linux/block/bio.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public Licens
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  16 *
  17 */
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/uio.h>
  23#include <linux/iocontext.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/kernel.h>
  27#include <linux/export.h>
  28#include <linux/mempool.h>
  29#include <linux/workqueue.h>
  30#include <linux/cgroup.h>
  31
  32#include <trace/events/block.h>
  33
  34/*
  35 * Test patch to inline a certain number of bi_io_vec's inside the bio
  36 * itself, to shrink a bio data allocation from two mempool calls to one
  37 */
  38#define BIO_INLINE_VECS         4
  39
  40/*
  41 * if you change this list, also change bvec_alloc or things will
  42 * break badly! cannot be bigger than what you can fit into an
  43 * unsigned short
  44 */
  45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  47        BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  48};
  49#undef BV
  50
  51/*
  52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  53 * IO code that does not need private memory pools.
  54 */
  55struct bio_set *fs_bio_set;
  56EXPORT_SYMBOL(fs_bio_set);
  57
  58/*
  59 * Our slab pool management
  60 */
  61struct bio_slab {
  62        struct kmem_cache *slab;
  63        unsigned int slab_ref;
  64        unsigned int slab_size;
  65        char name[8];
  66};
  67static DEFINE_MUTEX(bio_slab_lock);
  68static struct bio_slab *bio_slabs;
  69static unsigned int bio_slab_nr, bio_slab_max;
  70
  71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  72{
  73        unsigned int sz = sizeof(struct bio) + extra_size;
  74        struct kmem_cache *slab = NULL;
  75        struct bio_slab *bslab, *new_bio_slabs;
  76        unsigned int new_bio_slab_max;
  77        unsigned int i, entry = -1;
  78
  79        mutex_lock(&bio_slab_lock);
  80
  81        i = 0;
  82        while (i < bio_slab_nr) {
  83                bslab = &bio_slabs[i];
  84
  85                if (!bslab->slab && entry == -1)
  86                        entry = i;
  87                else if (bslab->slab_size == sz) {
  88                        slab = bslab->slab;
  89                        bslab->slab_ref++;
  90                        break;
  91                }
  92                i++;
  93        }
  94
  95        if (slab)
  96                goto out_unlock;
  97
  98        if (bio_slab_nr == bio_slab_max && entry == -1) {
  99                new_bio_slab_max = bio_slab_max << 1;
 100                new_bio_slabs = krealloc(bio_slabs,
 101                                         new_bio_slab_max * sizeof(struct bio_slab),
 102                                         GFP_KERNEL);
 103                if (!new_bio_slabs)
 104                        goto out_unlock;
 105                bio_slab_max = new_bio_slab_max;
 106                bio_slabs = new_bio_slabs;
 107        }
 108        if (entry == -1)
 109                entry = bio_slab_nr++;
 110
 111        bslab = &bio_slabs[entry];
 112
 113        snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 114        slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
 115                                 SLAB_HWCACHE_ALIGN, NULL);
 116        if (!slab)
 117                goto out_unlock;
 118
 119        bslab->slab = slab;
 120        bslab->slab_ref = 1;
 121        bslab->slab_size = sz;
 122out_unlock:
 123        mutex_unlock(&bio_slab_lock);
 124        return slab;
 125}
 126
 127static void bio_put_slab(struct bio_set *bs)
 128{
 129        struct bio_slab *bslab = NULL;
 130        unsigned int i;
 131
 132        mutex_lock(&bio_slab_lock);
 133
 134        for (i = 0; i < bio_slab_nr; i++) {
 135                if (bs->bio_slab == bio_slabs[i].slab) {
 136                        bslab = &bio_slabs[i];
 137                        break;
 138                }
 139        }
 140
 141        if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 142                goto out;
 143
 144        WARN_ON(!bslab->slab_ref);
 145
 146        if (--bslab->slab_ref)
 147                goto out;
 148
 149        kmem_cache_destroy(bslab->slab);
 150        bslab->slab = NULL;
 151
 152out:
 153        mutex_unlock(&bio_slab_lock);
 154}
 155
 156unsigned int bvec_nr_vecs(unsigned short idx)
 157{
 158        return bvec_slabs[idx].nr_vecs;
 159}
 160
 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
 162{
 163        BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
 164
 165        if (idx == BIOVEC_MAX_IDX)
 166                mempool_free(bv, pool);
 167        else {
 168                struct biovec_slab *bvs = bvec_slabs + idx;
 169
 170                kmem_cache_free(bvs->slab, bv);
 171        }
 172}
 173
 174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
 175                           mempool_t *pool)
 176{
 177        struct bio_vec *bvl;
 178
 179        /*
 180         * see comment near bvec_array define!
 181         */
 182        switch (nr) {
 183        case 1:
 184                *idx = 0;
 185                break;
 186        case 2 ... 4:
 187                *idx = 1;
 188                break;
 189        case 5 ... 16:
 190                *idx = 2;
 191                break;
 192        case 17 ... 64:
 193                *idx = 3;
 194                break;
 195        case 65 ... 128:
 196                *idx = 4;
 197                break;
 198        case 129 ... BIO_MAX_PAGES:
 199                *idx = 5;
 200                break;
 201        default:
 202                return NULL;
 203        }
 204
 205        /*
 206         * idx now points to the pool we want to allocate from. only the
 207         * 1-vec entry pool is mempool backed.
 208         */
 209        if (*idx == BIOVEC_MAX_IDX) {
 210fallback:
 211                bvl = mempool_alloc(pool, gfp_mask);
 212        } else {
 213                struct biovec_slab *bvs = bvec_slabs + *idx;
 214                gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
 215
 216                /*
 217                 * Make this allocation restricted and don't dump info on
 218                 * allocation failures, since we'll fallback to the mempool
 219                 * in case of failure.
 220                 */
 221                __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 222
 223                /*
 224                 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
 225                 * is set, retry with the 1-entry mempool
 226                 */
 227                bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 228                if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
 229                        *idx = BIOVEC_MAX_IDX;
 230                        goto fallback;
 231                }
 232        }
 233
 234        return bvl;
 235}
 236
 237static void __bio_free(struct bio *bio)
 238{
 239        bio_disassociate_task(bio);
 240
 241        if (bio_integrity(bio))
 242                bio_integrity_free(bio);
 243}
 244
 245static void bio_free(struct bio *bio)
 246{
 247        struct bio_set *bs = bio->bi_pool;
 248        void *p;
 249
 250        __bio_free(bio);
 251
 252        if (bs) {
 253                if (bio_flagged(bio, BIO_OWNS_VEC))
 254                        bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
 255
 256                /*
 257                 * If we have front padding, adjust the bio pointer before freeing
 258                 */
 259                p = bio;
 260                p -= bs->front_pad;
 261
 262                mempool_free(p, bs->bio_pool);
 263        } else {
 264                /* Bio was allocated by bio_kmalloc() */
 265                kfree(bio);
 266        }
 267}
 268
 269void bio_init(struct bio *bio)
 270{
 271        memset(bio, 0, sizeof(*bio));
 272        atomic_set(&bio->__bi_remaining, 1);
 273        atomic_set(&bio->__bi_cnt, 1);
 274}
 275EXPORT_SYMBOL(bio_init);
 276
 277/**
 278 * bio_reset - reinitialize a bio
 279 * @bio:        bio to reset
 280 *
 281 * Description:
 282 *   After calling bio_reset(), @bio will be in the same state as a freshly
 283 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 284 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 285 *   comment in struct bio.
