));
 205        u = mcs.args;
 206
 207        /* ptep might be kmapped when using 32-bit HIGHPTE */
 208        u->ptr = virt_to_machine(ptep).maddr;
 209        u->val = pte_val_ma(pteval);
 210
 211        MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 212
 213        xen_mc_issue(PARAVIRT_LAZY_MMU);
 214}
 215EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 216
 217static void xen_extend_mmu_update(const struct mmu_update *update)
 218{
 219        struct multicall_space mcs;
 220        struct mmu_update *u;
 221
 222        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 223
 224        if (mcs.mc != NULL) {
 225                mcs.mc->args[1]++;
 226        } else {
 227                mcs = __xen_mc_entry(sizeof(*u));
 228                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 229        }
 230
 231        u = mcs.args;
 232        *u = *update;
 233}
 234
 235static void xen_extend_mmuext_op(const struct mmuext_op *op)
 236{
 237        struct multicall_space mcs;
 238        struct mmuext_op *u;
 239
 240        mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 241
 242        if (mcs.mc != NULL) {
 243                mcs.mc->args[1]++;
 244        } else {
 245                mcs = __xen_mc_entry(sizeof(*u));
 246                MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 247        }
 248
 249        u = mcs.args;
 250        *u = *op;
 251}
 252
 253static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 254{
 255        struct mmu_update u;
 256
 257        preempt_disable();
 258
 259        xen_mc_batch();
 260
 261        /* ptr may be ioremapped for 64-bit pagetable setup */
 262        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 263        u.val = pmd_val_ma(val);
 264        xen_extend_mmu_update(&u);
 265
 266        xen_mc_issue(PARAVIRT_LAZY_MMU);
 267
 268        preempt_enable();
 269}
 270
 271static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 272{
 273        trace_xen_mmu_set_pmd(ptr, val);
 274
 275        /* If page is not pinned, we can just update the entry
 276           directly */
 277        if (!xen_page_pinned(ptr)) {
 278                *ptr = val;
 279                return;
 280        }
 281
 282        xen_set_pmd_hyper(ptr, val);
 283}
 284
 285/*
 286 * Associate a virtual page frame with a given physical page frame
 287 * and protection flags for that frame.
 288 */
 289void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 290{
 291        set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 292}
 293
 294static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 295{
 296        struct mmu_update u;
 297
 298        if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 299                return false;
 300
 301        xen_mc_batch();
 302
 303        u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 304        u.val = pte_val_ma(pteval);
 305        xen_extend_mmu_update(&u);
 306
 307        xen_mc_issue(PARAVIRT_LAZY_MMU);
 308
 309        return true;
 310}
 311
 312static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 313{
 314        if (!xen_batched_set_pte(ptep, pteval)) {
 315                /*
 316                 * Could call native_set_pte() here and trap and
 317                 * emulate the PTE write but with 32-bit guests this
 318                 * needs two traps (one for each of the two 32-bit
 319                 * words in the PTE) so do one hypercall directly
 320                 * instead.
 321                 */
 322                struct mmu_update u;
 323
 324                u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 325                u.val = pte_val_ma(pteval);
 326                HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 327        }
 328}
 329
 330static void xen_set_pte(pte_t *ptep, pte_t pteval)
 331{
 332        trace_xen_mmu_set_pte(ptep, pteval);
 333        __xen_set_pte(ptep, pteval);
 334}
 335
 336static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 337                    pte_t *ptep, pte_t pteval)
 338{
 339        trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 340        __xen_set_pte(ptep, pteval);
 341}
 342
 343pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 344                                 unsigned long addr, pte_t *ptep)
 345{
 346        /* Just return the pte as-is.  We preserve the bits on commit */
 347        trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 348        return *ptep;
 349}
 350
 351void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 352                                 pte_t *ptep, pte_t pte)
 353{
 354        struct mmu_update u;
 355
 356        trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 357        xen_mc_batch();
 358
 359        u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 360        u.val = pte_val_ma(pte);
 361        xen_extend_mmu_update(&u);
 362
 363        xen_mc_issue(PARAVIRT_LAZY_MMU);
 364}
 365
 366/* Assume pteval_t is equivalent to all the other *val_t types. */
 367static pteval_t pte_mfn_to_pfn(pteval_t val)
 368{
 369        if (val & _PAGE_PRESENT) {
 370                unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 371                unsigned long pfn = mfn_to_pfn(mfn);
 372
 373                pteval_t flags = val & PTE_FLAGS_MASK;
 374                if (unlikely(pfn == ~0))
 375                        val = flags & ~_PAGE_PRESENT;
 376                else
 377                        val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 378        }
 379
 380        return val;
 381}
 382
 383static pteval_t pte_pfn_to_mfn(pteval_t val)
 384{
 385        if (val & _PAGE_PRESENT) {
 386                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 387                pteval_t flags = val & PTE_FLAGS_MASK;
 388                unsigned long mfn;
 389
 390                if (!xen_feature(XENFEAT_auto_translated_physmap))
 391                        mfn = __pfn_to_mfn(pfn);
 392                else
 393                        mfn = pfn;
 394                /*
 395                 * If there's no mfn for the pfn, then just create an
 396                 * empty non-present pte.  Unfortunately this loses
 397                 * information about the original pfn, so
 398                 * pte_mfn_to_pfn is asymmetric.
 399                 */
 400                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 401                        mfn = 0;
 402                        flags = 0;
 403                } else
 404                        mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
 405                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 406        }
 407
 408        return val;
 409}
 410
 411__visible pteval_t xen_pte_val(pte_t pte)
 412{
 413        pteval_t pteval = pte.pte;
 414
 415        return pte_mfn_to_pfn(pteval);
 416}
 417PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 418
 419__visible pgdval_t xen_pgd_val(pgd_t pgd)
 420{
 421        return pte_mfn_to_pfn(pgd.pgd);
 422}
 423PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 424
 425__visible pte_t xen_make_pte(pteval_t pte)
 426{
 427        pte = pte_pfn_to_mfn(pte);
 428
 429        return native_make_pte(pte);
 430}
 431PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 432
 433__visible pgd_t xen_make_pgd(pgdval_t pgd)
 434{
 435        pgd = pte_pfn_to_mfn(pgd);
 436        return native_make_pgd(pgd);
 437}
 438PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 439
 440__visible pmdval_t xen_pmd_val(pmd_t pmd)
 441{
 442        return pte_mfn_to_pfn(pmd.pmd);
 443}
 444PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 445
 446static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 447{
 448        struct mmu_update u;
 449
 450        preempt_disable();
 451
 452        xen_mc_batch();
 453
 454        /* ptr may be ioremapped for 64-bit pagetable setup */
 455        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 456        u.val = pud_val_ma(val);
 457        xen_extend_mmu_update(&u);
 458
 459        xen_mc_issue(PARAVIRT_LAZY_MMU);
 460
 461        preempt_enable();
 462}
 463
 464static void xen_set_pud(pud_t *ptr, pud_t val)
 465{
 466        trace_xen_mmu_set_pud(ptr, val);
 467
 468        /* If page is not pinned, we can just update the entry
 469           directly */
 470        if (!xen_page_pinned(ptr)) {
 471                *ptr = val;
 472                return;
 473        }
 474
 475        xen_set_pud_hyper(ptr, val);
 476}
 477
 478#ifdef CONFIG_X86_PAE
 479static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 480{
 481        trace_xen_mmu_set_pte_atomic(ptep, pte);
 482        set_64bit((u64 *)ptep, native_pte_val(pte));
 483}
 484
 485static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 486{
 487        trace_xen_mmu_pte_clear(mm, addr, ptep);
 488        if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 489                native_pte_clear(mm, addr, ptep);
 490}
 491
 492static void xen_pmd_clear(pmd_t *pmdp)
 493{
 494        trace_xen_mmu_pmd_clear(pmdp);
 495        set_pmd(pmdp, __pmd(0));
 496}
 497#endif  /* CONFIG_X86_PAE */
 498
 499__visible pmd_t xen_make_pmd(pmdval_t pmd)
 500{
 501        pmd = pte_pfn_to_mfn(pmd);
 502        return native_make_pmd(pmd);
 503}
 504PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 505
 506#if CONFIG_PGTABLE_LEVELS == 4
 507__visible pudval_t xen_pud_val(pud_t pud)
 508{
 509        return pte_mfn_to_pfn(pud.pud);
 510}
 511PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 512
 513__visible pud_t xen_make_pud(pudval_t pud)
 514{
 515        pud = pte_pfn_to_mfn(pud);
 516
 517        return native_make_pud(pud);
 518}
 519PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 520
 521static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 522{
 523        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 524        unsigned offset = pgd - pgd_page;
 525        pgd_t *user_ptr = NULL;
 526
 527        if (offset < pgd_index(USER_LIMIT)) {
 528                struct page *page = virt_to_page(pgd_page);
 529                user_ptr = (pgd_t *)page->private;
 530                if (user_ptr)
 531                        user_ptr += offset;
 532        }
 533
 534        return user_ptr;
 535}
 536
 537static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 538{
 539        struct mmu_update u;
 540
 541        u.ptr = virt_to_machine(ptr).maddr;
 542        u.val = pgd_val_ma(val);
 543        xen_extend_mmu_update(&u);
 544}
 545
 546/*
 547 * Raw hypercall-based set_pgd, intended for in early boot before
 548 * there's a page structure.  This implies:
 549 *  1. The only existing pagetable is the kernel's
 550 *  2. It is always pinned
 551 *  3. It has no user pagetable attached to it
 552 */
 553static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 554{
 555        preempt_disable();
 556
 557        xen_mc_batch();
 558
 559        __xen_set_pgd_hyper(ptr, val);
 560
 561        xen_mc_issue(PARAVIRT_LAZY_MMU);
 562
 563        preempt_enable();
 564}
 565
 566static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 567{
 568        pgd_t *user_ptr = xen_get_user_pgd(ptr);
 569
 570        trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 571
 572        /* If page is not pinned, we can just update the entry
 573           directly */
 574        if (!xen_page_pinned(ptr)) {
 575                *ptr = val;
 576                if (user_ptr) {
 577                        WARN_ON(xen_page_pinned(user_ptr));
 578                        *user_ptr = val;
 579                }
 580                return;
 581        }
 582
 583        /* If it's pinned, then we can at least batch the kernel and
 584           user updates together. */
 585        xen_mc_batch();
 586
 587        __xen_set_pgd_hyper(ptr, val);
 588        if (user_ptr)
 589                __xen_set_pgd_hyper(user_ptr, val);
 590
 591        xen_mc_issue(PARAVIRT_LAZY_MMU);
 592}
 593#endif  /* CONFIG_PGTABLE_LEVELS == 4 */
 594
 595/*
 596 * (Yet another) pagetable walker.  This one is intended for pinning a
 597 * pagetable.  This means that it walks a pagetable and calls the
 598 * callback function on each page it finds making up the page table,
 599 * at every level.  It walks the entire pagetable, but it only bothers
 600 * pinning pte pages which are below limit.  In the normal case this
 601 * will be STACK_TOP_MAX, but at boot we need to pin up to
 602 * FIXADDR_TOP.
