linux/crypto/drbg.c
<<
>>
Prefs
   1/*
   2 * DRBG: Deterministic Random Bits Generator
   3 *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
   4 *       properties:
   5 *              * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
   6 *              * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
   7 *              * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
   8 *              * with and without prediction resistance
   9 *
  10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 *
  44 * DRBG Usage
  45 * ==========
  46 * The SP 800-90A DRBG allows the user to specify a personalization string
  47 * for initialization as well as an additional information string for each
  48 * random number request. The following code fragments show how a caller
  49 * uses the kernel crypto API to use the full functionality of the DRBG.
  50 *
  51 * Usage without any additional data
  52 * ---------------------------------
  53 * struct crypto_rng *drng;
  54 * int err;
  55 * char data[DATALEN];
  56 *
  57 * drng = crypto_alloc_rng(drng_name, 0, 0);
  58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
  59 * crypto_free_rng(drng);
  60 *
  61 *
  62 * Usage with personalization string during initialization
  63 * -------------------------------------------------------
  64 * struct crypto_rng *drng;
  65 * int err;
  66 * char data[DATALEN];
  67 * struct drbg_string pers;
  68 * char personalization[11] = "some-string";
  69 *
  70 * drbg_string_fill(&pers, personalization, strlen(personalization));
  71 * drng = crypto_alloc_rng(drng_name, 0, 0);
  72 * // The reset completely re-initializes the DRBG with the provided
  73 * // personalization string
  74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
  75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
  76 * crypto_free_rng(drng);
  77 *
  78 *
  79 * Usage with additional information string during random number request
  80 * ---------------------------------------------------------------------
  81 * struct crypto_rng *drng;
  82 * int err;
  83 * char data[DATALEN];
  84 * char addtl_string[11] = "some-string";
  85 * string drbg_string addtl;
  86 *
  87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
  88 * drng = crypto_alloc_rng(drng_name, 0, 0);
  89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
  90 * // the same error codes.
  91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
  92 * crypto_free_rng(drng);
  93 *
  94 *
  95 * Usage with personalization and additional information strings
  96 * -------------------------------------------------------------
  97 * Just mix both scenarios above.
  98 */
  99
 100#include <crypto/drbg.h>
 101#include <linux/kernel.h>
 102
 103/***************************************************************
 104 * Backend cipher definitions available to DRBG
 105 ***************************************************************/
 106
 107/*
 108 * The order of the DRBG definitions here matter: every DRBG is registered
 109 * as stdrng. Each DRBG receives an increasing cra_priority values the later
 110 * they are defined in this array (see drbg_fill_array).
 111 *
 112 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
 113 * the SHA256 / AES 256 over other ciphers. Thus, the favored
 114 * DRBGs are the latest entries in this array.
 115 */
 116static const struct drbg_core drbg_cores[] = {
 117#ifdef CONFIG_CRYPTO_DRBG_CTR
 118        {
 119                .flags = DRBG_CTR | DRBG_STRENGTH128,
 120                .statelen = 32, /* 256 bits as defined in 10.2.1 */
 121                .blocklen_bytes = 16,
 122                .cra_name = "ctr_aes128",
 123                .backend_cra_name = "aes",
 124        }, {
 125                .flags = DRBG_CTR | DRBG_STRENGTH192,
 126                .statelen = 40, /* 320 bits as defined in 10.2.1 */
 127                .blocklen_bytes = 16,
 128                .cra_name = "ctr_aes192",
 129                .backend_cra_name = "aes",
 130        }, {
 131                .flags = DRBG_CTR | DRBG_STRENGTH256,
 132                .statelen = 48, /* 384 bits as defined in 10.2.1 */
 133                .blocklen_bytes = 16,
 134                .cra_name = "ctr_aes256",
 135                .backend_cra_name = "aes",
 136        },
 137#endif /* CONFIG_CRYPTO_DRBG_CTR */
 138#ifdef CONFIG_CRYPTO_DRBG_HASH
 139        {
 140                .flags = DRBG_HASH | DRBG_STRENGTH128,
 141                .statelen = 55, /* 440 bits */
 142                .blocklen_bytes = 20,
 143                .cra_name = "sha1",
 144                .backend_cra_name = "sha1",
 145        }, {
 146                .flags = DRBG_HASH | DRBG_STRENGTH256,
 147                .statelen = 111, /* 888 bits */
 148                .blocklen_bytes = 48,
 149                .cra_name = "sha384",
 150                .backend_cra_name = "sha384",
 151        }, {
 152                .flags = DRBG_HASH | DRBG_STRENGTH256,
 153                .statelen = 111, /* 888 bits */
 154                .blocklen_bytes = 64,
 155                .cra_name = "sha512",
 156                .backend_cra_name = "sha512",
 157        }, {
 158                .flags = DRBG_HASH | DRBG_STRENGTH256,
 159                .statelen = 55, /* 440 bits */
 160                .blocklen_bytes = 32,
 161                .cra_name = "sha256",
 162                .backend_cra_name = "sha256",
 163        },
 164#endif /* CONFIG_CRYPTO_DRBG_HASH */
 165#ifdef CONFIG_CRYPTO_DRBG_HMAC
 166        {
 167                .flags = DRBG_HMAC | DRBG_STRENGTH128,
 168                .statelen = 20, /* block length of cipher */
 169                .blocklen_bytes = 20,
 170                .cra_name = "hmac_sha1",
 171                .backend_cra_name = "hmac(sha1)",
 172        }, {
 173                .flags = DRBG_HMAC | DRBG_STRENGTH256,
 174                .statelen = 48, /* block length of cipher */
 175                .blocklen_bytes = 48,
 176                .cra_name = "hmac_sha384",
 177                .backend_cra_name = "hmac(sha384)",
 178        }, {
 179                .flags = DRBG_HMAC | DRBG_STRENGTH256,
 180                .statelen = 64, /* block length of cipher */
 181                .blocklen_bytes = 64,
 182                .cra_name = "hmac_sha512",
 183                .backend_cra_name = "hmac(sha512)",
 184        }, {
 185                .flags = DRBG_HMAC | DRBG_STRENGTH256,
 186                .statelen = 32, /* block length of cipher */
 187                .blocklen_bytes = 32,
 188                .cra_name = "hmac_sha256",
 189                .backend_cra_name = "hmac(sha256)",
 190        },
 191#endif /* CONFIG_CRYPTO_DRBG_HMAC */
 192};
 193
 194static int drbg_uninstantiate(struct drbg_state *drbg);
 195
 196/******************************************************************
 197 * Generic helper functions
 198 ******************************************************************/
 199
 200/*
 201 * Return strength of DRBG according to SP800-90A section 8.4
 202 *
 203 * @flags DRBG flags reference
 204 *
 205 * Return: normalized strength in *bytes* value or 32 as default
 206 *         to counter programming errors
 207 */
 208static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
 209{
 210        switch (flags & DRBG_STRENGTH_MASK) {
 211        case DRBG_STRENGTH128:
 212                return 16;
 213        case DRBG_STRENGTH192:
 214                return 24;
 215        case DRBG_STRENGTH256:
 216                return 32;
 217        default:
 218                return 32;
 219        }
 220}
 221
 222/*
 223 * Convert an integer into a byte representation of this integer.
