linux/drivers/ata/libata-sff.c
<<
>>
Prefs
   1/*
   2 *  libata-sff.c - helper library for PCI IDE BMDMA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2006 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 */
  34
  35#include <linux/kernel.h>
  36#include <linux/gfp.h>
  37#include <linux/pci.h>
  38#include <linux/module.h>
  39#include <linux/libata.h>
  40#include <linux/highmem.h>
  41
  42#include "libata.h"
  43
  44static struct workqueue_struct *ata_sff_wq;
  45
  46const struct ata_port_operations ata_sff_port_ops = {
  47        .inherits               = &ata_base_port_ops,
  48
  49        .qc_prep                = ata_noop_qc_prep,
  50        .qc_issue               = ata_sff_qc_issue,
  51        .qc_fill_rtf            = ata_sff_qc_fill_rtf,
  52
  53        .freeze                 = ata_sff_freeze,
  54        .thaw                   = ata_sff_thaw,
  55        .prereset               = ata_sff_prereset,
  56        .softreset              = ata_sff_softreset,
  57        .hardreset              = sata_sff_hardreset,
  58        .postreset              = ata_sff_postreset,
  59        .error_handler          = ata_sff_error_handler,
  60
  61        .sff_dev_select         = ata_sff_dev_select,
  62        .sff_check_status       = ata_sff_check_status,
  63        .sff_tf_load            = ata_sff_tf_load,
  64        .sff_tf_read            = ata_sff_tf_read,
  65        .sff_exec_command       = ata_sff_exec_command,
  66        .sff_data_xfer          = ata_sff_data_xfer,
  67        .sff_drain_fifo         = ata_sff_drain_fifo,
  68
  69        .lost_interrupt         = ata_sff_lost_interrupt,
  70};
  71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  72
  73/**
  74 *      ata_sff_check_status - Read device status reg & clear interrupt
  75 *      @ap: port where the device is
  76 *
  77 *      Reads ATA taskfile status register for currently-selected device
  78 *      and return its value. This also clears pending interrupts
  79 *      from this device
  80 *
  81 *      LOCKING:
  82 *      Inherited from caller.
  83 */
  84u8 ata_sff_check_status(struct ata_port *ap)
  85{
  86        return ioread8(ap->ioaddr.status_addr);
  87}
  88EXPORT_SYMBOL_GPL(ata_sff_check_status);
  89
  90/**
  91 *      ata_sff_altstatus - Read device alternate status reg
  92 *      @ap: port where the device is
  93 *
  94 *      Reads ATA taskfile alternate status register for
  95 *      currently-selected device and return its value.
  96 *
  97 *      Note: may NOT be used as the check_altstatus() entry in
  98 *      ata_port_operations.
  99 *
 100 *      LOCKING:
 101 *      Inherited from caller.
 102 */
 103static u8 ata_sff_altstatus(struct ata_port *ap)
 104{
 105        if (ap->ops->sff_check_altstatus)
 106                return ap->ops->sff_check_altstatus(ap);
 107
 108        return ioread8(ap->ioaddr.altstatus_addr);
 109}
 110
 111/**
 112 *      ata_sff_irq_status - Check if the device is busy
 113 *      @ap: port where the device is
 114 *
 115 *      Determine if the port is currently busy. Uses altstatus
 116 *      if available in order to avoid clearing shared IRQ status
 117 *      when finding an IRQ source. Non ctl capable devices don't
 118 *      share interrupt lines fortunately for us.
 119 *
 120 *      LOCKING:
 121 *      Inherited from caller.
 122 */
 123static u8 ata_sff_irq_status(struct ata_port *ap)
 124{
 125        u8 status;
 126
 127        if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 128                status = ata_sff_altstatus(ap);
 129                /* Not us: We are busy */
 130                if (status & ATA_BUSY)
 131                        return status;
 132        }
 133        /* Clear INTRQ latch */
 134        status = ap->ops->sff_check_status(ap);
 135        return status;
 136}
 137
 138/**
 139 *      ata_sff_sync - Flush writes
 140 *      @ap: Port to wait for.
 141 *
 142 *      CAUTION:
 143 *      If we have an mmio device with no ctl and no altstatus
 144 *      method this will fail. No such devices are known to exist.
 145 *
 146 *      LOCKING:
 147 *      Inherited from caller.