 603 *
 604 * For 32-bit the important bit is that we don't pin beyond there,
 605 * because then we start getting into Xen's ptes.
 606 *
 607 * For 64-bit, we must skip the Xen hole in the middle of the address
 608 * space, just after the big x86-64 virtual hole.
 609 */
 610static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 611                          int (*func)(struct mm_struct *mm, struct page *,
 612                                      enum pt_level),
 613                          unsigned long limit)
 614{
 615        int flush = 0;
 616        unsigned hole_low, hole_high;
 617        unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 618        unsigned pgdidx, pudidx, pmdidx;
 619
 620        /* The limit is the last byte to be touched */
 621        limit--;
 622        BUG_ON(limit >= FIXADDR_TOP);
 623
 624        if (xen_feature(XENFEAT_auto_translated_physmap))
 625                return 0;
 626
 627        /*
 628         * 64-bit has a great big hole in the middle of the address
 629         * space, which contains the Xen mappings.  On 32-bit these
 630         * will end up making a zero-sized hole and so is a no-op.
 631         */
 632        hole_low = pgd_index(USER_LIMIT);
 633        hole_high = pgd_index(PAGE_OFFSET);
 634
 635        pgdidx_limit = pgd_index(limit);
 636#if PTRS_PER_PUD > 1
 637        pudidx_limit = pud_index(limit);
 638#else
 639        pudidx_limit = 0;
 640#endif
 641#if PTRS_PER_PMD > 1
 642        pmdidx_limit = pmd_index(limit);
 643#else
 644        pmdidx_limit = 0;
 645#endif
 646
 647        for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 648                pud_t *pud;
 649
 650                if (pgdidx >= hole_low && pgdidx < hole_high)
 651                        continue;
 652
 653                if (!pgd_val(pgd[pgdidx]))
 654                        continue;
 655
 656                pud = pud_offset(&pgd[pgdidx], 0);
 657
 658                if (PTRS_PER_PUD > 1) /* not folded */
 659                        flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 660
 661                for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 662                        pmd_t *pmd;
 663
 664                        if (pgdidx == pgdidx_limit &&
 665                            pudidx > pudidx_limit)
 666                                goto out;
 667
 668                        if (pud_none(pud[pudidx]))
 669                                continue;
 670
 671                        pmd = pmd_offset(&pud[pudidx], 0);
 672
 673                        if (PTRS_PER_PMD > 1) /* not folded */
 674                                flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 675
 676                        for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 677                                struct page *pte;
 678
 679                                if (pgdidx == pgdidx_limit &&
 680                                    pudidx == pudidx_limit &&
 681                                    pmdidx > pmdidx_limit)
 682                                        goto out;
 683
 684                                if (pmd_none(pmd[pmdidx]))
 685                                        continue;
 686
 687                                pte = pmd_page(pmd[pmdidx]);
 688                                flush |= (*func)(mm, pte, PT_PTE);
 689                        }
 690                }
 691        }
 692
 693out:
 694        /* Do the top level last, so that the callbacks can use it as
 695           a cue to do final things like tlb flushes. */
 696        flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 697
 698        return flush;
 699}
 700
 701static int xen_pgd_walk(struct mm_struct *mm,
 702                        int (*func)(struct mm_struct *mm, struct page *,
 703                                    enum pt_level),
 704                        unsigned long limit)
 705{
 706        return __xen_pgd_walk(mm, mm->pgd, func, limit);
 707}
 708
 709/* If we're using split pte locks, then take the page's lock and
 710   return a pointer to it.  Otherwise return NULL. */
 711static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 712{
 713        spinlock_t *ptl = NULL;
 714
 715#if USE_SPLIT_PTE_PTLOCKS
 716        ptl = ptlock_ptr(page);
 717        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 718#endif
 719
 720        return ptl;
 721}
 722
 723static void xen_pte_unlock(void *v)
 724{
 725        spinlock_t *ptl = v;
 726        spin_unlock(ptl);
 727}
 728
 729static void xen_do_pin(unsigned level, unsigned long pfn)
 730{
 731        struct mmuext_op op;
 732
 733        op.cmd = level;
 734        op.arg1.mfn = pfn_to_mfn(pfn);
 735
 736        xen_extend_mmuext_op(&op);
 737}
 738
 739static int xen_pin_page(struct mm_struct *mm, struct page *page,
 740                        enum pt_level level)
 741{
 742        unsigned pgfl = TestSetPagePinned(page);
 743        int flush;
 744
 745        if (pgfl)
 746                flush = 0;              /* already pinned */
 747        else if (PageHighMem(page))
 748                /* kmaps need flushing if we found an unpinned
 749                   highpage */
 750                flush = 1;
 751        else {
 752                void *pt = lowmem_page_address(page);
 753                unsigned long pfn = page_to_pfn(page);
 754                struct multicall_space mcs = __xen_mc_entry(0);
 755                spinlock_t *ptl;
 756
 757                flush = 0;
 758
 759                /*
 760                 * We need to hold the pagetable lock between the time
 761                 * we make the pagetable RO and when we actually pin
 762                 * it.  If we don't, then other users may come in and
 763                 * attempt to update the pagetable by writing it,
 764                 * which will fail because the memory is RO but not
 765                 * pinned, so Xen won't do the trap'n'emulate.
 766                 *
 767                 * If we're using split pte locks, we can't hold the
 768                 * entire pagetable's worth of locks during the
 769                 * traverse, because we may wrap the preempt count (8
 770                 * bits).  The solution is to mark RO and pin each PTE
 771                 * page while holding the lock.  This means the number
 772                 * of locks we end up holding is never more than a
 773                 * batch size (~32 entries, at present).
 774                 *
 775                 * If we're not using split pte locks, we needn't pin
 776                 * the PTE pages independently, because we're
 777                 * protected by the overall pagetable lock.
 778                 */
 779                ptl = NULL;
 780                if (level == PT_PTE)
 781                        ptl = xen_pte_lock(page, mm);
 782
 783                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 784                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 785                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 786
 787                if (ptl) {
 788                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 789
 790                        /* Queue a deferred unlock for when this batch
 791                           is completed. */
 792                        xen_mc_callback(xen_pte_unlock, ptl);
 793                }
 794        }
 795
 796        return flush;
 797}
 798
 799/* This is called just after a mm has been created, but it has not
 800   been used yet.  We need to make sure that its pagetable is all
 801   read-only, and can be pinned. */
 802static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 803{
 804        trace_xen_mmu_pgd_pin(mm, pgd);
 805
 806        xen_mc_batch();
 807
 808        if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 809                /* re-enable interrupts for flushing */
 810                xen_mc_issue(0);
 811
 812                kmap_flush_unused();
 813
 814                xen_mc_batch();
 815        }
 816
 817#ifdef CONFIG_X86_64
 818        {
 819                pgd_t *user_pgd = xen_get_user_pgd(pgd);
 820
 821                xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 822
 823                if (user_pgd) {
 824                        xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 825                        xen_do_pin(MMUEXT_PIN_L4_TABLE,
 826                                   PFN_DOWN(__pa(user_pgd)));
 827                }
 828        }
 829#else /* CONFIG_X86_32 */
 830#ifdef CONFIG_X86_PAE
 831        /* Need to make sure unshared kernel PMD is pinnable */
 832        xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 833                     PT_PMD);
 834#endif
 835        xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 836#endif /* CONFIG_X86_64 */
 837        xen_mc_issue(0);
 838}
 839
 840static void xen_pgd_pin(struct mm_struct *mm)
 841{
 842        __xen_pgd_pin(mm, mm->pgd);
 843}
 844
 845/*
 846 * On save, we need to pin all pagetables to make sure they get their
 847 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 848 * them (unpinned pgds are not currently in use, probably because the
 849 * process is under construction or destruction).
 850 *
 851 * Expected to be called in stop_machine() ("equivalent to taking
 852 * every spinlock in the system"), so the locking doesn't really
 853 * matter all that much.
 854 */
 855void xen_mm_pin_all(void)
 856{
 857        struct page *page;
 858
 859        spin_lock(&pgd_lock);
 860
 861        list_for_each_entry(page, &pgd_list, lru) {
 862                if (!PagePinned(page)) {
 863                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 864                        SetPageSavePinned(page);
 865                }
 866        }
 867
 868        spin_unlock(&pgd_lock);
 869}
 870
 871/*
 872 * The init_mm pagetable is really pinned as soon as its created, but
 873 * that's before we have page structures to store the bits.  So do all
 874 * the book-keeping now.
 875 */
 876static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 877                                  enum pt_level level)
 878{
 879        SetPagePinned(page);
 880        return 0;
 881}
 882
 883static void __init xen_mark_init_mm_pinned(void)
 884{
 885        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 886}
 887
 888static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 889                          enum pt_level level)
 890{
 891        unsigned pgfl = TestClearPagePinned(page);
 892
 893        if (pgfl && !PageHighMem(page)) {
 894                void *pt = lowmem_page_address(page);
 895                unsigned long pfn = page_to_pfn(page);
 896                spinlock_t *ptl = NULL;
 897                struct multicall_space mcs;
 898
 899                /*
 900                 * Do the converse to pin_page.  If we're using split
 901                 * pte locks, we must be holding the lock for while
 902                 * the pte page is unpinned but still RO to prevent
 903                 * concurrent updates from seeing it in this
 904                 * partially-pinned state.
