linux/block/blk-core.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *      -  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/blk-cgroup.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/block.h>
  39
  40#include "blk.h"
  41#include "blk-mq.h"
  42
  43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  48
  49DEFINE_IDA(blk_queue_ida);
  50
  51/*
  52 * For the allocated request tables
  53 */
  54struct kmem_cache *request_cachep;
  55
  56/*
  57 * For queue allocation
  58 */
  59struct kmem_cache *blk_requestq_cachep;
  60
  61/*
  62 * Controlling structure to kblockd
  63 */
  64static struct workqueue_struct *kblockd_workqueue;
  65
  66static void blk_clear_congested(struct request_list *rl, int sync)
  67{
  68#ifdef CONFIG_CGROUP_WRITEBACK
  69        clear_wb_congested(rl->blkg->wb_congested, sync);
  70#else
  71        /*
  72         * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
  73         * flip its congestion state for events on other blkcgs.
  74         */
  75        if (rl == &rl->q->root_rl)
  76                clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  77#endif
  78}
  79
  80static void blk_set_congested(struct request_list *rl, int sync)
  81{
  82#ifdef CONFIG_CGROUP_WRITEBACK
  83        set_wb_congested(rl->blkg->wb_congested, sync);
  84#else
  85        /* see blk_clear_congested() */
  86        if (rl == &rl->q->root_rl)
  87                set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  88#endif
  89}
  90
  91void blk_queue_congestion_threshold(struct request_queue *q)
  92{
  93        int nr;
  94
  95        nr = q->nr_requests - (q->nr_requests / 8) + 1;
  96        if (nr > q->nr_requests)
  97                nr = q->nr_requests;
  98        q->nr_congestion_on = nr;
  99
 100        nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 101        if (nr < 1)
 102                nr = 1;
 103        q->nr_congestion_off = nr;
 104}
 105
 106/**
 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 108 * @bdev:       device
 109 *
 110 * Locates the passed device's request queue and returns the address of its
 111 * backing_dev_info.  This function can only be called if @bdev is opened
 112 * and the return value is never NULL.
 113 */
 114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 115{
 116        struct request_queue *q = bdev_get_queue(bdev);
 117
 118        return &q->backing_dev_info;
 119}
 120EXPORT_SYMBOL(blk_get_backing_dev_info);
 121
 122void blk_rq_init(struct request_queue *q, struct request *rq)
 123{
 124        memset(rq, 0, sizeof(*rq));
 125
 126        INIT_LIST_HEAD(&rq->queuelist);
 127        INIT_LIST_HEAD(&rq->timeout_list);
 128        rq->cpu = -1;
 129        rq->q = q;
 130        rq->__sector = (sector_t) -1;
 131        INIT_HLIST_NODE(&rq->hash);
 132        RB_CLEAR_NODE(&rq->rb_node);
 133        rq->cmd = rq->__cmd;
 134        rq->cmd_len = BLK_MAX_CDB;
 135        rq->tag = -1;
 136        rq->start_time = jiffies;
 137        set_start_time_ns(rq);
 138        rq->part = NULL;
 139}
 140EXPORT_SYMBOL(blk_rq_init);
 141
 142static void req_bio_endio(struct request *rq, struct bio *bio,
 143                          unsigned int nbytes, int error)
 144{
 145        if (error)
 146                bio->bi_error = error;
 147
 148        if (unlikely(rq->cmd_flags & REQ_QUIET))
 149                bio_set_flag(bio, BIO_QUIET);
 150
 151        bio_advance(bio, nbytes);
 152
 153        /* don't actually finish bio if it's part of flush sequence */
 154        if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 155                bio_endio(bio);
 156}
 157
 158void blk_dump_rq_flags(struct request *rq, char *msg)
 159{
 160        int bit;
 161
 162        printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
 163                rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 164                (unsigned long long) rq->cmd_flags);
 165
 166        printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 167               (unsigned long long)blk_rq_pos(rq),
 168               blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 169        printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 170               rq->bio, rq->biotail, blk_rq_bytes(rq));
 171
 172        if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 173                printk(KERN_INFO "  cdb: ");
 174                for (bit = 0; bit < BLK_MAX_CDB; bit++)
 175                        printk("%02x ", rq->cmd[bit]);
 176                printk("\n");
 177        }
 178}
 179EXPORT_SYMBOL(blk_dump_rq_flags);
 180
 181static void blk_delay_work(struct work_struct *work)
 182{
 183        struct request_queue *q;
 184
 185        q = container_of(work, struct request_queue, delay_work.work);
 186        spin_lock_irq(q->queue_lock);
 187        __blk_run_queue(q);
 188        spin_unlock_irq(q->queue_lock);
 189}
 190
 191/**
 192 * blk_delay_queue - restart queueing after defined interval
 193 * @q:          The &struct request_queue in question
 194 * @msecs:      Delay in msecs
 195 *
 196 * Description:
 197 *   Sometimes queueing needs to be postponed for a little while, to allow
 198 *   resources to come back. This function will make sure that queueing is
 199 *   restarted around the specified time. Queue lock must be held.
 200 */
 201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 202{
 203        if (likely(!blk_queue_dead(q)))
 204                queue_delayed_work(kblockd_workqueue, &q->delay_work,
 205                                   msecs_to_jiffies(msecs));
 206}
 207EXPORT_SYMBOL(blk_delay_queue);
 208
 209/**
 210 * blk_start_queue_async - asynchronously restart a previously stopped queue
 211 * @q:    The &struct request_queue in question
 212 *
 213 * Description:
 214 *   blk_start_queue_async() will clear the stop flag on the queue, and
 215 *   ensure that the request_fn for the queue is run from an async
 216 *   context.
 217 **/
 218void blk_start_queue_async(struct request_queue *q)
 219{
 220        queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 221        blk_run_queue_async(q);
 222}
 223EXPORT_SYMBOL(blk_start_queue_async);
 224
 225/**
 226 * blk_start_queue - restart a previously stopped queue
 227 * @q:    The &struct request_queue in question
 228 *
 229 * Description:
 230 *   blk_start_queue() will clear the stop flag on the queue, and call
 231 *   the request_fn for the queue if it was in a stopped state when
 232 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 233 **/
 234void blk_start_queue(struct request_queue *q)
 235{
 236        WARN_ON(!irqs_disabled());
 237
 238        queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 239        __blk_run_queue(q);
 240}
 241EXPORT_SYMBOL(blk_start_queue);
 242
 243/**
 244 * blk_stop_queue - stop a queue
 245 * @q:    The &struct request_queue in question
 246 *
 247 * Description:
 248 *   The Linux block layer assumes that a block driver will consume all
 249 *   entries on the request queue when the request_fn strategy is called.
 250 *   Often this will not happen, because of hardware limitations (queue
 251 *   depth settings). If a device driver gets a 'queue full' response,
 252 *   or if it simply chooses not to queue more I/O at one point, it can
 253 *   call this function to prevent the request_fn from being called until
 254 *   the driver has signalled it's ready to go again. This happens by calling
 255 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 256 **/
 257void blk_stop_queue(struct request_queue *q)
 258{
 259        cancel_delayed_work(&q->delay_work);
 260        queue_flag_set(QUEUE_FLAG_STOPPED, q);
 261}
 262EXPORT_SYMBOL(blk_stop_queue);
 263
 264/**
 265 * blk_sync_queue - cancel any pending callbacks on a queue
 266 * @q: the queue
 267 *
 268 * Description:
 269 *     The block layer may perform asynchronous callback activity
 270 *     on a queue, such as calling the unplug function after a timeout.
 271 *     A block device may call blk_sync_queue to ensure that any
 272 *     such activity is cancelled, thus allowing it to release resources
 273 *     that the callbacks might use. The caller must already have made sure
 274 *     that its ->make_request_fn will not re-add plugging prior to calling
 275 *     this function.
 276 *
 277 *     This function does not cancel any asynchronous activity arising
 278 *     out of elevator or throttling code. That would require elevator_exit()
 279 *     and blkcg_exit_queue() to be called with queue lock initialized.
 280 *
 281 */
 282void blk_sync_queue(struct request_queue *q)
 283{
 284        del_timer_sync(&q->timeout);
 285
 286        if (q->mq_ops) {
 287                struct blk_mq_hw_ctx *hctx;
 288                int i;
 289
 290                queue_for_each_hw_ctx(q, hctx, i) {
 291                        cancel_delayed_work_sync(&hctx->run_work);
 292                        cancel_delayed_work_sync(&hctx->delay_work);
 293                }
 294        } else {
 295                cancel_delayed_work_sync(&q->delay_work);
 296        }
 297}
 298EXPORT_SYMBOL(blk_sync_queue);
 299
 300/**
 301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 302 * @q:  The queue to run
 303 *
 304 * Description:
 305 *    Invoke request handling on a queue if there are any pending requests.
 306 *    May be used to restart request handling after a request has completed.
 307 *    This variant runs the queue whether or not the queue has been
 308 *    stopped. Must be called with the queue lock held and interrupts
 309 *    disabled. See also @blk_run_queue.
 310 */
 311inline void __blk_run_queue_uncond(struct request_queue *q)
 312{
 313        if (unlikely(blk_queue_dead(q)))
 314                return;
 315
 316        /*
 317         * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 318         * the queue lock internally. As a result multiple threads may be
 319         * running such a request function concurrently. Keep track of the
 320         * number of active request_fn invocations such that blk_drain_queue()
 321         * can wait until all these request_fn calls have finished.
 322         */
 323        q->request_fn_active++;
 324        q->request_fn(q);
 325        q->request_fn_active--;
 326}
 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
 328
 329/**
 330 * __blk_run_queue - run a single device queue
 331 * @q:  The queue to run
 332 *
 333 * Description:
 334 *    See @blk_run_queue. This variant must be called with the queue lock
 335 *    held and interrupts disabled.
 336 */
 337void __blk_run_queue(struct request_queue *q)
 338{
 339        if (unlikely(blk_queue_stopped(q)))
 340                return;
 341
 342        __blk_run_queue_uncond(q);
 343}
 344EXPORT_SYMBOL(__blk_run_queue);
 345
 346/**
 347 * blk_run_queue_async - run a single device queue in workqueue context
 348 * @q:  The queue to run
 349 *
 350 * Description:
 351 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 352 *    of us. The caller must hold the queue lock.
 353 */
 354void blk_run_queue_async(struct request_queue *q)
 355{
 356        if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 357                mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 358}
 359EXPORT_SYMBOL(blk_run_queue_async);
 360
 361/**
 362 * blk_run_queue - run a single device queue
 363 * @q: The queue to run
 364 *
 365 * Description:
 366 *    Invoke request handling on this queue, if it has pending work to do.
 367 *    May be used to restart queueing when a request has completed.
 368 */
 369void blk_run_queue(struct request_queue *q)
 370{
 371        unsigned long flags;
 372
 373        spin_lock_irqsave(q->queue_lock, flags);
 374        __blk_run_queue(q);
 375        spin_unlock_irqrestore(q->queue_lock, flags);
 376}
 377EXPORT_SYMBOL(blk_run_queue);
 378
 379void blk_put_queue(struct request_queue *q)
 380{
 381        kobject_put(&q->kobj);
 382}
 383EXPORT_SYMBOL(blk_put_queue);
 384
 385/**
 386 * __blk_drain_queue - drain requests from request_queue
 387 * @q: queue to drain
 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 389 *
 390 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 391 * If not, only ELVPRIV requests are drained.  The caller is responsible
 392 * for ensuring that no new requests which need to be drained are queued.
 393 */
 394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 395        __releases(q->queue_lock)
 396        __acquires(q->queue_lock)
 397{
 398        int i;
 399
 400        lockdep_assert_held(q->queue_lock);
 401
 402        while (true) {
 403                bool drain = false;
 404
 405                /*
 406                 * The caller might be trying to drain @q before its
 407                 * elevator is initialized.
 408                 */
 409                if (q->elevator)
 410                        elv_drain_elevator(q);
 411
 412                blkcg_drain_queue(q);
 413
 414                /*
 415                 * This function might be called on a queue which failed
 416                 * driver init after queue creation or is not yet fully
 417                 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 418                 * in such cases.  Kick queue iff dispatch queue has
 419                 * something on it and @q has request_fn set.
 420                 */
 421                if (!list_empty(&q->queue_head) && q->request_fn)
 422                        __blk_run_queue(q);
 423
 424                drain |= q->nr_rqs_elvpriv;
 425                drain |= q->request_fn_active;
 426
 427                /*
 428                 * Unfortunately, requests are queued at and tracked from
 429                 * multiple places and there's no single counter which can
 430                 * be drained.  Check all the queues and counters.
 431                 */
 432                if (drain_all) {
 433                        struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 434                        drain |= !list_empty(&q->queue_head);
 435                        for (i = 0; i < 2; i++) {
 436                                drain |= q->nr_rqs[i];
 437                                drain |= q->in_flight[i];
 438                                if (fq)
 439                                    drain |= !list_empty(&fq->flush_queue[i]);
 440                        }
 441                }
 442
 443                if (!drain)
 444                        break;
 445
 446                spin_unlock_irq(q->queue_lock);
 447
 448                msleep(10);
 449
 450                spin_lock_irq(q->queue_lock);
 451        }
 452
 453        /*
 454         * With queue marked dead, any woken up waiter will fail the
 455         * allocation path, so the wakeup chaining is lost and we're
 456         * left with hung waiters. We need to wake up those waiters.
 457         */
 458        if (q->request_fn) {
 459                struct request_list *rl;
 460
 461                blk_queue_for_each_rl(rl, q)
 462                        for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 463                                wake_up_all(&rl->wait[i]);
 464        }
 465}
 466
 467/**
 468 * blk_queue_bypass_start - enter queue bypass mode
 469 * @q: queue of interest
 470 *
 471 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 472 * function makes @q enter bypass mode and drains all requests which were
 473 * throttled or issued before.  On return, it's guaranteed that no request
 474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 475 * inside queue or RCU read lock.
