linux/block/blk-flush.c
<<
>>
Prefs
   1/*
   2 * Functions to sequence FLUSH and FUA writes.
   3 *
   4 * Copyright (C) 2011           Max Planck Institute for Gravitational Physics
   5 * Copyright (C) 2011           Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
   8 *
   9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
  10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
  11 * properties and hardware capability.
  12 *
  13 * If a request doesn't have data, only REQ_FLUSH makes sense, which
  14 * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
  15 * that the device cache should be flushed before the data is executed, and
  16 * REQ_FUA means that the data must be on non-volatile media on request
  17 * completion.
  18 *
  19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
  20 * difference.  The requests are either completed immediately if there's no
  21 * data or executed as normal requests otherwise.
  22 *
  23 * If the device has writeback cache and supports FUA, REQ_FLUSH is
  24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
  25 *
  26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
  27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
  28 *
  29 * The actual execution of flush is double buffered.  Whenever a request
  30 * needs to execute PRE or POSTFLUSH, it queues at
  31 * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
  32 * flush is issued and the pending_idx is toggled.  When the flush
  33 * completes, all the requests which were pending are proceeded to the next
  34 * step.  This allows arbitrary merging of different types of FLUSH/FUA
  35 * requests.
  36 *
  37 * Currently, the following conditions are used to determine when to issue
  38 * flush.
  39 *
  40 * C1. At any given time, only one flush shall be in progress.  This makes
  41 *     double buffering sufficient.
  42 *
  43 * C2. Flush is deferred if any request is executing DATA of its sequence.
  44 *     This avoids issuing separate POSTFLUSHes for requests which shared
  45 *     PREFLUSH.
  46 *
  47 * C3. The second condition is ignored if there is a request which has
  48 *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
  49 *     starvation in the unlikely case where there are continuous stream of
  50 *     FUA (without FLUSH) requests.
  51 *
  52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
  53 * is beneficial.
  54 *
  55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
  56 * Once while executing DATA and again after the whole sequence is
  57 * complete.  The first completion updates the contained bio but doesn't
  58 * finish it so that the bio submitter is notified only after the whole
  59 * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
  60 * req_bio_endio().
  61 *
  62 * The above peculiarity requires that each FLUSH/FUA request has only one
  63 * bio attached to it, which is guaranteed as they aren't allowed to be
  64 * merged in the usual way.
  65 */
  66
  67#include <linux/kernel.h>
  68#include <linux/module.h>
  69#include <linux/bio.h>
  70#include <linux/blkdev.h>
  71#include <linux/gfp.h>
  72#include <linux/blk-mq.h>
  73
  74#include "blk.h"
  75#include "blk-mq.h"
  76#include "blk-mq-tag.h"
  77
  78/* FLUSH/FUA sequences */
  79enum {
  80        REQ_FSEQ_PREFLUSH       = (1 << 0), /* pre-flushing in progress */
  81        REQ_FSEQ_DATA           = (1 << 1), /* data write in progress */
  82        REQ_FSEQ_POSTFLUSH      = (1 << 2), /* post-flushing in progress */
  83        REQ_FSEQ_DONE           = (1 << 3),
  84
  85        REQ_FSEQ_ACTIONS        = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
  86                                  REQ_FSEQ_POSTFLUSH,
  87
  88        /*
  89         * If flush has been pending longer than the following timeout,
  90         * it's issued even if flush_data requests are still in flight.
  91         */
  92        FLUSH_PENDING_TIMEOUT   = 5 * HZ,
  93};
  94
  95static bool blk_kick_flush(struct request_queue *q,
  96                           struct blk_flush_queue *fq);
  97
  98static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
  99{
 100        unsigned int policy = 0;
 101
 102        if (blk_rq_sectors(rq))
 103                policy |= REQ_FSEQ_DATA;
 104
 105        if (fflags & REQ_FLUSH) {
 106                if (rq->cmd_flags & REQ_FLUSH)
 107                        policy |= REQ_FSEQ_PREFLUSH;
 108                if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
 109                        policy |= REQ_FSEQ_POSTFLUSH;
 110        }
 111        return policy;
 112}
 113
 114static unsigned int blk_flush_cur_seq(struct request *rq)
 115{
 116        return 1 << ffz(rq->flush.seq);
 117}
 118
 119static void blk_flush_restore_request(struct request *rq)
 120{
 121        /*
 122         * After flush data completion, @rq->bio is %NULL but we need to
 123         * complete the bio again.  @rq->biotail is guaranteed to equal the
 124         * original @rq->bio.  Restore it.