 905                 */
 906                if (level == PT_PTE) {
 907                        ptl = xen_pte_lock(page, mm);
 908
 909                        if (ptl)
 910                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 911                }
 912
 913                mcs = __xen_mc_entry(0);
 914
 915                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 916                                        pfn_pte(pfn, PAGE_KERNEL),
 917                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 918
 919                if (ptl) {
 920                        /* unlock when batch completed */
 921                        xen_mc_callback(xen_pte_unlock, ptl);
 922                }
 923        }
 924
 925        return 0;               /* never need to flush on unpin */
 926}
 927
 928/* Release a pagetables pages back as normal RW */
 929static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
 930{
 931        trace_xen_mmu_pgd_unpin(mm, pgd);
 932
 933        xen_mc_batch();
 934
 935        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
 936
 937#ifdef CONFIG_X86_64
 938        {
 939                pgd_t *user_pgd = xen_get_user_pgd(pgd);
 940
 941                if (user_pgd) {
 942                        xen_do_pin(MMUEXT_UNPIN_TABLE,
 943                                   PFN_DOWN(__pa(user_pgd)));
 944                        xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
 945                }
 946        }
 947#endif
 948
 949#ifdef CONFIG_X86_PAE
 950        /* Need to make sure unshared kernel PMD is unpinned */
 951        xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 952                       PT_PMD);
 953#endif
 954
 955        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
 956
 957        xen_mc_issue(0);
 958}
 959
 960static void xen_pgd_unpin(struct mm_struct *mm)
 961{
 962        __xen_pgd_unpin(mm, mm->pgd);
 963}
 964
 965/*
 966 * On resume, undo any pinning done at save, so that the rest of the
 967 * kernel doesn't see any unexpected pinned pagetables.
 968 */
 969void xen_mm_unpin_all(void)
 970{
 971        struct page *page;
 972
 973        spin_lock(&pgd_lock);
 974
 975        list_for_each_entry(page, &pgd_list, lru) {
 976                if (PageSavePinned(page)) {
 977                        BUG_ON(!PagePinned(page));
 978                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
 979                        ClearPageSavePinned(page);
 980                }
 981        }
 982
 983        spin_unlock(&pgd_lock);
 984}
 985
 986static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
 987{
 988        spin_lock(&next->page_table_lock);
 989        xen_pgd_pin(next);
 990        spin_unlock(&next->page_table_lock);
 991}
 992
 993static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
 994{
 995        spin_lock(&mm->page_table_lock);
 996        xen_pgd_pin(mm);
 997        spin_unlock(&mm->page_table_lock);
 998}
 999
1000
1001#ifdef CONFIG_SMP
1002/* Another cpu may still have their %cr3 pointing at the pagetable, so
1003   we need to repoint it somewhere else before we can unpin it. */
1004static void drop_other_mm_ref(void *info)
1005{
1006        struct mm_struct *mm = info;
1007        struct mm_struct *active_mm;
1008
1009        active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1010
1011        if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1012                leave_mm(smp_processor_id());
1013
1014        /* If this cpu still has a stale cr3 reference, then make sure
1015           it has been flushed. */
1016        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1017                load_cr3(swapper_pg_dir);
1018}
1019
1020static void xen_drop_mm_ref(struct mm_struct *mm)
1021{
1022        cpumask_var_t mask;
1023        unsigned cpu;
1024
1025        if (current->active_mm == mm) {
1026                if (current->mm == mm)
1027                        load_cr3(swapper_pg_dir);
1028                else
1029                        leave_mm(smp_processor_id());
1030        }
1031
1032        /* Get the "official" set of cpus referring to our pagetable. */
1033        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1034                for_each_online_cpu(cpu) {
1035                        if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1036                            && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1037                                continue;
1038                        smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1039                }
1040                return;
1041        }
1042        cpumask_copy(mask, mm_cpumask(mm));
1043
1044        /* It's possible that a vcpu may have a stale reference to our
1045           cr3, because its in lazy mode, and it hasn't yet flushed
1046           its set of pending hypercalls yet.  In this case, we can
1047           look at its actual current cr3 value, and force it to flush
1048           if needed. */
1049        for_each_online_cpu(cpu) {
1050                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1051                        cpumask_set_cpu(cpu, mask);
1052        }
1053
1054        if (!cpumask_empty(mask))
1055                smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1056        free_cpumask_var(mask);
1057}
1058#else
1059static void xen_drop_mm_ref(struct mm_struct *mm)
1060{
1061        if (current->active_mm == mm)
1062                load_cr3(swapper_pg_dir);
1063}
1064#endif
1065
1066/*
1067 * While a process runs, Xen pins its pagetables, which means that the
1068 * hypervisor forces it to be read-only, and it controls all updates
1069 * to it.  This means that all pagetable updates have to go via the
1070 * hypervisor, which is moderately expensive.
1071 *
1072 * Since we're pulling the pagetable down, we switch to use init_mm,
1073 * unpin old process pagetable and mark it all read-write, which
1074 * allows further operations on it to be simple memory accesses.
1075 *
1076 * The only subtle point is that another CPU may be still using the
1077 * pagetable because of lazy tlb flushing.  This means we need need to
1078 * switch all CPUs off this pagetable before we can unpin it.
1079 */
1080static void xen_exit_mmap(struct mm_struct *mm)
1081{
1082        get_cpu();              /* make sure we don't move around */
1083        xen_drop_mm_ref(mm);
1084        put_cpu();
1085
1086        spin_lock(&mm->page_table_lock);
1087
1088        /* pgd may not be pinned in the error exit path of execve */
1089        if (xen_page_pinned(mm->pgd))
1090                xen_pgd_unpin(mm);
1091
1092        spin_unlock(&mm->page_table_lock);
1093}
1094
1095static void xen_post_allocator_init(void);
1096
1097static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1098{
1099        struct mmuext_op op;
1100
1101        op.cmd = cmd;
1102        op.arg1.mfn = pfn_to_mfn(pfn);
1103        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1104                BUG();
1105}
1106
1107#ifdef CONFIG_X86_64
1108static void __init xen_cleanhighmap(unsigned long vaddr,
1109                                    unsigned long vaddr_end)
1110{
1111        unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1112        pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1113
1114        /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1115         * We include the PMD passed in on _both_ boundaries. */
1116        for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1117                        pmd++, vaddr += PMD_SIZE) {
1118                if (pmd_none(*pmd))
1119                        continue;
1120                if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1121                        set_pmd(pmd, __pmd(0));
1122        }
1123        /* In case we did something silly, we should crash in this function
1124         * instead of somewhere later and be confusing. */
1125        xen_mc_flush();
1126}
1127
1128/*
1129 * Make a page range writeable and free it.
1130 */
1131static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1132{
1133        void *vaddr = __va(paddr);
1134        void *vaddr_end = vaddr + size;
1135
1136        for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1137                make_lowmem_page_readwrite(vaddr);
1138
1139        memblock_free(paddr, size);
1140}
1141
1142static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1143{
1144        unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1145
1146        if (unpin)
1147                pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1148        ClearPagePinned(virt_to_page(__va(pa)));
1149        xen_free_ro_pages(pa, PAGE_SIZE);
1150}
1151
1152/*
1153 * Since it is well isolated we can (and since it is perhaps large we should)
1154 * also free the page tables mapping the initial P->M table.
1155 */
1156static void __init xen_cleanmfnmap(unsigned long vaddr)
1157{
1158        unsigned long va = vaddr & PMD_MASK;
1159        unsigned long pa;
1160        pgd_t *pgd = pgd_offset_k(va);
1161        pud_t *pud_page = pud_offset(pgd, 0);
1162        pud_t *pud;
1163        pmd_t *pmd;
1164        pte_t *pte;
1165        unsigned int i;
1166        bool unpin;
1167
1168        unpin = (vaddr == 2 * PGDIR_SIZE);
1169        set_pgd(pgd, __pgd(0));
1170        do {
1171                pud = pud_page + pud_index(va);
1172                if (pud_none(*pud)) {
1173                        va += PUD_SIZE;
1174                } else if (pud_large(*pud)) {
1175                        pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1176                        xen_free_ro_pages(pa, PUD_SIZE);
1177                        va += PUD_SIZE;
1178                } else {
1179                        pmd = pmd_offset(pud, va);
1180                        if (pmd_large(*pmd)) {
1181                                pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1182                                xen_free_ro_pages(pa, PMD_SIZE);
1183                        } else if (!pmd_none(*pmd)) {
1184                                pte = pte_offset_kernel(pmd, va);
1185                                set_pmd(pmd, __pmd(0));
1186                                for (i = 0; i < PTRS_PER_PTE; ++i) {
1187                                        if (pte_none(pte[i]))
1188                                                break;
1189                                        pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1190                                        xen_free_ro_pages(pa, PAGE_SIZE);
1191                                }
1192                                xen_cleanmfnmap_free_pgtbl(pte, unpin);
1193                        }
1194                        va += PMD_SIZE;
1195                        if (pmd_index(va))
1196                                continue;
1197                        set_pud(pud, __pud(0));
1198                        xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1199                }
1200
1201        } while (pud_index(va) || pmd_index(va));
1202        xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1203}
1204
1205static void __init xen_pagetable_p2m_free(void)
1206{
1207        unsigned long size;
1208        unsigned long addr;
1209
1210        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211
1212        /* No memory or already called. */
1213        if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1214                return;
1215
1216        /* using __ka address and sticking INVALID_P2M_ENTRY! */
1217        memset((void *)xen_start_info->mfn_list, 0xff, size);
1218
1219        addr = xen_start_info->mfn_list;
1220        /*
1221         * We could be in __ka space.
1222         * We roundup to the PMD, which means that if anybody at this stage is
1223         * using the __ka address of xen_start_info or
1224         * xen_start_info->shared_info they are in going to crash. Fortunatly
1225         * we have already revectored in xen_setup_kernel_pagetable and in
1226         * xen_setup_shared_info.