 148 */
 149
 150static void ata_sff_sync(struct ata_port *ap)
 151{
 152        if (ap->ops->sff_check_altstatus)
 153                ap->ops->sff_check_altstatus(ap);
 154        else if (ap->ioaddr.altstatus_addr)
 155                ioread8(ap->ioaddr.altstatus_addr);
 156}
 157
 158/**
 159 *      ata_sff_pause           -       Flush writes and wait 400nS
 160 *      @ap: Port to pause for.
 161 *
 162 *      CAUTION:
 163 *      If we have an mmio device with no ctl and no altstatus
 164 *      method this will fail. No such devices are known to exist.
 165 *
 166 *      LOCKING:
 167 *      Inherited from caller.
 168 */
 169
 170void ata_sff_pause(struct ata_port *ap)
 171{
 172        ata_sff_sync(ap);
 173        ndelay(400);
 174}
 175EXPORT_SYMBOL_GPL(ata_sff_pause);
 176
 177/**
 178 *      ata_sff_dma_pause       -       Pause before commencing DMA
 179 *      @ap: Port to pause for.
 180 *
 181 *      Perform I/O fencing and ensure sufficient cycle delays occur
 182 *      for the HDMA1:0 transition
 183 */
 184
 185void ata_sff_dma_pause(struct ata_port *ap)
 186{
 187        if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 188                /* An altstatus read will cause the needed delay without
 189                   messing up the IRQ status */
 190                ata_sff_altstatus(ap);
 191                return;
 192        }
 193        /* There are no DMA controllers without ctl. BUG here to ensure
 194           we never violate the HDMA1:0 transition timing and risk
 195           corruption. */
 196        BUG();
 197}
 198EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 199
 200/**
 201 *      ata_sff_busy_sleep - sleep until BSY clears, or timeout
 202 *      @ap: port containing status register to be polled
 203 *      @tmout_pat: impatience timeout in msecs
 204 *      @tmout: overall timeout in msecs
 205 *
 206 *      Sleep until ATA Status register bit BSY clears,
 207 *      or a timeout occurs.
 208 *
 209 *      LOCKING:
 210 *      Kernel thread context (may sleep).
 211 *
 212 *      RETURNS:
 213 *      0 on success, -errno otherwise.
 214 */
 215int ata_sff_busy_sleep(struct ata_port *ap,
 216                       unsigned long tmout_pat, unsigned long tmout)
 217{
 218        unsigned long timer_start, timeout;
 219        u8 status;
 220
 221        status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
 222        timer_start = jiffies;
 223        timeout = ata_deadline(timer_start, tmout_pat);
 224        while (status != 0xff && (status & ATA_BUSY) &&
 225               time_before(jiffies, timeout)) {
 226                ata_msleep(ap, 50);
 227                status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
 228        }
 229
 230        if (status != 0xff && (status & ATA_BUSY))
 231                ata_port_warn(ap,
 232                              "port is slow to respond, please be patient (Status 0x%x)\n",
 233                              status);
 234
 235        timeout = ata_deadline(timer_start, tmout);
 236        while (status != 0xff && (status & ATA_BUSY) &&
 237               time_before(jiffies, timeout)) {
 238                ata_msleep(ap, 50);
 239                status = ap->ops->sff_check_status(ap);
 240        }
 241
 242        if (status == 0xff)
 243                return -ENODEV;
 244
 245        if (status & ATA_BUSY) {
 246                ata_port_err(ap,
 247                             "port failed to respond (%lu secs, Status 0x%x)\n",
 248                             DIV_ROUND_UP(tmout, 1000), status);
 249                return -EBUSY;
 250        }
 251
 252        return 0;
 253}
 254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
 255
 256static int ata_sff_check_ready(struct ata_link *link)
 257{
 258        u8 status = link->ap->ops->sff_check_status(link->ap);
 259
 260        return ata_check_ready(status);
 261}
 262
 263/**
 264 *      ata_sff_wait_ready - sleep until BSY clears, or timeout
 265 *      @link: SFF link to wait ready status for
 266 *      @deadline: deadline jiffies for the operation
 267 *
 268 *      Sleep until ATA Status register bit BSY clears, or timeout
 269 *      occurs.
 270 *
 271 *      LOCKING:
 272 *      Kernel thread context (may sleep).