 286 */
 287void bio_reset(struct bio *bio)
 288{
 289        unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
 290
 291        __bio_free(bio);
 292
 293        memset(bio, 0, BIO_RESET_BYTES);
 294        bio->bi_flags = flags;
 295        atomic_set(&bio->__bi_remaining, 1);
 296}
 297EXPORT_SYMBOL(bio_reset);
 298
 299static struct bio *__bio_chain_endio(struct bio *bio)
 300{
 301        struct bio *parent = bio->bi_private;
 302
 303        if (!parent->bi_error)
 304                parent->bi_error = bio->bi_error;
 305        bio_put(bio);
 306        return parent;
 307}
 308
 309static void bio_chain_endio(struct bio *bio)
 310{
 311        bio_endio(__bio_chain_endio(bio));
 312}
 313
 314/*
 315 * Increment chain count for the bio. Make sure the CHAIN flag update
 316 * is visible before the raised count.
 317 */
 318static inline void bio_inc_remaining(struct bio *bio)
 319{
 320        bio_set_flag(bio, BIO_CHAIN);
 321        smp_mb__before_atomic();
 322        atomic_inc(&bio->__bi_remaining);
 323}
 324
 325/**
 326 * bio_chain - chain bio completions
 327 * @bio: the target bio
 328 * @parent: the @bio's parent bio
 329 *
 330 * The caller won't have a bi_end_io called when @bio completes - instead,
 331 * @parent's bi_end_io won't be called until both @parent and @bio have
 332 * completed; the chained bio will also be freed when it completes.
 333 *
 334 * The caller must not set bi_private or bi_end_io in @bio.
 335 */
 336void bio_chain(struct bio *bio, struct bio *parent)
 337{
 338        BUG_ON(bio->bi_private || bio->bi_end_io);
 339
 340        bio->bi_private = parent;
 341        bio->bi_end_io  = bio_chain_endio;
 342        bio_inc_remaining(parent);
 343}
 344EXPORT_SYMBOL(bio_chain);
 345
 346static void bio_alloc_rescue(struct work_struct *work)
 347{
 348        struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 349        struct bio *bio;
 350
 351        while (1) {
 352                spin_lock(&bs->rescue_lock);
 353                bio = bio_list_pop(&bs->rescue_list);
 354                spin_unlock(&bs->rescue_lock);
 355
 356                if (!bio)
 357                        break;
 358
 359                generic_make_request(bio);
 360        }
 361}
 362
 363static void punt_bios_to_rescuer(struct bio_set *bs)
 364{
 365        struct bio_list punt, nopunt;
 366        struct bio *bio;
 367
 368        /*
 369         * In order to guarantee forward progress we must punt only bios that
 370         * were allocated from this bio_set; otherwise, if there was a bio on
 371         * there for a stacking driver higher up in the stack, processing it
 372         * could require allocating bios from this bio_set, and doing that from
 373         * our own rescuer would be bad.
 374         *
 375         * Since bio lists are singly linked, pop them all instead of trying to
 376         * remove from the middle of the list:
 377         */
 378
 379        bio_list_init(&punt);
 380        bio_list_init(&nopunt);
 381
 382        while ((bio = bio_list_pop(current->bio_list)))
 383                bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 384
 385        *current->bio_list = nopunt;
 386
 387        spin_lock(&bs->rescue_lock);
 388        bio_list_merge(&bs->rescue_list, &punt);
 389        spin_unlock(&bs->rescue_lock);
 390
 391        queue_work(bs->rescue_workqueue, &bs->rescue_work);
 392}
 393
 394/**
 395 * bio_alloc_bioset - allocate a bio for I/O
 396 * @gfp_mask:   the GFP_ mask given to the slab allocator
 397 * @nr_iovecs:  number of iovecs to pre-allocate
 398 * @bs:         the bio_set to allocate from.
 399 *
 400 * Description:
 401 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 402 *   backed by the @bs's mempool.
 403 *
 404 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 405 *   always be able to allocate a bio. This is due to the mempool guarantees.
 406 *   To make this work, callers must never allocate more than 1 bio at a time
 407 *   from this pool. Callers that need to allocate more than 1 bio must always
 408 *   submit the previously allocated bio for IO before attempting to allocate
 409 *   a new one. Failure to do so can cause deadlocks under memory pressure.
 410 *
 411 *   Note that when running under generic_make_request() (i.e. any block
 412 *   driver), bios are not submitted until after you return - see the code in
 413 *   generic_make_request() that converts recursion into iteration, to prevent
 414 *   stack overflows.
 415 *
 416 *   This would normally mean allocating multiple bios under
 417 *   generic_make_request() would be susceptible to deadlocks, but we have
 418 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 419 *   thread.
 420 *
 421 *   However, we do not guarantee forward progress for allocations from other
 422 *   mempools. Doing multiple allocations from the same mempool under
 423 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 424 *   for per bio allocations.
 425 *
 426 *   RETURNS:
 427 *   Pointer to new bio on success, NULL on failure.
 428 */
 429struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
 430{
 431        gfp_t saved_gfp = gfp_mask;
 432        unsigned front_pad;
 433        unsigned inline_vecs;
 434        unsigned long idx = BIO_POOL_NONE;
 435        struct bio_vec *bvl = NULL;
 436        struct bio *bio;
 437        void *p;
 438
 439        if (!bs) {
 440                if (nr_iovecs > UIO_MAXIOV)
 441                        return NULL;
 442
 443                p = kmalloc(sizeof(struct bio) +
 444                            nr_iovecs * sizeof(struct bio_vec),
 445                            gfp_mask);
 446                front_pad = 0;
 447                inline_vecs = nr_iovecs;
 448        } else {
 449                /* should not use nobvec bioset for nr_iovecs > 0 */
 450                if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
 451                        return NULL;
 452                /*
 453                 * generic_make_request() converts recursion to iteration; this
 454                 * means if we're running beneath it, any bios we allocate and
 455                 * submit will not be submitted (and thus freed) until after we
 456                 * return.
 457                 *
 458                 * This exposes us to a potential deadlock if we allocate
 459                 * multiple bios from the same bio_set() while running
 460                 * underneath generic_make_request(). If we were to allocate
 461                 * multiple bios (say a stacking block driver that was splitting
 462                 * bios), we would deadlock if we exhausted the mempool's
 463                 * reserve.
 464                 *
 465                 * We solve this, and guarantee forward progress, with a rescuer
 466                 * workqueue per bio_set. If we go to allocate and there are
 467                 * bios on current->bio_list, we first try the allocation
 468                 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
 469                 * bios we would be blocking to the rescuer workqueue before
 470                 * we retry with the original gfp_flags.
 471                 */
 472
 473                if (current->bio_list && !bio_list_empty(current->bio_list))
 474                        gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 475
 476                p = mempool_alloc(bs->bio_pool, gfp_mask);
 477                if (!p && gfp_mask != saved_gfp) {
 478                        punt_bios_to_rescuer(bs);
 479                        gfp_mask = saved_gfp;
 480                        p = mempool_alloc(bs->bio_pool, gfp_mask);
 481                }
 482
 483                front_pad = bs->front_pad;
 484                inline_vecs = BIO_INLINE_VECS;
 485        }
 486
 487        if (unlikely(!p))
 488                return NULL;
 489
 490        bio = p + front_pad;
 491        bio_init(bio);
 492
 493        if (nr_iovecs > inline_vecs) {
 494                bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
 495                if (!bvl && gfp_mask != saved_gfp) {
 496                        punt_bios_to_rescuer(bs);
 497                        gfp_mask = saved_gfp;
 498                        bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
 499                }
 500
 501                if (unlikely(!bvl))
 502                        goto err_free;
 503
 504                bio_set_flag(bio, BIO_OWNS_VEC);
 505        } else if (nr_iovecs) {
 506                bvl = bio->bi_inline_vecs;
 507        }
 508
 509        bio->bi_pool = bs;
 510        bio->bi_flags |= idx << BIO_POOL_OFFSET;
 511        bio->bi_max_vecs = nr_iovecs;
 512        bio->bi_io_vec = bvl;
 513        return bio;
 514
 515err_free:
 516        mempool_free(p, bs->bio_pool);
 517        return NULL;
 518}
 519EXPORT_SYMBOL(bio_alloc_bioset);
 520
 521void zero_fill_bio(struct bio *bio)
 522{
 523        unsigned long flags;
 524        struct bio_vec bv;
 525        struct bvec_iter iter;
 526
 527        bio_for_each_segment(bv, bio, iter) {
 528                char *data = bvec_kmap_irq(&bv, &flags);
 529                memset(data, 0, bv.bv_len);
 530                flush_dcache_page(bv.bv_page);
 531                bvec_kunmap_irq(data, &flags);
 532        }
 533}
 534EXPORT_SYMBOL(zero_fill_bio);
 535
 536/**
 537 * bio_put - release a reference to a bio
 538 * @bio:   bio to release reference to
 539 *
 540 * Description:
 541 *   Put a reference to a &struct bio, either one you have gotten with
 542 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
 543 **/
 544void bio_put(struct bio *bio)
 545{
 546        if (!bio_flagged(bio, BIO_REFFED))
 547                bio_free(bio);
 548        else {
 549                BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
 550
 551                /*
 552                 * last put frees it
 553                 */
 554                if (atomic_dec_and_test(&bio->__bi_cnt))
 555                        bio_free(bio);
 556        }
 557}
 558EXPORT_SYMBOL(bio_put);
 559
 560inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
 561{
 562        if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 563                blk_recount_segments(q, bio);
 564
 565        return bio->bi_phys_segments;
 566}
 567EXPORT_SYMBOL(bio_phys_segments);
 568
 569/**
 570 *      __bio_clone_fast - clone a bio that shares the original bio's biovec
 571 *      @bio: destination bio
 572 *      @bio_src: bio to clone
 573 *
 574 *      Clone a &bio. Caller will own the returned bio, but not
 575 *      the actual data it points to. Reference count of returned
 576 *      bio will be one.