 476 */
 477void blk_queue_bypass_start(struct request_queue *q)
 478{
 479        spin_lock_irq(q->queue_lock);
 480        q->bypass_depth++;
 481        queue_flag_set(QUEUE_FLAG_BYPASS, q);
 482        spin_unlock_irq(q->queue_lock);
 483
 484        /*
 485         * Queues start drained.  Skip actual draining till init is
 486         * complete.  This avoids lenghty delays during queue init which
 487         * can happen many times during boot.
 488         */
 489        if (blk_queue_init_done(q)) {
 490                spin_lock_irq(q->queue_lock);
 491                __blk_drain_queue(q, false);
 492                spin_unlock_irq(q->queue_lock);
 493
 494                /* ensure blk_queue_bypass() is %true inside RCU read lock */
 495                synchronize_rcu();
 496        }
 497}
 498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 499
 500/**
 501 * blk_queue_bypass_end - leave queue bypass mode
 502 * @q: queue of interest
 503 *
 504 * Leave bypass mode and restore the normal queueing behavior.
 505 */
 506void blk_queue_bypass_end(struct request_queue *q)
 507{
 508        spin_lock_irq(q->queue_lock);
 509        if (!--q->bypass_depth)
 510                queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 511        WARN_ON_ONCE(q->bypass_depth < 0);
 512        spin_unlock_irq(q->queue_lock);
 513}
 514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 515
 516void blk_set_queue_dying(struct request_queue *q)
 517{
 518        queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
 519
 520        if (q->mq_ops)
 521                blk_mq_wake_waiters(q);
 522        else {
 523                struct request_list *rl;
 524
 525                blk_queue_for_each_rl(rl, q) {
 526                        if (rl->rq_pool) {
 527                                wake_up(&rl->wait[BLK_RW_SYNC]);
 528                                wake_up(&rl->wait[BLK_RW_ASYNC]);
 529                        }
 530                }
 531        }
 532}
 533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 534
 535/**
 536 * blk_cleanup_queue - shutdown a request queue
 537 * @q: request queue to shutdown
 538 *
 539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 540 * put it.  All future requests will be failed immediately with -ENODEV.
 541 */
 542void blk_cleanup_queue(struct request_queue *q)
 543{
 544        spinlock_t *lock = q->queue_lock;
 545
 546        /* mark @q DYING, no new request or merges will be allowed afterwards */
 547        mutex_lock(&q->sysfs_lock);
 548        blk_set_queue_dying(q);
 549        spin_lock_irq(lock);
 550
 551        /*
 552         * A dying queue is permanently in bypass mode till released.  Note
 553         * that, unlike blk_queue_bypass_start(), we aren't performing
 554         * synchronize_rcu() after entering bypass mode to avoid the delay
 555         * as some drivers create and destroy a lot of queues while
 556         * probing.  This is still safe because blk_release_queue() will be
 557         * called only after the queue refcnt drops to zero and nothing,
 558         * RCU or not, would be traversing the queue by then.
 559         */
 560        q->bypass_depth++;
 561        queue_flag_set(QUEUE_FLAG_BYPASS, q);
 562
 563        queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 564        queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 565        queue_flag_set(QUEUE_FLAG_DYING, q);
 566        spin_unlock_irq(lock);
 567        mutex_unlock(&q->sysfs_lock);
 568
 569        /*
 570         * Drain all requests queued before DYING marking. Set DEAD flag to
 571         * prevent that q->request_fn() gets invoked after draining finished.
 572         */
 573        blk_freeze_queue(q);
 574        spin_lock_irq(lock);
 575        if (!q->mq_ops)
 576                __blk_drain_queue(q, true);
 577        queue_flag_set(QUEUE_FLAG_DEAD, q);
 578        spin_unlock_irq(lock);
 579
 580        /* for synchronous bio-based driver finish in-flight integrity i/o */
 581        blk_flush_integrity();
 582
 583        /* @q won't process any more request, flush async actions */
 584        del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 585        blk_sync_queue(q);
 586
 587        if (q->mq_ops)
 588                blk_mq_free_queue(q);
 589        percpu_ref_exit(&q->q_usage_counter);
 590
 591        spin_lock_irq(lock);
 592        if (q->queue_lock != &q->__queue_lock)
 593                q->queue_lock = &q->__queue_lock;
 594        spin_unlock_irq(lock);
 595
 596        bdi_unregister(&q->backing_dev_info);
 597
 598        /* @q is and will stay empty, shutdown and put */
 599        blk_put_queue(q);
 600}
 601EXPORT_SYMBOL(blk_cleanup_queue);
 602
 603/* Allocate memory local to the request queue */
 604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
 605{
 606        int nid = (int)(long)data;
 607        return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
 608}
 609
 610static void free_request_struct(void *element, void *unused)
 611{
 612        kmem_cache_free(request_cachep, element);
 613}
 614
 615int blk_init_rl(struct request_list *rl, struct request_queue *q,
 616                gfp_t gfp_mask)
 617{
 618        if (unlikely(rl->rq_pool))
 619                return 0;
 620
 621        rl->q = q;
 622        rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 623        rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 624        init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 625        init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 626
 627        rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
 628                                          free_request_struct,
 629                                          (void *)(long)q->node, gfp_mask,
 630                                          q->node);
 631        if (!rl->rq_pool)
 632                return -ENOMEM;
 633
 634        return 0;
 635}
 636
 637void blk_exit_rl(struct request_list *rl)
 638{
 639        if (rl->rq_pool)
 640                mempool_destroy(rl->rq_pool);
 641}
 642
 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 644{
 645        return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
 646}
 647EXPORT_SYMBOL(blk_alloc_queue);
 648
 649int blk_queue_enter(struct request_queue *q, bool nowait)
 650{
 651        while (true) {
 652                int ret;
 653
 654                if (percpu_ref_tryget_live(&q->q_usage_counter))
 655                        return 0;
 656
 657                if (nowait)
 658                        return -EBUSY;
 659
 660                ret = wait_event_interruptible(q->mq_freeze_wq,
 661                                !atomic_read(&q->mq_freeze_depth) ||
 662                                blk_queue_dying(q));
 663                if (blk_queue_dying(q))
 664                        return -ENODEV;
 665                if (ret)
 666                        return ret;
 667        }
 668}
 669
 670void blk_queue_exit(struct request_queue *q)
 671{
 672        percpu_ref_put(&q->q_usage_counter);
 673}
 674
 675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 676{
 677        struct request_queue *q =
 678                container_of(ref, struct request_queue, q_usage_counter);
 679
 680        wake_up_all(&q->mq_freeze_wq);
 681}
 682
 683static void blk_rq_timed_out_timer(unsigned long data)
 684{
 685        struct request_queue *q = (struct request_queue *)data;
 686
 687        kblockd_schedule_work(&q->timeout_work);
 688}
 689
 690struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 691{
 692        struct request_queue *q;
 693        int err;
 694
 695        q = kmem_cache_alloc_node(blk_requestq_cachep,
 696                                gfp_mask | __GFP_ZERO, node_id);
 697        if (!q)
 698                return NULL;
 699
 700        q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
 701        if (q->id < 0)
 702                goto fail_q;
 703
 704        q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
 705        if (!q->bio_split)
 706                goto fail_id;
 707
 708        q->backing_dev_info.ra_pages =
 709                        (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
 710        q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
 711        q->backing_dev_info.name = "block";
 712        q->node = node_id;
 713
 714        err = bdi_init(&q->backing_dev_info);
 715        if (err)
 716                goto fail_split;
 717
 718        setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 719                    laptop_mode_timer_fn, (unsigned long) q);
 720        setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 721        INIT_LIST_HEAD(&q->queue_head);
 722        INIT_LIST_HEAD(&q->timeout_list);
 723        INIT_LIST_HEAD(&q->icq_list);
 724#ifdef CONFIG_BLK_CGROUP
 725        INIT_LIST_HEAD(&q->blkg_list);
 726#endif
 727        INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 728
 729        kobject_init(&q->kobj, &blk_queue_ktype);
 730
 731        mutex_init(&q->sysfs_lock);
 732        spin_lock_init(&q->__queue_lock);
 733
 734        /*
 735         * By default initialize queue_lock to internal lock and driver can
 736         * override it later if need be.
 737         */
 738        q->queue_lock = &q->__queue_lock;
 739
 740        /*
 741         * A queue starts its life with bypass turned on to avoid
 742         * unnecessary bypass on/off overhead and nasty surprises during
 743         * init.  The initial bypass will be finished when the queue is
 744         * registered by blk_register_queue().
 745         */
 746        q->bypass_depth = 1;
 747        __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
 748
 749        init_waitqueue_head(&q->mq_freeze_wq);
 750
 751        /*
 752         * Init percpu_ref in atomic mode so that it's faster to shutdown.
 753         * See blk_register_queue() for details.
 754         */
 755        if (percpu_ref_init(&q->q_usage_counter,
 756                                blk_queue_usage_counter_release,
 757                                PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 758                goto fail_bdi;
 759
 760        if (blkcg_init_queue(q))
 761                goto fail_ref;
 762
 763        return q;
 764
 765fail_ref:
 766        percpu_ref_exit(&q->q_usage_counter);
 767fail_bdi:
 768        bdi_destroy(&q->backing_dev_info);
 769fail_split:
 770        bioset_free(q->bio_split);
 771fail_id:
 772        ida_simple_remove(&blk_queue_ida, q->id);
 773fail_q:
 774        kmem_cache_free(blk_requestq_cachep, q);
 775        return NULL;
 776}
 777EXPORT_SYMBOL(blk_alloc_queue_node);
 778
 779/**
 780 * blk_init_queue  - prepare a request queue for use with a block device
 781 * @rfn:  The function to be called to process requests that have been
 782 *        placed on the queue.
 783 * @lock: Request queue spin lock
 784 *
 785 * Description:
 786 *    If a block device wishes to use the standard request handling procedures,
 787 *    which sorts requests and coalesces adjacent requests, then it must
 788 *    call blk_init_queue().  The function @rfn will be called when there
 789 *    are requests on the queue that need to be processed.  If the device
 790 *    supports plugging, then @rfn may not be called immediately when requests
 791 *    are available on the queue, but may be called at some time later instead.
 792 *    Plugged queues are generally unplugged when a buffer belonging to one
 793 *    of the requests on the queue is needed, or due to memory pressure.
 794 *
 795 *    @rfn is not required, or even expected, to remove all requests off the
 796 *    queue, but only as many as it can handle at a time.  If it does leave
 797 *    requests on the queue, it is responsible for arranging that the requests
 798 *    get dealt with eventually.
 799 *
 800 *    The queue spin lock must be held while manipulating the requests on the
 801 *    request queue; this lock will be taken also from interrupt context, so irq
 802 *    disabling is needed for it.
 803 *
 804 *    Function returns a pointer to the initialized request queue, or %NULL if
 805 *    it didn't succeed.
 806 *
 807 * Note:
 808 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 809 *    when the block device is deactivated (such as at module unload).
 810 **/
 811
 812struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 813{
 814        return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
 815}
 816EXPORT_SYMBOL(blk_init_queue);
 817
 818struct request_queue *
 819blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 820{
 821        struct request_queue *uninit_q, *q;
 822
 823        uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 824        if (!uninit_q)
 825                return NULL;
 826
 827        q = blk_init_allocated_queue(uninit_q, rfn, lock);
 828        if (!q)
 829                blk_cleanup_queue(uninit_q);
 830
 831        return q;
 832}
 833EXPORT_SYMBOL(blk_init_queue_node);
 834
 835static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
 836
 837struct request_queue *
 838blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 839                         spinlock_t *lock)
 840{
 841        if (!q)
 842                return NULL;
 843
 844        q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
 845        if (!q->fq)
 846                return NULL;
 847
 848        if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
 849                goto fail;
 850
 851        INIT_WORK(&q->timeout_work, blk_timeout_work);
 852        q->request_fn           = rfn;
 853        q->prep_rq_fn           = NULL;
 854        q->unprep_rq_fn         = NULL;
 855        q->queue_flags          |= QUEUE_FLAG_DEFAULT;
 856
 857        /* Override internal queue lock with supplied lock pointer */
 858        if (lock)
 859                q->queue_lock           = lock;
 860
 861        /*
 862         * This also sets hw/phys segments, boundary and size
 863         */
 864        blk_queue_make_request(q, blk_queue_bio);
 865
 866        q->sg_reserved_size = INT_MAX;
 867
 868        /* Protect q->elevator from elevator_change */
 869        mutex_lock(&q->sysfs_lock);
 870
 871        /* init elevator */
 872        if (elevator_init(q, NULL)) {
 873                mutex_unlock(&q->sysfs_lock);
 874                goto fail;
 875        }
 876
 877        mutex_unlock(&q->sysfs_lock);
 878
 879        return q;
 880
 881fail:
 882        blk_free_flush_queue(q->fq);
 883        return NULL;
 884}
 885EXPORT_SYMBOL(blk_init_allocated_queue);
 886
 887bool blk_get_queue(struct request_queue *q)
 888{
 889        if (likely(!blk_queue_dying(q))) {
 890                __blk_get_queue(q);
 891                return true;
 892        }
 893
 894        return false;
 895}
 896EXPORT_SYMBOL(blk_get_queue);
 897
 898static inline void blk_free_request(struct request_list *rl, struct request *rq)
 899{
 900        if (rq->cmd_flags & REQ_ELVPRIV) {
 901                elv_put_request(rl->q, rq);
 902                if (rq->elv.icq)
 903                        put_io_context(rq->elv.icq->ioc);
 904        }
 905
 906        mempool_free(rq, rl->rq_pool);
 907}
 908
 909/*
 910 * ioc_batching returns true if the ioc is a valid batching request and
 911 * should be given priority access to a request.
 912 */
 913static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 914{
 915        if (!ioc)
 916                return 0;
 917
 918        /*
 919         * Make sure the process is able to allocate at least 1 request
 920         * even if the batch times out, otherwise we could theoretically
 921         * lose wakeups.