 273 *
 274 *      RETURNS:
 275 *      0 on success, -errno otherwise.
 276 */
 277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 278{
 279        return ata_wait_ready(link, deadline, ata_sff_check_ready);
 280}
 281EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 282
 283/**
 284 *      ata_sff_set_devctl - Write device control reg
 285 *      @ap: port where the device is
 286 *      @ctl: value to write
 287 *
 288 *      Writes ATA taskfile device control register.
 289 *
 290 *      Note: may NOT be used as the sff_set_devctl() entry in
 291 *      ata_port_operations.
 292 *
 293 *      LOCKING:
 294 *      Inherited from caller.
 295 */
 296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 297{
 298        if (ap->ops->sff_set_devctl)
 299                ap->ops->sff_set_devctl(ap, ctl);
 300        else
 301                iowrite8(ctl, ap->ioaddr.ctl_addr);
 302}
 303
 304/**
 305 *      ata_sff_dev_select - Select device 0/1 on ATA bus
 306 *      @ap: ATA channel to manipulate
 307 *      @device: ATA device (numbered from zero) to select
 308 *
 309 *      Use the method defined in the ATA specification to
 310 *      make either device 0, or device 1, active on the
 311 *      ATA channel.  Works with both PIO and MMIO.
 312 *
 313 *      May be used as the dev_select() entry in ata_port_operations.
 314 *
 315 *      LOCKING:
 316 *      caller.
 317 */
 318void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 319{
 320        u8 tmp;
 321
 322        if (device == 0)
 323                tmp = ATA_DEVICE_OBS;
 324        else
 325                tmp = ATA_DEVICE_OBS | ATA_DEV1;
 326
 327        iowrite8(tmp, ap->ioaddr.device_addr);
 328        ata_sff_pause(ap);      /* needed; also flushes, for mmio */
 329}
 330EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 331
 332/**
 333 *      ata_dev_select - Select device 0/1 on ATA bus
 334 *      @ap: ATA channel to manipulate
 335 *      @device: ATA device (numbered from zero) to select
 336 *      @wait: non-zero to wait for Status register BSY bit to clear
 337 *      @can_sleep: non-zero if context allows sleeping
 338 *
 339 *      Use the method defined in the ATA specification to
 340 *      make either device 0, or device 1, active on the
 341 *      ATA channel.
 342 *
 343 *      This is a high-level version of ata_sff_dev_select(), which
 344 *      additionally provides the services of inserting the proper
 345 *      pauses and status polling, where needed.
 346 *
 347 *      LOCKING:
 348 *      caller.
 349 */
 350static void ata_dev_select(struct ata_port *ap, unsigned int device,
 351                           unsigned int wait, unsigned int can_sleep)
 352{
 353        if (ata_msg_probe(ap))
 354                ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
 355                              device, wait);
 356
 357        if (wait)
 358                ata_wait_idle(ap);
 359
 360        ap->ops->sff_dev_select(ap, device);
 361
 362        if (wait) {
 363                if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 364                        ata_msleep(ap, 150);
 365                ata_wait_idle(ap);
 366        }
 367}
 368
 369/**
 370 *      ata_sff_irq_on - Enable interrupts on a port.
 371 *      @ap: Port on which interrupts are enabled.
 372 *
 373 *      Enable interrupts on a legacy IDE device using MMIO or PIO,
 374 *      wait for idle, clear any pending interrupts.
 375 *
 376 *      Note: may NOT be used as the sff_irq_on() entry in
 377 *      ata_port_operations.
 378 *
 379 *      LOCKING:
 380 *      Inherited from caller.
 381 */
 382void ata_sff_irq_on(struct ata_port *ap)
 383{
 384        struct ata_ioports *ioaddr = &ap->ioaddr;
 385
 386        if (ap->ops->sff_irq_on) {
 387                ap->ops->sff_irq_on(ap);
 388                return;
 389        }
 390
 391        ap->ctl &= ~ATA_NIEN;
 392        ap->last_ctl = ap->ctl;
 393
 394        if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
 395                ata_sff_set_devctl(ap, ap->ctl);
 396        ata_wait_idle(ap);
 397
 398        if (ap->ops->sff_irq_clear)
 399                ap->ops->sff_irq_clear(ap);
 400}
 401EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 402
 403/**
 404 *      ata_sff_tf_load - send taskfile registers to host controller
 405 *      @ap: Port to which output is sent
 406 *      @tf: ATA taskfile register set
 407 *
 408 *      Outputs ATA taskfile to standard ATA host controller.