 224 * The byte representation is big-endian
 225 *
 226 * @val value to be converted
 227 * @buf buffer holding the converted integer -- caller must ensure that
 228 *      buffer size is at least 32 bit
 229 */
 230#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
 231static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
 232{
 233        struct s {
 234                __be32 conv;
 235        };
 236        struct s *conversion = (struct s *) buf;
 237
 238        conversion->conv = cpu_to_be32(val);
 239}
 240#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
 241
 242/******************************************************************
 243 * CTR DRBG callback functions
 244 ******************************************************************/
 245
 246#ifdef CONFIG_CRYPTO_DRBG_CTR
 247#define CRYPTO_DRBG_CTR_STRING "CTR "
 248MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
 249MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
 250MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
 251MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
 252MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
 253MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
 254
 255static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
 256                          unsigned char *outval, const struct drbg_string *in);
 257static int drbg_init_sym_kernel(struct drbg_state *drbg);
 258static int drbg_fini_sym_kernel(struct drbg_state *drbg);
 259
 260/* BCC function for CTR DRBG as defined in 10.4.3 */
 261static int drbg_ctr_bcc(struct drbg_state *drbg,
 262                        unsigned char *out, const unsigned char *key,
 263                        struct list_head *in)
 264{
 265        int ret = 0;
 266        struct drbg_string *curr = NULL;
 267        struct drbg_string data;
 268        short cnt = 0;
 269
 270        drbg_string_fill(&data, out, drbg_blocklen(drbg));
 271
 272        /* 10.4.3 step 2 / 4 */
 273        list_for_each_entry(curr, in, list) {
 274                const unsigned char *pos = curr->buf;
 275                size_t len = curr->len;
 276                /* 10.4.3 step 4.1 */
 277                while (len) {
 278                        /* 10.4.3 step 4.2 */
 279                        if (drbg_blocklen(drbg) == cnt) {
 280                                cnt = 0;
 281                                ret = drbg_kcapi_sym(drbg, key, out, &data);
 282                                if (ret)
 283                                        return ret;
 284                        }
 285                        out[cnt] ^= *pos;
 286                        pos++;
 287                        cnt++;
 288                        len--;
 289                }
 290        }
 291        /* 10.4.3 step 4.2 for last block */
 292        if (cnt)
 293                ret = drbg_kcapi_sym(drbg, key, out, &data);
 294
 295        return ret;
 296}
 297
 298/*
 299 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
 300 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
 301 * the scratchpad is used as follows:
 302 * drbg_ctr_update:
 303 *      temp
 304 *              start: drbg->scratchpad
 305 *              length: drbg_statelen(drbg) + drbg_blocklen(drbg)
 306 *                      note: the cipher writing into this variable works
 307 *                      blocklen-wise. Now, when the statelen is not a multiple
 308 *                      of blocklen, the generateion loop below "spills over"
 309 *                      by at most blocklen. Thus, we need to give sufficient
 310 *                      memory.
 311 *      df_data
 312 *              start: drbg->scratchpad +
 313 *                              drbg_statelen(drbg) + drbg_blocklen(drbg)
 314 *              length: drbg_statelen(drbg)
 315 *
 316 * drbg_ctr_df:
 317 *      pad
 318 *              start: df_data + drbg_statelen(drbg)
 319 *              length: drbg_blocklen(drbg)
 320 *      iv
 321 *              start: pad + drbg_blocklen(drbg)
 322 *              length: drbg_blocklen(drbg)
 323 *      temp
 324 *              start: iv + drbg_blocklen(drbg)
 325 *              length: drbg_satelen(drbg) + drbg_blocklen(drbg)
 326 *                      note: temp is the buffer that the BCC function operates
 327 *                      on. BCC operates blockwise. drbg_statelen(drbg)
 328 *                      is sufficient when the DRBG state length is a multiple
 329 *                      of the block size. For AES192 (and maybe other ciphers)
 330 *                      this is not correct and the length for temp is
 331 *                      insufficient (yes, that also means for such ciphers,
 332 *                      the final output of all BCC rounds are truncated).
 333 *                      Therefore, add drbg_blocklen(drbg) to cover all
 334 *                      possibilities.
 335 */
 336
 337/* Derivation Function for CTR DRBG as defined in 10.4.2 */
 338static int drbg_ctr_df(struct drbg_state *drbg,
 339                       unsigned char *df_data, size_t bytes_to_return,
 340                       struct list_head *seedlist)
 341{
 342        int ret = -EFAULT;
 343        unsigned char L_N[8];
 344        /* S3 is input */
 345        struct drbg_string S1, S2, S4, cipherin;
 346        LIST_HEAD(bcc_list);
 347        unsigned char *pad = df_data + drbg_statelen(drbg);
 348        unsigned char *iv = pad + drbg_blocklen(drbg);
 349        unsigned char *temp = iv + drbg_blocklen(drbg);
 350        size_t padlen = 0;
 351        unsigned int templen = 0;
 352        /* 10.4.2 step 7 */
 353        unsigned int i = 0;
 354        /* 10.4.2 step 8 */
 355        const unsigned char *K = (unsigned char *)
 356                           "\x00\x01\x02\x03\x04\x05\x06\x07"
 357                           "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
 358                           "\x10\x11\x12\x13\x14\x15\x16\x17"
 359                           "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
 360        unsigned char *X;
 361        size_t generated_len = 0;
 362        size_t inputlen = 0;
 363        struct drbg_string *seed = NULL;
 364
 365        memset(pad, 0, drbg_blocklen(drbg));
 366        memset(iv, 0, drbg_blocklen(drbg));
 367
 368        /* 10.4.2 step 1 is implicit as we work byte-wise */
 369
 370        /* 10.4.2 step 2 */
 371        if ((512/8) < bytes_to_return)
 372                return -EINVAL;
 373
 374        /* 10.4.2 step 2 -- calculate the entire length of all input data */
 375        list_for_each_entry(seed, seedlist, list)
 376                inputlen += seed->len;
 377        drbg_cpu_to_be32(inputlen, &L_N[0]);
 378
 379        /* 10.4.2 step 3 */
 380        drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
 381
 382        /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
 383        padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
 384        /* wrap the padlen appropriately */
 385        if (padlen)
 386                padlen = drbg_blocklen(drbg) - padlen;
 387        /*
 388         * pad / padlen contains the 0x80 byte and the following zero bytes.
 389         * As the calculated padlen value only covers the number of zero
 390         * bytes, this value has to be incremented by one for the 0x80 byte.
 391         */
 392        padlen++;
 393        pad[0] = 0x80;
 394
 395        /* 10.4.2 step 4 -- first fill the linked list and then order it */
 396        drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
 397        list_add_tail(&S1.list, &bcc_list);
 398        drbg_string_fill(&S2, L_N, sizeof(L_N));
 399        list_add_tail(&S2.list, &bcc_list);
 400        list_splice_tail(seedlist, &bcc_list);
 401        drbg_string_fill(&S4, pad, padlen);
 402        list_add_tail(&S4.list, &bcc_list);
 403
 404        /* 10.4.2 step 9 */
 405        while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
 406                /*
 407                 * 10.4.2 step 9.1 - the padding is implicit as the buffer
 408                 * holds zeros after allocation -- even the increment of i
 409                 * is irrelevant as the increment remains within length of i
 410                 */
 411                drbg_cpu_to_be32(i, iv);
 412                /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
 413                ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
 414                if (ret)
 415                        goto out;
 416                /* 10.4.2 step 9.3 */
 417                i++;
 418                templen += drbg_blocklen(drbg);
 419        }
 420
 421        /* 10.4.2 step 11 */
 422        X = temp + (drbg_keylen(drbg));
 423        drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
 424
 425        /* 10.4.2 step 12: overwriting of outval is implemented in next step */
 426
 427        /* 10.4.2 step 13 */
 428        while (generated_len < bytes_to_return) {
 429                short blocklen = 0;
 430                /*
 431                 * 10.4.2 step 13.1: the truncation of the key length is
 432                 * implicit as the key is only drbg_blocklen in size based on
 433                 * the implementation of the cipher function callback
 434                 */
 435                ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
 436                if (ret)
 437                        goto out;
 438                blocklen = (drbg_blocklen(drbg) <
 439                                (bytes_to_return - generated_len)) ?
 440                            drbg_blocklen(drbg) :
 441                                (bytes_to_return - generated_len);
 442                /* 10.4.2 step 13.2 and 14 */
 443                memcpy(df_data + generated_len, X, blocklen);
 444                generated_len += blocklen;
 445        }
 446
 447        ret = 0;
 448
 449out:
 450        memset(iv, 0, drbg_blocklen(drbg));
 451        memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
 452        memset(pad, 0, drbg_blocklen(drbg));
 453        return ret;
 454}
 455
 456/*
 457 * update function of CTR DRBG as defined in 10.2.1.2
 458 *
 459 * The reseed variable has an enhanced meaning compared to the update
 460 * functions of the other DRBGs as follows:
 461 * 0 => initial seed from initialization
 462 * 1 => reseed via drbg_seed
 463 * 2 => first invocation from drbg_ctr_update when addtl is present. In
 464 *      this case, the df_data scratchpad is not deleted so that it is
 465 *      available for another calls to prevent calling the DF function
 466 *      again.