 922         */
 923        return ioc->nr_batch_requests == q->nr_batching ||
 924                (ioc->nr_batch_requests > 0
 925                && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 926}
 927
 928/*
 929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 930 * will cause the process to be a "batcher" on all queues in the system. This
 931 * is the behaviour we want though - once it gets a wakeup it should be given
 932 * a nice run.
 933 */
 934static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 935{
 936        if (!ioc || ioc_batching(q, ioc))
 937                return;
 938
 939        ioc->nr_batch_requests = q->nr_batching;
 940        ioc->last_waited = jiffies;
 941}
 942
 943static void __freed_request(struct request_list *rl, int sync)
 944{
 945        struct request_queue *q = rl->q;
 946
 947        if (rl->count[sync] < queue_congestion_off_threshold(q))
 948                blk_clear_congested(rl, sync);
 949
 950        if (rl->count[sync] + 1 <= q->nr_requests) {
 951                if (waitqueue_active(&rl->wait[sync]))
 952                        wake_up(&rl->wait[sync]);
 953
 954                blk_clear_rl_full(rl, sync);
 955        }
 956}
 957
 958/*
 959 * A request has just been released.  Account for it, update the full and
 960 * congestion status, wake up any waiters.   Called under q->queue_lock.
 961 */
 962static void freed_request(struct request_list *rl, unsigned int flags)
 963{
 964        struct request_queue *q = rl->q;
 965        int sync = rw_is_sync(flags);
 966
 967        q->nr_rqs[sync]--;
 968        rl->count[sync]--;
 969        if (flags & REQ_ELVPRIV)
 970                q->nr_rqs_elvpriv--;
 971
 972        __freed_request(rl, sync);
 973
 974        if (unlikely(rl->starved[sync ^ 1]))
 975                __freed_request(rl, sync ^ 1);
 976}
 977
 978int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
 979{
 980        struct request_list *rl;
 981        int on_thresh, off_thresh;
 982
 983        spin_lock_irq(q->queue_lock);
 984        q->nr_requests = nr;
 985        blk_queue_congestion_threshold(q);
 986        on_thresh = queue_congestion_on_threshold(q);
 987        off_thresh = queue_congestion_off_threshold(q);
 988
 989        blk_queue_for_each_rl(rl, q) {
 990                if (rl->count[BLK_RW_SYNC] >= on_thresh)
 991                        blk_set_congested(rl, BLK_RW_SYNC);
 992                else if (rl->count[BLK_RW_SYNC] < off_thresh)
 993                        blk_clear_congested(rl, BLK_RW_SYNC);
 994
 995                if (rl->count[BLK_RW_ASYNC] >= on_thresh)
 996                        blk_set_congested(rl, BLK_RW_ASYNC);
 997                else if (rl->count[BLK_RW_ASYNC] < off_thresh)
 998                        blk_clear_congested(rl, BLK_RW_ASYNC);
 999
1000                if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001                        blk_set_rl_full(rl, BLK_RW_SYNC);
1002                } else {
1003                        blk_clear_rl_full(rl, BLK_RW_SYNC);
1004                        wake_up(&rl->wait[BLK_RW_SYNC]);
1005                }
1006
1007                if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008                        blk_set_rl_full(rl, BLK_RW_ASYNC);
1009                } else {
1010                        blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011                        wake_up(&rl->wait[BLK_RW_ASYNC]);
1012                }
1013        }
1014
1015        spin_unlock_irq(q->queue_lock);
1016        return 0;
1017}
1018
1019/*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023static bool blk_rq_should_init_elevator(struct bio *bio)
1024{
1025        if (!bio)
1026                return true;
1027
1028        /*
1029         * Flush requests do not use the elevator so skip initialization.
1030         * This allows a request to share the flush and elevator data.
1031         */
1032        if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033                return false;
1034
1035        return true;
1036}
1037
1038/**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio.  May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045static struct io_context *rq_ioc(struct bio *bio)
1046{
1047#ifdef CONFIG_BLK_CGROUP
1048        if (bio && bio->bi_ioc)
1049                return bio->bi_ioc;
1050#endif
1051        return current->io_context;
1052}
1053
1054/**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q.  This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
1064 * Must be called with @q->queue_lock held and,
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1067 */
1068static struct request *__get_request(struct request_list *rl, int rw_flags,
1069                                     struct bio *bio, gfp_t gfp_mask)
1070{
1071        struct request_queue *q = rl->q;
1072        struct request *rq;
1073        struct elevator_type *et = q->elevator->type;
1074        struct io_context *ioc = rq_ioc(bio);
1075        struct io_cq *icq = NULL;
1076        const bool is_sync = rw_is_sync(rw_flags) != 0;
1077        int may_queue;
1078
1079        if (unlikely(blk_queue_dying(q)))
1080                return ERR_PTR(-ENODEV);
1081
1082        may_queue = elv_may_queue(q, rw_flags);
1083        if (may_queue == ELV_MQUEUE_NO)
1084                goto rq_starved;
1085
1086        if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087                if (rl->count[is_sync]+1 >= q->nr_requests) {
1088                        /*
1089                         * The queue will fill after this allocation, so set
1090                         * it as full, and mark this process as "batching".
1091                         * This process will be allowed to complete a batch of
1092                         * requests, others will be blocked.
1093                         */
1094                        if (!blk_rl_full(rl, is_sync)) {
1095                                ioc_set_batching(q, ioc);
1096                                blk_set_rl_full(rl, is_sync);
1097                        } else {
1098                                if (may_queue != ELV_MQUEUE_MUST
1099                                                && !ioc_batching(q, ioc)) {
1100                                        /*
1101                                         * The queue is full and the allocating
1102                                         * process is not a "batcher", and not
1103                                         * exempted by the IO scheduler
1104                                         */
1105                                        return ERR_PTR(-ENOMEM);
1106                                }
1107                        }
1108                }
1109                blk_set_congested(rl, is_sync);
1110        }
1111
1112        /*
1113         * Only allow batching queuers to allocate up to 50% over the defined
1114         * limit of requests, otherwise we could have thousands of requests
1115         * allocated with any setting of ->nr_requests
1116         */
1117        if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1118                return ERR_PTR(-ENOMEM);
1119
1120        q->nr_rqs[is_sync]++;
1121        rl->count[is_sync]++;
1122        rl->starved[is_sync] = 0;
1123
1124        /*
1125         * Decide whether the new request will be managed by elevator.  If
1126         * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1127         * prevent the current elevator from being destroyed until the new
1128         * request is freed.  This guarantees icq's won't be destroyed and
1129         * makes creating new ones safe.
1130         *
1131         * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1132         * it will be created after releasing queue_lock.
1133         */
1134        if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1135                rw_flags |= REQ_ELVPRIV;
1136                q->nr_rqs_elvpriv++;
1137                if (et->icq_cache && ioc)
1138                        icq = ioc_lookup_icq(ioc, q);
1139        }
1140
1141        if (blk_queue_io_stat(q))
1142                rw_flags |= REQ_IO_STAT;
1143        spin_unlock_irq(q->queue_lock);
1144
1145        /* allocate and init request */
1146        rq = mempool_alloc(rl->rq_pool, gfp_mask);
1147        if (!rq)
1148                goto fail_alloc;
1149
1150        blk_rq_init(q, rq);
1151        blk_rq_set_rl(rq, rl);
1152        rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153
1154        /* init elvpriv */
1155        if (rw_flags & REQ_ELVPRIV) {
1156                if (unlikely(et->icq_cache && !icq)) {
1157                        if (ioc)
1158                                icq = ioc_create_icq(ioc, q, gfp_mask);
1159                        if (!icq)
1160                                goto fail_elvpriv;
1161                }
1162
1163                rq->elv.icq = icq;
1164                if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165                        goto fail_elvpriv;
1166
1167                /* @rq->elv.icq holds io_context until @rq is freed */
1168                if (icq)
1169                        get_io_context(icq->ioc);
1170        }
1171out:
1172        /*
1173         * ioc may be NULL here, and ioc_batching will be false. That's
1174         * OK, if the queue is under the request limit then requests need
1175         * not count toward the nr_batch_requests limit. There will always
1176         * be some limit enforced by BLK_BATCH_TIME.
1177         */
1178        if (ioc_batching(q, ioc))
1179                ioc->nr_batch_requests--;
1180
1181        trace_block_getrq(q, bio, rw_flags & 1);
1182        return rq;
1183
1184fail_elvpriv:
1185        /*
1186         * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1187         * and may fail indefinitely under memory pressure and thus
1188         * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1189         * disturb iosched and blkcg but weird is bettern than dead.
1190         */
1191        printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192                           __func__, dev_name(q->backing_dev_info.dev));
1193
1194        rq->cmd_flags &= ~REQ_ELVPRIV;
1195        rq->elv.icq = NULL;
1196
1197        spin_lock_irq(q->queue_lock);
1198        q->nr_rqs_elvpriv--;
1199        spin_unlock_irq(q->queue_lock);
1200        goto out;
1201
1202fail_alloc:
1203        /*
1204         * Allocation failed presumably due to memory. Undo anything we
1205         * might have messed up.
1206         *
1207         * Allocating task should really be put onto the front of the wait
1208         * queue, but this is pretty rare.
1209         */
1210        spin_lock_irq(q->queue_lock);
1211        freed_request(rl, rw_flags);
1212
1213        /*
1214         * in the very unlikely event that allocation failed and no
1215         * requests for this direction was pending, mark us starved so that
1216         * freeing of a request in the other direction will notice
1217         * us. another possible fix would be to split the rq mempool into
1218         * READ and WRITE
1219         */
1220rq_starved:
1221        if (unlikely(rl->count[is_sync] == 0))
1222                rl->starved[is_sync] = 1;
1223        return ERR_PTR(-ENOMEM);
1224}
1225
1226/**
1227 * get_request - get a free request
1228 * @q: request_queue to allocate request from
1229 * @rw_flags: RW and SYNC flags
1230 * @bio: bio to allocate request for (can be %NULL)
1231 * @gfp_mask: allocation mask
1232 *
1233 * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234 * this function keeps retrying under memory pressure and fails iff @q is dead.
1235 *
1236 * Must be called with @q->queue_lock held and,
1237 * Returns ERR_PTR on failure, with @q->queue_lock held.
1238 * Returns request pointer on success, with @q->queue_lock *not held*.
1239 */
1240static struct request *get_request(struct request_queue *q, int rw_flags,
1241                                   struct bio *bio, gfp_t gfp_mask)
1242{
1243        const bool is_sync = rw_is_sync(rw_flags) != 0;
1244        DEFINE_WAIT(wait);
1245        struct request_list *rl;
1246        struct request *rq;
1247
1248        rl = blk_get_rl(q, bio);        /* transferred to @rq on success */
1249retry:
1250        rq = __get_request(rl, rw_flags, bio, gfp_mask);
1251        if (!IS_ERR(rq))
1252                return rq;
1253
1254        if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1255                blk_put_rl(rl);
1256                return rq;
1257        }
1258
1259        /* wait on @rl and retry */
1260        prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261                                  TASK_UNINTERRUPTIBLE);
1262
1263        trace_block_sleeprq(q, bio, rw_flags & 1);
1264
1265        spin_unlock_irq(q->queue_lock);
1266        io_schedule();
1267
1268        /*
1269         * After sleeping, we become a "batching" process and will be able
1270         * to allocate at least one request, and up to a big batch of them
1271         * for a small period time.  See ioc_batching, ioc_set_batching
1272         */
1273        ioc_set_batching(q, current->io_context);
1274
1275        spin_lock_irq(q->queue_lock);
1276        finish_wait(&rl->wait[is_sync], &wait);
1277
1278        goto retry;
1279}
1280
1281static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282                gfp_t gfp_mask)
1283{
1284        struct request *rq;
1285
1286        BUG_ON(rw != READ && rw != WRITE);
1287
1288        /* create ioc upfront */
1289        create_io_context(gfp_mask, q->node);
1290
1291        spin_lock_irq(q->queue_lock);
1292        rq = get_request(q, rw, NULL, gfp_mask);
1293        if (IS_ERR(rq))
1294                spin_unlock_irq(q->queue_lock);
1295        /* q->queue_lock is unlocked at this point */
1296
1297        return rq;
1298}
1299
1300struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301{
1302        if (q->mq_ops)
1303                return blk_mq_alloc_request(q, rw,
1304                        (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305                                0 : BLK_MQ_REQ_NOWAIT);
1306        else
1307                return blk_old_get_request(q, rw, gfp_mask);
1308}
1309EXPORT_SYMBOL(blk_get_request);
1310
1311/**
1312 * blk_make_request - given a bio, allocate a corresponding struct request.
1313 * @q: target request queue
1314 * @bio:  The bio describing the memory mappings that will be submitted for IO.
1315 *        It may be a chained-bio properly constructed by block/bio layer.
1316 * @gfp_mask: gfp flags to be used for memory allocation
1317 *
1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319 * type commands. Where the struct request needs to be farther initialized by
1320 * the caller. It is passed a &struct bio, which describes the memory info of
1321 * the I/O transfer.
1322 *
1323 * The caller of blk_make_request must make sure that bi_io_vec
1324 * are set to describe the memory buffers. That bio_data_dir() will return
1325 * the needed direction of the request. (And all bio's in the passed bio-chain
1326 * are properly set accordingly)
1327 *
1328 * If called under none-sleepable conditions, mapped bio buffers must not
1329 * need bouncing, by calling the appropriate masked or flagged allocator,
1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331 * BUG.
1332 *
1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1334 * given to how you allocate bios. In particular, you cannot use
1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337 * thus resulting in a deadlock. Alternatively bios should be allocated using
1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1339 * If possible a big IO should be split into smaller parts when allocation
1340 * fails. Partial allocation should not be an error, or you risk a live-lock.