 409 *
 410 *      LOCKING:
 411 *      Inherited from caller.
 412 */
 413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 414{
 415        struct ata_ioports *ioaddr = &ap->ioaddr;
 416        unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 417
 418        if (tf->ctl != ap->last_ctl) {
 419                if (ioaddr->ctl_addr)
 420                        iowrite8(tf->ctl, ioaddr->ctl_addr);
 421                ap->last_ctl = tf->ctl;
 422                ata_wait_idle(ap);
 423        }
 424
 425        if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 426                WARN_ON_ONCE(!ioaddr->ctl_addr);
 427                iowrite8(tf->hob_feature, ioaddr->feature_addr);
 428                iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 429                iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 430                iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 431                iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 432                VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 433                        tf->hob_feature,
 434                        tf->hob_nsect,
 435                        tf->hob_lbal,
 436                        tf->hob_lbam,
 437                        tf->hob_lbah);
 438        }
 439
 440        if (is_addr) {
 441                iowrite8(tf->feature, ioaddr->feature_addr);
 442                iowrite8(tf->nsect, ioaddr->nsect_addr);
 443                iowrite8(tf->lbal, ioaddr->lbal_addr);
 444                iowrite8(tf->lbam, ioaddr->lbam_addr);
 445                iowrite8(tf->lbah, ioaddr->lbah_addr);
 446                VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
 447                        tf->feature,
 448                        tf->nsect,
 449                        tf->lbal,
 450                        tf->lbam,
 451                        tf->lbah);
 452        }
 453
 454        if (tf->flags & ATA_TFLAG_DEVICE) {
 455                iowrite8(tf->device, ioaddr->device_addr);
 456                VPRINTK("device 0x%X\n", tf->device);
 457        }
 458
 459        ata_wait_idle(ap);
 460}
 461EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 462
 463/**
 464 *      ata_sff_tf_read - input device's ATA taskfile shadow registers
 465 *      @ap: Port from which input is read
 466 *      @tf: ATA taskfile register set for storing input
 467 *
 468 *      Reads ATA taskfile registers for currently-selected device
 469 *      into @tf. Assumes the device has a fully SFF compliant task file
 470 *      layout and behaviour. If you device does not (eg has a different
 471 *      status method) then you will need to provide a replacement tf_read
 472 *
 473 *      LOCKING:
 474 *      Inherited from caller.
 475 */
 476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 477{
 478        struct ata_ioports *ioaddr = &ap->ioaddr;
 479
 480        tf->command = ata_sff_check_status(ap);
 481        tf->feature = ioread8(ioaddr->error_addr);
 482        tf->nsect = ioread8(ioaddr->nsect_addr);
 483        tf->lbal = ioread8(ioaddr->lbal_addr);
 484        tf->lbam = ioread8(ioaddr->lbam_addr);
 485        tf->lbah = ioread8(ioaddr->lbah_addr);
 486        tf->device = ioread8(ioaddr->device_addr);
 487
 488        if (tf->flags & ATA_TFLAG_LBA48) {
 489                if (likely(ioaddr->ctl_addr)) {
 490                        iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 491                        tf->hob_feature = ioread8(ioaddr->error_addr);
 492                        tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 493                        tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 494                        tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 495                        tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 496                        iowrite8(tf->ctl, ioaddr->ctl_addr);
 497                        ap->last_ctl = tf->ctl;
 498                } else
 499                        WARN_ON_ONCE(1);
 500        }
 501}
 502EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 503
 504/**
 505 *      ata_sff_exec_command - issue ATA command to host controller
 506 *      @ap: port to which command is being issued
 507 *      @tf: ATA taskfile register set
 508 *
 509 *      Issues ATA command, with proper synchronization with interrupt
 510 *      handler / other threads.
 511 *
 512 *      LOCKING:
 513 *      spin_lock_irqsave(host lock)
 514 */
 515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 516{
 517        DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 518
 519        iowrite8(tf->command, ap->ioaddr.command_addr);
 520        ata_sff_pause(ap);
 521}
 522EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 523
 524/**
 525 *      ata_tf_to_host - issue ATA taskfile to host controller
 526 *      @ap: port to which command is being issued
 527 *      @tf: ATA taskfile register set
 528 *
 529 *      Issues ATA taskfile register set to ATA host controller,
 530 *      with proper synchronization with interrupt handler and
 531 *      other threads.