 577 *
 578 *      Caller must ensure that @bio_src is not freed before @bio.
 579 */
 580void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 581{
 582        BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
 583
 584        /*
 585         * most users will be overriding ->bi_bdev with a new target,
 586         * so we don't set nor calculate new physical/hw segment counts here
 587         */
 588        bio->bi_bdev = bio_src->bi_bdev;
 589        bio_set_flag(bio, BIO_CLONED);
 590        bio->bi_rw = bio_src->bi_rw;
 591        bio->bi_iter = bio_src->bi_iter;
 592        bio->bi_io_vec = bio_src->bi_io_vec;
 593}
 594EXPORT_SYMBOL(__bio_clone_fast);
 595
 596/**
 597 *      bio_clone_fast - clone a bio that shares the original bio's biovec
 598 *      @bio: bio to clone
 599 *      @gfp_mask: allocation priority
 600 *      @bs: bio_set to allocate from
 601 *
 602 *      Like __bio_clone_fast, only also allocates the returned bio
 603 */
 604struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 605{
 606        struct bio *b;
 607
 608        b = bio_alloc_bioset(gfp_mask, 0, bs);
 609        if (!b)
 610                return NULL;
 611
 612        __bio_clone_fast(b, bio);
 613
 614        if (bio_integrity(bio)) {
 615                int ret;
 616
 617                ret = bio_integrity_clone(b, bio, gfp_mask);
 618
 619                if (ret < 0) {
 620                        bio_put(b);
 621                        return NULL;
 622                }
 623        }
 624
 625        return b;
 626}
 627EXPORT_SYMBOL(bio_clone_fast);
 628
 629/**
 630 *      bio_clone_bioset - clone a bio
 631 *      @bio_src: bio to clone
 632 *      @gfp_mask: allocation priority
 633 *      @bs: bio_set to allocate from
 634 *
 635 *      Clone bio. Caller will own the returned bio, but not the actual data it
 636 *      points to. Reference count of returned bio will be one.
 637 */
 638struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
 639                             struct bio_set *bs)
 640{
 641        struct bvec_iter iter;
 642        struct bio_vec bv;
 643        struct bio *bio;
 644
 645        /*
 646         * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
 647         * bio_src->bi_io_vec to bio->bi_io_vec.
 648         *
 649         * We can't do that anymore, because:
 650         *
 651         *  - The point of cloning the biovec is to produce a bio with a biovec
 652         *    the caller can modify: bi_idx and bi_bvec_done should be 0.
 653         *
 654         *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
 655         *    we tried to clone the whole thing bio_alloc_bioset() would fail.
 656         *    But the clone should succeed as long as the number of biovecs we
 657         *    actually need to allocate is fewer than BIO_MAX_PAGES.
 658         *
 659         *  - Lastly, bi_vcnt should not be looked at or relied upon by code
 660         *    that does not own the bio - reason being drivers don't use it for
 661         *    iterating over the biovec anymore, so expecting it to be kept up
 662         *    to date (i.e. for clones that share the parent biovec) is just
 663         *    asking for trouble and would force extra work on
 664         *    __bio_clone_fast() anyways.
 665         */
 666
 667        bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
 668        if (!bio)
 669                return NULL;
 670
 671        bio->bi_bdev            = bio_src->bi_bdev;
 672        bio->bi_rw              = bio_src->bi_rw;
 673        bio->bi_iter.bi_sector  = bio_src->bi_iter.bi_sector;
 674        bio->bi_iter.bi_size    = bio_src->bi_iter.bi_size;
 675
 676        if (bio->bi_rw & REQ_DISCARD)
 677                goto integrity_clone;
 678
 679        if (bio->bi_rw & REQ_WRITE_SAME) {
 680                bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
 681                goto integrity_clone;
 682        }
 683
 684        bio_for_each_segment(bv, bio_src, iter)
 685                bio->bi_io_vec[bio->bi_vcnt++] = bv;
 686
 687integrity_clone:
 688        if (bio_integrity(bio_src)) {
 689                int ret;
 690
 691                ret = bio_integrity_clone(bio, bio_src, gfp_mask);
 692                if (ret < 0) {
 693                        bio_put(bio);
 694                        return NULL;
 695                }
 696        }
 697
 698        return bio;
 699}
 700EXPORT_SYMBOL(bio_clone_bioset);
 701
 702/**
 703 *      bio_add_pc_page -       attempt to add page to bio
 704 *      @q: the target queue
 705 *      @bio: destination bio
 706 *      @page: page to add
 707 *      @len: vec entry length
 708 *      @offset: vec entry offset
 709 *
 710 *      Attempt to add a page to the bio_vec maplist. This can fail for a
 711 *      number of reasons, such as the bio being full or target block device
 712 *      limitations. The target block device must allow bio's up to PAGE_SIZE,
 713 *      so it is always possible to add a single page to an empty bio.
 714 *
 715 *      This should only be used by REQ_PC bios.
 716 */
 717int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
 718                    *page, unsigned int len, unsigned int offset)
 719{
 720        int retried_segments = 0;
 721        struct bio_vec *bvec;
 722
 723        /*
 724         * cloned bio must not modify vec list
 725         */
 726        if (unlikely(bio_flagged(bio, BIO_CLONED)))
 727                return 0;
 728
 729        if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
 730                return 0;
 731
 732        /*
 733         * For filesystems with a blocksize smaller than the pagesize
 734         * we will often be called with the same page as last time and
 735         * a consecutive offset.  Optimize this special case.
 736         */
 737        if (bio->bi_vcnt > 0) {
 738                struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
 739
 740                if (page == prev->bv_page &&
 741                    offset == prev->bv_offset + prev->bv_len) {
 742                        prev->bv_len += len;
 743                        bio->bi_iter.bi_size += len;
 744                        goto done;
 745                }
 746
 747                /*
 748                 * If the queue doesn't support SG gaps and adding this
 749                 * offset would create a gap, disallow it.
 750                 */
 751                if (bvec_gap_to_prev(q, prev, offset))
 752                        return 0;
 753        }
 754
 755        if (bio->bi_vcnt >= bio->bi_max_vecs)
 756                return 0;
 757
 758        /*
 759         * setup the new entry, we might clear it again later if we
 760         * cannot add the page
 761         */
 762        bvec = &bio->bi_io_vec[bio->bi_vcnt];
 763        bvec->bv_page = page;
 764        bvec->bv_len = len;
 765        bvec->bv_offset = offset;
 766        bio->bi_vcnt++;
 767        bio->bi_phys_segments++;
 768        bio->bi_iter.bi_size += len;
 769
 770        /*
 771         * Perform a recount if the number of segments is greater
 772         * than queue_max_segments(q).