 125         */
 126        rq->bio = rq->biotail;
 127
 128        /* make @rq a normal request */
 129        rq->cmd_flags &= ~REQ_FLUSH_SEQ;
 130        rq->end_io = rq->flush.saved_end_io;
 131}
 132
 133static bool blk_flush_queue_rq(struct request *rq, bool add_front)
 134{
 135        if (rq->q->mq_ops) {
 136                struct request_queue *q = rq->q;
 137
 138                blk_mq_add_to_requeue_list(rq, add_front);
 139                blk_mq_kick_requeue_list(q);
 140                return false;
 141        } else {
 142                if (add_front)
 143                        list_add(&rq->queuelist, &rq->q->queue_head);
 144                else
 145                        list_add_tail(&rq->queuelist, &rq->q->queue_head);
 146                return true;
 147        }
 148}
 149
 150/**
 151 * blk_flush_complete_seq - complete flush sequence
 152 * @rq: FLUSH/FUA request being sequenced
 153 * @fq: flush queue
 154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
 155 * @error: whether an error occurred
 156 *
 157 * @rq just completed @seq part of its flush sequence, record the
 158 * completion and trigger the next step.
 159 *
 160 * CONTEXT:
 161 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
 162 *
 163 * RETURNS:
 164 * %true if requests were added to the dispatch queue, %false otherwise.
 165 */
 166static bool blk_flush_complete_seq(struct request *rq,
 167                                   struct blk_flush_queue *fq,
 168                                   unsigned int seq, int error)
 169{
 170        struct request_queue *q = rq->q;
 171        struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
 172        bool queued = false, kicked;
 173
 174        BUG_ON(rq->flush.seq & seq);
 175        rq->flush.seq |= seq;
 176
 177        if (likely(!error))
 178                seq = blk_flush_cur_seq(rq);
 179        else
 180                seq = REQ_FSEQ_DONE;
 181
 182        switch (seq) {
 183        case REQ_FSEQ_PREFLUSH:
 184        case REQ_FSEQ_POSTFLUSH:
 185                /* queue for flush */
 186                if (list_empty(pending))
 187                        fq->flush_pending_since = jiffies;
 188                list_move_tail(&rq->flush.list, pending);
 189                break;
 190
 191        case REQ_FSEQ_DATA:
 192                list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
 193                queued = blk_flush_queue_rq(rq, true);
 194                break;
 195
 196        case REQ_FSEQ_DONE:
 197                /*
 198                 * @rq was previously adjusted by blk_flush_issue() for
 199                 * flush sequencing and may already have gone through the
 200                 * flush data request completion path.  Restore @rq for
 201                 * normal completion and end it.
 202                 */
 203                BUG_ON(!list_empty(&rq->queuelist));
 204                list_del_init(&rq->flush.list);
 205                blk_flush_restore_request(rq);
 206                if (q->mq_ops)
 207                        blk_mq_end_request(rq, error);
 208                else
 209                        __blk_end_request_all(rq, error);
 210                break;
 211
 212        default:
 213                BUG();
 214        }
 215
 216        kicked = blk_kick_flush(q, fq);
 217        return kicked | queued;
 218}
 219
 220static void flush_end_io(struct request *flush_rq, int error)
 221{
 222        struct request_queue *q = flush_rq->q;
 223        struct list_head *running;
 224        bool queued = false;
 225        struct request *rq, *n;
 226        unsigned long flags = 0;
 227        struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
 228
 229        if (q->mq_ops) {
 230                struct blk_mq_hw_ctx *hctx;
 231
 232                /* release the tag's ownership to the req cloned from */
 233                spin_lock_irqsave(&fq->mq_flush_lock, flags);
 234                hctx = q->mq_ops->map_queue(q, flush_rq->mq_ctx->cpu);
 235                blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
 236                flush_rq->tag = -1;
 237        }
 238
 239        running = &fq->flush_queue[fq->flush_running_idx];
 240        BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
 241
 242        /* account completion of the flush request */
 243        fq->flush_running_idx ^= 1;
 244
 245        if (!q->mq_ops)
 246                elv_completed_request(q, flush_rq);
 247
 248        /* and push the waiting requests to the next stage */
 249        list_for_each_entry_safe(rq, n, running, flush.list) {
 250                unsigned int seq = blk_flush_cur_seq(rq);
 251
 252                BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
 253                queued |= blk_flush_complete_seq(rq, fq, seq, error);
 254        }
 255
 256        /*
 257         * Kick the queue to avoid stall for two cases:
 258         * 1. Moving a request silently to empty queue_head may stall the
 259         * queue.
 260         * 2. When flush request is running in non-queueable queue, the
 261         * queue is hold. Restart the queue after flush request is finished
 262         * to avoid stall.