1341 */
1342struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343                                 gfp_t gfp_mask)
1344{
1345        struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346
1347        if (IS_ERR(rq))
1348                return rq;
1349
1350        blk_rq_set_block_pc(rq);
1351
1352        for_each_bio(bio) {
1353                struct bio *bounce_bio = bio;
1354                int ret;
1355
1356                blk_queue_bounce(q, &bounce_bio);
1357                ret = blk_rq_append_bio(q, rq, bounce_bio);
1358                if (unlikely(ret)) {
1359                        blk_put_request(rq);
1360                        return ERR_PTR(ret);
1361                }
1362        }
1363
1364        return rq;
1365}
1366EXPORT_SYMBOL(blk_make_request);
1367
1368/**
1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1370 * @rq:         request to be initialized
1371 *
1372 */
1373void blk_rq_set_block_pc(struct request *rq)
1374{
1375        rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376        rq->__data_len = 0;
1377        rq->__sector = (sector_t) -1;
1378        rq->bio = rq->biotail = NULL;
1379        memset(rq->__cmd, 0, sizeof(rq->__cmd));
1380}
1381EXPORT_SYMBOL(blk_rq_set_block_pc);
1382
1383/**
1384 * blk_requeue_request - put a request back on queue
1385 * @q:          request queue where request should be inserted
1386 * @rq:         request to be inserted
1387 *
1388 * Description:
1389 *    Drivers often keep queueing requests until the hardware cannot accept
1390 *    more, when that condition happens we need to put the request back
1391 *    on the queue. Must be called with queue lock held.
1392 */
1393void blk_requeue_request(struct request_queue *q, struct request *rq)
1394{
1395        blk_delete_timer(rq);
1396        blk_clear_rq_complete(rq);
1397        trace_block_rq_requeue(q, rq);
1398
1399        if (rq->cmd_flags & REQ_QUEUED)
1400                blk_queue_end_tag(q, rq);
1401
1402        BUG_ON(blk_queued_rq(rq));
1403
1404        elv_requeue_request(q, rq);
1405}
1406EXPORT_SYMBOL(blk_requeue_request);
1407
1408static void add_acct_request(struct request_queue *q, struct request *rq,
1409                             int where)
1410{
1411        blk_account_io_start(rq, true);
1412        __elv_add_request(q, rq, where);
1413}
1414
1415static void part_round_stats_single(int cpu, struct hd_struct *part,
1416                                    unsigned long now)
1417{
1418        int inflight;
1419
1420        if (now == part->stamp)
1421                return;
1422
1423        inflight = part_in_flight(part);
1424        if (inflight) {
1425                __part_stat_add(cpu, part, time_in_queue,
1426                                inflight * (now - part->stamp));
1427                __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428        }
1429        part->stamp = now;
1430}
1431
1432/**
1433 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434 * @cpu: cpu number for stats access
1435 * @part: target partition
1436 *
1437 * The average IO queue length and utilisation statistics are maintained
1438 * by observing the current state of the queue length and the amount of
1439 * time it has been in this state for.
1440 *
1441 * Normally, that accounting is done on IO completion, but that can result
1442 * in more than a second's worth of IO being accounted for within any one
1443 * second, leading to >100% utilisation.  To deal with that, we call this
1444 * function to do a round-off before returning the results when reading
1445 * /proc/diskstats.  This accounts immediately for all queue usage up to
1446 * the current jiffies and restarts the counters again.
1447 */
1448void part_round_stats(int cpu, struct hd_struct *part)
1449{
1450        unsigned long now = jiffies;
1451
1452        if (part->partno)
1453                part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454        part_round_stats_single(cpu, part, now);
1455}
1456EXPORT_SYMBOL_GPL(part_round_stats);
1457
1458#ifdef CONFIG_PM
1459static void blk_pm_put_request(struct request *rq)
1460{
1461        if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462                pm_runtime_mark_last_busy(rq->q->dev);
1463}
1464#else
1465static inline void blk_pm_put_request(struct request *rq) {}
1466#endif
1467
1468/*
1469 * queue lock must be held
1470 */
1471void __blk_put_request(struct request_queue *q, struct request *req)
1472{
1473        if (unlikely(!q))
1474                return;
1475
1476        if (q->mq_ops) {
1477                blk_mq_free_request(req);
1478                return;
1479        }
1480
1481        blk_pm_put_request(req);
1482
1483        elv_completed_request(q, req);
1484
1485        /* this is a bio leak */
1486        WARN_ON(req->bio != NULL);
1487
1488        /*
1489         * Request may not have originated from ll_rw_blk. if not,
1490         * it didn't come out of our reserved rq pools
1491         */
1492        if (req->cmd_flags & REQ_ALLOCED) {
1493                unsigned int flags = req->cmd_flags;
1494                struct request_list *rl = blk_rq_rl(req);
1495
1496                BUG_ON(!list_empty(&req->queuelist));
1497                BUG_ON(ELV_ON_HASH(req));
1498
1499                blk_free_request(rl, req);
1500                freed_request(rl, flags);
1501                blk_put_rl(rl);
1502        }
1503}
1504EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1506void blk_put_request(struct request *req)
1507{
1508        struct request_queue *q = req->q;
1509
1510        if (q->mq_ops)
1511                blk_mq_free_request(req);
1512        else {
1513                unsigned long flags;
1514
1515                spin_lock_irqsave(q->queue_lock, flags);
1516                __blk_put_request(q, req);
1517                spin_unlock_irqrestore(q->queue_lock, flags);
1518        }
1519}
1520EXPORT_SYMBOL(blk_put_request);
1521
1522/**
1523 * blk_add_request_payload - add a payload to a request
1524 * @rq: request to update
1525 * @page: page backing the payload
1526 * @len: length of the payload.
1527 *
1528 * This allows to later add a payload to an already submitted request by
1529 * a block driver.  The driver needs to take care of freeing the payload
1530 * itself.
1531 *
1532 * Note that this is a quite horrible hack and nothing but handling of
1533 * discard requests should ever use it.
1534 */
1535void blk_add_request_payload(struct request *rq, struct page *page,
1536                unsigned int len)
1537{
1538        struct bio *bio = rq->bio;
1539
1540        bio->bi_io_vec->bv_page = page;
1541        bio->bi_io_vec->bv_offset = 0;
1542        bio->bi_io_vec->bv_len = len;
1543
1544        bio->bi_iter.bi_size = len;
1545        bio->bi_vcnt = 1;
1546        bio->bi_phys_segments = 1;
1547
1548        rq->__data_len = rq->resid_len = len;
1549        rq->nr_phys_segments = 1;
1550}
1551EXPORT_SYMBOL_GPL(blk_add_request_payload);
1552
1553bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1554                            struct bio *bio)
1555{
1556        const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1557
1558        if (!ll_back_merge_fn(q, req, bio))
1559                return false;
1560
1561        trace_block_bio_backmerge(q, req, bio);
1562
1563        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1564                blk_rq_set_mixed_merge(req);
1565
1566        req->biotail->bi_next = bio;
1567        req->biotail = bio;
1568        req->__data_len += bio->bi_iter.bi_size;
1569        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1570
1571        blk_account_io_start(req, false);
1572        return true;
1573}
1574
1575bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1576                             struct bio *bio)
1577{
1578        const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1579
1580        if (!ll_front_merge_fn(q, req, bio))
1581                return false;
1582
1583        trace_block_bio_frontmerge(q, req, bio);
1584
1585        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1586                blk_rq_set_mixed_merge(req);
1587
1588        bio->bi_next = req->bio;
1589        req->bio = bio;
1590
1591        req->__sector = bio->bi_iter.bi_sector;
1592        req->__data_len += bio->bi_iter.bi_size;
1593        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1594
1595        blk_account_io_start(req, false);
1596        return true;
1597}
1598
1599/**
1600 * blk_attempt_plug_merge - try to merge with %current's plugged list
1601 * @q: request_queue new bio is being queued at
1602 * @bio: new bio being queued
1603 * @request_count: out parameter for number of traversed plugged requests
1604 * @same_queue_rq: pointer to &struct request that gets filled in when
1605 * another request associated with @q is found on the plug list
1606 * (optional, may be %NULL)
1607 *
1608 * Determine whether @bio being queued on @q can be merged with a request
1609 * on %current's plugged list.  Returns %true if merge was successful,
1610 * otherwise %false.
1611 *
1612 * Plugging coalesces IOs from the same issuer for the same purpose without
1613 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1614 * than scheduling, and the request, while may have elvpriv data, is not
1615 * added on the elevator at this point.  In addition, we don't have
1616 * reliable access to the elevator outside queue lock.  Only check basic
1617 * merging parameters without querying the elevator.
1618 *
1619 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1620 */
1621bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1622                            unsigned int *request_count,
1623                            struct request **same_queue_rq)
1624{
1625        struct blk_plug *plug;
1626        struct request *rq;
1627        bool ret = false;
1628        struct list_head *plug_list;
1629
1630        plug = current->plug;
1631        if (!plug)
1632                goto out;
1633        *request_count = 0;
1634
1635        if (q->mq_ops)
1636                plug_list = &plug->mq_list;
1637        else
1638                plug_list = &plug->list;
1639
1640        list_for_each_entry_reverse(rq, plug_list, queuelist) {
1641                int el_ret;
1642
1643                if (rq->q == q) {
1644                        (*request_count)++;
1645                        /*
1646                         * Only blk-mq multiple hardware queues case checks the
1647                         * rq in the same queue, there should be only one such
1648                         * rq in a queue
1649                         **/
1650                        if (same_queue_rq)
1651                                *same_queue_rq = rq;
1652                }
1653
1654                if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1655                        continue;
1656
1657                el_ret = blk_try_merge(rq, bio);
1658                if (el_ret == ELEVATOR_BACK_MERGE) {
1659                        ret = bio_attempt_back_merge(q, rq, bio);
1660                        if (ret)
1661                                break;
1662                } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1663                        ret = bio_attempt_front_merge(q, rq, bio);
1664                        if (ret)
1665                                break;
1666                }
1667        }
1668out:
1669        return ret;
1670}
1671
1672unsigned int blk_plug_queued_count(struct request_queue *q)
1673{
1674        struct blk_plug *plug;
1675        struct request *rq;
1676        struct list_head *plug_list;
1677        unsigned int ret = 0;
1678
1679        plug = current->plug;
1680        if (!plug)
1681                goto out;
1682
1683        if (q->mq_ops)
1684                plug_list = &plug->mq_list;
1685        else
1686                plug_list = &plug->list;
1687
1688        list_for_each_entry(rq, plug_list, queuelist) {
1689                if (rq->q == q)
1690                        ret++;
1691        }
1692out:
1693        return ret;
1694}
1695
1696void init_request_from_bio(struct request *req, struct bio *bio)
1697{
1698        req->cmd_type = REQ_TYPE_FS;
1699
1700        req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1701        if (bio->bi_rw & REQ_RAHEAD)
1702                req->cmd_flags |= REQ_FAILFAST_MASK;
1703
1704        req->errors = 0;
1705        req->__sector = bio->bi_iter.bi_sector;
1706        req->ioprio = bio_prio(bio);
1707        blk_rq_bio_prep(req->q, req, bio);
1708}
1709
1710static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1711{
1712        const bool sync = !!(bio->bi_rw & REQ_SYNC);
1713        struct blk_plug *plug;
1714        int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1715        struct request *req;
1716        unsigned int request_count = 0;
1717
1718        /*
1719         * low level driver can indicate that it wants pages above a
1720         * certain limit bounced to low memory (ie for highmem, or even
1721         * ISA dma in theory)
1722         */
1723        blk_queue_bounce(q, &bio);
1724
1725        blk_queue_split(q, &bio, q->bio_split);
1726
1727        if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1728                bio->bi_error = -EIO;
1729                bio_endio(bio);
1730                return BLK_QC_T_NONE;
1731        }
1732
1733        if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1734                spin_lock_irq(q->queue_lock);
1735                where = ELEVATOR_INSERT_FLUSH;
1736                goto get_rq;
1737        }
1738
1739        /*
1740         * Check if we can merge with the plugged list before grabbing
1741         * any locks.
1742         */
1743        if (!blk_queue_nomerges(q)) {
1744                if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1745                        return BLK_QC_T_NONE;
1746        } else
1747                request_count = blk_plug_queued_count(q);
1748
1749        spin_lock_irq(q->queue_lock);
1750
1751        el_ret = elv_merge(q, &req, bio);
1752        if (el_ret == ELEVATOR_BACK_MERGE) {
1753                if (bio_attempt_back_merge(q, req, bio)) {
1754                        elv_bio_merged(q, req, bio);
1755                        if (!attempt_back_merge(q, req))
1756                                elv_merged_request(q, req, el_ret);
1757                        goto out_unlock;
1758                }
1759        } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1760                if (bio_attempt_front_merge(q, req, bio)) {
1761                        elv_bio_merged(q, req, bio);
1762                        if (!attempt_front_merge(q, req))
1763                                elv_merged_request(q, req, el_ret);
1764                        goto out_unlock;
1765                }
1766        }
1767
1768get_rq:
1769        /*
1770         * This sync check and mask will be re-done in init_request_from_bio(),
1771         * but we need to set it earlier to expose the sync flag to the
1772         * rq allocator and io schedulers.
1773         */
1774        rw_flags = bio_data_dir(bio);
1775        if (sync)
1776                rw_flags |= REQ_SYNC;
1777
1778        /*
1779         * Grab a free request. This is might sleep but can not fail.
1780         * Returns with the queue unlocked.
1781         */
1782        req = get_request(q, rw_flags, bio, GFP_NOIO);
1783        if (IS_ERR(req)) {
1784                bio->bi_error = PTR_ERR(req);
1785                bio_endio(bio);
1786                goto out_unlock;
1787        }
1788
1789        /*
1790         * After dropping the lock and possibly sleeping here, our request
1791         * may now be mergeable after it had proven unmergeable (above).
1792         * We don't worry about that case for efficiency. It won't happen
1793         * often, and the elevators are able to handle it.