 773         */
 774
 775        while (bio->bi_phys_segments > queue_max_segments(q)) {
 776
 777                if (retried_segments)
 778                        goto failed;
 779
 780                retried_segments = 1;
 781                blk_recount_segments(q, bio);
 782        }
 783
 784        /* If we may be able to merge these biovecs, force a recount */
 785        if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
 786                bio_clear_flag(bio, BIO_SEG_VALID);
 787
 788 done:
 789        return len;
 790
 791 failed:
 792        bvec->bv_page = NULL;
 793        bvec->bv_len = 0;
 794        bvec->bv_offset = 0;
 795        bio->bi_vcnt--;
 796        bio->bi_iter.bi_size -= len;
 797        blk_recount_segments(q, bio);
 798        return 0;
 799}
 800EXPORT_SYMBOL(bio_add_pc_page);
 801
 802/**
 803 *      bio_add_page    -       attempt to add page to bio
 804 *      @bio: destination bio
 805 *      @page: page to add
 806 *      @len: vec entry length
 807 *      @offset: vec entry offset
 808 *
 809 *      Attempt to add a page to the bio_vec maplist. This will only fail
 810 *      if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 811 */
 812int bio_add_page(struct bio *bio, struct page *page,
 813                 unsigned int len, unsigned int offset)
 814{
 815        struct bio_vec *bv;
 816
 817        /*
 818         * cloned bio must not modify vec list
 819         */
 820        if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 821                return 0;
 822
 823        /*
 824         * For filesystems with a blocksize smaller than the pagesize
 825         * we will often be called with the same page as last time and
 826         * a consecutive offset.  Optimize this special case.
 827         */
 828        if (bio->bi_vcnt > 0) {
 829                bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 830
 831                if (page == bv->bv_page &&
 832                    offset == bv->bv_offset + bv->bv_len) {
 833                        bv->bv_len += len;
 834                        goto done;
 835                }
 836        }
 837
 838        if (bio->bi_vcnt >= bio->bi_max_vecs)
 839                return 0;
 840
 841        bv              = &bio->bi_io_vec[bio->bi_vcnt];
 842        bv->bv_page     = page;
 843        bv->bv_len      = len;
 844        bv->bv_offset   = offset;
 845
 846        bio->bi_vcnt++;
 847done:
 848        bio->bi_iter.bi_size += len;
 849        return len;
 850}
 851EXPORT_SYMBOL(bio_add_page);
 852
 853struct submit_bio_ret {
 854        struct completion event;
 855        int error;
 856};
 857
 858static void submit_bio_wait_endio(struct bio *bio)
 859{
 860        struct submit_bio_ret *ret = bio->bi_private;
 861
 862        ret->error = bio->bi_error;
 863        complete(&ret->event);
 864}
 865
 866/**
 867 * submit_bio_wait - submit a bio, and wait until it completes
 868 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 869 * @bio: The &struct bio which describes the I/O
 870 *
 871 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 872 * bio_endio() on failure.
 873 */
 874int submit_bio_wait(int rw, struct bio *bio)
 875{
 876        struct submit_bio_ret ret;
 877
 878        rw |= REQ_SYNC;
 879        init_completion(&ret.event);
 880        bio->bi_private = &ret;
 881        bio->bi_end_io = submit_bio_wait_endio;
 882        submit_bio(rw, bio);
 883        wait_for_completion_io(&ret.event);
 884
 885        return ret.error;
 886}
 887EXPORT_SYMBOL(submit_bio_wait);
 888
 889/**
 890 * bio_advance - increment/complete a bio by some number of bytes
 891 * @bio:        bio to advance
 892 * @bytes:      number of bytes to complete
 893 *
 894 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 895 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 896 * be updated on the last bvec as well.
 897 *
 898 * @bio will then represent the remaining, uncompleted portion of the io.
 899 */
 900void bio_advance(struct bio *bio, unsigned bytes)
 901{
 902        if (bio_integrity(bio))
 903                bio_integrity_advance(bio, bytes);
 904
 905        bio_advance_iter(bio, &bio->bi_iter, bytes);
 906}
 907EXPORT_SYMBOL(bio_advance);
 908
 909/**
 910 * bio_alloc_pages - allocates a single page for each bvec in a bio
 911 * @bio: bio to allocate pages for
 912 * @gfp_mask: flags for allocation
 913 *
 914 * Allocates pages up to @bio->bi_vcnt.
 915 *
 916 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
 917 * freed.
 918 */
 919int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
 920{
 921        int i;
 922        struct bio_vec *bv;
 923
 924        bio_for_each_segment_all(bv, bio, i) {
 925                bv->bv_page = alloc_page(gfp_mask);
 926                if (!bv->bv_page) {
 927                        while (--bv >= bio->bi_io_vec)
 928                                __free_page(bv->bv_page);
 929                        return -ENOMEM;
 930                }
 931        }
 932
 933        return 0;
 934}
 935EXPORT_SYMBOL(bio_alloc_pages);
 936
 937/**
 938 * bio_copy_data - copy contents of data buffers from one chain of bios to
 939 * another
 940 * @src: source bio list
 941 * @dst: destination bio list
 942 *
 943 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 944 * @src and @dst as linked lists of bios.
 945 *
 946 * Stops when it reaches the end of either @src or @dst - that is, copies
 947 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 948 */
 949void bio_copy_data(struct bio *dst, struct bio *src)
 950{
 951        struct bvec_iter src_iter, dst_iter;
 952        struct bio_vec src_bv, dst_bv;
 953        void *src_p, *dst_p;
 954        unsigned bytes;
 955
 956        src_iter = src->bi_iter;
 957        dst_iter = dst->bi_iter;
 958
 959        while (1) {
 960                if (!src_iter.bi_size) {
 961                        src = src->bi_next;
 962                        if (!src)
 963                                break;
 964
 965                        src_iter = src->bi_iter;
 966                }
 967
 968                if (!dst_iter.bi_size) {
 969                        dst = dst->bi_next;
 970                        if (!dst)
 971                                break;
 972
 973                        dst_iter = dst->bi_iter;
 974                }
 975
 976                src_bv = bio_iter_iovec(src, src_iter);
 977                dst_bv = bio_iter_iovec(dst, dst_iter);
 978
 979                bytes = min(src_bv.bv_len, dst_bv.bv_len);
 980
 981                src_p = kmap_atomic(src_bv.bv_page);
 982                dst_p = kmap_atomic(dst_bv.bv_page);
 983
 984                memcpy(dst_p + dst_bv.bv_offset,
 985                       src_p + src_bv.bv_offset,
 986                       bytes);
 987
 988                kunmap_atomic(dst_p);
 989                kunmap_atomic(src_p);
 990
 991                bio_advance_iter(src, &src_iter, bytes);
 992                bio_advance_iter(dst, &dst_iter, bytes);
 993        }
 994}
 995EXPORT_SYMBOL(bio_copy_data);
 996
 997struct bio_map_data {
 998        int is_our_pages;
 999        struct iov_iter iter;
1000        struct iovec iov[];
1001};
1002
1003static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1004                                               gfp_t gfp_mask)
1005{
1006        if (iov_count > UIO_MAXIOV)
1007                return NULL;
1008
1009        return kmalloc(sizeof(struct bio_map_data) +
1010                       sizeof(struct iovec) * iov_count, gfp_mask);
1011}
1012
1013/**
1014 * bio_copy_from_iter - copy all pages from iov_iter to bio
1015 * @bio: The &struct bio which describes the I/O as destination
1016 * @iter: iov_iter as source
1017 *
1018 * Copy all pages from iov_iter to bio.