 532 *
 533 *      LOCKING:
 534 *      spin_lock_irqsave(host lock)
 535 */
 536static inline void ata_tf_to_host(struct ata_port *ap,
 537                                  const struct ata_taskfile *tf)
 538{
 539        ap->ops->sff_tf_load(ap, tf);
 540        ap->ops->sff_exec_command(ap, tf);
 541}
 542
 543/**
 544 *      ata_sff_data_xfer - Transfer data by PIO
 545 *      @dev: device to target
 546 *      @buf: data buffer
 547 *      @buflen: buffer length
 548 *      @rw: read/write
 549 *
 550 *      Transfer data from/to the device data register by PIO.
 551 *
 552 *      LOCKING:
 553 *      Inherited from caller.
 554 *
 555 *      RETURNS:
 556 *      Bytes consumed.
 557 */
 558unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
 559                               unsigned int buflen, int rw)
 560{
 561        struct ata_port *ap = dev->link->ap;
 562        void __iomem *data_addr = ap->ioaddr.data_addr;
 563        unsigned int words = buflen >> 1;
 564
 565        /* Transfer multiple of 2 bytes */
 566        if (rw == READ)
 567                ioread16_rep(data_addr, buf, words);
 568        else
 569                iowrite16_rep(data_addr, buf, words);
 570
 571        /* Transfer trailing byte, if any. */
 572        if (unlikely(buflen & 0x01)) {
 573                unsigned char pad[2] = { };
 574
 575                /* Point buf to the tail of buffer */
 576                buf += buflen - 1;
 577
 578                /*
 579                 * Use io*16_rep() accessors here as well to avoid pointlessly
 580                 * swapping bytes to and from on the big endian machines...
 581                 */
 582                if (rw == READ) {
 583                        ioread16_rep(data_addr, pad, 1);
 584                        *buf = pad[0];
 585                } else {
 586                        pad[0] = *buf;
 587                        iowrite16_rep(data_addr, pad, 1);
 588                }
 589                words++;
 590        }
 591
 592        return words << 1;
 593}
 594EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 595
 596/**
 597 *      ata_sff_data_xfer32 - Transfer data by PIO
 598 *      @dev: device to target
 599 *      @buf: data buffer
 600 *      @buflen: buffer length
 601 *      @rw: read/write
 602 *
 603 *      Transfer data from/to the device data register by PIO using 32bit
 604 *      I/O operations.
 605 *
 606 *      LOCKING:
 607 *      Inherited from caller.
 608 *
 609 *      RETURNS:
 610 *      Bytes consumed.
 611 */
 612
 613unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
 614                               unsigned int buflen, int rw)
 615{
 616        struct ata_port *ap = dev->link->ap;
 617        void __iomem *data_addr = ap->ioaddr.data_addr;
 618        unsigned int words = buflen >> 2;
 619        int slop = buflen & 3;
 620
 621        if (!(ap->pflags & ATA_PFLAG_PIO32))
 622                return ata_sff_data_xfer(dev, buf, buflen, rw);
 623
 624        /* Transfer multiple of 4 bytes */
 625        if (rw == READ)
 626                ioread32_rep(data_addr, buf, words);
 627        else
 628                iowrite32_rep(data_addr, buf, words);
 629
 630        /* Transfer trailing bytes, if any */
 631        if (unlikely(slop)) {
 632                unsigned char pad[4] = { };
 633
 634                /* Point buf to the tail of buffer */
 635                buf += buflen - slop;
 636
 637                /*
 638                 * Use io*_rep() accessors here as well to avoid pointlessly
 639                 * swapping bytes to and from on the big endian machines...