 263         * This function is called from request completion path and calling
 264         * directly into request_fn may confuse the driver.  Always use
 265         * kblockd.
 266         */
 267        if (queued || fq->flush_queue_delayed) {
 268                WARN_ON(q->mq_ops);
 269                blk_run_queue_async(q);
 270        }
 271        fq->flush_queue_delayed = 0;
 272        if (q->mq_ops)
 273                spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
 274}
 275
 276/**
 277 * blk_kick_flush - consider issuing flush request
 278 * @q: request_queue being kicked
 279 * @fq: flush queue
 280 *
 281 * Flush related states of @q have changed, consider issuing flush request.
 282 * Please read the comment at the top of this file for more info.
 283 *
 284 * CONTEXT:
 285 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
 286 *
 287 * RETURNS:
 288 * %true if flush was issued, %false otherwise.
 289 */
 290static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
 291{
 292        struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
 293        struct request *first_rq =
 294                list_first_entry(pending, struct request, flush.list);
 295        struct request *flush_rq = fq->flush_rq;
 296
 297        /* C1 described at the top of this file */
 298        if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
 299                return false;
 300
 301        /* C2 and C3 */
 302        if (!list_empty(&fq->flush_data_in_flight) &&
 303            time_before(jiffies,
 304                        fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
 305                return false;
 306
 307        /*
 308         * Issue flush and toggle pending_idx.  This makes pending_idx
 309         * different from running_idx, which means flush is in flight.
 310         */
 311        fq->flush_pending_idx ^= 1;
 312
 313        blk_rq_init(q, flush_rq);
 314
 315        /*
 316         * Borrow tag from the first request since they can't
 317         * be in flight at the same time. And acquire the tag's
 318         * ownership for flush req.
 319         */
 320        if (q->mq_ops) {
 321                struct blk_mq_hw_ctx *hctx;
 322
 323                flush_rq->mq_ctx = first_rq->mq_ctx;
 324                flush_rq->tag = first_rq->tag;
 325                fq->orig_rq = first_rq;
 326
 327                hctx = q->mq_ops->map_queue(q, first_rq->mq_ctx->cpu);
 328                blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
 329        }
 330
 331        flush_rq->cmd_type = REQ_TYPE_FS;
 332        flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
 333        flush_rq->rq_disk = first_rq->rq_disk;
 334        flush_rq->end_io = flush_end_io;
 335
 336        return blk_flush_queue_rq(flush_rq, false);
 337}
 338
 339static void flush_data_end_io(struct request *rq, int error)
 340{
 341        struct request_queue *q = rq->q;
 342        struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 343
 344        /*
 345         * After populating an empty queue, kick it to avoid stall.  Read
 346         * the comment in flush_end_io().
 347         */
 348        if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
 349                blk_run_queue_async(q);
 350}
 351
 352static void mq_flush_data_end_io(struct request *rq, int error)
 353{
 354        struct request_queue *q = rq->q;
 355        struct blk_mq_hw_ctx *hctx;
 356        struct blk_mq_ctx *ctx = rq->mq_ctx;
 357        unsigned long flags;
 358        struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
 359
 360        hctx = q->mq_ops->map_queue(q, ctx->cpu);
 361
 362        /*
 363         * After populating an empty queue, kick it to avoid stall.  Read
 364         * the comment in flush_end_io().
 365         */
 366        spin_lock_irqsave(&fq->mq_flush_lock, flags);
 367        if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
 368                blk_mq_run_hw_queue(hctx, true);
 369        spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
 370}
 371
 372/**
 373 * blk_insert_flush - insert a new FLUSH/FUA request
 374 * @rq: request to insert
 375 *
 376 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
 377 * or __blk_mq_run_hw_queue() to dispatch request.
 378 * @rq is being submitted.  Analyze what needs to be done and put it on the
 379 * right queue.
 380 *
 381 * CONTEXT:
 382 * spin_lock_irq(q->queue_lock) in !mq case
 383 */
 384void blk_insert_flush(struct request *rq)
 385{
 386        struct request_queue *q = rq->q;
 387        unsigned int fflags = q->flush_flags;   /* may change, cache */
 388        unsigned int policy = blk_flush_policy(fflags, rq);
 389        struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
 390
 391        /*
 392         * @policy now records what operations need to be done.  Adjust
 393         * REQ_FLUSH and FUA for the driver.