1227         */
1228        size = roundup(size, PMD_SIZE);
1229
1230        if (addr >= __START_KERNEL_map) {
1231                xen_cleanhighmap(addr, addr + size);
1232                size = PAGE_ALIGN(xen_start_info->nr_pages *
1233                                  sizeof(unsigned long));
1234                memblock_free(__pa(addr), size);
1235        } else {
1236                xen_cleanmfnmap(addr);
1237        }
1238}
1239
1240static void __init xen_pagetable_cleanhighmap(void)
1241{
1242        unsigned long size;
1243        unsigned long addr;
1244
1245        /* At this stage, cleanup_highmap has already cleaned __ka space
1246         * from _brk_limit way up to the max_pfn_mapped (which is the end of
1247         * the ramdisk). We continue on, erasing PMD entries that point to page
1248         * tables - do note that they are accessible at this stage via __va.
1249         * For good measure we also round up to the PMD - which means that if
1250         * anybody is using __ka address to the initial boot-stack - and try
1251         * to use it - they are going to crash. The xen_start_info has been
1252         * taken care of already in xen_setup_kernel_pagetable. */
1253        addr = xen_start_info->pt_base;
1254        size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1255
1256        xen_cleanhighmap(addr, addr + size);
1257        xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1258#ifdef DEBUG
1259        /* This is superfluous and is not necessary, but you know what
1260         * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1261         * anything at this stage. */
1262        xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1263#endif
1264}
1265#endif
1266
1267static void __init xen_pagetable_p2m_setup(void)
1268{
1269        if (xen_feature(XENFEAT_auto_translated_physmap))
1270                return;
1271
1272        xen_vmalloc_p2m_tree();
1273
1274#ifdef CONFIG_X86_64
1275        xen_pagetable_p2m_free();
1276
1277        xen_pagetable_cleanhighmap();
1278#endif
1279        /* And revector! Bye bye old array */
1280        xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1281}
1282
1283static void __init xen_pagetable_init(void)
1284{
1285        paging_init();
1286        xen_post_allocator_init();
1287
1288        xen_pagetable_p2m_setup();
1289
1290        /* Allocate and initialize top and mid mfn levels for p2m structure */
1291        xen_build_mfn_list_list();
1292
1293        /* Remap memory freed due to conflicts with E820 map */
1294        if (!xen_feature(XENFEAT_auto_translated_physmap))
1295                xen_remap_memory();
1296
1297        xen_setup_shared_info();
1298}
1299static void xen_write_cr2(unsigned long cr2)
1300{
1301        this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1302}
1303
1304static unsigned long xen_read_cr2(void)
1305{
1306        return this_cpu_read(xen_vcpu)->arch.cr2;
1307}
1308
1309unsigned long xen_read_cr2_direct(void)
1310{
1311        return this_cpu_read(xen_vcpu_info.arch.cr2);
1312}
1313
1314void xen_flush_tlb_all(void)
1315{
1316        struct mmuext_op *op;
1317        struct multicall_space mcs;
1318
1319        trace_xen_mmu_flush_tlb_all(0);
1320
1321        preempt_disable();
1322
1323        mcs = xen_mc_entry(sizeof(*op));
1324
1325        op = mcs.args;
1326        op->cmd = MMUEXT_TLB_FLUSH_ALL;
1327        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1328
1329        xen_mc_issue(PARAVIRT_LAZY_MMU);
1330
1331        preempt_enable();
1332}
1333static void xen_flush_tlb(void)
1334{
1335        struct mmuext_op *op;
1336        struct multicall_space mcs;
1337
1338        trace_xen_mmu_flush_tlb(0);
1339
1340        preempt_disable();
1341
1342        mcs = xen_mc_entry(sizeof(*op));
1343
1344        op = mcs.args;
1345        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1346        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1347
1348        xen_mc_issue(PARAVIRT_LAZY_MMU);
1349
1350        preempt_enable();
1351}
1352
1353static void xen_flush_tlb_single(unsigned long addr)
1354{
1355        struct mmuext_op *op;
1356        struct multicall_space mcs;
1357
1358        trace_xen_mmu_flush_tlb_single(addr);
1359
1360        preempt_disable();
1361
1362        mcs = xen_mc_entry(sizeof(*op));
1363        op = mcs.args;
1364        op->cmd = MMUEXT_INVLPG_LOCAL;
1365        op->arg1.linear_addr = addr & PAGE_MASK;
1366        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1367
1368        xen_mc_issue(PARAVIRT_LAZY_MMU);
1369
1370        preempt_enable();
1371}
1372
1373static void xen_flush_tlb_others(const struct cpumask *cpus,
1374                                 struct mm_struct *mm, unsigned long start,
1375                                 unsigned long end)
1376{
1377        struct {
1378                struct mmuext_op op;
1379#ifdef CONFIG_SMP
1380                DECLARE_BITMAP(mask, num_processors);
1381#else
1382                DECLARE_BITMAP(mask, NR_CPUS);
1383#endif
1384        } *args;
1385        struct multicall_space mcs;
1386
1387        trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1388
1389        if (cpumask_empty(cpus))
1390                return;         /* nothing to do */
1391
1392        mcs = xen_mc_entry(sizeof(*args));
1393        args = mcs.args;
1394        args->op.arg2.vcpumask = to_cpumask(args->mask);
1395
1396        /* Remove us, and any offline CPUS. */
1397        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1398        cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1399
1400        args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1401        if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1402                args->op.cmd = MMUEXT_INVLPG_MULTI;
1403                args->op.arg1.linear_addr = start;
1404        }
1405
1406        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1407
1408        xen_mc_issue(PARAVIRT_LAZY_MMU);
1409}
1410
1411static unsigned long xen_read_cr3(void)
1412{
1413        return this_cpu_read(xen_cr3);
1414}
1415
1416static void set_current_cr3(void *v)
1417{
1418        this_cpu_write(xen_current_cr3, (unsigned long)v);
1419}
1420
1421static void __xen_write_cr3(bool kernel, unsigned long cr3)
1422{
1423        struct mmuext_op op;
1424        unsigned long mfn;
1425
1426        trace_xen_mmu_write_cr3(kernel, cr3);
1427
1428        if (cr3)
1429                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1430        else
1431                mfn = 0;
1432
1433        WARN_ON(mfn == 0 && kernel);
1434
1435        op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1436        op.arg1.mfn = mfn;
1437
1438        xen_extend_mmuext_op(&op);
1439
1440        if (kernel) {
1441                this_cpu_write(xen_cr3, cr3);
1442
1443                /* Update xen_current_cr3 once the batch has actually
1444                   been submitted. */
1445                xen_mc_callback(set_current_cr3, (void *)cr3);
1446        }
1447}
1448static void xen_write_cr3(unsigned long cr3)
1449{
1450        BUG_ON(preemptible());
1451
1452        xen_mc_batch();  /* disables interrupts */
1453
1454        /* Update while interrupts are disabled, so its atomic with
1455           respect to ipis */
1456        this_cpu_write(xen_cr3, cr3);
1457
1458        __xen_write_cr3(true, cr3);
1459
1460#ifdef CONFIG_X86_64
1461        {
1462                pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1463                if (user_pgd)
1464                        __xen_write_cr3(false, __pa(user_pgd));
1465                else
1466                        __xen_write_cr3(false, 0);
1467        }
1468#endif
1469
1470        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1471}
1472
1473#ifdef CONFIG_X86_64
1474/*
1475 * At the start of the day - when Xen launches a guest, it has already
1476 * built pagetables for the guest. We diligently look over them
1477 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1478 * init_level4_pgt and its friends. Then when we are happy we load
1479 * the new init_level4_pgt - and continue on.
1480 *
1481 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1482 * up the rest of the pagetables. When it has completed it loads the cr3.
1483 * N.B. that baremetal would start at 'start_kernel' (and the early
1484 * #PF handler would create bootstrap pagetables) - so we are running
1485 * with the same assumptions as what to do when write_cr3 is executed
1486 * at this point.
1487 *
1488 * Since there are no user-page tables at all, we have two variants
1489 * of xen_write_cr3 - the early bootup (this one), and the late one
1490 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1491 * the Linux kernel and user-space are both in ring 3 while the
1492 * hypervisor is in ring 0.
1493 */
1494static void __init xen_write_cr3_init(unsigned long cr3)
1495{
1496        BUG_ON(preemptible());
1497
1498        xen_mc_batch();  /* disables interrupts */
1499
1500        /* Update while interrupts are disabled, so its atomic with
1501           respect to ipis */
1502        this_cpu_write(xen_cr3, cr3);
1503
1504        __xen_write_cr3(true, cr3);
1505
1506        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1507}
1508#endif
1509
1510static int xen_pgd_alloc(struct mm_struct *mm)
1511{
1512        pgd_t *pgd = mm->pgd;
1513        int ret = 0;
1514
1515        BUG_ON(PagePinned(virt_to_page(pgd)));
1516
1517#ifdef CONFIG_X86_64
1518        {
1519                struct page *page = virt_to_page(pgd);
1520                pgd_t *user_pgd;
1521
1522                BUG_ON(page->private != 0);
1523
1524                ret = -ENOMEM;
1525
1526                user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1527                page->private = (unsigned long)user_pgd;
1528
1529                if (user_pgd != NULL) {
1530#ifdef CONFIG_X86_VSYSCALL_EMULATION
1531                        user_pgd[pgd_index(VSYSCALL_ADDR)] =
1532                                __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1533#endif
1534                        ret = 0;
1535                }
1536
1537                BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1538        }
1539#endif
1540
1541        return ret;
1542}
1543
1544static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1545{
1546#ifdef CONFIG_X86_64
1547        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1548
1549        if (user_pgd)
1550                free_page((unsigned long)user_pgd);
1551#endif
1552}
1553
1554#ifdef CONFIG_X86_32
1555static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1556{
1557        /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1558        if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1559                pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1560                               pte_val_ma(pte));
1561
1562        return pte;
1563}
1564#else /* CONFIG_X86_64 */
1565static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1566{
1567        unsigned long pfn;
1568
1569        if (xen_feature(XENFEAT_writable_page_tables) ||
1570            xen_feature(XENFEAT_auto_translated_physmap) ||
1571            xen_start_info->mfn_list >= __START_KERNEL_map)
1572                return pte;
1573
1574        /*
1575         * Pages belonging to the initial p2m list mapped outside the default
1576         * address range must be mapped read-only. This region contains the
1577         * page tables for mapping the p2m list, too, and page tables MUST be
1578         * mapped read-only.