1019 * Returns 0 on success, or error on failure.
1020 */
1021static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1022{
1023        int i;
1024        struct bio_vec *bvec;
1025
1026        bio_for_each_segment_all(bvec, bio, i) {
1027                ssize_t ret;
1028
1029                ret = copy_page_from_iter(bvec->bv_page,
1030                                          bvec->bv_offset,
1031                                          bvec->bv_len,
1032                                          &iter);
1033
1034                if (!iov_iter_count(&iter))
1035                        break;
1036
1037                if (ret < bvec->bv_len)
1038                        return -EFAULT;
1039        }
1040
1041        return 0;
1042}
1043
1044/**
1045 * bio_copy_to_iter - copy all pages from bio to iov_iter
1046 * @bio: The &struct bio which describes the I/O as source
1047 * @iter: iov_iter as destination
1048 *
1049 * Copy all pages from bio to iov_iter.
1050 * Returns 0 on success, or error on failure.
1051 */
1052static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1053{
1054        int i;
1055        struct bio_vec *bvec;
1056
1057        bio_for_each_segment_all(bvec, bio, i) {
1058                ssize_t ret;
1059
1060                ret = copy_page_to_iter(bvec->bv_page,
1061                                        bvec->bv_offset,
1062                                        bvec->bv_len,
1063                                        &iter);
1064
1065                if (!iov_iter_count(&iter))
1066                        break;
1067
1068                if (ret < bvec->bv_len)
1069                        return -EFAULT;
1070        }
1071
1072        return 0;
1073}
1074
1075static void bio_free_pages(struct bio *bio)
1076{
1077        struct bio_vec *bvec;
1078        int i;
1079
1080        bio_for_each_segment_all(bvec, bio, i)
1081                __free_page(bvec->bv_page);
1082}
1083
1084/**
1085 *      bio_uncopy_user -       finish previously mapped bio
1086 *      @bio: bio being terminated
1087 *
1088 *      Free pages allocated from bio_copy_user_iov() and write back data
1089 *      to user space in case of a read.
1090 */
1091int bio_uncopy_user(struct bio *bio)
1092{
1093        struct bio_map_data *bmd = bio->bi_private;
1094        int ret = 0;
1095
1096        if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1097                /*
1098                 * if we're in a workqueue, the request is orphaned, so
1099                 * don't copy into a random user address space, just free
1100                 * and return -EINTR so user space doesn't expect any data.
1101                 */
1102                if (!current->mm)
1103                        ret = -EINTR;
1104                else if (bio_data_dir(bio) == READ)
1105                        ret = bio_copy_to_iter(bio, bmd->iter);
1106                if (bmd->is_our_pages)
1107                        bio_free_pages(bio);
1108        }
1109        kfree(bmd);
1110        bio_put(bio);
1111        return ret;
1112}
1113EXPORT_SYMBOL(bio_uncopy_user);
1114
1115/**
1116 *      bio_copy_user_iov       -       copy user data to bio
1117 *      @q:             destination block queue
1118 *      @map_data:      pointer to the rq_map_data holding pages (if necessary)
1119 *      @iter:          iovec iterator
1120 *      @gfp_mask:      memory allocation flags
1121 *
1122 *      Prepares and returns a bio for indirect user io, bouncing data
1123 *      to/from kernel pages as necessary. Must be paired with
1124 *      call bio_uncopy_user() on io completion.
1125 */
1126struct bio *bio_copy_user_iov(struct request_queue *q,
1127                              struct rq_map_data *map_data,
1128                              const struct iov_iter *iter,
1129                              gfp_t gfp_mask)
1130{
1131        struct bio_map_data *bmd;
1132        struct page *page;
1133        struct bio *bio;
1134        int i, ret;
1135        int nr_pages = 0;
1136        unsigned int len = iter->count;
1137        unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1138
1139        for (i = 0; i < iter->nr_segs; i++) {
1140                unsigned long uaddr;
1141                unsigned long end;
1142                unsigned long start;
1143
1144                uaddr = (unsigned long) iter->iov[i].iov_base;
1145                end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1146                        >> PAGE_SHIFT;
1147                start = uaddr >> PAGE_SHIFT;
1148
1149                /*
1150                 * Overflow, abort
1151                 */
1152                if (end < start)
1153                        return ERR_PTR(-EINVAL);
1154
1155                nr_pages += end - start;
1156        }
1157
1158        if (offset)
1159                nr_pages++;
1160
1161        bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1162        if (!bmd)
1163                return ERR_PTR(-ENOMEM);
1164
1165        /*
1166         * We need to do a deep copy of the iov_iter including the iovecs.
1167         * The caller provided iov might point to an on-stack or otherwise
1168         * shortlived one.
1169         */
1170        bmd->is_our_pages = map_data ? 0 : 1;
1171        memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1172        iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1173                        iter->nr_segs, iter->count);
1174
1175        ret = -ENOMEM;
1176        bio = bio_kmalloc(gfp_mask, nr_pages);
1177        if (!bio)
1178                goto out_bmd;
1179
1180        if (iter->type & WRITE)
1181                bio->bi_rw |= REQ_WRITE;
1182
1183        ret = 0;
1184
1185        if (map_data) {
1186                nr_pages = 1 << map_data->page_order;
1187                i = map_data->offset / PAGE_SIZE;
1188        }
1189        while (len) {
1190                unsigned int bytes = PAGE_SIZE;
1191
1192                bytes -= offset;
1193
1194                if (bytes > len)
1195                        bytes = len;
1196
1197                if (map_data) {
1198                        if (i == map_data->nr_entries * nr_pages) {
1199                                ret = -ENOMEM;
1200                                break;
1201                        }
1202
1203                        page = map_data->pages[i / nr_pages];
1204                        page += (i % nr_pages);
1205
1206                        i++;
1207                } else {
1208                        page = alloc_page(q->bounce_gfp | gfp_mask);
1209                        if (!page) {
1210                                ret = -ENOMEM;
1211                                break;
1212                        }
1213                }
1214
1215                if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1216                        break;
1217
1218                len -= bytes;
1219                offset = 0;
1220        }
1221
1222        if (ret)
1223                goto cleanup;
1224
1225        /*
1226         * success
1227         */
1228        if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1229            (map_data && map_data->from_user)) {
1230                ret = bio_copy_from_iter(bio, *iter);
1231                if (ret)
1232                        goto cleanup;
1233        }
1234
1235        bio->bi_private = bmd;
1236        return bio;
1237cleanup:
1238        if (!map_data)
1239                bio_free_pages(bio);
1240        bio_put(bio);
1241out_bmd:
1242        kfree(bmd);
1243        return ERR_PTR(ret);
1244}
1245
1246/**
1247 *      bio_map_user_iov - map user iovec into bio
1248 *      @q:             the struct request_queue for the bio
1249 *      @iter:          iovec iterator
1250 *      @gfp_mask:      memory allocation flags
1251 *
1252 *      Map the user space address into a bio suitable for io to a block
1253 *      device. Returns an error pointer in case of error.