 467 * 3 => second invocation from drbg_ctr_update. When the update function
 468 *      was called with addtl, the df_data memory already contains the
 469 *      DFed addtl information and we do not need to call DF again.
 470 */
 471static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
 472                           int reseed)
 473{
 474        int ret = -EFAULT;
 475        /* 10.2.1.2 step 1 */
 476        unsigned char *temp = drbg->scratchpad;
 477        unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
 478                                 drbg_blocklen(drbg);
 479        unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
 480        unsigned int len = 0;
 481        struct drbg_string cipherin;
 482
 483        if (3 > reseed)
 484                memset(df_data, 0, drbg_statelen(drbg));
 485
 486        /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
 487        if (seed) {
 488                ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
 489                if (ret)
 490                        goto out;
 491        }
 492
 493        drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
 494        /*
 495         * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
 496         * zeroizes all memory during initialization
 497         */
 498        while (len < (drbg_statelen(drbg))) {
 499                /* 10.2.1.2 step 2.1 */
 500                crypto_inc(drbg->V, drbg_blocklen(drbg));
 501                /*
 502                 * 10.2.1.2 step 2.2 */
 503                ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
 504                if (ret)
 505                        goto out;
 506                /* 10.2.1.2 step 2.3 and 3 */
 507                len += drbg_blocklen(drbg);
 508        }
 509
 510        /* 10.2.1.2 step 4 */
 511        temp_p = temp;
 512        df_data_p = df_data;
 513        for (len = 0; len < drbg_statelen(drbg); len++) {
 514                *temp_p ^= *df_data_p;
 515                df_data_p++; temp_p++;
 516        }
 517
 518        /* 10.2.1.2 step 5 */
 519        memcpy(drbg->C, temp, drbg_keylen(drbg));
 520        /* 10.2.1.2 step 6 */
 521        memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
 522        ret = 0;
 523
 524out:
 525        memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
 526        if (2 != reseed)
 527                memset(df_data, 0, drbg_statelen(drbg));
 528        return ret;
 529}
 530
 531/*
 532 * scratchpad use: drbg_ctr_update is called independently from
 533 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
 534 */
 535/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
 536static int drbg_ctr_generate(struct drbg_state *drbg,
 537                             unsigned char *buf, unsigned int buflen,
 538                             struct list_head *addtl)
 539{
 540        int len = 0;
 541        int ret = 0;
 542        struct drbg_string data;
 543
 544        /* 10.2.1.5.2 step 2 */
 545        if (addtl && !list_empty(addtl)) {
 546                ret = drbg_ctr_update(drbg, addtl, 2);
 547                if (ret)
 548                        return 0;
 549        }
 550
 551        /* 10.2.1.5.2 step 4.1 */
 552        crypto_inc(drbg->V, drbg_blocklen(drbg));
 553        drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
 554        while (len < buflen) {
 555                int outlen = 0;
 556                /* 10.2.1.5.2 step 4.2 */
 557                ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
 558                if (ret) {
 559                        len = ret;
 560                        goto out;
 561                }
 562                outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 563                          drbg_blocklen(drbg) : (buflen - len);
 564                /* 10.2.1.5.2 step 4.3 */
 565                memcpy(buf + len, drbg->scratchpad, outlen);
 566                len += outlen;
 567                /* 10.2.1.5.2 step 6 */
 568                if (len < buflen)
 569                        crypto_inc(drbg->V, drbg_blocklen(drbg));
 570        }
 571
 572        /* 10.2.1.5.2 step 6 */
 573        ret = drbg_ctr_update(drbg, NULL, 3);
 574        if (ret)
 575                len = ret;
 576
 577out:
 578        memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 579        return len;
 580}
 581
 582static const struct drbg_state_ops drbg_ctr_ops = {
 583        .update         = drbg_ctr_update,
 584        .generate       = drbg_ctr_generate,
 585        .crypto_init    = drbg_init_sym_kernel,
 586        .crypto_fini    = drbg_fini_sym_kernel,
 587};
 588#endif /* CONFIG_CRYPTO_DRBG_CTR */
 589
 590/******************************************************************
 591 * HMAC DRBG callback functions
 592 ******************************************************************/
 593
 594#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
 595static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
 596                           unsigned char *outval, const struct list_head *in);
 597static int drbg_init_hash_kernel(struct drbg_state *drbg);
 598static int drbg_fini_hash_kernel(struct drbg_state *drbg);
 599#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
 600
 601#ifdef CONFIG_CRYPTO_DRBG_HMAC
 602#define CRYPTO_DRBG_HMAC_STRING "HMAC "
 603MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
 604MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
 605MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
 606MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
 607MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
 608MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
 609MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
 610MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
 611
 612/* update function of HMAC DRBG as defined in 10.1.2.2 */
 613static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
 614                            int reseed)
 615{
 616        int ret = -EFAULT;
 617        int i = 0;
 618        struct drbg_string seed1, seed2, vdata;
 619        LIST_HEAD(seedlist);
 620        LIST_HEAD(vdatalist);
 621
 622        if (!reseed)
 623                /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
 624                memset(drbg->V, 1, drbg_statelen(drbg));
 625
 626        drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
 627        list_add_tail(&seed1.list, &seedlist);
 628        /* buffer of seed2 will be filled in for loop below with one byte */
 629        drbg_string_fill(&seed2, NULL, 1);
 630        list_add_tail(&seed2.list, &seedlist);
 631        /* input data of seed is allowed to be NULL at this point */
 632        if (seed)
 633                list_splice_tail(seed, &seedlist);
 634
 635        drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
 636        list_add_tail(&vdata.list, &vdatalist);
 637        for (i = 2; 0 < i; i--) {
 638                /* first round uses 0x0, second 0x1 */
 639                unsigned char prefix = DRBG_PREFIX0;
 640                if (1 == i)
 641                        prefix = DRBG_PREFIX1;
 642                /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
 643                seed2.buf = &prefix;
 644                ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
 645                if (ret)
 646                        return ret;
 647
 648                /* 10.1.2.2 step 2 and 5 -- HMAC for V */
 649                ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
 650                if (ret)
 651                        return ret;
 652
 653                /* 10.1.2.2 step 3 */
 654                if (!seed)
 655                        return ret;
 656        }
 657
 658        return 0;
 659}
 660
 661/* generate function of HMAC DRBG as defined in 10.1.2.5 */
 662static int drbg_hmac_generate(struct drbg_state *drbg,
 663                              unsigned char *buf,
 664                              unsigned int buflen,
 665                              struct list_head *addtl)
 666{
 667        int len = 0;
 668        int ret = 0;
 669        struct drbg_string data;
 670        LIST_HEAD(datalist);
 671
 672        /* 10.1.2.5 step 2 */
 673        if (addtl && !list_empty(addtl)) {
 674                ret = drbg_hmac_update(drbg, addtl, 1);
 675                if (ret)
 676                        return ret;
 677        }
 678
 679        drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
 680        list_add_tail(&data.list, &datalist);
 681        while (len < buflen) {
 682                unsigned int outlen = 0;
 683                /* 10.1.2.5 step 4.1 */
 684                ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
 685                if (ret)
 686                        return ret;
 687                outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 688                          drbg_blocklen(drbg) : (buflen - len);
 689
 690                /* 10.1.2.5 step 4.2 */
 691                memcpy(buf + len, drbg->V, outlen);
 692                len += outlen;
 693        }
 694
 695        /* 10.1.2.5 step 6 */
 696        if (addtl && !list_empty(addtl))
 697                ret = drbg_hmac_update(drbg, addtl, 1);
 698        else
 699                ret = drbg_hmac_update(drbg, NULL, 1);
 700        if (ret)
 701                return ret;
 702
 703        return len;
 704}
 705
 706static const struct drbg_state_ops drbg_hmac_ops = {
 707        .update         = drbg_hmac_update,
 708        .generate       = drbg_hmac_generate,
 709        .crypto_init    = drbg_init_hash_kernel,
 710        .crypto_fini    = drbg_fini_hash_kernel,
 711};
 712#endif /* CONFIG_CRYPTO_DRBG_HMAC */
 713
 714/******************************************************************
 715 * Hash DRBG callback functions
 716 ******************************************************************/
 717
 718#ifdef CONFIG_CRYPTO_DRBG_HASH
 719#define CRYPTO_DRBG_HASH_STRING "HASH "
 720MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
 721MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
 722MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
 723MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
 724MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
 725MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
 726MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
 727MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
 728
 729/*
 730 * Increment buffer
 731 *
 732 * @dst buffer to increment
 733 * @add value to add
 734 */
 735static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
 736                                const unsigned char *add, size_t addlen)
 737{
 738        /* implied: dstlen > addlen */
 739        unsigned char *dstptr;
 740        const unsigned char *addptr;
 741        unsigned int remainder = 0;
 742        size_t len = addlen;
 743
 744        dstptr = dst + (dstlen-1);
 745        addptr = add + (addlen-1);
 746        while (len) {
 747                remainder += *dstptr + *addptr;
 748                *dstptr = remainder & 0xff;
 749                remainder >>= 8;
 750                len--; dstptr--; addptr--;
 751        }
 752        len = dstlen - addlen;
 753        while (len && remainder > 0) {
 754                remainder = *dstptr + 1;
 755                *dstptr = remainder & 0xff;
 756                remainder >>= 8;
 757                len--; dstptr--;
 758        }
 759}
 760
 761/*
 762 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
 763 * interlinked, the scratchpad is used as follows:
 764 * drbg_hash_update
 765 *      start: drbg->scratchpad
 766 *      length: drbg_statelen(drbg)
 767 * drbg_hash_df:
 768 *      start: drbg->scratchpad + drbg_statelen(drbg)
 769 *      length: drbg_blocklen(drbg)
 770 *
 771 * drbg_hash_process_addtl uses the scratchpad, but fully completes
 772 * before either of the functions mentioned before are invoked. Therefore,
 773 * drbg_hash_process_addtl does not need to be specifically considered.