1579         */
1580        pfn = pte_pfn(pte);
1581        if (pfn >= xen_start_info->first_p2m_pfn &&
1582            pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1583                pte = __pte_ma(pte_val_ma(pte) & ~_PAGE_RW);
1584
1585        return pte;
1586}
1587#endif /* CONFIG_X86_64 */
1588
1589/*
1590 * Init-time set_pte while constructing initial pagetables, which
1591 * doesn't allow RO page table pages to be remapped RW.
1592 *
1593 * If there is no MFN for this PFN then this page is initially
1594 * ballooned out so clear the PTE (as in decrease_reservation() in
1595 * drivers/xen/balloon.c).
1596 *
1597 * Many of these PTE updates are done on unpinned and writable pages
1598 * and doing a hypercall for these is unnecessary and expensive.  At
1599 * this point it is not possible to tell if a page is pinned or not,
1600 * so always write the PTE directly and rely on Xen trapping and
1601 * emulating any updates as necessary.
1602 */
1603static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1604{
1605        if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1606                pte = mask_rw_pte(ptep, pte);
1607        else
1608                pte = __pte_ma(0);
1609
1610        native_set_pte(ptep, pte);
1611}
1612
1613/* Early in boot, while setting up the initial pagetable, assume
1614   everything is pinned. */
1615static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1616{
1617#ifdef CONFIG_FLATMEM
1618        BUG_ON(mem_map);        /* should only be used early */
1619#endif
1620        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1621        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1622}
1623
1624/* Used for pmd and pud */
1625static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1626{
1627#ifdef CONFIG_FLATMEM
1628        BUG_ON(mem_map);        /* should only be used early */
1629#endif
1630        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1631}
1632
1633/* Early release_pte assumes that all pts are pinned, since there's
1634   only init_mm and anything attached to that is pinned. */
1635static void __init xen_release_pte_init(unsigned long pfn)
1636{
1637        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1638        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1639}
1640
1641static void __init xen_release_pmd_init(unsigned long pfn)
1642{
1643        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1644}
1645
1646static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1647{
1648        struct multicall_space mcs;
1649        struct mmuext_op *op;
1650
1651        mcs = __xen_mc_entry(sizeof(*op));
1652        op = mcs.args;
1653        op->cmd = cmd;
1654        op->arg1.mfn = pfn_to_mfn(pfn);
1655
1656        MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1657}
1658
1659static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1660{
1661        struct multicall_space mcs;
1662        unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1663
1664        mcs = __xen_mc_entry(0);
1665        MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1666                                pfn_pte(pfn, prot), 0);
1667}
1668
1669/* This needs to make sure the new pte page is pinned iff its being
1670   attached to a pinned pagetable. */
1671static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1672                                    unsigned level)
1673{
1674        bool pinned = PagePinned(virt_to_page(mm->pgd));
1675
1676        trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1677
1678        if (pinned) {
1679                struct page *page = pfn_to_page(pfn);
1680
1681                SetPagePinned(page);
1682
1683                if (!PageHighMem(page)) {
1684                        xen_mc_batch();
1685
1686                        __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1687
1688                        if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1689                                __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1690
1691                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1692                } else {
1693                        /* make sure there are no stray mappings of
1694                           this page */
1695                        kmap_flush_unused();
1696                }
1697        }
1698}
1699
1700static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1701{
1702        xen_alloc_ptpage(mm, pfn, PT_PTE);
1703}
1704
1705static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1706{
1707        xen_alloc_ptpage(mm, pfn, PT_PMD);
1708}
1709
1710/* This should never happen until we're OK to use struct page */
1711static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1712{
1713        struct page *page = pfn_to_page(pfn);
1714        bool pinned = PagePinned(page);
1715
1716        trace_xen_mmu_release_ptpage(pfn, level, pinned);
1717
1718        if (pinned) {
1719                if (!PageHighMem(page)) {
1720                        xen_mc_batch();
1721
1722                        if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1723                                __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1724
1725                        __set_pfn_prot(pfn, PAGE_KERNEL);
1726
1727                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1728                }
1729                ClearPagePinned(page);
1730        }
1731}
1732
1733static void xen_release_pte(unsigned long pfn)
1734{
1735        xen_release_ptpage(pfn, PT_PTE);
1736}
1737
1738static void xen_release_pmd(unsigned long pfn)
1739{
1740        xen_release_ptpage(pfn, PT_PMD);
1741}
1742
1743#if CONFIG_PGTABLE_LEVELS == 4
1744static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1745{
1746        xen_alloc_ptpage(mm, pfn, PT_PUD);
1747}
1748
1749static void xen_release_pud(unsigned long pfn)
1750{
1751        xen_release_ptpage(pfn, PT_PUD);
1752}
1753#endif
1754
1755void __init xen_reserve_top(void)
1756{
1757#ifdef CONFIG_X86_32
1758        unsigned long top = HYPERVISOR_VIRT_START;
1759        struct xen_platform_parameters pp;
1760
1761        if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1762                top = pp.virt_start;
1763
1764        reserve_top_address(-top);
1765#endif  /* CONFIG_X86_32 */
1766}
1767
1768/*
1769 * Like __va(), but returns address in the kernel mapping (which is
1770 * all we have until the physical memory mapping has been set up.
1771 */
1772static void * __init __ka(phys_addr_t paddr)
1773{
1774#ifdef CONFIG_X86_64
1775        return (void *)(paddr + __START_KERNEL_map);
1776#else
1777        return __va(paddr);
1778#endif
1779}
1780
1781/* Convert a machine address to physical address */
1782static unsigned long __init m2p(phys_addr_t maddr)
1783{
1784        phys_addr_t paddr;
1785
1786        maddr &= PTE_PFN_MASK;
1787        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1788
1789        return paddr;
1790}
1791
1792/* Convert a machine address to kernel virtual */
1793static void * __init m2v(phys_addr_t maddr)
1794{
1795        return __ka(m2p(maddr));
1796}
1797
1798/* Set the page permissions on an identity-mapped pages */
1799static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1800                                       unsigned long flags)
1801{
1802        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1803        pte_t pte = pfn_pte(pfn, prot);
1804
1805        /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1806        if (xen_feature(XENFEAT_auto_translated_physmap))
1807                return;
1808
1809        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1810                BUG();
1811}
1812static void __init set_page_prot(void *addr, pgprot_t prot)
1813{
1814        return set_page_prot_flags(addr, prot, UVMF_NONE);
1815}
1816#ifdef CONFIG_X86_32
1817static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1818{
1819        unsigned pmdidx, pteidx;
1820        unsigned ident_pte;
1821        unsigned long pfn;
1822
1823        level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1824                                      PAGE_SIZE);
1825
1826        ident_pte = 0;
1827        pfn = 0;
1828        for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1829                pte_t *pte_page;
1830
1831                /* Reuse or allocate a page of ptes */
1832                if (pmd_present(pmd[pmdidx]))
1833                        pte_page = m2v(pmd[pmdidx].pmd);
1834                else {
1835                        /* Check for free pte pages */
1836                        if (ident_pte == LEVEL1_IDENT_ENTRIES)
1837                                break;
1838
1839                        pte_page = &level1_ident_pgt[ident_pte];
1840                        ident_pte += PTRS_PER_PTE;
1841
1842                        pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1843                }
1844
1845                /* Install mappings */
1846                for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1847                        pte_t pte;
1848
1849                        if (pfn > max_pfn_mapped)
1850                                max_pfn_mapped = pfn;
1851
1852                        if (!pte_none(pte_page[pteidx]))
1853                                continue;
1854
1855                        pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1856                        pte_page[pteidx] = pte;
1857                }
1858        }
1859
1860        for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1861                set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1862
1863        set_page_prot(pmd, PAGE_KERNEL_RO);
1864}
1865#endif
1866void __init xen_setup_machphys_mapping(void)
1867{
1868        struct xen_machphys_mapping mapping;
1869
1870        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1871                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1872                machine_to_phys_nr = mapping.max_mfn + 1;
1873        } else {
1874                machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1875        }
1876#ifdef CONFIG_X86_32
1877        WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1878                < machine_to_phys_mapping);
1879#endif
1880}
1881
1882#ifdef CONFIG_X86_64
1883static void __init convert_pfn_mfn(void *v)
1884{
1885        pte_t *pte = v;
1886        int i;
1887
1888        /* All levels are converted the same way, so just treat them
1889           as ptes. */
1890        for (i = 0; i < PTRS_PER_PTE; i++)
1891                pte[i] = xen_make_pte(pte[i].pte);
1892}
1893static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1894                                 unsigned long addr)
1895{
1896        if (*pt_base == PFN_DOWN(__pa(addr))) {
1897                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1898                clear_page((void *)addr);
1899                (*pt_base)++;
1900        }
1901        if (*pt_end == PFN_DOWN(__pa(addr))) {
1902                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1903                clear_page((void *)addr);
1904                (*pt_end)--;
1905        }
1906}
1907/*
1908 * Set up the initial kernel pagetable.
1909 *
1910 * We can construct this by grafting the Xen provided pagetable into
1911 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1912 * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1913 * kernel has a physical mapping to start with - but that's enough to
1914 * get __va working.  We need to fill in the rest of the physical
1915 * mapping once some sort of allocator has been set up.  NOTE: for
1916 * PVH, the page tables are native.