1794         */
1795        init_request_from_bio(req, bio);
1796
1797        if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1798                req->cpu = raw_smp_processor_id();
1799
1800        plug = current->plug;
1801        if (plug) {
1802                /*
1803                 * If this is the first request added after a plug, fire
1804                 * of a plug trace.
1805                 */
1806                if (!request_count)
1807                        trace_block_plug(q);
1808                else {
1809                        if (request_count >= BLK_MAX_REQUEST_COUNT) {
1810                                blk_flush_plug_list(plug, false);
1811                                trace_block_plug(q);
1812                        }
1813                }
1814                list_add_tail(&req->queuelist, &plug->list);
1815                blk_account_io_start(req, true);
1816        } else {
1817                spin_lock_irq(q->queue_lock);
1818                add_acct_request(q, req, where);
1819                __blk_run_queue(q);
1820out_unlock:
1821                spin_unlock_irq(q->queue_lock);
1822        }
1823
1824        return BLK_QC_T_NONE;
1825}
1826
1827/*
1828 * If bio->bi_dev is a partition, remap the location
1829 */
1830static inline void blk_partition_remap(struct bio *bio)
1831{
1832        struct block_device *bdev = bio->bi_bdev;
1833
1834        if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1835                struct hd_struct *p = bdev->bd_part;
1836
1837                bio->bi_iter.bi_sector += p->start_sect;
1838                bio->bi_bdev = bdev->bd_contains;
1839
1840                trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1841                                      bdev->bd_dev,
1842                                      bio->bi_iter.bi_sector - p->start_sect);
1843        }
1844}
1845
1846static void handle_bad_sector(struct bio *bio)
1847{
1848        char b[BDEVNAME_SIZE];
1849
1850        printk(KERN_INFO "attempt to access beyond end of device\n");
1851        printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1852                        bdevname(bio->bi_bdev, b),
1853                        bio->bi_rw,
1854                        (unsigned long long)bio_end_sector(bio),
1855                        (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1856}
1857
1858#ifdef CONFIG_FAIL_MAKE_REQUEST
1859
1860static DECLARE_FAULT_ATTR(fail_make_request);
1861
1862static int __init setup_fail_make_request(char *str)
1863{
1864        return setup_fault_attr(&fail_make_request, str);
1865}
1866__setup("fail_make_request=", setup_fail_make_request);
1867
1868static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1869{
1870        return part->make_it_fail && should_fail(&fail_make_request, bytes);
1871}
1872
1873static int __init fail_make_request_debugfs(void)
1874{
1875        struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1876                                                NULL, &fail_make_request);
1877
1878        return PTR_ERR_OR_ZERO(dir);
1879}
1880
1881late_initcall(fail_make_request_debugfs);
1882
1883#else /* CONFIG_FAIL_MAKE_REQUEST */
1884
1885static inline bool should_fail_request(struct hd_struct *part,
1886                                        unsigned int bytes)
1887{
1888        return false;
1889}
1890
1891#endif /* CONFIG_FAIL_MAKE_REQUEST */
1892
1893/*
1894 * Check whether this bio extends beyond the end of the device.
1895 */
1896static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1897{
1898        sector_t maxsector;
1899
1900        if (!nr_sectors)
1901                return 0;
1902
1903        /* Test device or partition size, when known. */
1904        maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1905        if (maxsector) {
1906                sector_t sector = bio->bi_iter.bi_sector;
1907
1908                if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1909                        /*
1910                         * This may well happen - the kernel calls bread()
1911                         * without checking the size of the device, e.g., when
1912                         * mounting a device.
1913                         */
1914                        handle_bad_sector(bio);
1915                        return 1;
1916                }
1917        }
1918
1919        return 0;
1920}
1921
1922static noinline_for_stack bool
1923generic_make_request_checks(struct bio *bio)
1924{
1925        struct request_queue *q;
1926        int nr_sectors = bio_sectors(bio);
1927        int err = -EIO;
1928        char b[BDEVNAME_SIZE];
1929        struct hd_struct *part;
1930
1931        might_sleep();
1932
1933        if (bio_check_eod(bio, nr_sectors))
1934                goto end_io;
1935
1936        q = bdev_get_queue(bio->bi_bdev);
1937        if (unlikely(!q)) {
1938                printk(KERN_ERR
1939                       "generic_make_request: Trying to access "
1940                        "nonexistent block-device %s (%Lu)\n",
1941                        bdevname(bio->bi_bdev, b),
1942                        (long long) bio->bi_iter.bi_sector);
1943                goto end_io;
1944        }
1945
1946        part = bio->bi_bdev->bd_part;
1947        if (should_fail_request(part, bio->bi_iter.bi_size) ||
1948            should_fail_request(&part_to_disk(part)->part0,
1949                                bio->bi_iter.bi_size))
1950                goto end_io;
1951
1952        /*
1953         * If this device has partitions, remap block n
1954         * of partition p to block n+start(p) of the disk.
1955         */
1956        blk_partition_remap(bio);
1957
1958        if (bio_check_eod(bio, nr_sectors))
1959                goto end_io;
1960
1961        /*
1962         * Filter flush bio's early so that make_request based
1963         * drivers without flush support don't have to worry
1964         * about them.
1965         */
1966        if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1967                bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1968                if (!nr_sectors) {
1969                        err = 0;
1970                        goto end_io;
1971                }
1972        }
1973
1974        if ((bio->bi_rw & REQ_DISCARD) &&
1975            (!blk_queue_discard(q) ||
1976             ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1977                err = -EOPNOTSUPP;
1978                goto end_io;
1979        }
1980
1981        if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1982                err = -EOPNOTSUPP;
1983                goto end_io;
1984        }
1985
1986        /*
1987         * Various block parts want %current->io_context and lazy ioc
1988         * allocation ends up trading a lot of pain for a small amount of
1989         * memory.  Just allocate it upfront.  This may fail and block
1990         * layer knows how to live with it.
1991         */
1992        create_io_context(GFP_ATOMIC, q->node);
1993
1994        if (!blkcg_bio_issue_check(q, bio))
1995                return false;
1996
1997        trace_block_bio_queue(q, bio);
1998        return true;
1999
2000end_io:
2001        bio->bi_error = err;
2002        bio_endio(bio);
2003        return false;
2004}
2005
2006/**
2007 * generic_make_request - hand a buffer to its device driver for I/O
2008 * @bio:  The bio describing the location in memory and on the device.
2009 *
2010 * generic_make_request() is used to make I/O requests of block
2011 * devices. It is passed a &struct bio, which describes the I/O that needs
2012 * to be done.
2013 *
2014 * generic_make_request() does not return any status.  The
2015 * success/failure status of the request, along with notification of
2016 * completion, is delivered asynchronously through the bio->bi_end_io
2017 * function described (one day) else where.
2018 *
2019 * The caller of generic_make_request must make sure that bi_io_vec
2020 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2021 * set to describe the device address, and the
2022 * bi_end_io and optionally bi_private are set to describe how
2023 * completion notification should be signaled.
2024 *
2025 * generic_make_request and the drivers it calls may use bi_next if this
2026 * bio happens to be merged with someone else, and may resubmit the bio to
2027 * a lower device by calling into generic_make_request recursively, which
2028 * means the bio should NOT be touched after the call to ->make_request_fn.
2029 */
2030blk_qc_t generic_make_request(struct bio *bio)
2031{
2032        struct bio_list bio_list_on_stack;
2033        blk_qc_t ret = BLK_QC_T_NONE;
2034
2035        if (!generic_make_request_checks(bio))
2036                goto out;
2037
2038        /*
2039         * We only want one ->make_request_fn to be active at a time, else
2040         * stack usage with stacked devices could be a problem.  So use
2041         * current->bio_list to keep a list of requests submited by a
2042         * make_request_fn function.  current->bio_list is also used as a
2043         * flag to say if generic_make_request is currently active in this
2044         * task or not.  If it is NULL, then no make_request is active.  If
2045         * it is non-NULL, then a make_request is active, and new requests
2046         * should be added at the tail
2047         */
2048        if (current->bio_list) {
2049                bio_list_add(current->bio_list, bio);
2050                goto out;
2051        }
2052
2053        /* following loop may be a bit non-obvious, and so deserves some
2054         * explanation.
2055         * Before entering the loop, bio->bi_next is NULL (as all callers
2056         * ensure that) so we have a list with a single bio.
2057         * We pretend that we have just taken it off a longer list, so
2058         * we assign bio_list to a pointer to the bio_list_on_stack,
2059         * thus initialising the bio_list of new bios to be
2060         * added.  ->make_request() may indeed add some more bios
2061         * through a recursive call to generic_make_request.  If it
2062         * did, we find a non-NULL value in bio_list and re-enter the loop
2063         * from the top.  In this case we really did just take the bio
2064         * of the top of the list (no pretending) and so remove it from
2065         * bio_list, and call into ->make_request() again.
2066         */
2067        BUG_ON(bio->bi_next);
2068        bio_list_init(&bio_list_on_stack);
2069        current->bio_list = &bio_list_on_stack;
2070        do {
2071                struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2072
2073                if (likely(blk_queue_enter(q, false) == 0)) {
2074                        ret = q->make_request_fn(q, bio);
2075
2076                        blk_queue_exit(q);
2077
2078                        bio = bio_list_pop(current->bio_list);
2079                } else {
2080                        struct bio *bio_next = bio_list_pop(current->bio_list);
2081
2082                        bio_io_error(bio);
2083                        bio = bio_next;
2084                }
2085        } while (bio);
2086        current->bio_list = NULL; /* deactivate */
2087
2088out:
2089        return ret;
2090}
2091EXPORT_SYMBOL(generic_make_request);
2092
2093/**
2094 * submit_bio - submit a bio to the block device layer for I/O
2095 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2096 * @bio: The &struct bio which describes the I/O
2097 *
2098 * submit_bio() is very similar in purpose to generic_make_request(), and
2099 * uses that function to do most of the work. Both are fairly rough
2100 * interfaces; @bio must be presetup and ready for I/O.
2101 *
2102 */
2103blk_qc_t submit_bio(int rw, struct bio *bio)
2104{
2105        bio->bi_rw |= rw;
2106
2107        /*
2108         * If it's a regular read/write or a barrier with data attached,
2109         * go through the normal accounting stuff before submission.
2110         */
2111        if (bio_has_data(bio)) {
2112                unsigned int count;
2113
2114                if (unlikely(rw & REQ_WRITE_SAME))
2115                        count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2116                else
2117                        count = bio_sectors(bio);
2118
2119                if (rw & WRITE) {
2120                        count_vm_events(PGPGOUT, count);
2121                } else {
2122                        task_io_account_read(bio->bi_iter.bi_size);
2123                        count_vm_events(PGPGIN, count);
2124                }
2125
2126                if (unlikely(block_dump)) {
2127                        char b[BDEVNAME_SIZE];
2128                        printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2129                        current->comm, task_pid_nr(current),
2130                                (rw & WRITE) ? "WRITE" : "READ",
2131                                (unsigned long long)bio->bi_iter.bi_sector,
2132                                bdevname(bio->bi_bdev, b),
2133                                count);
2134                }
2135        }
2136
2137        return generic_make_request(bio);
2138}
2139EXPORT_SYMBOL(submit_bio);
2140
2141/**
2142 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2143 *                              for new the queue limits
2144 * @q:  the queue
2145 * @rq: the request being checked
2146 *
2147 * Description:
2148 *    @rq may have been made based on weaker limitations of upper-level queues
2149 *    in request stacking drivers, and it may violate the limitation of @q.
2150 *    Since the block layer and the underlying device driver trust @rq
2151 *    after it is inserted to @q, it should be checked against @q before
2152 *    the insertion using this generic function.
2153 *
2154 *    Request stacking drivers like request-based dm may change the queue
2155 *    limits when retrying requests on other queues. Those requests need
2156 *    to be checked against the new queue limits again during dispatch.
2157 */
2158static int blk_cloned_rq_check_limits(struct request_queue *q,
2159                                      struct request *rq)
2160{
2161        if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2162                printk(KERN_ERR "%s: over max size limit.\n", __func__);
2163                return -EIO;
2164        }
2165
2166        /*
2167         * queue's settings related to segment counting like q->bounce_pfn
2168         * may differ from that of other stacking queues.
2169         * Recalculate it to check the request correctly on this queue's
2170         * limitation.
2171         */
2172        blk_recalc_rq_segments(rq);
2173        if (rq->nr_phys_segments > queue_max_segments(q)) {
2174                printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2175                return -EIO;
2176        }
2177
2178        return 0;
2179}
2180
2181/**
2182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2183 * @q:  the queue to submit the request
2184 * @rq: the request being queued
2185 */
2186int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2187{
2188        unsigned long flags;
2189        int where = ELEVATOR_INSERT_BACK;
2190
2191        if (blk_cloned_rq_check_limits(q, rq))
2192                return -EIO;
2193
2194        if (rq->rq_disk &&
2195            should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2196                return -EIO;
2197
2198        if (q->mq_ops) {
2199                if (blk_queue_io_stat(q))
2200                        blk_account_io_start(rq, true);
2201                blk_mq_insert_request(rq, false, true, false);
2202                return 0;
2203        }
2204
2205        spin_lock_irqsave(q->queue_lock, flags);
2206        if (unlikely(blk_queue_dying(q))) {
2207                spin_unlock_irqrestore(q->queue_lock, flags);
2208                return -ENODEV;
2209        }
2210
2211        /*
2212         * Submitting request must be dequeued before calling this function
2213         * because it will be linked to another request_queue
2214         */
2215        BUG_ON(blk_queued_rq(rq));
2216
2217        if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2218                where = ELEVATOR_INSERT_FLUSH;
2219
2220        add_acct_request(q, rq, where);
2221        if (where == ELEVATOR_INSERT_FLUSH)
2222                __blk_run_queue(q);
2223        spin_unlock_irqrestore(q->queue_lock, flags);
2224
2225        return 0;
2226}
2227EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2228
2229/**
2230 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2231 * @rq: request to examine
2232 *
2233 * Description:
2234 *     A request could be merge of IOs which require different failure
2235 *     handling.  This function determines the number of bytes which
2236 *     can be failed from the beginning of the request without
2237 *     crossing into area which need to be retried further.