 774 */
 775
 776/* Derivation Function for Hash DRBG as defined in 10.4.1 */
 777static int drbg_hash_df(struct drbg_state *drbg,
 778                        unsigned char *outval, size_t outlen,
 779                        struct list_head *entropylist)
 780{
 781        int ret = 0;
 782        size_t len = 0;
 783        unsigned char input[5];
 784        unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
 785        struct drbg_string data;
 786
 787        /* 10.4.1 step 3 */
 788        input[0] = 1;
 789        drbg_cpu_to_be32((outlen * 8), &input[1]);
 790
 791        /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
 792        drbg_string_fill(&data, input, 5);
 793        list_add(&data.list, entropylist);
 794
 795        /* 10.4.1 step 4 */
 796        while (len < outlen) {
 797                short blocklen = 0;
 798                /* 10.4.1 step 4.1 */
 799                ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
 800                if (ret)
 801                        goto out;
 802                /* 10.4.1 step 4.2 */
 803                input[0]++;
 804                blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
 805                            drbg_blocklen(drbg) : (outlen - len);
 806                memcpy(outval + len, tmp, blocklen);
 807                len += blocklen;
 808        }
 809
 810out:
 811        memset(tmp, 0, drbg_blocklen(drbg));
 812        return ret;
 813}
 814
 815/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
 816static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
 817                            int reseed)
 818{
 819        int ret = 0;
 820        struct drbg_string data1, data2;
 821        LIST_HEAD(datalist);
 822        LIST_HEAD(datalist2);
 823        unsigned char *V = drbg->scratchpad;
 824        unsigned char prefix = DRBG_PREFIX1;
 825
 826        if (!seed)
 827                return -EINVAL;
 828
 829        if (reseed) {
 830                /* 10.1.1.3 step 1 */
 831                memcpy(V, drbg->V, drbg_statelen(drbg));
 832                drbg_string_fill(&data1, &prefix, 1);
 833                list_add_tail(&data1.list, &datalist);
 834                drbg_string_fill(&data2, V, drbg_statelen(drbg));
 835                list_add_tail(&data2.list, &datalist);
 836        }
 837        list_splice_tail(seed, &datalist);
 838
 839        /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
 840        ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
 841        if (ret)
 842                goto out;
 843
 844        /* 10.1.1.2 / 10.1.1.3 step 4  */
 845        prefix = DRBG_PREFIX0;
 846        drbg_string_fill(&data1, &prefix, 1);
 847        list_add_tail(&data1.list, &datalist2);
 848        drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 849        list_add_tail(&data2.list, &datalist2);
 850        /* 10.1.1.2 / 10.1.1.3 step 4 */
 851        ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
 852
 853out:
 854        memset(drbg->scratchpad, 0, drbg_statelen(drbg));
 855        return ret;
 856}
 857
 858/* processing of additional information string for Hash DRBG */
 859static int drbg_hash_process_addtl(struct drbg_state *drbg,
 860                                   struct list_head *addtl)
 861{
 862        int ret = 0;
 863        struct drbg_string data1, data2;
 864        LIST_HEAD(datalist);
 865        unsigned char prefix = DRBG_PREFIX2;
 866
 867        /* 10.1.1.4 step 2 */
 868        if (!addtl || list_empty(addtl))
 869                return 0;
 870
 871        /* 10.1.1.4 step 2a */
 872        drbg_string_fill(&data1, &prefix, 1);
 873        drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 874        list_add_tail(&data1.list, &datalist);
 875        list_add_tail(&data2.list, &datalist);
 876        list_splice_tail(addtl, &datalist);
 877        ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
 878        if (ret)
 879                goto out;
 880
 881        /* 10.1.1.4 step 2b */
 882        drbg_add_buf(drbg->V, drbg_statelen(drbg),
 883                     drbg->scratchpad, drbg_blocklen(drbg));
 884
 885out:
 886        memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 887        return ret;
 888}
 889
 890/* Hashgen defined in 10.1.1.4 */
 891static int drbg_hash_hashgen(struct drbg_state *drbg,
 892                             unsigned char *buf,
 893                             unsigned int buflen)
 894{
 895        int len = 0;
 896        int ret = 0;
 897        unsigned char *src = drbg->scratchpad;
 898        unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
 899        struct drbg_string data;
 900        LIST_HEAD(datalist);
 901
 902        /* 10.1.1.4 step hashgen 2 */
 903        memcpy(src, drbg->V, drbg_statelen(drbg));
 904
 905        drbg_string_fill(&data, src, drbg_statelen(drbg));
 906        list_add_tail(&data.list, &datalist);
 907        while (len < buflen) {
 908                unsigned int outlen = 0;
 909                /* 10.1.1.4 step hashgen 4.1 */
 910                ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
 911                if (ret) {
 912                        len = ret;
 913                        goto out;
 914                }
 915                outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 916                          drbg_blocklen(drbg) : (buflen - len);
 917                /* 10.1.1.4 step hashgen 4.2 */
 918                memcpy(buf + len, dst, outlen);
 919                len += outlen;
 920                /* 10.1.1.4 hashgen step 4.3 */
 921                if (len < buflen)
 922                        crypto_inc(src, drbg_statelen(drbg));
 923        }
 924
 925out:
 926        memset(drbg->scratchpad, 0,
 927               (drbg_statelen(drbg) + drbg_blocklen(drbg)));
 928        return len;
 929}
 930
 931/* generate function for Hash DRBG as defined in  10.1.1.4 */
 932static int drbg_hash_generate(struct drbg_state *drbg,
 933                              unsigned char *buf, unsigned int buflen,
 934                              struct list_head *addtl)
 935{
 936        int len = 0;
 937        int ret = 0;
 938        union {
 939                unsigned char req[8];
 940                __be64 req_int;
 941        } u;
 942        unsigned char prefix = DRBG_PREFIX3;
 943        struct drbg_string data1, data2;
 944        LIST_HEAD(datalist);
 945
 946        /* 10.1.1.4 step 2 */
 947        ret = drbg_hash_process_addtl(drbg, addtl);
 948        if (ret)
 949                return ret;
 950        /* 10.1.1.4 step 3 */
 951        len = drbg_hash_hashgen(drbg, buf, buflen);
 952
 953        /* this is the value H as documented in 10.1.1.4 */
 954        /* 10.1.1.4 step 4 */
 955        drbg_string_fill(&data1, &prefix, 1);
 956        list_add_tail(&data1.list, &datalist);
 957        drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 958        list_add_tail(&data2.list, &datalist);
 959        ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
 960        if (ret) {
 961                len = ret;
 962                goto out;
 963        }
 964
 965        /* 10.1.1.4 step 5 */