1917 */
1918void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1919{
1920        pud_t *l3;
1921        pmd_t *l2;
1922        unsigned long addr[3];
1923        unsigned long pt_base, pt_end;
1924        unsigned i;
1925
1926        /* max_pfn_mapped is the last pfn mapped in the initial memory
1927         * mappings. Considering that on Xen after the kernel mappings we
1928         * have the mappings of some pages that don't exist in pfn space, we
1929         * set max_pfn_mapped to the last real pfn mapped. */
1930        if (xen_start_info->mfn_list < __START_KERNEL_map)
1931                max_pfn_mapped = xen_start_info->first_p2m_pfn;
1932        else
1933                max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1934
1935        pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1936        pt_end = pt_base + xen_start_info->nr_pt_frames;
1937
1938        /* Zap identity mapping */
1939        init_level4_pgt[0] = __pgd(0);
1940
1941        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1942                /* Pre-constructed entries are in pfn, so convert to mfn */
1943                /* L4[272] -> level3_ident_pgt
1944                 * L4[511] -> level3_kernel_pgt */
1945                convert_pfn_mfn(init_level4_pgt);
1946
1947                /* L3_i[0] -> level2_ident_pgt */
1948                convert_pfn_mfn(level3_ident_pgt);
1949                /* L3_k[510] -> level2_kernel_pgt
1950                 * L3_k[511] -> level2_fixmap_pgt */
1951                convert_pfn_mfn(level3_kernel_pgt);
1952
1953                /* L3_k[511][506] -> level1_fixmap_pgt */
1954                convert_pfn_mfn(level2_fixmap_pgt);
1955        }
1956        /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1957        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1958        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1959
1960        addr[0] = (unsigned long)pgd;
1961        addr[1] = (unsigned long)l3;
1962        addr[2] = (unsigned long)l2;
1963        /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1964         * Both L4[272][0] and L4[511][510] have entries that point to the same
1965         * L2 (PMD) tables. Meaning that if you modify it in __va space
1966         * it will be also modified in the __ka space! (But if you just
1967         * modify the PMD table to point to other PTE's or none, then you
1968         * are OK - which is what cleanup_highmap does) */
1969        copy_page(level2_ident_pgt, l2);
1970        /* Graft it onto L4[511][510] */
1971        copy_page(level2_kernel_pgt, l2);
1972
1973        /* Copy the initial P->M table mappings if necessary. */
1974        i = pgd_index(xen_start_info->mfn_list);
1975        if (i && i < pgd_index(__START_KERNEL_map))
1976                init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1977
1978        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1979                /* Make pagetable pieces RO */
1980                set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1981                set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1982                set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1983                set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1984                set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1985                set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1986                set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1987                set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1988
1989                /* Pin down new L4 */
1990                pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1991                                  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1992
1993                /* Unpin Xen-provided one */
1994                pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1995
1996                /*
1997                 * At this stage there can be no user pgd, and no page
1998                 * structure to attach it to, so make sure we just set kernel
1999                 * pgd.
2000                 */
2001                xen_mc_batch();
2002                __xen_write_cr3(true, __pa(init_level4_pgt));
2003                xen_mc_issue(PARAVIRT_LAZY_CPU);
2004        } else
2005                native_write_cr3(__pa(init_level4_pgt));
2006
2007        /* We can't that easily rip out L3 and L2, as the Xen pagetables are
2008         * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
2009         * the initial domain. For guests using the toolstack, they are in:
2010         * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2011         * rip out the [L4] (pgd), but for guests we shave off three pages.
2012         */
2013        for (i = 0; i < ARRAY_SIZE(addr); i++)
2014                check_pt_base(&pt_base, &pt_end, addr[i]);
2015
2016        /* Our (by three pages) smaller Xen pagetable that we are using */
2017        xen_pt_base = PFN_PHYS(pt_base);
2018        xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2019        memblock_reserve(xen_pt_base, xen_pt_size);
2020
2021        /* Revector the xen_start_info */
2022        xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2023}
2024
2025/*
2026 * Read a value from a physical address.
2027 */
2028static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2029{
2030        unsigned long *vaddr;
2031        unsigned long val;
2032
2033        vaddr = early_memremap_ro(addr, sizeof(val));
2034        val = *vaddr;
2035        early_memunmap(vaddr, sizeof(val));
2036        return val;
2037}
2038
2039/*
2040 * Translate a virtual address to a physical one without relying on mapped
2041 * page tables.
2042 */
2043static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2044{
2045        phys_addr_t pa;
2046        pgd_t pgd;
2047        pud_t pud;
2048        pmd_t pmd;
2049        pte_t pte;
2050
2051        pa = read_cr3();
2052        pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2053                                                       sizeof(pgd)));
2054        if (!pgd_present(pgd))
2055                return 0;
2056
2057        pa = pgd_val(pgd) & PTE_PFN_MASK;
2058        pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2059                                                       sizeof(pud)));
2060        if (!pud_present(pud))
2061                return 0;
2062        pa = pud_pfn(pud) << PAGE_SHIFT;
2063        if (pud_large(pud))
2064                return pa + (vaddr & ~PUD_MASK);
2065
2066        pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2067                                                       sizeof(pmd)));
2068        if (!pmd_present(pmd))
2069                return 0;
2070        pa = pmd_pfn(pmd) << PAGE_SHIFT;
2071        if (pmd_large(pmd))
2072                return pa + (vaddr & ~PMD_MASK);
2073
2074        pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2075                                                       sizeof(pte)));
2076        if (!pte_present(pte))
2077                return 0;
2078        pa = pte_pfn(pte) << PAGE_SHIFT;
2079
2080        return pa | (vaddr & ~PAGE_MASK);
2081}
2082
2083/*
2084 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2085 * this area.
2086 */
2087void __init xen_relocate_p2m(void)
2088{
2089        phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2090        unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2091        int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2092        pte_t *pt;
2093        pmd_t *pmd;
2094        pud_t *pud;
2095        pgd_t *pgd;
2096        unsigned long *new_p2m;
2097
2098        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2099        n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2100        n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2101        n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2102        n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2103        n_frames = n_pte + n_pt + n_pmd + n_pud;
2104
2105        new_area = xen_find_free_area(PFN_PHYS(n_frames));
2106        if (!new_area) {
2107                xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2108                BUG();
2109        }
2110
2111        /*
2112         * Setup the page tables for addressing the new p2m list.
2113         * We have asked the hypervisor to map the p2m list at the user address
2114         * PUD_SIZE. It may have done so, or it may have used a kernel space
2115         * address depending on the Xen version.
2116         * To avoid any possible virtual address collision, just use
2117         * 2 * PUD_SIZE for the new area.
2118         */
2119        pud_phys = new_area;
2120        pmd_phys = pud_phys + PFN_PHYS(n_pud);
2121        pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2122        p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2123
2124        pgd = __va(read_cr3());
2125        new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2126        for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2127                pud = early_memremap(pud_phys, PAGE_SIZE);
2128                clear_page(pud);
2129                for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2130                     idx_pmd++) {
2131                        pmd = early_memremap(pmd_phys, PAGE_SIZE);
2132                        clear_page(pmd);
2133                        for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2134                             idx_pt++) {
2135                                pt = early_memremap(pt_phys, PAGE_SIZE);
2136                                clear_page(pt);
2137                                for (idx_pte = 0;
2138                                     idx_pte < min(n_pte, PTRS_PER_PTE);
2139                                     idx_pte++) {
2140                                        set_pte(pt + idx_pte,
2141                                                pfn_pte(p2m_pfn, PAGE_KERNEL));
2142                                        p2m_pfn++;
2143                                }
2144                                n_pte -= PTRS_PER_PTE;
2145                                early_memunmap(pt, PAGE_SIZE);
2146                                make_lowmem_page_readonly(__va(pt_phys));
2147                                pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2148                                                  PFN_DOWN(pt_phys));
2149                                set_pmd(pmd + idx_pt,
2150                                        __pmd(_PAGE_TABLE | pt_phys));
2151                                pt_phys += PAGE_SIZE;
2152                        }
2153                        n_pt -= PTRS_PER_PMD;
2154                        early_memunmap(pmd, PAGE_SIZE);
2155                        make_lowmem_page_readonly(__va(pmd_phys));
2156                        pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2157                                          PFN_DOWN(pmd_phys));
2158                        set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2159                        pmd_phys += PAGE_SIZE;
2160                }
2161                n_pmd -= PTRS_PER_PUD;
2162                early_memunmap(pud, PAGE_SIZE);
2163                make_lowmem_page_readonly(__va(pud_phys));
2164                pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2165                set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2166                pud_phys += PAGE_SIZE;
2167        }
2168
2169        /* Now copy the old p2m info to the new area. */
2170        memcpy(new_p2m, xen_p2m_addr, size);
2171        xen_p2m_addr = new_p2m;
2172
2173        /* Release the old p2m list and set new list info. */
2174        p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2175        BUG_ON(!p2m_pfn);
2176        p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2177
2178        if (xen_start_info->mfn_list < __START_KERNEL_map) {
2179                pfn = xen_start_info->first_p2m_pfn;
2180                pfn_end = xen_start_info->first_p2m_pfn +
2181                          xen_start_info->nr_p2m_frames;
2182                set_pgd(pgd + 1, __pgd(0));
2183        } else {
2184                pfn = p2m_pfn;
2185                pfn_end = p2m_pfn_end;
2186        }
2187
2188        memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2189        while (pfn < pfn_end) {
2190                if (pfn == p2m_pfn) {
2191                        pfn = p2m_pfn_end;
2192                        continue;
2193                }
2194                make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2195                pfn++;
2196        }
2197
2198        xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2199        xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2200        xen_start_info->nr_p2m_frames = n_frames;
2201}
2202
2203#else   /* !CONFIG_X86_64 */
2204static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2205static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2206
2207static void __init xen_write_cr3_init(unsigned long cr3)
2208{
2209        unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2210
2211        BUG_ON(read_cr3() != __pa(initial_page_table));
2212        BUG_ON(cr3 != __pa(swapper_pg_dir));
2213
2214        /*
2215         * We are switching to swapper_pg_dir for the first time (from
2216         * initial_page_table) and therefore need to mark that page
2217         * read-only and then pin it.
2218         *
2219         * Xen disallows sharing of kernel PMDs for PAE
2220         * guests. Therefore we must copy the kernel PMD from
2221         * initial_page_table into a new kernel PMD to be used in
2222         * swapper_pg_dir.
2223         */
2224        swapper_kernel_pmd =
2225                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2226        copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2227        swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2228                __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2229        set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2230
2231        set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2232        xen_write_cr3(cr3);
2233        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2234
2235        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2236                          PFN_DOWN(__pa(initial_page_table)));
2237        set_page_prot(initial_page_table, PAGE_KERNEL);
2238        set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2239
2240        pv_mmu_ops.write_cr3 = &xen_write_cr3;
2241}
2242
2243/*
2244 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2245 * not the first page table in the page table pool.