1254 */
1255struct bio *bio_map_user_iov(struct request_queue *q,
1256                             const struct iov_iter *iter,
1257                             gfp_t gfp_mask)
1258{
1259        int j;
1260        int nr_pages = 0;
1261        struct page **pages;
1262        struct bio *bio;
1263        int cur_page = 0;
1264        int ret, offset;
1265        struct iov_iter i;
1266        struct iovec iov;
1267
1268        iov_for_each(iov, i, *iter) {
1269                unsigned long uaddr = (unsigned long) iov.iov_base;
1270                unsigned long len = iov.iov_len;
1271                unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272                unsigned long start = uaddr >> PAGE_SHIFT;
1273
1274                /*
1275                 * Overflow, abort
1276                 */
1277                if (end < start)
1278                        return ERR_PTR(-EINVAL);
1279
1280                nr_pages += end - start;
1281                /*
1282                 * buffer must be aligned to at least hardsector size for now
1283                 */
1284                if (uaddr & queue_dma_alignment(q))
1285                        return ERR_PTR(-EINVAL);
1286        }
1287
1288        if (!nr_pages)
1289                return ERR_PTR(-EINVAL);
1290
1291        bio = bio_kmalloc(gfp_mask, nr_pages);
1292        if (!bio)
1293                return ERR_PTR(-ENOMEM);
1294
1295        ret = -ENOMEM;
1296        pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1297        if (!pages)
1298                goto out;
1299
1300        iov_for_each(iov, i, *iter) {
1301                unsigned long uaddr = (unsigned long) iov.iov_base;
1302                unsigned long len = iov.iov_len;
1303                unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304                unsigned long start = uaddr >> PAGE_SHIFT;
1305                const int local_nr_pages = end - start;
1306                const int page_limit = cur_page + local_nr_pages;
1307
1308                ret = get_user_pages_fast(uaddr, local_nr_pages,
1309                                (iter->type & WRITE) != WRITE,
1310                                &pages[cur_page]);
1311                if (ret < local_nr_pages) {
1312                        ret = -EFAULT;
1313                        goto out_unmap;
1314                }
1315
1316                offset = offset_in_page(uaddr);
1317                for (j = cur_page; j < page_limit; j++) {
1318                        unsigned int bytes = PAGE_SIZE - offset;
1319
1320                        if (len <= 0)
1321                                break;
1322                        
1323                        if (bytes > len)
1324                                bytes = len;
1325
1326                        /*
1327                         * sorry...
1328                         */
1329                        if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1330                                            bytes)
1331                                break;
1332
1333                        len -= bytes;
1334                        offset = 0;
1335                }
1336
1337                cur_page = j;
1338                /*
1339                 * release the pages we didn't map into the bio, if any
1340                 */
1341                while (j < page_limit)
1342                        put_page(pages[j++]);
1343        }
1344
1345        kfree(pages);
1346
1347        /*
1348         * set data direction, and check if mapped pages need bouncing
1349         */
1350        if (iter->type & WRITE)
1351                bio->bi_rw |= REQ_WRITE;
1352
1353        bio_set_flag(bio, BIO_USER_MAPPED);
1354
1355        /*
1356         * subtle -- if __bio_map_user() ended up bouncing a bio,
1357         * it would normally disappear when its bi_end_io is run.
1358         * however, we need it for the unmap, so grab an extra
1359         * reference to it
1360         */
1361        bio_get(bio);
1362        return bio;
1363
1364 out_unmap:
1365        for (j = 0; j < nr_pages; j++) {
1366                if (!pages[j])
1367                        break;
1368                put_page(pages[j]);
1369        }
1370 out:
1371        kfree(pages);
1372        bio_put(bio);
1373        return ERR_PTR(ret);
1374}
1375
1376static void __bio_unmap_user(struct bio *bio)
1377{
1378        struct bio_vec *bvec;
1379        int i;
1380
1381        /*
1382         * make sure we dirty pages we wrote to
1383         */
1384        bio_for_each_segment_all(bvec, bio, i) {
1385                if (bio_data_dir(bio) == READ)
1386                        set_page_dirty_lock(bvec->bv_page);
1387
1388                put_page(bvec->bv_page);
1389        }
1390
1391        bio_put(bio);
1392}
1393
1394/**
1395 *      bio_unmap_user  -       unmap a bio
1396 *      @bio:           the bio being unmapped
1397 *
1398 *      Unmap a bio previously mapped by bio_map_user(). Must be called with
1399 *      a process context.
1400 *
1401 *      bio_unmap_user() may sleep.
1402 */
1403void bio_unmap_user(struct bio *bio)
1404{
1405        __bio_unmap_user(bio);
1406        bio_put(bio);
1407}
1408EXPORT_SYMBOL(bio_unmap_user);
1409
1410static void bio_map_kern_endio(struct bio *bio)
1411{
1412        bio_put(bio);
1413}
1414
1415/**
1416 *      bio_map_kern    -       map kernel address into bio
1417 *      @q: the struct request_queue for the bio
1418 *      @data: pointer to buffer to map
1419 *      @len: length in bytes
1420 *      @gfp_mask: allocation flags for bio allocation
1421 *
1422 *      Map the kernel address into a bio suitable for io to a block
1423 *      device. Returns an error pointer in case of error.
1424 */
1425struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426                         gfp_t gfp_mask)
1427{
1428        unsigned long kaddr = (unsigned long)data;
1429        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430        unsigned long start = kaddr >> PAGE_SHIFT;
1431        const int nr_pages = end - start;
1432        int offset, i;
1433        struct bio *bio;
1434
1435        bio = bio_kmalloc(gfp_mask, nr_pages);
1436        if (!bio)
1437                return ERR_PTR(-ENOMEM);
1438
1439        offset = offset_in_page(kaddr);
1440        for (i = 0; i < nr_pages; i++) {
1441                unsigned int bytes = PAGE_SIZE - offset;
1442
1443                if (len <= 0)
1444                        break;
1445
1446                if (bytes > len)
1447                        bytes = len;
1448
1449                if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1450                                    offset) < bytes) {
1451                        /* we don't support partial mappings */
1452                        bio_put(bio);
1453                        return ERR_PTR(-EINVAL);
1454                }
1455
1456                data += bytes;
1457                len -= bytes;
1458                offset = 0;
1459        }
1460
1461        bio->bi_end_io = bio_map_kern_endio;
1462        return bio;
1463}
1464EXPORT_SYMBOL(bio_map_kern);
1465
1466static void bio_copy_kern_endio(struct bio *bio)
1467{
1468        bio_free_pages(bio);
1469        bio_put(bio);
1470}
1471
1472static void bio_copy_kern_endio_read(struct bio *bio)
1473{
1474        char *p = bio->bi_private;
1475        struct bio_vec *bvec;
1476        int i;
1477
1478        bio_for_each_segment_all(bvec, bio, i) {
1479                memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1480                p += bvec->bv_len;
1481        }
1482
1483        bio_copy_kern_endio(bio);
1484}
1485
1486/**
1487 *      bio_copy_kern   -       copy kernel address into bio
1488 *      @q: the struct request_queue for the bio
1489 *      @data: pointer to buffer to copy
1490 *      @len: length in bytes
1491 *      @gfp_mask: allocation flags for bio and page allocation
1492 *      @reading: data direction is READ
1493 *
1494 *      copy the kernel address into a bio suitable for io to a block
1495 *      device. Returns an error pointer in case of error.
1496 */
1497struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498                          gfp_t gfp_mask, int reading)
1499{
1500        unsigned long kaddr = (unsigned long)data;
1501        unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502        unsigned long start = kaddr >> PAGE_SHIFT;
1503        struct bio *bio;
1504        void *p = data;
1505        int nr_pages = 0;
1506
1507        /*
1508         * Overflow, abort
1509         */
1510        if (end < start)
1511                return ERR_PTR(-EINVAL);
1512
1513        nr_pages = end - start;
1514        bio = bio_kmalloc(gfp_mask, nr_pages);
1515        if (!bio)
1516                return ERR_PTR(-ENOMEM);
1517
1518        while (len) {
1519                struct page *page;
1520                unsigned int bytes = PAGE_SIZE;
1521
1522                if (bytes > len)
1523                        bytes = len;
1524
1525                page = alloc_page(q->bounce_gfp | gfp_mask);
1526                if (!page)
1527                        goto cleanup;
1528
1529                if (!reading)
1530                        memcpy(page_address(page), p, bytes);
1531
1532                if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533                        break;
1534
1535                len -= bytes;
1536                p += bytes;
1537        }
1538
1539        if (reading) {
1540                bio->bi_end_io = bio_copy_kern_endio_read;
1541                bio->bi_private = data;
1542        } else {
1543                bio->bi_end_io = bio_copy_kern_endio;
1544                bio->bi_rw |= REQ_WRITE;
1545        }
1546
1547        return bio;
1548
1549cleanup:
1550        bio_free_pages(bio);
1551        bio_put(bio);
1552        return ERR_PTR(-ENOMEM);
1553}
1554EXPORT_SYMBOL(bio_copy_kern);
1555
1556/*
1557 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1558 * for performing direct-IO in BIOs.