 966        drbg_add_buf(drbg->V, drbg_statelen(drbg),
 967                     drbg->scratchpad, drbg_blocklen(drbg));
 968        drbg_add_buf(drbg->V, drbg_statelen(drbg),
 969                     drbg->C, drbg_statelen(drbg));
 970        u.req_int = cpu_to_be64(drbg->reseed_ctr);
 971        drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
 972
 973out:
 974        memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 975        return len;
 976}
 977
 978/*
 979 * scratchpad usage: as update and generate are used isolated, both
 980 * can use the scratchpad
 981 */
 982static const struct drbg_state_ops drbg_hash_ops = {
 983        .update         = drbg_hash_update,
 984        .generate       = drbg_hash_generate,
 985        .crypto_init    = drbg_init_hash_kernel,
 986        .crypto_fini    = drbg_fini_hash_kernel,
 987};
 988#endif /* CONFIG_CRYPTO_DRBG_HASH */
 989
 990/******************************************************************
 991 * Functions common for DRBG implementations
 992 ******************************************************************/
 993
 994static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
 995                              int reseed)
 996{
 997        int ret = drbg->d_ops->update(drbg, seed, reseed);
 998
 999        if (ret)
1000                return ret;
1001
1002        drbg->seeded = true;
1003        /* 10.1.1.2 / 10.1.1.3 step 5 */
1004        drbg->reseed_ctr = 1;
1005
1006        return ret;
1007}
1008
1009static void drbg_async_seed(struct work_struct *work)
1010{
1011        struct drbg_string data;
1012        LIST_HEAD(seedlist);
1013        struct drbg_state *drbg = container_of(work, struct drbg_state,
1014                                               seed_work);
1015        unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1016        unsigned char entropy[32];
1017
1018        BUG_ON(!entropylen);
1019        BUG_ON(entropylen > sizeof(entropy));
1020        get_random_bytes(entropy, entropylen);
1021
1022        drbg_string_fill(&data, entropy, entropylen);
1023        list_add_tail(&data.list, &seedlist);
1024
1025        mutex_lock(&drbg->drbg_mutex);
1026
1027        /* If nonblocking pool is initialized, deactivate Jitter RNG */
1028        crypto_free_rng(drbg->jent);
1029        drbg->jent = NULL;
1030
1031        /* Set seeded to false so that if __drbg_seed fails the
1032         * next generate call will trigger a reseed.
1033         */
1034        drbg->seeded = false;
1035
1036        __drbg_seed(drbg, &seedlist, true);
1037
1038        if (drbg->seeded)
1039                drbg->reseed_threshold = drbg_max_requests(drbg);
1040
1041        mutex_unlock(&drbg->drbg_mutex);
1042
1043        memzero_explicit(entropy, entropylen);
1044}
1045
1046/*
1047 * Seeding or reseeding of the DRBG
1048 *
1049 * @drbg: DRBG state struct
1050 * @pers: personalization / additional information buffer
1051 * @reseed: 0 for initial seed process, 1 for reseeding
1052 *
1053 * return:
1054 *      0 on success
1055 *      error value otherwise
1056 */
1057static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1058                     bool reseed)
1059{
1060        int ret;
1061        unsigned char entropy[((32 + 16) * 2)];
1062        unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1063        struct drbg_string data1;
1064        LIST_HEAD(seedlist);
1065
1066        /* 9.1 / 9.2 / 9.3.1 step 3 */
1067        if (pers && pers->len > (drbg_max_addtl(drbg))) {
1068                pr_devel("DRBG: personalization string too long %zu\n",
1069                         pers->len);
1070                return -EINVAL;
1071        }
1072
1073        if (list_empty(&drbg->test_data.list)) {
1074                drbg_string_fill(&data1, drbg->test_data.buf,
1075                                 drbg->test_data.len);
1076                pr_devel("DRBG: using test entropy\n");
1077        } else {
1078                /*
1079                 * Gather entropy equal to the security strength of the DRBG.
1080                 * With a derivation function, a nonce is required in addition
1081                 * to the entropy. A nonce must be at least 1/2 of the security
1082                 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1083                 * of the strength. The consideration of a nonce is only
1084                 * applicable during initial seeding.
1085                 */
1086                BUG_ON(!entropylen);
1087                if (!reseed)
1088                        entropylen = ((entropylen + 1) / 2) * 3;
1089                BUG_ON((entropylen * 2) > sizeof(entropy));
1090
1091                /* Get seed from in-kernel /dev/urandom */
1092                get_random_bytes(entropy, entropylen);
1093
1094                if (!drbg->jent) {
1095                        drbg_string_fill(&data1, entropy, entropylen);
1096                        pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1097                                 entropylen);
1098                } else {
1099                        /* Get seed from Jitter RNG */
1100                        ret = crypto_rng_get_bytes(drbg->jent,
1101                                                   entropy + entropylen,
1102                                                   entropylen);
1103                        if (ret) {
1104                                pr_devel("DRBG: jent failed with %d\n", ret);
1105                                return ret;
1106                        }
1107
1108                        drbg_string_fill(&data1, entropy, entropylen * 2);
1109                        pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1110                                 entropylen * 2);
1111                }
1112        }
1113        list_add_tail(&data1.list, &seedlist);
1114
1115        /*
1116         * concatenation of entropy with personalization str / addtl input)
1117         * the variable pers is directly handed in by the caller, so check its
1118         * contents whether it is appropriate
1119         */
1120        if (pers && pers->buf && 0 < pers->len) {
1121                list_add_tail(&pers->list, &seedlist);
1122                pr_devel("DRBG: using personalization string\n");
1123        }
1124
1125        if (!reseed) {
1126                memset(drbg->V, 0, drbg_statelen(drbg));
1127                memset(drbg->C, 0, drbg_statelen(drbg));
1128        }
1129
1130        ret = __drbg_seed(drbg, &seedlist, reseed);
1131
1132        memzero_explicit(entropy, entropylen * 2);
1133
1134        return ret;
1135}
1136
1137/* Free all substructures in a DRBG state without the DRBG state structure */
1138static inline void drbg_dealloc_state(struct drbg_state *drbg)
1139{
1140        if (!drbg)
1141                return;
1142        kzfree(drbg->V);
1143        drbg->V = NULL;
1144        kzfree(drbg->C);
1145        drbg->C = NULL;
1146        kzfree(drbg->scratchpad);
1147        drbg->scratchpad = NULL;
1148        drbg->reseed_ctr = 0;
1149        drbg->d_ops = NULL;
1150        drbg->core = NULL;
1151}
1152
1153/*
1154 * Allocate all sub-structures for a DRBG state.
1155 * The DRBG state structure must already be allocated.