 640                 */
 641                if (rw == READ) {
 642                        if (slop < 3)
 643                                ioread16_rep(data_addr, pad, 1);
 644                        else
 645                                ioread32_rep(data_addr, pad, 1);
 646                        memcpy(buf, pad, slop);
 647                } else {
 648                        memcpy(pad, buf, slop);
 649                        if (slop < 3)
 650                                iowrite16_rep(data_addr, pad, 1);
 651                        else
 652                                iowrite32_rep(data_addr, pad, 1);
 653                }
 654        }
 655        return (buflen + 1) & ~1;
 656}
 657EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 658
 659/**
 660 *      ata_sff_data_xfer_noirq - Transfer data by PIO
 661 *      @dev: device to target
 662 *      @buf: data buffer
 663 *      @buflen: buffer length
 664 *      @rw: read/write
 665 *
 666 *      Transfer data from/to the device data register by PIO. Do the
 667 *      transfer with interrupts disabled.
 668 *
 669 *      LOCKING:
 670 *      Inherited from caller.
 671 *
 672 *      RETURNS:
 673 *      Bytes consumed.
 674 */
 675unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
 676                                     unsigned int buflen, int rw)
 677{
 678        unsigned long flags;
 679        unsigned int consumed;
 680
 681        local_irq_save(flags);
 682        consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
 683        local_irq_restore(flags);
 684
 685        return consumed;
 686}
 687EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
 688
 689/**
 690 *      ata_pio_sector - Transfer a sector of data.
 691 *      @qc: Command on going
 692 *
 693 *      Transfer qc->sect_size bytes of data from/to the ATA device.
 694 *
 695 *      LOCKING:
 696 *      Inherited from caller.
 697 */
 698static void ata_pio_sector(struct ata_queued_cmd *qc)
 699{
 700        int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 701        struct ata_port *ap = qc->ap;
 702        struct page *page;
 703        unsigned int offset;
 704        unsigned char *buf;
 705
 706        if (qc->curbytes == qc->nbytes - qc->sect_size)
 707                ap->hsm_task_state = HSM_ST_LAST;
 708
 709        page = sg_page(qc->cursg);
 710        offset = qc->cursg->offset + qc->cursg_ofs;
 711
 712        /* get the current page and offset */
 713        page = nth_page(page, (offset >> PAGE_SHIFT));
 714        offset %= PAGE_SIZE;
 715
 716        DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 717
 718        if (PageHighMem(page)) {
 719                unsigned long flags;
 720
 721                /* FIXME: use a bounce buffer */
 722                local_irq_save(flags);
 723                buf = kmap_atomic(page);
 724
 725                /* do the actual data transfer */
 726                ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
 727                                       do_write);
 728
 729                kunmap_atomic(buf);
 730                local_irq_restore(flags);
 731        } else {
 732                buf = page_address(page);
 733                ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
 734                                       do_write);
 735        }
 736
 737        if (!do_write && !PageSlab(page))
 738                flush_dcache_page(page);
 739
 740        qc->curbytes += qc->sect_size;
 741        qc->cursg_ofs += qc->sect_size;
 742
 743        if (qc->cursg_ofs == qc->cursg->length) {
 744                qc->cursg = sg_next(qc->cursg);
 745                qc->cursg_ofs = 0;
 746        }
 747}
 748
 749/**
 750 *      ata_pio_sectors - Transfer one or many sectors.
 751 *      @qc: Command on going
 752 *
 753 *      Transfer one or many sectors of data from/to the
 754 *      ATA device for the DRQ request.
 755 *
 756 *      LOCKING:
 757 *      Inherited from caller.
 758 */
 759static void ata_pio_sectors(struct ata_queued_cmd *qc)
 760{
 761        if (is_multi_taskfile(&qc->tf)) {
 762                /* READ/WRITE MULTIPLE */
 763                unsigned int nsect;
 764
 765                WARN_ON_ONCE(qc->dev->multi_count == 0);
 766
 767                nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 768                            qc->dev->multi_count);
 769                while (nsect--)
 770                        ata_pio_sector(qc);
 771        } else
 772                ata_pio_sector(qc);
 773
 774        ata_sff_sync(qc->ap); /* flush */
 775}
 776
 777/**
 778 *      atapi_send_cdb - Write CDB bytes to hardware
 779 *      @ap: Port to which ATAPI device is attached.
 780 *      @qc: Taskfile currently active
 781 *
 782 *      When device has indicated its readiness to accept
 783 *      a CDB, this function is called.  Send the CDB.
 784 *
 785 *      LOCKING:
 786 *      caller.