1559 *
1560 * The problem is that we cannot run set_page_dirty() from interrupt context
1561 * because the required locks are not interrupt-safe.  So what we can do is to
1562 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1563 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1564 * in process context.
1565 *
1566 * We special-case compound pages here: normally this means reads into hugetlb
1567 * pages.  The logic in here doesn't really work right for compound pages
1568 * because the VM does not uniformly chase down the head page in all cases.
1569 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1570 * handle them at all.  So we skip compound pages here at an early stage.
1571 *
1572 * Note that this code is very hard to test under normal circumstances because
1573 * direct-io pins the pages with get_user_pages().  This makes
1574 * is_page_cache_freeable return false, and the VM will not clean the pages.
1575 * But other code (eg, flusher threads) could clean the pages if they are mapped
1576 * pagecache.
1577 *
1578 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1579 * deferred bio dirtying paths.
1580 */
1581
1582/*
1583 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1584 */
1585void bio_set_pages_dirty(struct bio *bio)
1586{
1587        struct bio_vec *bvec;
1588        int i;
1589
1590        bio_for_each_segment_all(bvec, bio, i) {
1591                struct page *page = bvec->bv_page;
1592
1593                if (page && !PageCompound(page))
1594                        set_page_dirty_lock(page);
1595        }
1596}
1597
1598static void bio_release_pages(struct bio *bio)
1599{
1600        struct bio_vec *bvec;
1601        int i;
1602
1603        bio_for_each_segment_all(bvec, bio, i) {
1604                struct page *page = bvec->bv_page;
1605
1606                if (page)
1607                        put_page(page);
1608        }
1609}
1610
1611/*
1612 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1613 * If they are, then fine.  If, however, some pages are clean then they must
1614 * have been written out during the direct-IO read.  So we take another ref on
1615 * the BIO and the offending pages and re-dirty the pages in process context.
1616 *
1617 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1618 * here on.  It will run one put_page() against each page and will run one
1619 * bio_put() against the BIO.
1620 */
1621
1622static void bio_dirty_fn(struct work_struct *work);
1623
1624static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1625static DEFINE_SPINLOCK(bio_dirty_lock);
1626static struct bio *bio_dirty_list;
1627
1628/*
1629 * This runs in process context
1630 */
1631static void bio_dirty_fn(struct work_struct *work)
1632{
1633        unsigned long flags;
1634        struct bio *bio;
1635
1636        spin_lock_irqsave(&bio_dirty_lock, flags);
1637        bio = bio_dirty_list;
1638        bio_dirty_list = NULL;
1639        spin_unlock_irqrestore(&bio_dirty_lock, flags);
1640
1641        while (bio) {
1642                struct bio *next = bio->bi_private;
1643
1644                bio_set_pages_dirty(bio);
1645                bio_release_pages(bio);
1646                bio_put(bio);
1647                bio = next;
1648        }
1649}
1650
1651void bio_check_pages_dirty(struct bio *bio)
1652{
1653        struct bio_vec *bvec;
1654        int nr_clean_pages = 0;
1655        int i;
1656
1657        bio_for_each_segment_all(bvec, bio, i) {
1658                struct page *page = bvec->bv_page;
1659
1660                if (PageDirty(page) || PageCompound(page)) {
1661                        put_page(page);
1662                        bvec->bv_page = NULL;
1663                } else {
1664                        nr_clean_pages++;
1665                }
1666        }
1667
1668        if (nr_clean_pages) {
1669                unsigned long flags;
1670
1671                spin_lock_irqsave(&bio_dirty_lock, flags);
1672                bio->bi_private = bio_dirty_list;
1673                bio_dirty_list = bio;
1674                spin_unlock_irqrestore(&bio_dirty_lock, flags);
1675                schedule_work(&bio_dirty_work);
1676        } else {
1677                bio_put(bio);
1678        }
1679}
1680
1681void generic_start_io_acct(int rw, unsigned long sectors,
1682                           struct hd_struct *part)
1683{
1684        int cpu = part_stat_lock();
1685
1686        part_round_stats(cpu, part);
1687        part_stat_inc(cpu, part, ios[rw]);
1688        part_stat_add(cpu, part, sectors[rw], sectors);
1689        part_inc_in_flight(part, rw);
1690
1691        part_stat_unlock();
1692}
1693EXPORT_SYMBOL(generic_start_io_acct);
1694
1695void generic_end_io_acct(int rw, struct hd_struct *part,
1696                         unsigned long start_time)
1697{
1698        unsigned long duration = jiffies - start_time;
1699        int cpu = part_stat_lock();
1700
1701        part_stat_add(cpu, part, ticks[rw], duration);
1702        part_round_stats(cpu, part);
1703        part_dec_in_flight(part, rw);
1704
1705        part_stat_unlock();
1706}
1707EXPORT_SYMBOL(generic_end_io_acct);
1708
1709#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1710void bio_flush_dcache_pages(struct bio *bi)
1711{
1712        struct bio_vec bvec;
1713        struct bvec_iter iter;
1714
1715        bio_for_each_segment(bvec, bi, iter)
1716                flush_dcache_page(bvec.bv_page);
1717}
1718EXPORT_SYMBOL(bio_flush_dcache_pages);
1719#endif
1720
1721static inline bool bio_remaining_done(struct bio *bio)
1722{
1723        /*
1724         * If we're not chaining, then ->__bi_remaining is always 1 and
1725         * we always end io on the first invocation.
1726         */
1727        if (!bio_flagged(bio, BIO_CHAIN))
1728                return true;
1729
1730        BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1731
1732        if (atomic_dec_and_test(&bio->__bi_remaining)) {
1733                bio_clear_flag(bio, BIO_CHAIN);
1734                return true;
1735        }
1736
1737        return false;
1738}
1739
1740/**
1741 * bio_endio - end I/O on a bio
1742 * @bio:        bio
1743 *
1744 * Description:
1745 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1746 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1747 *   bio unless they own it and thus know that it has an end_io function.
1748 **/
1749void bio_endio(struct bio *bio)
1750{
1751again:
1752        if (!bio_remaining_done(bio))
1753                return;
1754
1755        /*
1756         * Need to have a real endio function for chained bios, otherwise
1757         * various corner cases will break (like stacking block devices that
1758         * save/restore bi_end_io) - however, we want to avoid unbounded
1759         * recursion and blowing the stack. Tail call optimization would
1760         * handle this, but compiling with frame pointers also disables
1761         * gcc's sibling call optimization.
1762         */
1763        if (bio->bi_end_io == bio_chain_endio) {
1764                bio = __bio_chain_endio(bio);
1765                goto again;
1766        }
1767
1768        if (bio->bi_end_io)
1769                bio->bi_end_io(bio);
1770}
1771EXPORT_SYMBOL(bio_endio);
1772
1773/**
1774 * bio_split - split a bio
1775 * @bio:        bio to split
1776 * @sectors:    number of sectors to split from the front of @bio
1777 * @gfp:        gfp mask
1778 * @bs:         bio set to allocate from
1779 *
1780 * Allocates and returns a new bio which represents @sectors from the start of
1781 * @bio, and updates @bio to represent the remaining sectors.
1782 *
1783 * Unless this is a discard request the newly allocated bio will point
1784 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1785 * @bio is not freed before the split.
1786 */
1787struct bio *bio_split(struct bio *bio, int sectors,
1788                      gfp_t gfp, struct bio_set *bs)
1789{
1790        struct bio *split = NULL;
1791
1792        BUG_ON(sectors <= 0);
1793        BUG_ON(sectors >= bio_sectors(bio));
1794
1795        /*
1796         * Discards need a mutable bio_vec to accommodate the payload
1797         * required by the DSM TRIM and UNMAP commands.