1156 */
1157static inline int drbg_alloc_state(struct drbg_state *drbg)
1158{
1159        int ret = -ENOMEM;
1160        unsigned int sb_size = 0;
1161
1162        switch (drbg->core->flags & DRBG_TYPE_MASK) {
1163#ifdef CONFIG_CRYPTO_DRBG_HMAC
1164        case DRBG_HMAC:
1165                drbg->d_ops = &drbg_hmac_ops;
1166                break;
1167#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1168#ifdef CONFIG_CRYPTO_DRBG_HASH
1169        case DRBG_HASH:
1170                drbg->d_ops = &drbg_hash_ops;
1171                break;
1172#endif /* CONFIG_CRYPTO_DRBG_HASH */
1173#ifdef CONFIG_CRYPTO_DRBG_CTR
1174        case DRBG_CTR:
1175                drbg->d_ops = &drbg_ctr_ops;
1176                break;
1177#endif /* CONFIG_CRYPTO_DRBG_CTR */
1178        default:
1179                ret = -EOPNOTSUPP;
1180                goto err;
1181        }
1182
1183        drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1184        if (!drbg->V)
1185                goto err;
1186        drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1187        if (!drbg->C)
1188                goto err;
1189        /* scratchpad is only generated for CTR and Hash */
1190        if (drbg->core->flags & DRBG_HMAC)
1191                sb_size = 0;
1192        else if (drbg->core->flags & DRBG_CTR)
1193                sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1194                          drbg_statelen(drbg) + /* df_data */
1195                          drbg_blocklen(drbg) + /* pad */
1196                          drbg_blocklen(drbg) + /* iv */
1197                          drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1198        else
1199                sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1200
1201        if (0 < sb_size) {
1202                drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1203                if (!drbg->scratchpad)
1204                        goto err;
1205        }
1206
1207        return 0;
1208
1209err:
1210        drbg_dealloc_state(drbg);
1211        return ret;
1212}
1213
1214/*************************************************************************
1215 * DRBG interface functions
1216 *************************************************************************/
1217
1218/*
1219 * DRBG generate function as required by SP800-90A - this function
1220 * generates random numbers
1221 *
1222 * @drbg DRBG state handle
1223 * @buf Buffer where to store the random numbers -- the buffer must already
1224 *      be pre-allocated by caller
1225 * @buflen Length of output buffer - this value defines the number of random
1226 *         bytes pulled from DRBG
1227 * @addtl Additional input that is mixed into state, may be NULL -- note
1228 *        the entropy is pulled by the DRBG internally unconditionally
1229 *        as defined in SP800-90A. The additional input is mixed into
1230 *        the state in addition to the pulled entropy.
1231 *
1232 * return: 0 when all bytes are generated; < 0 in case of an error
1233 */
1234static int drbg_generate(struct drbg_state *drbg,
1235                         unsigned char *buf, unsigned int buflen,
1236                         struct drbg_string *addtl)
1237{
1238        int len = 0;
1239        LIST_HEAD(addtllist);
1240
1241        if (!drbg->core) {
1242                pr_devel("DRBG: not yet seeded\n");
1243                return -EINVAL;
1244        }
1245        if (0 == buflen || !buf) {
1246                pr_devel("DRBG: no output buffer provided\n");
1247                return -EINVAL;
1248        }
1249        if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1250                pr_devel("DRBG: wrong format of additional information\n");
1251                return -EINVAL;
1252        }
1253
1254        /* 9.3.1 step 2 */
1255        len = -EINVAL;
1256        if (buflen > (drbg_max_request_bytes(drbg))) {
1257                pr_devel("DRBG: requested random numbers too large %u\n",
1258                         buflen);
1259                goto err;
1260        }
1261
1262        /* 9.3.1 step 3 is implicit with the chosen DRBG */
1263
1264        /* 9.3.1 step 4 */
1265        if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1266                pr_devel("DRBG: additional information string too long %zu\n",
1267                         addtl->len);
1268                goto err;
1269        }
1270        /* 9.3.1 step 5 is implicit with the chosen DRBG */
1271
1272        /*
1273         * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1274         * here. The spec is a bit convoluted here, we make it simpler.
1275         */
1276        if (drbg->reseed_threshold < drbg->reseed_ctr)
1277                drbg->seeded = false;
1278
1279        if (drbg->pr || !drbg->seeded) {
1280                pr_devel("DRBG: reseeding before generation (prediction "
1281                         "resistance: %s, state %s)\n",
1282                         drbg->pr ? "true" : "false",
1283                         drbg->seeded ? "seeded" : "unseeded");
1284                /* 9.3.1 steps 7.1 through 7.3 */
1285                len = drbg_seed(drbg, addtl, true);
1286                if (len)
1287                        goto err;
1288                /* 9.3.1 step 7.4 */
1289                addtl = NULL;
1290        }
1291
1292        if (addtl && 0 < addtl->len)
1293                list_add_tail(&addtl->list, &addtllist);
1294        /* 9.3.1 step 8 and 10 */
1295        len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1296
1297        /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1298        drbg->reseed_ctr++;
1299        if (0 >= len)
1300                goto err;
1301
1302        /*
1303         * Section 11.3.3 requires to re-perform self tests after some
1304         * generated random numbers. The chosen value after which self
1305         * test is performed is arbitrary, but it should be reasonable.
1306         * However, we do not perform the self tests because of the following
1307         * reasons: it is mathematically impossible that the initial self tests
1308         * were successfully and the following are not. If the initial would
1309         * pass and the following would not, the kernel integrity is violated.
1310         * In this case, the entire kernel operation is questionable and it
1311         * is unlikely that the integrity violation only affects the
1312         * correct operation of the DRBG.
1313         *
1314         * Albeit the following code is commented out, it is provided in
1315         * case somebody has a need to implement the test of 11.3.3.
1316         */
1317#if 0
1318        if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1319                int err = 0;
1320                pr_devel("DRBG: start to perform self test\n");
1321                if (drbg->core->flags & DRBG_HMAC)
1322                        err = alg_test("drbg_pr_hmac_sha256",
1323                                       "drbg_pr_hmac_sha256", 0, 0);
1324                else if (drbg->core->flags & DRBG_CTR)
1325                        err = alg_test("drbg_pr_ctr_aes128",
1326                                       "drbg_pr_ctr_aes128", 0, 0);
1327                else
1328                        err = alg_test("drbg_pr_sha256",
1329                                       "drbg_pr_sha256", 0, 0);
1330                if (err) {
1331                        pr_err("DRBG: periodical self test failed\n");
1332                        /*
1333                         * uninstantiate implies that from now on, only errors
1334                         * are returned when reusing this DRBG cipher handle
1335                         */
1336                        drbg_uninstantiate(drbg);
1337                        return 0;
1338                } else {
1339                        pr_devel("DRBG: self test successful\n");
1340                }
1341        }
1342#endif
1343
1344        /*
1345         * All operations were successful, return 0 as mandated by
1346         * the kernel crypto API interface.
1347         */
1348        len = 0;
1349err:
1350        return len;
1351}
1352
1353/*
1354 * Wrapper around drbg_generate which can pull arbitrary long strings
1355 * from the DRBG without hitting the maximum request limitation.
1356 *
1357 * Parameters: see drbg_generate
1358 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1359 *               the entire drbg_generate_long request fails
1360 */
1361static int drbg_generate_long(struct drbg_state *drbg,
1362                              unsigned char *buf, unsigned int buflen,
1363                              struct drbg_string *addtl)
1364{
1365        unsigned int len = 0;
1366        unsigned int slice = 0;
1367        do {
1368                int err = 0;
1369                unsigned int chunk = 0;
1370                slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1371                chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1372                mutex_lock(&drbg->drbg_mutex);
1373                err = drbg_generate(drbg, buf + len, chunk, addtl);
1374                mutex_unlock(&drbg->drbg_mutex);
1375                if (0 > err)
1376                        return err;
1377                len += chunk;
1378        } while (slice > 0 && (len < buflen));
1379        return 0;
1380}
1381
1382static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1383{
1384        struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1385                                               random_ready);
1386
1387        schedule_work(&drbg->seed_work);
1388}
1389
1390static int drbg_prepare_hrng(struct drbg_state *drbg)
1391{
1392        int err;
1393
1394        /* We do not need an HRNG in test mode. */
1395        if (list_empty(&drbg->test_data.list))
1396                return 0;
1397
1398        INIT_WORK(&drbg->seed_work, drbg_async_seed);
1399
1400        drbg->random_ready.owner = THIS_MODULE;
1401        drbg->random_ready.func = drbg_schedule_async_seed;
1402
1403        err = add_random_ready_callback(&drbg->random_ready);
1404
1405        switch (err) {
1406        case 0:
1407                break;
1408
1409        case -EALREADY:
1410                err = 0;
1411                /* fall through */
1412
1413        default:
1414                drbg->random_ready.func = NULL;
1415                return err;
1416        }
1417
1418        drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1419
1420        /*
1421         * Require frequent reseeds until the seed source is fully
1422         * initialized.