2246 * Iterate through the initial page tables to find the real page table base.
2247 */
2248static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2249{
2250        phys_addr_t pt_base, paddr;
2251        unsigned pmdidx;
2252
2253        pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2254
2255        for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2256                if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2257                        paddr = m2p(pmd[pmdidx].pmd);
2258                        pt_base = min(pt_base, paddr);
2259                }
2260
2261        return pt_base;
2262}
2263
2264void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2265{
2266        pmd_t *kernel_pmd;
2267
2268        kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2269
2270        xen_pt_base = xen_find_pt_base(kernel_pmd);
2271        xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2272
2273        initial_kernel_pmd =
2274                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2275
2276        max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2277
2278        copy_page(initial_kernel_pmd, kernel_pmd);
2279
2280        xen_map_identity_early(initial_kernel_pmd, max_pfn);
2281
2282        copy_page(initial_page_table, pgd);
2283        initial_page_table[KERNEL_PGD_BOUNDARY] =
2284                __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2285
2286        set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2287        set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2288        set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2289
2290        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2291
2292        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2293                          PFN_DOWN(__pa(initial_page_table)));
2294        xen_write_cr3(__pa(initial_page_table));
2295
2296        memblock_reserve(xen_pt_base, xen_pt_size);
2297}
2298#endif  /* CONFIG_X86_64 */
2299
2300void __init xen_reserve_special_pages(void)
2301{
2302        phys_addr_t paddr;
2303
2304        memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2305        if (xen_start_info->store_mfn) {
2306                paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2307                memblock_reserve(paddr, PAGE_SIZE);
2308        }
2309        if (!xen_initial_domain()) {
2310                paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2311                memblock_reserve(paddr, PAGE_SIZE);
2312        }
2313}
2314
2315void __init xen_pt_check_e820(void)
2316{
2317        if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2318                xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2319                BUG();
2320        }
2321}
2322
2323static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2324
2325static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2326{
2327        pte_t pte;
2328
2329        phys >>= PAGE_SHIFT;
2330
2331        switch (idx) {
2332        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2333        case FIX_RO_IDT:
2334#ifdef CONFIG_X86_32
2335        case FIX_WP_TEST:
2336# ifdef CONFIG_HIGHMEM
2337        case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2338# endif
2339#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2340        case VSYSCALL_PAGE:
2341#endif
2342        case FIX_TEXT_POKE0:
2343        case FIX_TEXT_POKE1:
2344                /* All local page mappings */
2345                pte = pfn_pte(phys, prot);
2346                break;
2347
2348#ifdef CONFIG_X86_LOCAL_APIC
2349        case FIX_APIC_BASE:     /* maps dummy local APIC */
2350                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2351                break;
2352#endif
2353
2354#ifdef CONFIG_X86_IO_APIC
2355        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2356                /*
2357                 * We just don't map the IO APIC - all access is via
2358                 * hypercalls.  Keep the address in the pte for reference.
2359                 */
2360                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2361                break;
2362#endif
2363
2364        case FIX_PARAVIRT_BOOTMAP:
2365                /* This is an MFN, but it isn't an IO mapping from the
2366                   IO domain */
2367                pte = mfn_pte(phys, prot);
2368                break;
2369
2370        default:
2371                /* By default, set_fixmap is used for hardware mappings */
2372                pte = mfn_pte(phys, prot);
2373                break;
2374        }
2375
2376        __native_set_fixmap(idx, pte);
2377
2378#ifdef CONFIG_X86_VSYSCALL_EMULATION
2379        /* Replicate changes to map the vsyscall page into the user
2380           pagetable vsyscall mapping. */
2381        if (idx == VSYSCALL_PAGE) {
2382                unsigned long vaddr = __fix_to_virt(idx);
2383                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2384        }
2385#endif
2386}
2387
2388static void __init xen_post_allocator_init(void)
2389{
2390        if (xen_feature(XENFEAT_auto_translated_physmap))
2391                return;
2392
2393        pv_mmu_ops.set_pte = xen_set_pte;
2394        pv_mmu_ops.set_pmd = xen_set_pmd;
2395        pv_mmu_ops.set_pud = xen_set_pud;
2396#if CONFIG_PGTABLE_LEVELS == 4
2397        pv_mmu_ops.set_pgd = xen_set_pgd;
2398#endif
2399
2400        /* This will work as long as patching hasn't happened yet
2401           (which it hasn't) */
2402        pv_mmu_ops.alloc_pte = xen_alloc_pte;
2403        pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2404        pv_mmu_ops.release_pte = xen_release_pte;
2405        pv_mmu_ops.release_pmd = xen_release_pmd;
2406#if CONFIG_PGTABLE_LEVELS == 4
2407        pv_mmu_ops.alloc_pud = xen_alloc_pud;
2408        pv_mmu_ops.release_pud = xen_release_pud;
2409#endif
2410
2411#ifdef CONFIG_X86_64
2412        pv_mmu_ops.write_cr3 = &xen_write_cr3;
2413        SetPagePinned(virt_to_page(level3_user_vsyscall));
2414#endif
2415        xen_mark_init_mm_pinned();
2416}
2417
2418static void xen_leave_lazy_mmu(void)
2419{
2420        preempt_disable();
2421        xen_mc_flush();
2422        paravirt_leave_lazy_mmu();
2423        preempt_enable();
2424}
2425
2426static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2427        .read_cr2 = xen_read_cr2,
2428        .write_cr2 = xen_write_cr2,
2429
2430        .read_cr3 = xen_read_cr3,
2431        .write_cr3 = xen_write_cr3_init,
2432
2433        .flush_tlb_user = xen_flush_tlb,
2434        .flush_tlb_kernel = xen_flush_tlb,
2435        .flush_tlb_single = xen_flush_tlb_single,
2436        .flush_tlb_others = xen_flush_tlb_others,
2437
2438        .pte_update = paravirt_nop,
2439
2440        .pgd_alloc = xen_pgd_alloc,
2441        .pgd_free = xen_pgd_free,
2442
2443        .alloc_pte = xen_alloc_pte_init,
2444        .release_pte = xen_release_pte_init,
2445        .alloc_pmd = xen_alloc_pmd_init,
2446        .release_pmd = xen_release_pmd_init,
2447
2448        .set_pte = xen_set_pte_init,
2449        .set_pte_at = xen_set_pte_at,
2450        .set_pmd = xen_set_pmd_hyper,
2451
2452        .ptep_modify_prot_start = __ptep_modify_prot_start,
2453        .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2454
2455        .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2456        .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2457
2458        .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2459        .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2460
2461#ifdef CONFIG_X86_PAE
2462        .set_pte_atomic = xen_set_pte_atomic,
2463        .pte_clear = xen_pte_clear,
2464        .pmd_clear = xen_pmd_clear,
2465#endif  /* CONFIG_X86_PAE */
2466        .set_pud = xen_set_pud_hyper,
2467
2468        .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2469        .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2470
2471#if CONFIG_PGTABLE_LEVELS == 4
2472        .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2473        .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2474        .set_pgd = xen_set_pgd_hyper,
2475
2476        .alloc_pud = xen_alloc_pmd_init,
2477        .release_pud = xen_release_pmd_init,
2478#endif  /* CONFIG_PGTABLE_LEVELS == 4 */
2479
2480        .activate_mm = xen_activate_mm,
2481        .dup_mmap = xen_dup_mmap,
2482        .exit_mmap = xen_exit_mmap,
2483
2484        .lazy_mode = {
2485                .enter = paravirt_enter_lazy_mmu,
2486                .leave = xen_leave_lazy_mmu,
2487                .flush = paravirt_flush_lazy_mmu,
2488        },
2489
2490        .set_fixmap = xen_set_fixmap,
2491};
2492
2493void __init xen_init_mmu_ops(void)
2494{
2495        x86_init.paging.pagetable_init = xen_pagetable_init;
2496
2497        if (xen_feature(XENFEAT_auto_translated_physmap))
2498                return;
2499
2500        pv_mmu_ops = xen_mmu_ops;
2501
2502        memset(dummy_mapping, 0xff, PAGE_SIZE);
2503}
2504
2505/* Protected by xen_reservation_lock. */
2506#define MAX_CONTIG_ORDER 9 /* 2MB */
2507static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2508
2509#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2510static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2511                                unsigned long *in_frames,
2512                                unsigned long *out_frames)
2513{
2514        int i;
2515        struct multicall_space mcs;
2516
2517        xen_mc_batch();
2518        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2519                mcs = __xen_mc_entry(0);
2520
2521                if (in_frames)
2522                        in_frames[i] = virt_to_mfn(vaddr);
2523
2524                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2525                __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2526
2527                if (out_frames)
2528                        out_frames[i] = virt_to_pfn(vaddr);
2529        }
2530        xen_mc_issue(0);
2531}
2532
2533/*
2534 * Update the pfn-to-mfn mappings for a virtual address range, either to
2535 * point to an array of mfns, or contiguously from a single starting
2536 * mfn.
2537 */
2538static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2539                                     unsigned long *mfns,
2540                                     unsigned long first_mfn)
2541{
2542        unsigned i, limit;
2543        unsigned long mfn;
2544
2545        xen_mc_batch();
2546
2547        limit = 1u << order;
2548        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2549                struct multicall_space mcs;
2550                unsigned flags;
2551
2552                mcs = __xen_mc_entry(0);
2553                if (mfns)
2554                        mfn = mfns[i];
2555                else
2556                        mfn = first_mfn + i;
2557
2558                if (i < (limit - 1))
2559                        flags = 0;
2560                else {
2561                        if (order == 0)
2562                                flags = UVMF_INVLPG | UVMF_ALL;
2563                        else
2564                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2565                }
2566
2567                MULTI_update_va_mapping(mcs.mc, vaddr,
2568                                mfn_pte(mfn, PAGE_KERNEL), flags);
2569
2570                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2571        }
2572
2573        xen_mc_issue(0);
2574}
2575
2576/*
2577 * Perform the hypercall to exchange a region of our pfns to point to
2578 * memory with the required contiguous alignment.  Takes the pfns as
2579 * input, and populates mfns as output.