2238 *
2239 * Return:
2240 *     The number of bytes to fail.
2241 *
2242 * Context:
2243 *     queue_lock must be held.
2244 */
2245unsigned int blk_rq_err_bytes(const struct request *rq)
2246{
2247        unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2248        unsigned int bytes = 0;
2249        struct bio *bio;
2250
2251        if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2252                return blk_rq_bytes(rq);
2253
2254        /*
2255         * Currently the only 'mixing' which can happen is between
2256         * different fastfail types.  We can safely fail portions
2257         * which have all the failfast bits that the first one has -
2258         * the ones which are at least as eager to fail as the first
2259         * one.
2260         */
2261        for (bio = rq->bio; bio; bio = bio->bi_next) {
2262                if ((bio->bi_rw & ff) != ff)
2263                        break;
2264                bytes += bio->bi_iter.bi_size;
2265        }
2266
2267        /* this could lead to infinite loop */
2268        BUG_ON(blk_rq_bytes(rq) && !bytes);
2269        return bytes;
2270}
2271EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2272
2273void blk_account_io_completion(struct request *req, unsigned int bytes)
2274{
2275        if (blk_do_io_stat(req)) {
2276                const int rw = rq_data_dir(req);
2277                struct hd_struct *part;
2278                int cpu;
2279
2280                cpu = part_stat_lock();
2281                part = req->part;
2282                part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2283                part_stat_unlock();
2284        }
2285}
2286
2287void blk_account_io_done(struct request *req)
2288{
2289        /*
2290         * Account IO completion.  flush_rq isn't accounted as a
2291         * normal IO on queueing nor completion.  Accounting the
2292         * containing request is enough.
2293         */
2294        if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2295                unsigned long duration = jiffies - req->start_time;
2296                const int rw = rq_data_dir(req);
2297                struct hd_struct *part;
2298                int cpu;
2299
2300                cpu = part_stat_lock();
2301                part = req->part;
2302
2303                part_stat_inc(cpu, part, ios[rw]);
2304                part_stat_add(cpu, part, ticks[rw], duration);
2305                part_round_stats(cpu, part);
2306                part_dec_in_flight(part, rw);
2307
2308                hd_struct_put(part);
2309                part_stat_unlock();
2310        }
2311}
2312
2313#ifdef CONFIG_PM
2314/*
2315 * Don't process normal requests when queue is suspended
2316 * or in the process of suspending/resuming
2317 */
2318static struct request *blk_pm_peek_request(struct request_queue *q,
2319                                           struct request *rq)
2320{
2321        if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2322            (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2323                return NULL;
2324        else
2325                return rq;
2326}
2327#else
2328static inline struct request *blk_pm_peek_request(struct request_queue *q,
2329                                                  struct request *rq)
2330{
2331        return rq;
2332}
2333#endif
2334
2335void blk_account_io_start(struct request *rq, bool new_io)
2336{
2337        struct hd_struct *part;
2338        int rw = rq_data_dir(rq);
2339        int cpu;
2340
2341        if (!blk_do_io_stat(rq))
2342                return;
2343
2344        cpu = part_stat_lock();
2345
2346        if (!new_io) {
2347                part = rq->part;
2348                part_stat_inc(cpu, part, merges[rw]);
2349        } else {
2350                part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2351                if (!hd_struct_try_get(part)) {
2352                        /*
2353                         * The partition is already being removed,
2354                         * the request will be accounted on the disk only
2355                         *
2356                         * We take a reference on disk->part0 although that
2357                         * partition will never be deleted, so we can treat
2358                         * it as any other partition.
2359                         */
2360                        part = &rq->rq_disk->part0;
2361                        hd_struct_get(part);
2362                }
2363                part_round_stats(cpu, part);
2364                part_inc_in_flight(part, rw);
2365                rq->part = part;
2366        }
2367
2368        part_stat_unlock();
2369}
2370
2371/**
2372 * blk_peek_request - peek at the top of a request queue
2373 * @q: request queue to peek at
2374 *
2375 * Description:
2376 *     Return the request at the top of @q.  The returned request
2377 *     should be started using blk_start_request() before LLD starts
2378 *     processing it.
2379 *
2380 * Return:
2381 *     Pointer to the request at the top of @q if available.  Null
2382 *     otherwise.
2383 *
2384 * Context:
2385 *     queue_lock must be held.
2386 */
2387struct request *blk_peek_request(struct request_queue *q)
2388{
2389        struct request *rq;
2390        int ret;
2391
2392        while ((rq = __elv_next_request(q)) != NULL) {
2393
2394                rq = blk_pm_peek_request(q, rq);
2395                if (!rq)
2396                        break;
2397
2398                if (!(rq->cmd_flags & REQ_STARTED)) {
2399                        /*
2400                         * This is the first time the device driver
2401                         * sees this request (possibly after
2402                         * requeueing).  Notify IO scheduler.
2403                         */
2404                        if (rq->cmd_flags & REQ_SORTED)
2405                                elv_activate_rq(q, rq);
2406
2407                        /*
2408                         * just mark as started even if we don't start
2409                         * it, a request that has been delayed should
2410                         * not be passed by new incoming requests
2411                         */
2412                        rq->cmd_flags |= REQ_STARTED;
2413                        trace_block_rq_issue(q, rq);
2414                }
2415
2416                if (!q->boundary_rq || q->boundary_rq == rq) {
2417                        q->end_sector = rq_end_sector(rq);
2418                        q->boundary_rq = NULL;
2419                }
2420
2421                if (rq->cmd_flags & REQ_DONTPREP)
2422                        break;
2423
2424                if (q->dma_drain_size && blk_rq_bytes(rq)) {
2425                        /*
2426                         * make sure space for the drain appears we
2427                         * know we can do this because max_hw_segments
2428                         * has been adjusted to be one fewer than the
2429                         * device can handle
2430                         */
2431                        rq->nr_phys_segments++;
2432                }
2433
2434                if (!q->prep_rq_fn)
2435                        break;
2436
2437                ret = q->prep_rq_fn(q, rq);
2438                if (ret == BLKPREP_OK) {
2439                        break;
2440                } else if (ret == BLKPREP_DEFER) {
2441                        /*
2442                         * the request may have been (partially) prepped.
2443                         * we need to keep this request in the front to
2444                         * avoid resource deadlock.  REQ_STARTED will
2445                         * prevent other fs requests from passing this one.
2446                         */
2447                        if (q->dma_drain_size && blk_rq_bytes(rq) &&
2448                            !(rq->cmd_flags & REQ_DONTPREP)) {
2449                                /*
2450                                 * remove the space for the drain we added
2451                                 * so that we don't add it again
2452                                 */
2453                                --rq->nr_phys_segments;
2454                        }
2455
2456                        rq = NULL;
2457                        break;
2458                } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2459                        int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2460
2461                        rq->cmd_flags |= REQ_QUIET;
2462                        /*
2463                         * Mark this request as started so we don't trigger
2464                         * any debug logic in the end I/O path.
2465                         */
2466                        blk_start_request(rq);
2467                        __blk_end_request_all(rq, err);
2468                } else {
2469                        printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2470                        break;
2471                }
2472        }
2473
2474        return rq;
2475}
2476EXPORT_SYMBOL(blk_peek_request);
2477
2478void blk_dequeue_request(struct request *rq)
2479{
2480        struct request_queue *q = rq->q;
2481
2482        BUG_ON(list_empty(&rq->queuelist));
2483        BUG_ON(ELV_ON_HASH(rq));
2484
2485        list_del_init(&rq->queuelist);
2486
2487        /*
2488         * the time frame between a request being removed from the lists
2489         * and to it is freed is accounted as io that is in progress at
2490         * the driver side.
2491         */
2492        if (blk_account_rq(rq)) {
2493                q->in_flight[rq_is_sync(rq)]++;
2494                set_io_start_time_ns(rq);
2495        }
2496}
2497
2498/**
2499 * blk_start_request - start request processing on the driver
2500 * @req: request to dequeue
2501 *
2502 * Description:
2503 *     Dequeue @req and start timeout timer on it.  This hands off the
2504 *     request to the driver.
2505 *
2506 *     Block internal functions which don't want to start timer should
2507 *     call blk_dequeue_request().
2508 *
2509 * Context:
2510 *     queue_lock must be held.
2511 */
2512void blk_start_request(struct request *req)
2513{
2514        blk_dequeue_request(req);
2515
2516        /*
2517         * We are now handing the request to the hardware, initialize
2518         * resid_len to full count and add the timeout handler.
2519         */
2520        req->resid_len = blk_rq_bytes(req);
2521        if (unlikely(blk_bidi_rq(req)))
2522                req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2523
2524        BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2525        blk_add_timer(req);
2526}
2527EXPORT_SYMBOL(blk_start_request);
2528
2529/**
2530 * blk_fetch_request - fetch a request from a request queue
2531 * @q: request queue to fetch a request from
2532 *
2533 * Description:
2534 *     Return the request at the top of @q.  The request is started on
2535 *     return and LLD can start processing it immediately.
2536 *
2537 * Return:
2538 *     Pointer to the request at the top of @q if available.  Null
2539 *     otherwise.
2540 *
2541 * Context:
2542 *     queue_lock must be held.
2543 */
2544struct request *blk_fetch_request(struct request_queue *q)
2545{
2546        struct request *rq;
2547
2548        rq = blk_peek_request(q);
2549        if (rq)
2550                blk_start_request(rq);
2551        return rq;
2552}
2553EXPORT_SYMBOL(blk_fetch_request);
2554
2555/**
2556 * blk_update_request - Special helper function for request stacking drivers
2557 * @req:      the request being processed
2558 * @error:    %0 for success, < %0 for error
2559 * @nr_bytes: number of bytes to complete @req
2560 *
2561 * Description:
2562 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2563 *     the request structure even if @req doesn't have leftover.
2564 *     If @req has leftover, sets it up for the next range of segments.
2565 *
2566 *     This special helper function is only for request stacking drivers
2567 *     (e.g. request-based dm) so that they can handle partial completion.
2568 *     Actual device drivers should use blk_end_request instead.
2569 *
2570 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2571 *     %false return from this function.
2572 *
2573 * Return:
2574 *     %false - this request doesn't have any more data
2575 *     %true  - this request has more data
2576 **/
2577bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2578{
2579        int total_bytes;
2580
2581        trace_block_rq_complete(req->q, req, nr_bytes);
2582
2583        if (!req->bio)
2584                return false;
2585
2586        /*
2587         * For fs requests, rq is just carrier of independent bio's
2588         * and each partial completion should be handled separately.
2589         * Reset per-request error on each partial completion.
2590         *
2591         * TODO: tj: This is too subtle.  It would be better to let
2592         * low level drivers do what they see fit.
2593         */
2594        if (req->cmd_type == REQ_TYPE_FS)
2595                req->errors = 0;
2596
2597        if (error && req->cmd_type == REQ_TYPE_FS &&
2598            !(req->cmd_flags & REQ_QUIET)) {
2599                char *error_type;
2600
2601                switch (error) {
2602                case -ENOLINK:
2603                        error_type = "recoverable transport";
2604                        break;
2605                case -EREMOTEIO:
2606                        error_type = "critical target";
2607                        break;
2608                case -EBADE:
2609                        error_type = "critical nexus";
2610                        break;
2611                case -ETIMEDOUT:
2612                        error_type = "timeout";
2613                        break;
2614                case -ENOSPC:
2615                        error_type = "critical space allocation";
2616                        break;
2617                case -ENODATA:
2618                        error_type = "critical medium";
2619                        break;
2620                case -EIO:
2621                default:
2622                        error_type = "I/O";
2623                        break;
2624                }
2625                printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2626                                   __func__, error_type, req->rq_disk ?
2627                                   req->rq_disk->disk_name : "?",
2628                                   (unsigned long long)blk_rq_pos(req));
2629
2630        }
2631
2632        blk_account_io_completion(req, nr_bytes);
2633
2634        total_bytes = 0;
2635        while (req->bio) {
2636                struct bio *bio = req->bio;
2637                unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2638
2639                if (bio_bytes == bio->bi_iter.bi_size)
2640                        req->bio = bio->bi_next;
2641
2642                req_bio_endio(req, bio, bio_bytes, error);
2643
2644                total_bytes += bio_bytes;
2645                nr_bytes -= bio_bytes;
2646
2647                if (!nr_bytes)
2648                        break;
2649        }
2650
2651        /*
2652         * completely done
2653         */
2654        if (!req->bio) {
2655                /*
2656                 * Reset counters so that the request stacking driver
2657                 * can find how many bytes remain in the request
2658                 * later.
2659                 */
2660                req->__data_len = 0;
2661                return false;
2662        }
2663
2664        req->__data_len -= total_bytes;
2665
2666        /* update sector only for requests with clear definition of sector */
2667        if (req->cmd_type == REQ_TYPE_FS)
2668                req->__sector += total_bytes >> 9;
2669
2670        /* mixed attributes always follow the first bio */
2671        if (req->cmd_flags & REQ_MIXED_MERGE) {
2672                req->cmd_flags &= ~REQ_FAILFAST_MASK;
2673                req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2674        }
2675
2676        /*
2677         * If total number of sectors is less than the first segment
2678         * size, something has gone terribly wrong.