1423         */
1424        drbg->reseed_threshold = 50;
1425
1426        return err;
1427}
1428
1429/*
1430 * DRBG instantiation function as required by SP800-90A - this function
1431 * sets up the DRBG handle, performs the initial seeding and all sanity
1432 * checks required by SP800-90A
1433 *
1434 * @drbg memory of state -- if NULL, new memory is allocated
1435 * @pers Personalization string that is mixed into state, may be NULL -- note
1436 *       the entropy is pulled by the DRBG internally unconditionally
1437 *       as defined in SP800-90A. The additional input is mixed into
1438 *       the state in addition to the pulled entropy.
1439 * @coreref reference to core
1440 * @pr prediction resistance enabled
1441 *
1442 * return
1443 *      0 on success
1444 *      error value otherwise
1445 */
1446static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1447                            int coreref, bool pr)
1448{
1449        int ret;
1450        bool reseed = true;
1451
1452        pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1453                 "%s\n", coreref, pr ? "enabled" : "disabled");
1454        mutex_lock(&drbg->drbg_mutex);
1455
1456        /* 9.1 step 1 is implicit with the selected DRBG type */
1457
1458        /*
1459         * 9.1 step 2 is implicit as caller can select prediction resistance
1460         * and the flag is copied into drbg->flags --
1461         * all DRBG types support prediction resistance
1462         */
1463
1464        /* 9.1 step 4 is implicit in  drbg_sec_strength */
1465
1466        if (!drbg->core) {
1467                drbg->core = &drbg_cores[coreref];
1468                drbg->pr = pr;
1469                drbg->seeded = false;
1470                drbg->reseed_threshold = drbg_max_requests(drbg);
1471
1472                ret = drbg_alloc_state(drbg);
1473                if (ret)
1474                        goto unlock;
1475
1476                ret = -EFAULT;
1477                if (drbg->d_ops->crypto_init(drbg))
1478                        goto err;
1479
1480                ret = drbg_prepare_hrng(drbg);
1481                if (ret)
1482                        goto free_everything;
1483
1484                if (IS_ERR(drbg->jent)) {
1485                        ret = PTR_ERR(drbg->jent);
1486                        drbg->jent = NULL;
1487                        if (fips_enabled || ret != -ENOENT)
1488                                goto free_everything;
1489                        pr_info("DRBG: Continuing without Jitter RNG\n");
1490                }
1491
1492                reseed = false;
1493        }
1494
1495        ret = drbg_seed(drbg, pers, reseed);
1496
1497        if (ret && !reseed)
1498                goto free_everything;
1499
1500        mutex_unlock(&drbg->drbg_mutex);
1501        return ret;
1502
1503err:
1504        drbg_dealloc_state(drbg);
1505unlock:
1506        mutex_unlock(&drbg->drbg_mutex);
1507        return ret;
1508
1509free_everything:
1510        mutex_unlock(&drbg->drbg_mutex);
1511        drbg_uninstantiate(drbg);
1512        return ret;
1513}
1514
1515/*
1516 * DRBG uninstantiate function as required by SP800-90A - this function
1517 * frees all buffers and the DRBG handle
1518 *
1519 * @drbg DRBG state handle
1520 *
1521 * return
1522 *      0 on success
1523 */
1524static int drbg_uninstantiate(struct drbg_state *drbg)
1525{
1526        if (drbg->random_ready.func) {
1527                del_random_ready_callback(&drbg->random_ready);
1528                cancel_work_sync(&drbg->seed_work);
1529                crypto_free_rng(drbg->jent);
1530                drbg->jent = NULL;
1531        }
1532
1533        if (drbg->d_ops)
1534                drbg->d_ops->crypto_fini(drbg);
1535        drbg_dealloc_state(drbg);
1536        /* no scrubbing of test_data -- this shall survive an uninstantiate */
1537        return 0;
1538}
1539
1540/*
1541 * Helper function for setting the test data in the DRBG
1542 *
1543 * @drbg DRBG state handle
1544 * @data test data
1545 * @len test data length
1546 */
1547static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1548                                   const u8 *data, unsigned int len)
1549{
1550        struct drbg_state *drbg = crypto_rng_ctx(tfm);
1551
1552        mutex_lock(&drbg->drbg_mutex);
1553        drbg_string_fill(&drbg->test_data, data, len);
1554        mutex_unlock(&drbg->drbg_mutex);
1555}
1556
1557/***************************************************************
1558 * Kernel crypto API cipher invocations requested by DRBG
1559 ***************************************************************/
1560
1561#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1562struct sdesc {
1563        struct shash_desc shash;
1564        char ctx[];
1565};
1566
1567static int drbg_init_hash_kernel(struct drbg_state *drbg)
1568{
1569        struct sdesc *sdesc;
1570        struct crypto_shash *tfm;
1571
1572        tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1573        if (IS_ERR(tfm)) {
1574                pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1575                                drbg->core->backend_cra_name);
1576                return PTR_ERR(tfm);
1577        }
1578        BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1579        sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1580                        GFP_KERNEL);
1581        if (!sdesc) {
1582                crypto_free_shash(tfm);
1583                return -ENOMEM;
1584        }
1585
1586        sdesc->shash.tfm = tfm;
1587        sdesc->shash.flags = 0;
1588        drbg->priv_data = sdesc;
1589        return 0;
1590}
1591
1592static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1593{
1594        struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1595        if (sdesc) {
1596                crypto_free_shash(sdesc->shash.tfm);
1597                kzfree(sdesc);
1598        }
1599        drbg->priv_data = NULL;
1600        return 0;
1601}
1602
1603static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1604                           unsigned char *outval, const struct list_head *in)
1605{
1606        struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1607        struct drbg_string *input = NULL;
1608
1609        if (key)
1610                crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1611        crypto_shash_init(&sdesc->shash);
1612        list_for_each_entry(input, in, list)
1613                crypto_shash_update(&sdesc->shash, input->buf, input->len);
1614        return crypto_shash_final(&sdesc->shash, outval);
1615}
1616#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1617
1618#ifdef CONFIG_CRYPTO_DRBG_CTR
1619static int drbg_init_sym_kernel(struct drbg_state *drbg)
1620{
1621        int ret = 0;
1622        struct crypto_cipher *tfm;
1623
1624        tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1625        if (IS_ERR(tfm)) {
1626                pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1627                                drbg->core->backend_cra_name);
1628                return PTR_ERR(tfm);
1629        }
1630        BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1631        drbg->priv_data = tfm;
1632        return ret;
1633}
1634
1635static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1636{
1637        struct crypto_cipher *tfm =
1638                (struct crypto_cipher *)drbg->priv_data;
1639        if (tfm)
1640                crypto_free_cipher(tfm);
1641        drbg->priv_data = NULL;
1642        return 0;
1643}
1644
1645static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1646                          unsigned char *outval, const struct drbg_string *in)
1647{
1648        struct crypto_cipher *tfm =
1649                (struct crypto_cipher *)drbg->priv_data;
1650
1651        crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1652        /* there is only component in *in */
1653        BUG_ON(in->len < drbg_blocklen(drbg));
1654        crypto_cipher_encrypt_one(tfm, outval, in->buf);
1655        return 0;
1656}
1657#endif /* CONFIG_CRYPTO_DRBG_CTR */
1658
1659/***************************************************************
1660 * Kernel crypto API interface to register DRBG
1661 ***************************************************************/
1662
1663/*
1664 * Look up the DRBG flags by given kernel crypto API cra_name
1665 * The code uses the drbg_cores definition to do this
1666 *
1667 * @cra_name kernel crypto API cra_name
1668 * @coreref reference to integer which is filled with the pointer to
1669 *  the applicable core
1670 * @pr reference for setting prediction resistance
1671 *
1672 * return: flags
1673 */
1674static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1675                                         int *coreref, bool *pr)
1676{
1677        int i = 0;
1678        size_t start = 0;
1679        int len = 0;
1680
1681        *pr = true;
1682        /* disassemble the names */
1683        if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1684                start = 10;
1685                *pr = false;
1686        } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1687                start = 8;
1688        } else {
1689                return;
1690        }
1691
1692        /* remove the first part */
1693        len = strlen(cra_driver_name) - start;
1694        for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1695                if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1696                            len)) {
1697                        *coreref = i;
1698                        return;
1699                }
1700        }
1701}
1702
1703static int drbg_kcapi_init(struct crypto_tfm *tfm)
1704{
1705        struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1706
1707        mutex_init(&drbg->drbg_mutex);
1708
1709        return 0;
1710}
1711
1712static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1713{
1714        drbg_uninstantiate(crypto_tfm_ctx(tfm));
1715}
1716
1717/*
1718 * Generate random numbers invoked by the kernel crypto API:
1719 * The API of the kernel crypto API is extended as follows:
1720 *
1721 * src is additional input supplied to the RNG.