1798         */
1799        if (bio->bi_rw & REQ_DISCARD)
1800                split = bio_clone_bioset(bio, gfp, bs);
1801        else
1802                split = bio_clone_fast(bio, gfp, bs);
1803
1804        if (!split)
1805                return NULL;
1806
1807        split->bi_iter.bi_size = sectors << 9;
1808
1809        if (bio_integrity(split))
1810                bio_integrity_trim(split, 0, sectors);
1811
1812        bio_advance(bio, split->bi_iter.bi_size);
1813
1814        return split;
1815}
1816EXPORT_SYMBOL(bio_split);
1817
1818/**
1819 * bio_trim - trim a bio
1820 * @bio:        bio to trim
1821 * @offset:     number of sectors to trim from the front of @bio
1822 * @size:       size we want to trim @bio to, in sectors
1823 */
1824void bio_trim(struct bio *bio, int offset, int size)
1825{
1826        /* 'bio' is a cloned bio which we need to trim to match
1827         * the given offset and size.
1828         */
1829
1830        size <<= 9;
1831        if (offset == 0 && size == bio->bi_iter.bi_size)
1832                return;
1833
1834        bio_clear_flag(bio, BIO_SEG_VALID);
1835
1836        bio_advance(bio, offset << 9);
1837
1838        bio->bi_iter.bi_size = size;
1839}
1840EXPORT_SYMBOL_GPL(bio_trim);
1841
1842/*
1843 * create memory pools for biovec's in a bio_set.
1844 * use the global biovec slabs created for general use.
1845 */
1846mempool_t *biovec_create_pool(int pool_entries)
1847{
1848        struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1849
1850        return mempool_create_slab_pool(pool_entries, bp->slab);
1851}
1852
1853void bioset_free(struct bio_set *bs)
1854{
1855        if (bs->rescue_workqueue)
1856                destroy_workqueue(bs->rescue_workqueue);
1857
1858        if (bs->bio_pool)
1859                mempool_destroy(bs->bio_pool);
1860
1861        if (bs->bvec_pool)
1862                mempool_destroy(bs->bvec_pool);
1863
1864        bioset_integrity_free(bs);
1865        bio_put_slab(bs);
1866
1867        kfree(bs);
1868}
1869EXPORT_SYMBOL(bioset_free);
1870
1871static struct bio_set *__bioset_create(unsigned int pool_size,
1872                                       unsigned int front_pad,
1873                                       bool create_bvec_pool)
1874{
1875        unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1876        struct bio_set *bs;
1877
1878        bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1879        if (!bs)
1880                return NULL;
1881
1882        bs->front_pad = front_pad;
1883
1884        spin_lock_init(&bs->rescue_lock);
1885        bio_list_init(&bs->rescue_list);
1886        INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1887
1888        bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1889        if (!bs->bio_slab) {
1890                kfree(bs);
1891                return NULL;
1892        }
1893
1894        bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1895        if (!bs->bio_pool)
1896                goto bad;
1897
1898        if (create_bvec_pool) {
1899                bs->bvec_pool = biovec_create_pool(pool_size);
1900                if (!bs->bvec_pool)
1901                        goto bad;
1902        }
1903
1904        bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1905        if (!bs->rescue_workqueue)
1906                goto bad;
1907
1908        return bs;
1909bad:
1910        bioset_free(bs);
1911        return NULL;
1912}
1913
1914/**
1915 * bioset_create  - Create a bio_set
1916 * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1917 * @front_pad:  Number of bytes to allocate in front of the returned bio
1918 *
1919 * Description:
1920 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1921 *    to ask for a number of bytes to be allocated in front of the bio.
1922 *    Front pad allocation is useful for embedding the bio inside
1923 *    another structure, to avoid allocating extra data to go with the bio.
1924 *    Note that the bio must be embedded at the END of that structure always,
1925 *    or things will break badly.
1926 */
1927struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1928{
1929        return __bioset_create(pool_size, front_pad, true);
1930}
1931EXPORT_SYMBOL(bioset_create);
1932
1933/**
1934 * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1935 * @pool_size:  Number of bio to cache in the mempool
1936 * @front_pad:  Number of bytes to allocate in front of the returned bio
1937 *
1938 * Description:
1939 *    Same functionality as bioset_create() except that mempool is not
1940 *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1941 */
1942struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1943{
1944        return __bioset_create(pool_size, front_pad, false);
1945}
1946EXPORT_SYMBOL(bioset_create_nobvec);
1947
1948#ifdef CONFIG_BLK_CGROUP
1949
1950/**
1951 * bio_associate_blkcg - associate a bio with the specified blkcg
1952 * @bio: target bio
1953 * @blkcg_css: css of the blkcg to associate
1954 *
1955 * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1956 * treat @bio as if it were issued by a task which belongs to the blkcg.
1957 *
1958 * This function takes an extra reference of @blkcg_css which will be put
1959 * when @bio is released.  The caller must own @bio and is responsible for
1960 * synchronizing calls to this function.
1961 */
1962int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1963{
1964        if (unlikely(bio->bi_css))
1965                return -EBUSY;
1966        css_get(blkcg_css);
1967        bio->bi_css = blkcg_css;
1968        return 0;
1969}
1970EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1971
1972/**
1973 * bio_associate_current - associate a bio with %current
1974 * @bio: target bio
1975 *
1976 * Associate @bio with %current if it hasn't been associated yet.  Block
1977 * layer will treat @bio as if it were issued by %current no matter which
1978 * task actually issues it.
1979 *
1980 * This function takes an extra reference of @task's io_context and blkcg
1981 * which will be put when @bio is released.  The caller must own @bio,
1982 * ensure %current->io_context exists, and is responsible for synchronizing
1983 * calls to this function.
1984 */
1985int bio_associate_current(struct bio *bio)
1986{
1987        struct io_context *ioc;
1988
1989        if (bio->bi_css)
1990                return -EBUSY;
1991
1992        ioc = current->io_context;
1993        if (!ioc)
1994                return -ENOENT;
1995
1996        get_io_context_active(ioc);
1997        bio->bi_ioc = ioc;
1998        bio->bi_css = task_get_css(current, io_cgrp_id);
1999        return 0;
2000}
2001EXPORT_SYMBOL_GPL(bio_associate_current);
2002
2003/**
2004 * bio_disassociate_task - undo bio_associate_current()
2005 * @bio: target bio
2006 */
2007void bio_disassociate_task(struct bio *bio)
2008{
2009        if (bio->bi_ioc) {
2010                put_io_context(bio->bi_ioc);
2011                bio->bi_ioc = NULL;
2012        }
2013        if (bio->bi_css) {
2014                css_put(bio->bi_css);
2015                bio->bi_css = NULL;
2016        }
2017}
2018
2019#endif /* CONFIG_BLK_CGROUP */
2020
2021static void __init biovec_init_slabs(void)
2022{
2023        int i;
2024
2025        for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2026                int size;
2027                struct biovec_slab *bvs = bvec_slabs + i;
2028
2029                if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2030                        bvs->slab = NULL;
2031                        continue;
2032                }
2033
2034                size = bvs->nr_vecs * sizeof(struct bio_vec);
2035                bvs->slab = kmem_cache_create(bvs->name, size, 0,
2036                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2037        }
2038}
2039
2040static int __init init_bio(void)
2041{
2042        bio_slab_max = 2;
2043        bio_slab_nr = 0;
2044        bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2045        if (!bio_slabs)
2046                panic("bio: can't allocate bios\n");
2047
2048        bio_integrity_init();
2049        biovec_init_slabs();
2050
2051        fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2052        if (!fs_bio_set)
2053                panic("bio: can't allocate bios\n");
2054
2055        if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2056                panic("bio: can't create integrity pool\n");
2057
2058        return 0;
2059}
2060subsys_initcall(init_bio);
2061