 394         */
 395        rq->cmd_flags &= ~REQ_FLUSH;
 396        if (!(fflags & REQ_FUA))
 397                rq->cmd_flags &= ~REQ_FUA;
 398
 399        /*
 400         * An empty flush handed down from a stacking driver may
 401         * translate into nothing if the underlying device does not
 402         * advertise a write-back cache.  In this case, simply
 403         * complete the request.
 404         */
 405        if (!policy) {
 406                if (q->mq_ops)
 407                        blk_mq_end_request(rq, 0);
 408                else
 409                        __blk_end_bidi_request(rq, 0, 0, 0);
 410                return;
 411        }
 412
 413        BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
 414
 415        /*
 416         * If there's data but flush is not necessary, the request can be
 417         * processed directly without going through flush machinery.  Queue
 418         * for normal execution.
 419         */
 420        if ((policy & REQ_FSEQ_DATA) &&
 421            !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
 422                if (q->mq_ops) {
 423                        blk_mq_insert_request(rq, false, false, true);
 424                } else
 425                        list_add_tail(&rq->queuelist, &q->queue_head);
 426                return;
 427        }
 428
 429        /*
 430         * @rq should go through flush machinery.  Mark it part of flush
 431         * sequence and submit for further processing.
 432         */
 433        memset(&rq->flush, 0, sizeof(rq->flush));
 434        INIT_LIST_HEAD(&rq->flush.list);
 435        rq->cmd_flags |= REQ_FLUSH_SEQ;
 436        rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
 437        if (q->mq_ops) {
 438                rq->end_io = mq_flush_data_end_io;
 439
 440                spin_lock_irq(&fq->mq_flush_lock);
 441                blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
 442                spin_unlock_irq(&fq->mq_flush_lock);
 443                return;
 444        }
 445        rq->end_io = flush_data_end_io;
 446
 447        blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
 448}
 449
 450/**
 451 * blkdev_issue_flush - queue a flush
 452 * @bdev:       blockdev to issue flush for
 453 * @gfp_mask:   memory allocation flags (for bio_alloc)
 454 * @error_sector:       error sector
 455 *
 456 * Description:
 457 *    Issue a flush for the block device in question. Caller can supply
 458 *    room for storing the error offset in case of a flush error, if they
 459 *    wish to. If WAIT flag is not passed then caller may check only what
 460 *    request was pushed in some internal queue for later handling.
 461 */
 462int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
 463                sector_t *error_sector)
 464{
 465        struct request_queue *q;
 466        struct bio *bio;
 467        int ret = 0;
 468
 469        if (bdev->bd_disk == NULL)
 470                return -ENXIO;
 471
 472        q = bdev_get_queue(bdev);
 473        if (!q)
 474                return -ENXIO;
 475
 476        /*
 477         * some block devices may not have their queue correctly set up here
 478         * (e.g. loop device without a backing file) and so issuing a flush
 479         * here will panic. Ensure there is a request function before issuing
 480         * the flush.
 481         */
 482        if (!q->make_request_fn)
 483                return -ENXIO;
 484
 485        bio = bio_alloc(gfp_mask, 0);
 486        bio->bi_bdev = bdev;
 487
 488        ret = submit_bio_wait(WRITE_FLUSH, bio);
 489
 490        /*
 491         * The driver must store the error location in ->bi_sector, if
 492         * it supports it. For non-stacked drivers, this should be
 493         * copied from blk_rq_pos(rq).
 494         */
 495        if (error_sector)
 496                *error_sector = bio->bi_iter.bi_sector;
 497
 498        bio_put(bio);
 499        return ret;
 500}
 501EXPORT_SYMBOL(blkdev_issue_flush);
 502
 503struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
 504                int node, int cmd_size)
 505{
 506        struct blk_flush_queue *fq;
 507        int rq_sz = sizeof(struct request);
 508
 509        fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
 510        if (!fq)
 511                goto fail;
 512
 513        if (q->mq_ops) {
 514                spin_lock_init(&fq->mq_flush_lock);
 515                rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
 516        }
 517
 518        fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
 519        if (!fq->flush_rq)
 520                goto fail_rq;
 521
 522        INIT_LIST_HEAD(&fq->flush_queue[0]);
 523        INIT_LIST_HEAD(&fq->flush_queue[1]);
 524        INIT_LIST_HEAD(&fq->flush_data_in_flight);
 525
 526        return fq;
 527
 528 fail_rq:
 529        kfree(fq);
 530 fail:
 531        return NULL;
 532}
 533
 534void blk_free_flush_queue(struct blk_flush_queue *fq)
 535{
 536        /* bio based request queue hasn't flush queue */
 537        if (!fq)
 538                return;
 539
 540        kfree(fq->flush_rq);
 541        kfree(fq);
 542}
 543