1722 * slen is the length of src.
1723 * dst is the output buffer where random data is to be stored.
1724 * dlen is the length of dst.
1725 */
1726static int drbg_kcapi_random(struct crypto_rng *tfm,
1727                             const u8 *src, unsigned int slen,
1728                             u8 *dst, unsigned int dlen)
1729{
1730        struct drbg_state *drbg = crypto_rng_ctx(tfm);
1731        struct drbg_string *addtl = NULL;
1732        struct drbg_string string;
1733
1734        if (slen) {
1735                /* linked list variable is now local to allow modification */
1736                drbg_string_fill(&string, src, slen);
1737                addtl = &string;
1738        }
1739
1740        return drbg_generate_long(drbg, dst, dlen, addtl);
1741}
1742
1743/*
1744 * Seed the DRBG invoked by the kernel crypto API
1745 */
1746static int drbg_kcapi_seed(struct crypto_rng *tfm,
1747                           const u8 *seed, unsigned int slen)
1748{
1749        struct drbg_state *drbg = crypto_rng_ctx(tfm);
1750        struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1751        bool pr = false;
1752        struct drbg_string string;
1753        struct drbg_string *seed_string = NULL;
1754        int coreref = 0;
1755
1756        drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1757                              &pr);
1758        if (0 < slen) {
1759                drbg_string_fill(&string, seed, slen);
1760                seed_string = &string;
1761        }
1762
1763        return drbg_instantiate(drbg, seed_string, coreref, pr);
1764}
1765
1766/***************************************************************
1767 * Kernel module: code to load the module
1768 ***************************************************************/
1769
1770/*
1771 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1772 * of the error handling.
1773 *
1774 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1775 * as seed source of get_random_bytes does not fail.
1776 *
1777 * Note 2: There is no sensible way of testing the reseed counter
1778 * enforcement, so skip it.
1779 */
1780static inline int __init drbg_healthcheck_sanity(void)
1781{
1782        int len = 0;
1783#define OUTBUFLEN 16
1784        unsigned char buf[OUTBUFLEN];
1785        struct drbg_state *drbg = NULL;
1786        int ret = -EFAULT;
1787        int rc = -EFAULT;
1788        bool pr = false;
1789        int coreref = 0;
1790        struct drbg_string addtl;
1791        size_t max_addtllen, max_request_bytes;
1792
1793        /* only perform test in FIPS mode */
1794        if (!fips_enabled)
1795                return 0;
1796
1797#ifdef CONFIG_CRYPTO_DRBG_CTR
1798        drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1799#elif defined CONFIG_CRYPTO_DRBG_HASH
1800        drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1801#else
1802        drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1803#endif
1804
1805        drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1806        if (!drbg)
1807                return -ENOMEM;
1808
1809        mutex_init(&drbg->drbg_mutex);
1810
1811        /*
1812         * if the following tests fail, it is likely that there is a buffer
1813         * overflow as buf is much smaller than the requested or provided
1814         * string lengths -- in case the error handling does not succeed
1815         * we may get an OOPS. And we want to get an OOPS as this is a
1816         * grave bug.
1817         */
1818
1819        /* get a valid instance of DRBG for following tests */
1820        ret = drbg_instantiate(drbg, NULL, coreref, pr);
1821        if (ret) {
1822                rc = ret;
1823                goto outbuf;
1824        }
1825        max_addtllen = drbg_max_addtl(drbg);
1826        max_request_bytes = drbg_max_request_bytes(drbg);
1827        drbg_string_fill(&addtl, buf, max_addtllen + 1);
1828        /* overflow addtllen with additonal info string */
1829        len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1830        BUG_ON(0 < len);
1831        /* overflow max_bits */
1832        len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1833        BUG_ON(0 < len);
1834        drbg_uninstantiate(drbg);
1835
1836        /* overflow max addtllen with personalization string */
1837        ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1838        BUG_ON(0 == ret);
1839        /* all tests passed */
1840        rc = 0;
1841
1842        pr_devel("DRBG: Sanity tests for failure code paths successfully "
1843                 "completed\n");
1844
1845        drbg_uninstantiate(drbg);
1846outbuf:
1847        kzfree(drbg);
1848        return rc;
1849}
1850
1851static struct rng_alg drbg_algs[22];
1852
1853/*
1854 * Fill the array drbg_algs used to register the different DRBGs
1855 * with the kernel crypto API. To fill the array, the information
1856 * from drbg_cores[] is used.
1857 */
1858static inline void __init drbg_fill_array(struct rng_alg *alg,
1859                                          const struct drbg_core *core, int pr)
1860{
1861        int pos = 0;
1862        static int priority = 200;
1863
1864        memcpy(alg->base.cra_name, "stdrng", 6);
1865        if (pr) {
1866                memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1867                pos = 8;
1868        } else {
1869                memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1870                pos = 10;
1871        }
1872        memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1873               strlen(core->cra_name));
1874
1875        alg->base.cra_priority = priority;
1876        priority++;
1877        /*
1878         * If FIPS mode enabled, the selected DRBG shall have the
1879         * highest cra_priority over other stdrng instances to ensure
1880         * it is selected.
1881         */
1882        if (fips_enabled)
1883                alg->base.cra_priority += 200;
1884
1885        alg->base.cra_ctxsize   = sizeof(struct drbg_state);
1886        alg->base.cra_module    = THIS_MODULE;
1887        alg->base.cra_init      = drbg_kcapi_init;
1888        alg->base.cra_exit      = drbg_kcapi_cleanup;
1889        alg->generate           = drbg_kcapi_random;
1890        alg->seed               = drbg_kcapi_seed;
1891        alg->set_ent            = drbg_kcapi_set_entropy;
1892        alg->seedsize           = 0;
1893}
1894
1895static int __init drbg_init(void)
1896{
1897        unsigned int i = 0; /* pointer to drbg_algs */
1898        unsigned int j = 0; /* pointer to drbg_cores */
1899        int ret = -EFAULT;
1900
1901        ret = drbg_healthcheck_sanity();
1902        if (ret)
1903                return ret;
1904
1905        if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1906                pr_info("DRBG: Cannot register all DRBG types"
1907                        "(slots needed: %zu, slots available: %zu)\n",
1908                        ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1909                return ret;
1910        }
1911
1912        /*
1913         * each DRBG definition can be used with PR and without PR, thus
1914         * we instantiate each DRBG in drbg_cores[] twice.
1915         *
1916         * As the order of placing them into the drbg_algs array matters
1917         * (the later DRBGs receive a higher cra_priority) we register the
1918         * prediction resistance DRBGs first as the should not be too
1919         * interesting.
1920         */
1921        for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1922                drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1923        for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1924                drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1925        return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1926}
1927
1928static void __exit drbg_exit(void)
1929{
1930        crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1931}
1932
1933module_init(drbg_init);
1934module_exit(drbg_exit);
1935#ifndef CRYPTO_DRBG_HASH_STRING
1936#define CRYPTO_DRBG_HASH_STRING ""
1937#endif
1938#ifndef CRYPTO_DRBG_HMAC_STRING
1939#define CRYPTO_DRBG_HMAC_STRING ""
1940#endif
1941#ifndef CRYPTO_DRBG_CTR_STRING
1942#define CRYPTO_DRBG_CTR_STRING ""
1943#endif
1944MODULE_LICENSE("GPL");
1945MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
1946MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
1947                   "using following cores: "
1948                   CRYPTO_DRBG_HASH_STRING
1949                   CRYPTO_DRBG_HMAC_STRING
1950                   CRYPTO_DRBG_CTR_STRING);
1951MODULE_ALIAS_CRYPTO("stdrng");
1952