2580 *
2581 * Returns a success code indicating whether the hypervisor was able to
2582 * satisfy the request or not.
2583 */
2584static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2585                               unsigned long *pfns_in,
2586                               unsigned long extents_out,
2587                               unsigned int order_out,
2588                               unsigned long *mfns_out,
2589                               unsigned int address_bits)
2590{
2591        long rc;
2592        int success;
2593
2594        struct xen_memory_exchange exchange = {
2595                .in = {
2596                        .nr_extents   = extents_in,
2597                        .extent_order = order_in,
2598                        .extent_start = pfns_in,
2599                        .domid        = DOMID_SELF
2600                },
2601                .out = {
2602                        .nr_extents   = extents_out,
2603                        .extent_order = order_out,
2604                        .extent_start = mfns_out,
2605                        .address_bits = address_bits,
2606                        .domid        = DOMID_SELF
2607                }
2608        };
2609
2610        BUG_ON(extents_in << order_in != extents_out << order_out);
2611
2612        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2613        success = (exchange.nr_exchanged == extents_in);
2614
2615        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2616        BUG_ON(success && (rc != 0));
2617
2618        return success;
2619}
2620
2621int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2622                                 unsigned int address_bits,
2623                                 dma_addr_t *dma_handle)
2624{
2625        unsigned long *in_frames = discontig_frames, out_frame;
2626        unsigned long  flags;
2627        int            success;
2628        unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2629
2630        /*
2631         * Currently an auto-translated guest will not perform I/O, nor will
2632         * it require PAE page directories below 4GB. Therefore any calls to
2633         * this function are redundant and can be ignored.
2634         */
2635
2636        if (xen_feature(XENFEAT_auto_translated_physmap))
2637                return 0;
2638
2639        if (unlikely(order > MAX_CONTIG_ORDER))
2640                return -ENOMEM;
2641
2642        memset((void *) vstart, 0, PAGE_SIZE << order);
2643
2644        spin_lock_irqsave(&xen_reservation_lock, flags);
2645
2646        /* 1. Zap current PTEs, remembering MFNs. */
2647        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2648
2649        /* 2. Get a new contiguous memory extent. */
2650        out_frame = virt_to_pfn(vstart);
2651        success = xen_exchange_memory(1UL << order, 0, in_frames,
2652                                      1, order, &out_frame,
2653                                      address_bits);
2654
2655        /* 3. Map the new extent in place of old pages. */
2656        if (success)
2657                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2658        else
2659                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2660
2661        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2662
2663        *dma_handle = virt_to_machine(vstart).maddr;
2664        return success ? 0 : -ENOMEM;
2665}
2666EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2667
2668void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2669{
2670        unsigned long *out_frames = discontig_frames, in_frame;
2671        unsigned long  flags;
2672        int success;
2673        unsigned long vstart;
2674
2675        if (xen_feature(XENFEAT_auto_translated_physmap))
2676                return;
2677
2678        if (unlikely(order > MAX_CONTIG_ORDER))
2679                return;
2680
2681        vstart = (unsigned long)phys_to_virt(pstart);
2682        memset((void *) vstart, 0, PAGE_SIZE << order);
2683
2684        spin_lock_irqsave(&xen_reservation_lock, flags);
2685
2686        /* 1. Find start MFN of contiguous extent. */
2687        in_frame = virt_to_mfn(vstart);
2688
2689        /* 2. Zap current PTEs. */
2690        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2691
2692        /* 3. Do the exchange for non-contiguous MFNs. */
2693        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2694                                        0, out_frames, 0);
2695
2696        /* 4. Map new pages in place of old pages. */
2697        if (success)
2698                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2699        else
2700                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2701
2702        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2703}
2704EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2705
2706#ifdef CONFIG_XEN_PVHVM
2707#ifdef CONFIG_PROC_VMCORE
2708/*
2709 * This function is used in two contexts:
2710 * - the kdump kernel has to check whether a pfn of the crashed kernel
2711 *   was a ballooned page. vmcore is using this function to decide
2712 *   whether to access a pfn of the crashed kernel.
2713 * - the kexec kernel has to check whether a pfn was ballooned by the
2714 *   previous kernel. If the pfn is ballooned, handle it properly.
2715 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2716 * handle the pfn special in this case.
2717 */
2718static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2719{
2720        struct xen_hvm_get_mem_type a = {
2721                .domid = DOMID_SELF,
2722                .pfn = pfn,
2723        };
2724        int ram;
2725
2726        if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2727                return -ENXIO;
2728
2729        switch (a.mem_type) {
2730                case HVMMEM_mmio_dm:
2731                        ram = 0;
2732                        break;
2733                case HVMMEM_ram_rw:
2734                case HVMMEM_ram_ro:
2735                default:
2736                        ram = 1;
2737                        break;
2738        }
2739
2740        return ram;
2741}
2742#endif
2743
2744static void xen_hvm_exit_mmap(struct mm_struct *mm)
2745{
2746        struct xen_hvm_pagetable_dying a;
2747        int rc;
2748
2749        a.domid = DOMID_SELF;
2750        a.gpa = __pa(mm->pgd);
2751        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2752        WARN_ON_ONCE(rc < 0);
2753}
2754
2755static int is_pagetable_dying_supported(void)
2756{
2757        struct xen_hvm_pagetable_dying a;
2758        int rc = 0;
2759
2760        a.domid = DOMID_SELF;
2761        a.gpa = 0x00;
2762        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2763        if (rc < 0) {
2764                printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2765                return 0;
2766        }
2767        return 1;
2768}
2769
2770void __init xen_hvm_init_mmu_ops(void)
2771{
2772        if (is_pagetable_dying_supported())
2773                pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2774#ifdef CONFIG_PROC_VMCORE
2775        register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2776#endif
2777}
2778#endif
2779
2780#define REMAP_BATCH_SIZE 16
2781
2782struct remap_data {
2783        xen_pfn_t *mfn;
2784        bool contiguous;
2785        pgprot_t prot;
2786        struct mmu_update *mmu_update;
2787};
2788
2789static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2790                                 unsigned long addr, void *data)
2791{
2792        struct remap_data *rmd = data;
2793        pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2794
2795        /* If we have a contiguous range, just update the mfn itself,
2796           else update pointer to be "next mfn". */
2797        if (rmd->contiguous)
2798                (*rmd->mfn)++;
2799        else
2800                rmd->mfn++;
2801
2802        rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2803        rmd->mmu_update->val = pte_val_ma(pte);
2804        rmd->mmu_update++;
2805
2806        return 0;
2807}
2808
2809static int do_remap_gfn(struct vm_area_struct *vma,
2810                        unsigned long addr,
2811                        xen_pfn_t *gfn, int nr,
2812                        int *err_ptr, pgprot_t prot,
2813                        unsigned domid,
2814                        struct page **pages)
2815{
2816        int err = 0;
2817        struct remap_data rmd;
2818        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2819        unsigned long range;
2820        int mapped = 0;
2821
2822        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2823
2824        if (xen_feature(XENFEAT_auto_translated_physmap)) {
2825#ifdef CONFIG_XEN_PVH
2826                /* We need to update the local page tables and the xen HAP */
2827                return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr,
2828                                                 prot, domid, pages);
2829#else
2830                return -EINVAL;
2831#endif
2832        }
2833
2834        rmd.mfn = gfn;
2835        rmd.prot = prot;
2836        /* We use the err_ptr to indicate if there we are doing a contiguous
2837         * mapping or a discontigious mapping. */
2838        rmd.contiguous = !err_ptr;
2839
2840        while (nr) {
2841                int index = 0;
2842                int done = 0;
2843                int batch = min(REMAP_BATCH_SIZE, nr);
2844                int batch_left = batch;
2845                range = (unsigned long)batch << PAGE_SHIFT;
2846
2847                rmd.mmu_update = mmu_update;
2848                err = apply_to_page_range(vma->vm_mm, addr, range,
2849                                          remap_area_mfn_pte_fn, &rmd);
2850                if (err)
2851                        goto out;
2852
2853                /* We record the error for each page that gives an error, but
2854                 * continue mapping until the whole set is done */
2855                do {
2856                        int i;
2857
2858                        err = HYPERVISOR_mmu_update(&mmu_update[index],
2859                                                    batch_left, &done, domid);
2860
2861                        /*
2862                         * @err_ptr may be the same buffer as @gfn, so
2863                         * only clear it after each chunk of @gfn is
2864                         * used.
2865                         */
2866                        if (err_ptr) {
2867                                for (i = index; i < index + done; i++)
2868                                        err_ptr[i] = 0;
2869                        }
2870                        if (err < 0) {
2871                                if (!err_ptr)
2872                                        goto out;
2873                                err_ptr[i] = err;
2874                                done++; /* Skip failed frame. */
2875                        } else
2876                                mapped += done;
2877                        batch_left -= done;
2878                        index += done;
2879                } while (batch_left);
2880
2881                nr -= batch;
2882                addr += range;
2883                if (err_ptr)
2884                        err_ptr += batch;
2885                cond_resched();
2886        }
2887out:
2888
2889        xen_flush_tlb_all();
2890
2891        return err < 0 ? err : mapped;
2892}
2893
2894int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2895                               unsigned long addr,
2896                               xen_pfn_t gfn, int nr,
2897                               pgprot_t prot, unsigned domid,
2898                               struct page **pages)
2899{
2900        return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2901}
2902EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2903
2904int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2905                               unsigned long addr,
2906                               xen_pfn_t *gfn, int nr,
2907                               int *err_ptr, pgprot_t prot,
2908                               unsigned domid, struct page **pages)
2909{
2910        /* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2911         * and the consequences later is quite hard to detect what the actual
2912         * cause of "wrong memory was mapped in".
2913         */
2914        BUG_ON(err_ptr == NULL);
2915        return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2916}
2917EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2918
2919
2920/* Returns: 0 success */
2921int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2922                               int numpgs, struct page **pages)
2923{
2924        if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2925                return 0;
2926
2927#ifdef CONFIG_XEN_PVH
2928        return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2929#else
2930        return -EINVAL;
2931#endif
2932}
2933EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
2934