2679         */
2680        if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2681                blk_dump_rq_flags(req, "request botched");
2682                req->__data_len = blk_rq_cur_bytes(req);
2683        }
2684
2685        /* recalculate the number of segments */
2686        blk_recalc_rq_segments(req);
2687
2688        return true;
2689}
2690EXPORT_SYMBOL_GPL(blk_update_request);
2691
2692static bool blk_update_bidi_request(struct request *rq, int error,
2693                                    unsigned int nr_bytes,
2694                                    unsigned int bidi_bytes)
2695{
2696        if (blk_update_request(rq, error, nr_bytes))
2697                return true;
2698
2699        /* Bidi request must be completed as a whole */
2700        if (unlikely(blk_bidi_rq(rq)) &&
2701            blk_update_request(rq->next_rq, error, bidi_bytes))
2702                return true;
2703
2704        if (blk_queue_add_random(rq->q))
2705                add_disk_randomness(rq->rq_disk);
2706
2707        return false;
2708}
2709
2710/**
2711 * blk_unprep_request - unprepare a request
2712 * @req:        the request
2713 *
2714 * This function makes a request ready for complete resubmission (or
2715 * completion).  It happens only after all error handling is complete,
2716 * so represents the appropriate moment to deallocate any resources
2717 * that were allocated to the request in the prep_rq_fn.  The queue
2718 * lock is held when calling this.
2719 */
2720void blk_unprep_request(struct request *req)
2721{
2722        struct request_queue *q = req->q;
2723
2724        req->cmd_flags &= ~REQ_DONTPREP;
2725        if (q->unprep_rq_fn)
2726                q->unprep_rq_fn(q, req);
2727}
2728EXPORT_SYMBOL_GPL(blk_unprep_request);
2729
2730/*
2731 * queue lock must be held
2732 */
2733void blk_finish_request(struct request *req, int error)
2734{
2735        if (req->cmd_flags & REQ_QUEUED)
2736                blk_queue_end_tag(req->q, req);
2737
2738        BUG_ON(blk_queued_rq(req));
2739
2740        if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2741                laptop_io_completion(&req->q->backing_dev_info);
2742
2743        blk_delete_timer(req);
2744
2745        if (req->cmd_flags & REQ_DONTPREP)
2746                blk_unprep_request(req);
2747
2748        blk_account_io_done(req);
2749
2750        if (req->end_io)
2751                req->end_io(req, error);
2752        else {
2753                if (blk_bidi_rq(req))
2754                        __blk_put_request(req->next_rq->q, req->next_rq);
2755
2756                __blk_put_request(req->q, req);
2757        }
2758}
2759EXPORT_SYMBOL(blk_finish_request);
2760
2761/**
2762 * blk_end_bidi_request - Complete a bidi request
2763 * @rq:         the request to complete
2764 * @error:      %0 for success, < %0 for error
2765 * @nr_bytes:   number of bytes to complete @rq
2766 * @bidi_bytes: number of bytes to complete @rq->next_rq
2767 *
2768 * Description:
2769 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2770 *     Drivers that supports bidi can safely call this member for any
2771 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2772 *     just ignored.
2773 *
2774 * Return:
2775 *     %false - we are done with this request
2776 *     %true  - still buffers pending for this request
2777 **/
2778static bool blk_end_bidi_request(struct request *rq, int error,
2779                                 unsigned int nr_bytes, unsigned int bidi_bytes)
2780{
2781        struct request_queue *q = rq->q;
2782        unsigned long flags;
2783
2784        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2785                return true;
2786
2787        spin_lock_irqsave(q->queue_lock, flags);
2788        blk_finish_request(rq, error);
2789        spin_unlock_irqrestore(q->queue_lock, flags);
2790
2791        return false;
2792}
2793
2794/**
2795 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2796 * @rq:         the request to complete
2797 * @error:      %0 for success, < %0 for error
2798 * @nr_bytes:   number of bytes to complete @rq
2799 * @bidi_bytes: number of bytes to complete @rq->next_rq
2800 *
2801 * Description:
2802 *     Identical to blk_end_bidi_request() except that queue lock is
2803 *     assumed to be locked on entry and remains so on return.
2804 *
2805 * Return:
2806 *     %false - we are done with this request
2807 *     %true  - still buffers pending for this request
2808 **/
2809bool __blk_end_bidi_request(struct request *rq, int error,
2810                                   unsigned int nr_bytes, unsigned int bidi_bytes)
2811{
2812        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2813                return true;
2814
2815        blk_finish_request(rq, error);
2816
2817        return false;
2818}
2819
2820/**
2821 * blk_end_request - Helper function for drivers to complete the request.
2822 * @rq:       the request being processed
2823 * @error:    %0 for success, < %0 for error
2824 * @nr_bytes: number of bytes to complete
2825 *
2826 * Description:
2827 *     Ends I/O on a number of bytes attached to @rq.
2828 *     If @rq has leftover, sets it up for the next range of segments.
2829 *
2830 * Return:
2831 *     %false - we are done with this request
2832 *     %true  - still buffers pending for this request
2833 **/
2834bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2835{
2836        return blk_end_bidi_request(rq, error, nr_bytes, 0);
2837}
2838EXPORT_SYMBOL(blk_end_request);
2839
2840/**
2841 * blk_end_request_all - Helper function for drives to finish the request.
2842 * @rq: the request to finish
2843 * @error: %0 for success, < %0 for error
2844 *
2845 * Description:
2846 *     Completely finish @rq.
2847 */
2848void blk_end_request_all(struct request *rq, int error)
2849{
2850        bool pending;
2851        unsigned int bidi_bytes = 0;
2852
2853        if (unlikely(blk_bidi_rq(rq)))
2854                bidi_bytes = blk_rq_bytes(rq->next_rq);
2855
2856        pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2857        BUG_ON(pending);
2858}
2859EXPORT_SYMBOL(blk_end_request_all);
2860
2861/**
2862 * blk_end_request_cur - Helper function to finish the current request chunk.
2863 * @rq: the request to finish the current chunk for
2864 * @error: %0 for success, < %0 for error
2865 *
2866 * Description:
2867 *     Complete the current consecutively mapped chunk from @rq.
2868 *
2869 * Return:
2870 *     %false - we are done with this request
2871 *     %true  - still buffers pending for this request
2872 */
2873bool blk_end_request_cur(struct request *rq, int error)
2874{
2875        return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2876}
2877EXPORT_SYMBOL(blk_end_request_cur);
2878
2879/**
2880 * blk_end_request_err - Finish a request till the next failure boundary.
2881 * @rq: the request to finish till the next failure boundary for
2882 * @error: must be negative errno
2883 *
2884 * Description:
2885 *     Complete @rq till the next failure boundary.
2886 *
2887 * Return:
2888 *     %false - we are done with this request
2889 *     %true  - still buffers pending for this request
2890 */
2891bool blk_end_request_err(struct request *rq, int error)
2892{
2893        WARN_ON(error >= 0);
2894        return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2895}
2896EXPORT_SYMBOL_GPL(blk_end_request_err);
2897
2898/**
2899 * __blk_end_request - Helper function for drivers to complete the request.
2900 * @rq:       the request being processed
2901 * @error:    %0 for success, < %0 for error
2902 * @nr_bytes: number of bytes to complete
2903 *
2904 * Description:
2905 *     Must be called with queue lock held unlike blk_end_request().
2906 *
2907 * Return:
2908 *     %false - we are done with this request
2909 *     %true  - still buffers pending for this request
2910 **/
2911bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2912{
2913        return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2914}
2915EXPORT_SYMBOL(__blk_end_request);
2916
2917/**
2918 * __blk_end_request_all - Helper function for drives to finish the request.
2919 * @rq: the request to finish
2920 * @error: %0 for success, < %0 for error
2921 *
2922 * Description:
2923 *     Completely finish @rq.  Must be called with queue lock held.
2924 */
2925void __blk_end_request_all(struct request *rq, int error)
2926{
2927        bool pending;
2928        unsigned int bidi_bytes = 0;
2929
2930        if (unlikely(blk_bidi_rq(rq)))
2931                bidi_bytes = blk_rq_bytes(rq->next_rq);
2932
2933        pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2934        BUG_ON(pending);
2935}
2936EXPORT_SYMBOL(__blk_end_request_all);
2937
2938/**
2939 * __blk_end_request_cur - Helper function to finish the current request chunk.
2940 * @rq: the request to finish the current chunk for
2941 * @error: %0 for success, < %0 for error
2942 *
2943 * Description:
2944 *     Complete the current consecutively mapped chunk from @rq.  Must
2945 *     be called with queue lock held.
2946 *
2947 * Return:
2948 *     %false - we are done with this request
2949 *     %true  - still buffers pending for this request
2950 */
2951bool __blk_end_request_cur(struct request *rq, int error)
2952{
2953        return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2954}
2955EXPORT_SYMBOL(__blk_end_request_cur);
2956
2957/**
2958 * __blk_end_request_err - Finish a request till the next failure boundary.
2959 * @rq: the request to finish till the next failure boundary for
2960 * @error: must be negative errno
2961 *
2962 * Description:
2963 *     Complete @rq till the next failure boundary.  Must be called
2964 *     with queue lock held.
2965 *
2966 * Return:
2967 *     %false - we are done with this request
2968 *     %true  - still buffers pending for this request
2969 */
2970bool __blk_end_request_err(struct request *rq, int error)
2971{
2972        WARN_ON(error >= 0);
2973        return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2974}
2975EXPORT_SYMBOL_GPL(__blk_end_request_err);
2976
2977void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2978                     struct bio *bio)
2979{
2980        /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2981        rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2982
2983        if (bio_has_data(bio))
2984                rq->nr_phys_segments = bio_phys_segments(q, bio);
2985
2986        rq->__data_len = bio->bi_iter.bi_size;
2987        rq->bio = rq->biotail = bio;
2988
2989        if (bio->bi_bdev)
2990                rq->rq_disk = bio->bi_bdev->bd_disk;
2991}
2992
2993#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2994/**
2995 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2996 * @rq: the request to be flushed
2997 *
2998 * Description:
2999 *     Flush all pages in @rq.
3000 */
3001void rq_flush_dcache_pages(struct request *rq)
3002{
3003        struct req_iterator iter;
3004        struct bio_vec bvec;
3005
3006        rq_for_each_segment(bvec, rq, iter)
3007                flush_dcache_page(bvec.bv_page);
3008}
3009EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3010#endif
3011
3012/**
3013 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3014 * @q : the queue of the device being checked
3015 *
3016 * Description:
3017 *    Check if underlying low-level drivers of a device are busy.
3018 *    If the drivers want to export their busy state, they must set own
3019 *    exporting function using blk_queue_lld_busy() first.
3020 *
3021 *    Basically, this function is used only by request stacking drivers
3022 *    to stop dispatching requests to underlying devices when underlying
3023 *    devices are busy.  This behavior helps more I/O merging on the queue
3024 *    of the request stacking driver and prevents I/O throughput regression
3025 *    on burst I/O load.
3026 *
3027 * Return:
3028 *    0 - Not busy (The request stacking driver should dispatch request)
3029 *    1 - Busy (The request stacking driver should stop dispatching request)
3030 */
3031int blk_lld_busy(struct request_queue *q)
3032{
3033        if (q->lld_busy_fn)
3034                return q->lld_busy_fn(q);
3035
3036        return 0;
3037}
3038EXPORT_SYMBOL_GPL(blk_lld_busy);
3039
3040/**
3041 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3042 * @rq: the clone request to be cleaned up
3043 *
3044 * Description:
3045 *     Free all bios in @rq for a cloned request.
3046 */
3047void blk_rq_unprep_clone(struct request *rq)
3048{
3049        struct bio *bio;
3050
3051        while ((bio = rq->bio) != NULL) {
3052                rq->bio = bio->bi_next;
3053
3054                bio_put(bio);
3055        }
3056}
3057EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3058
3059/*
3060 * Copy attributes of the original request to the clone request.
3061 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3062 */
3063static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3064{
3065        dst->cpu = src->cpu;
3066        dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3067        dst->cmd_type = src->cmd_type;
3068        dst->__sector = blk_rq_pos(src);
3069        dst->__data_len = blk_rq_bytes(src);
3070        dst->nr_phys_segments = src->nr_phys_segments;
3071        dst->ioprio = src->ioprio;
3072        dst->extra_len = src->extra_len;
3073}
3074
3075/**
3076 * blk_rq_prep_clone - Helper function to setup clone request
3077 * @rq: the request to be setup
3078 * @rq_src: original request to be cloned
3079 * @bs: bio_set that bios for clone are allocated from
3080 * @gfp_mask: memory allocation mask for bio
3081 * @bio_ctr: setup function to be called for each clone bio.
3082 *           Returns %0 for success, non %0 for failure.
3083 * @data: private data to be passed to @bio_ctr
3084 *
3085 * Description:
3086 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3087 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3088 *     are not copied, and copying such parts is the caller's responsibility.
3089 *     Also, pages which the original bios are pointing to are not copied
3090 *     and the cloned bios just point same pages.
3091 *     So cloned bios must be completed before original bios, which means
3092 *     the caller must complete @rq before @rq_src.
3093 */
3094int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3095                      struct bio_set *bs, gfp_t gfp_mask,
3096                      int (*bio_ctr)(struct bio *, struct bio *, void *),
3097                      void *data)
3098{
3099        struct bio *bio, *bio_src;
3100
3101        if (!bs)
3102                bs = fs_bio_set;
3103
3104        __rq_for_each_bio(bio_src, rq_src) {
3105                bio = bio_clone_fast(bio_src, gfp_mask, bs);
3106                if (!bio)
3107                        goto free_and_out;
3108
3109                if (bio_ctr && bio_ctr(bio, bio_src, data))
3110                        goto free_and_out;
3111
3112                if (rq->bio) {
3113                        rq->biotail->bi_next = bio;
3114                        rq->biotail = bio;
3115                } else
3116                        rq->bio = rq->biotail = bio;
3117        }
3118
3119        __blk_rq_prep_clone(rq, rq_src);
3120
3121        return 0;
3122
3123free_and_out:
3124        if (bio)
3125                bio_put(bio);
3126        blk_rq_unprep_clone(rq);
3127
3128        return -ENOMEM;
3129}
3130EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3131
3132int kblockd_schedule_work(struct work_struct *work)
3133{
3134        return queue_work(kblockd_workqueue, work);
3135}
3136EXPORT_SYMBOL(kblockd_schedule_work);
3137
3138int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3139                                  unsigned long delay)
3140{
3141        return queue_delayed_work(kblockd_workqueue, dwork, delay);
3142}
3143EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3144
3145int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3146                                     unsigned long delay)
3147{
3148        return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3149}
3150EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3151
3152/**
3153 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3154 * @plug:       The &struct blk_plug that needs to be initialized
3155 *
3156 * Description:
3157 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3158 *   pending I/O should the task end up blocking between blk_start_plug() and
3159 *   blk_finish_plug(). This is important from a performance perspective, but
3160 *   also ensures that we don't deadlock. For instance, if the task is blocking
3161 *   for a memory allocation, memory reclaim could end up wanting to free a
3162 *   page belonging to that request that is currently residing in our private
3163 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3164 *   this kind of deadlock.
3165 */
3166void blk_start_plug(struct blk_plug *plug)
3167{
3168        struct task_struct *tsk = current;
3169
3170        /*
3171         * If this is a nested plug, don't actually assign it.
3172         */
3173        if (tsk->plug)
3174                return;
3175
3176        INIT_LIST_HEAD(&plug->list);
3177        INIT_LIST_HEAD(&plug->mq_list);
3178        INIT_LIST_HEAD(&plug->cb_list);
3179        /*
3180         * Store ordering should not be needed here, since a potential
3181         * preempt will imply a full memory barrier
3182         */
3183        tsk->plug = plug;
3184}
3185EXPORT_SYMBOL(blk_start_plug);
3186
3187static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3188{
3189        struct request *rqa = container_of(a, struct request, queuelist);
3190        struct request *rqb = container_of(b, struct request, queuelist);
3191
3192        return !(rqa->q < rqb->q ||
3193                (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3194}
3195
3196/*
3197 * If 'from_schedule' is true, then postpone the dispatch of requests
3198 * until a safe kblockd context. We due this to avoid accidental big
3199 * additional stack usage in driver dispatch, in places where the originally
3200 * plugger did not intend it.
3201 */
3202static void queue_unplugged(struct request_queue *q, unsigned int depth,
3203                            bool from_schedule)
3204        __releases(q->queue_lock)
3205{
3206        trace_block_unplug(q, depth, !from_schedule);
3207
3208        if (from_schedule)
3209                blk_run_queue_async(q);
3210        else
3211                __blk_run_queue(q);
3212        spin_unlock(q->queue_lock);
3213}
3214
3215static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3216{
3217        LIST_HEAD(callbacks);
3218
3219        while (!list_empty(&plug->cb_list)) {
3220                list_splice_init(&plug->cb_list, &callbacks);
3221
3222                while (!list_empty(&callbacks)) {
3223                        struct blk_plug_cb *cb = list_first_entry(&callbacks,
3224                                                          struct blk_plug_cb,
3225                                                          list);
3226                        list_del(&cb->list);
3227                        cb->callback(cb, from_schedule);
3228                }
3229        }
3230}
3231
3232struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3233                                      int size)
3234{
3235        struct blk_plug *plug = current->plug;
3236        struct blk_plug_cb *cb;
3237
3238        if (!plug)
3239                return NULL;
3240
3241        list_for_each_entry(cb, &plug->cb_list, list)
3242                if (cb->callback == unplug && cb->data == data)
3243                        return cb;
3244
3245        /* Not currently on the callback list */
3246        BUG_ON(size < sizeof(*cb));
3247        cb = kzalloc(size, GFP_ATOMIC);
3248        if (cb) {
3249                cb->data = data;
3250                cb->callback = unplug;
3251                list_add(&cb->list, &plug->cb_list);
3252        }
3253        return cb;
3254}
3255EXPORT_SYMBOL(blk_check_plugged);
3256
3257void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3258{
3259        struct request_queue *q;
3260        unsigned long flags;
3261        struct request *rq;
3262        LIST_HEAD(list);
3263        unsigned int depth;
3264
3265        flush_plug_callbacks(plug, from_schedule);
3266
3267        if (!list_empty(&plug->mq_list))
3268                blk_mq_flush_plug_list(plug, from_schedule);
3269
3270        if (list_empty(&plug->list))
3271                return;
3272
3273        list_splice_init(&plug->list, &list);
3274
3275        list_sort(NULL, &list, plug_rq_cmp);
3276
3277        q = NULL;
3278        depth = 0;
3279
3280        /*
3281         * Save and disable interrupts here, to avoid doing it for every
3282         * queue lock we have to take.
3283         */
3284        local_irq_save(flags);
3285        while (!list_empty(&list)) {
3286                rq = list_entry_rq(list.next);
3287                list_del_init(&rq->queuelist);
3288                BUG_ON(!rq->q);
3289                if (rq->q != q) {
3290                        /*
3291                         * This drops the queue lock
3292                         */
3293                        if (q)
3294                                queue_unplugged(q, depth, from_schedule);
3295                        q = rq->q;
3296                        depth = 0;
3297                        spin_lock(q->queue_lock);
3298                }
3299
3300                /*
3301                 * Short-circuit if @q is dead
3302                 */
3303                if (unlikely(blk_queue_dying(q))) {
3304                        __blk_end_request_all(rq, -ENODEV);
3305                        continue;
3306                }
3307
3308                /*
3309                 * rq is already accounted, so use raw insert
3310                 */
3311                if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3312                        __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3313                else
3314                        __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3315
3316                depth++;
3317        }
3318
3319        /*
3320         * This drops the queue lock
3321         */
3322        if (q)
3323                queue_unplugged(q, depth, from_schedule);
3324
3325        local_irq_restore(flags);
3326}
3327
3328void blk_finish_plug(struct blk_plug *plug)
3329{
3330        if (plug != current->plug)
3331                return;
3332        blk_flush_plug_list(plug, false);
3333
3334        current->plug = NULL;
3335}
3336EXPORT_SYMBOL(blk_finish_plug);
3337
3338bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3339{
3340        struct blk_plug *plug;
3341        long state;
3342
3343        if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3344            !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3345                return false;
3346
3347        plug = current->plug;
3348        if (plug)
3349                blk_flush_plug_list(plug, false);
3350
3351        state = current->state;
3352        while (!need_resched()) {
3353                unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3354                struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3355                int ret;
3356
3357                hctx->poll_invoked++;
3358
3359                ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3360                if (ret > 0) {
3361                        hctx->poll_success++;
3362                        set_current_state(TASK_RUNNING);
3363                        return true;
3364                }
3365
3366                if (signal_pending_state(state, current))
3367                        set_current_state(TASK_RUNNING);
3368
3369                if (current->state == TASK_RUNNING)
3370                        return true;
3371                if (ret < 0)
3372                        break;
3373                cpu_relax();
3374        }
3375
3376        return false;
3377}
3378
3379#ifdef CONFIG_PM
3380/**
3381 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3382 * @q: the queue of the device
3383 * @dev: the device the queue belongs to
3384 *
3385 * Description:
3386 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3387 *    @dev. Drivers that want to take advantage of request-based runtime PM
3388 *    should call this function after @dev has been initialized, and its
3389 *    request queue @q has been allocated, and runtime PM for it can not happen
3390 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3391 *    cases, driver should call this function before any I/O has taken place.
3392 *
3393 *    This function takes care of setting up using auto suspend for the device,
3394 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3395 *    until an updated value is either set by user or by driver. Drivers do
3396 *    not need to touch other autosuspend settings.
3397 *
3398 *    The block layer runtime PM is request based, so only works for drivers
3399 *    that use request as their IO unit instead of those directly use bio's.
3400 */
3401void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3402{
3403        q->dev = dev;
3404        q->rpm_status = RPM_ACTIVE;
3405        pm_runtime_set_autosuspend_delay(q->dev, -1);
3406        pm_runtime_use_autosuspend(q->dev);
3407}
3408EXPORT_SYMBOL(blk_pm_runtime_init);
3409
3410/**
3411 * blk_pre_runtime_suspend - Pre runtime suspend check
3412 * @q: the queue of the device
3413 *
3414 * Description:
3415 *    This function will check if runtime suspend is allowed for the device
3416 *    by examining if there are any requests pending in the queue. If there
3417 *    are requests pending, the device can not be runtime suspended; otherwise,
3418 *    the queue's status will be updated to SUSPENDING and the driver can
3419 *    proceed to suspend the device.
3420 *
3421 *    For the not allowed case, we mark last busy for the device so that
3422 *    runtime PM core will try to autosuspend it some time later.
3423 *
3424 *    This function should be called near the start of the device's
3425 *    runtime_suspend callback.
3426 *
3427 * Return:
3428 *    0         - OK to runtime suspend the device
3429 *    -EBUSY    - Device should not be runtime suspended
3430 */
3431int blk_pre_runtime_suspend(struct request_queue *q)
3432{
3433        int ret = 0;
3434
3435        if (!q->dev)
3436                return ret;
3437
3438        spin_lock_irq(q->queue_lock);
3439        if (q->nr_pending) {
3440                ret = -EBUSY;
3441                pm_runtime_mark_last_busy(q->dev);
3442        } else {
3443                q->rpm_status = RPM_SUSPENDING;
3444        }
3445        spin_unlock_irq(q->queue_lock);
3446        return ret;
3447}
3448EXPORT_SYMBOL(blk_pre_runtime_suspend);
3449
3450/**
3451 * blk_post_runtime_suspend - Post runtime suspend processing
3452 * @q: the queue of the device
3453 * @err: return value of the device's runtime_suspend function
3454 *
3455 * Description:
3456 *    Update the queue's runtime status according to the return value of the
3457 *    device's runtime suspend function and mark last busy for the device so
3458 *    that PM core will try to auto suspend the device at a later time.
3459 *
3460 *    This function should be called near the end of the device's
3461 *    runtime_suspend callback.
3462 */
3463void blk_post_runtime_suspend(struct request_queue *q, int err)
3464{
3465        if (!q->dev)
3466                return;
3467
3468        spin_lock_irq(q->queue_lock);
3469        if (!err) {
3470                q->rpm_status = RPM_SUSPENDED;
3471        } else {
3472                q->rpm_status = RPM_ACTIVE;
3473                pm_runtime_mark_last_busy(q->dev);
3474        }
3475        spin_unlock_irq(q->queue_lock);
3476}
3477EXPORT_SYMBOL(blk_post_runtime_suspend);
3478
3479/**
3480 * blk_pre_runtime_resume - Pre runtime resume processing
3481 * @q: the queue of the device
3482 *
3483 * Description:
3484 *    Update the queue's runtime status to RESUMING in preparation for the
3485 *    runtime resume of the device.
3486 *
3487 *    This function should be called near the start of the device's
3488 *    runtime_resume callback.
3489 */
3490void blk_pre_runtime_resume(struct request_queue *q)
3491{
3492        if (!q->dev)
3493                return;
3494
3495        spin_lock_irq(q->queue_lock);
3496        q->rpm_status = RPM_RESUMING;
3497        spin_unlock_irq(q->queue_lock);
3498}
3499EXPORT_SYMBOL(blk_pre_runtime_resume);
3500
3501/**
3502 * blk_post_runtime_resume - Post runtime resume processing
3503 * @q: the queue of the device
3504 * @err: return value of the device's runtime_resume function
3505 *
3506 * Description:
3507 *    Update the queue's runtime status according to the return value of the
3508 *    device's runtime_resume function. If it is successfully resumed, process
3509 *    the requests that are queued into the device's queue when it is resuming
3510 *    and then mark last busy and initiate autosuspend for it.
3511 *
3512 *    This function should be called near the end of the device's
3513 *    runtime_resume callback.
3514 */
3515void blk_post_runtime_resume(struct request_queue *q, int err)
3516{
3517        if (!q->dev)
3518                return;
3519
3520        spin_lock_irq(q->queue_lock);
3521        if (!err) {
3522                q->rpm_status = RPM_ACTIVE;
3523                __blk_run_queue(q);
3524                pm_runtime_mark_last_busy(q->dev);
3525                pm_request_autosuspend(q->dev);
3526        } else {
3527                q->rpm_status = RPM_SUSPENDED;
3528        }
3529        spin_unlock_irq(q->queue_lock);
3530}
3531EXPORT_SYMBOL(blk_post_runtime_resume);
3532
3533/**
3534 * blk_set_runtime_active - Force runtime status of the queue to be active
3535 * @q: the queue of the device
3536 *
3537 * If the device is left runtime suspended during system suspend the resume
3538 * hook typically resumes the device and corrects runtime status
3539 * accordingly. However, that does not affect the queue runtime PM status
3540 * which is still "suspended". This prevents processing requests from the
3541 * queue.
3542 *
3543 * This function can be used in driver's resume hook to correct queue
3544 * runtime PM status and re-enable peeking requests from the queue. It
3545 * should be called before first request is added to the queue.
3546 */
3547void blk_set_runtime_active(struct request_queue *q)
3548{
3549        spin_lock_irq(q->queue_lock);
3550        q->rpm_status = RPM_ACTIVE;
3551        pm_runtime_mark_last_busy(q->dev);
3552        pm_request_autosuspend(q->dev);
3553        spin_unlock_irq(q->queue_lock);
3554}
3555EXPORT_SYMBOL(blk_set_runtime_active);
3556#endif
3557
3558int __init blk_dev_init(void)
3559{
3560        BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3561                        FIELD_SIZEOF(struct request, cmd_flags));
3562
3563        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3564        kblockd_workqueue = alloc_workqueue("kblockd",
3565                                            WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3566        if (!kblockd_workqueue)
3567                panic("Failed to create kblockd\n");
3568
3569        request_cachep = kmem_cache_create("blkdev_requests",
3570                        sizeof(struct request), 0, SLAB_PANIC, NULL);
3571
3572        blk_requestq_cachep = kmem_cache_create("request_queue",
3573                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3574
3575        return 0;
3576}
3577