 787 */
 788static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 789{
 790        /* send SCSI cdb */
 791        DPRINTK("send cdb\n");
 792        WARN_ON_ONCE(qc->dev->cdb_len < 12);
 793
 794        ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
 795        ata_sff_sync(ap);
 796        /* FIXME: If the CDB is for DMA do we need to do the transition delay
 797           or is bmdma_start guaranteed to do it ? */
 798        switch (qc->tf.protocol) {
 799        case ATAPI_PROT_PIO:
 800                ap->hsm_task_state = HSM_ST;
 801                break;
 802        case ATAPI_PROT_NODATA:
 803                ap->hsm_task_state = HSM_ST_LAST;
 804                break;
 805#ifdef CONFIG_ATA_BMDMA
 806        case ATAPI_PROT_DMA:
 807                ap->hsm_task_state = HSM_ST_LAST;
 808                /* initiate bmdma */
 809                ap->ops->bmdma_start(qc);
 810                break;
 811#endif /* CONFIG_ATA_BMDMA */
 812        default:
 813                BUG();
 814        }
 815}
 816
 817/**
 818 *      __atapi_pio_bytes - Transfer data from/to the ATAPI device.
 819 *      @qc: Command on going
 820 *      @bytes: number of bytes
 821 *
 822 *      Transfer Transfer data from/to the ATAPI device.
 823 *
 824 *      LOCKING:
 825 *      Inherited from caller.
 826 *
 827 */
 828static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 829{
 830        int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 831        struct ata_port *ap = qc->ap;
 832        struct ata_device *dev = qc->dev;
 833        struct ata_eh_info *ehi = &dev->link->eh_info;
 834        struct scatterlist *sg;
 835        struct page *page;
 836        unsigned char *buf;
 837        unsigned int offset, count, consumed;
 838
 839next_sg:
 840        sg = qc->cursg;
 841        if (unlikely(!sg)) {
 842                ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 843                                  "buf=%u cur=%u bytes=%u",
 844                                  qc->nbytes, qc->curbytes, bytes);
 845                return -1;
 846        }
 847
 848        page = sg_page(sg);
 849        offset = sg->offset + qc->cursg_ofs;
 850
 851        /* get the current page and offset */
 852        page = nth_page(page, (offset >> PAGE_SHIFT));
 853        offset %= PAGE_SIZE;
 854
 855        /* don't overrun current sg */
 856        count = min(sg->length - qc->cursg_ofs, bytes);
 857
 858        /* don't cross page boundaries */
 859        count = min(count, (unsigned int)PAGE_SIZE - offset);
 860
 861        DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 862
 863        if (PageHighMem(page)) {
 864                unsigned long flags;
 865
 866                /* FIXME: use bounce buffer */
 867                local_irq_save(flags);
 868                buf = kmap_atomic(page);
 869
 870                /* do the actual data transfer */
 871                consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
 872                                                                count, rw);
 873
 874                kunmap_atomic(buf);
 875                local_irq_restore(flags);
 876        } else {
 877                buf = page_address(page);
 878                consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
 879                                                                count, rw);
 880        }
 881
 882        bytes -= min(bytes, consumed);
 883        qc->curbytes += count;
 884        qc->cursg_ofs += count;
 885
 886        if (qc->cursg_ofs == sg->length) {
 887                qc->cursg = sg_next(qc->cursg);
 888                qc->cursg_ofs = 0;
 889        }
 890
 891        /*
 892         * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 893         * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 894         * check correctly as it doesn't know if it is the last request being
 895         * made. Somebody should implement a proper sanity check.
 896         */
 897        if (bytes)
 898                goto next_sg;
 899        return 0;
 900}
 901
 902/**
 903 *      atapi_pio_bytes - Transfer data from/to the ATAPI device.
 904 *      @qc: Command on going
 905 *
 906 *      Transfer Transfer data from/to the ATAPI device.
 907 *
 908 *      LOCKING:
 909 *      Inherited from caller.
 910 */
 911static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 912{
 913        struct ata_port *ap = qc->ap;
 914        struct ata_device *dev = qc->dev;
 915        struct ata_eh_info *ehi = &dev->link->eh_info;
 916        unsigned int ireason, bc_lo, bc_hi, bytes;
 917        int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 918
 919        /* Abuse qc->result_tf for temp storage of intermediate TF
 920         * here to save some kernel stack usage.
 921         * For normal completion, qc->result_tf is not relevant. For
 922         * error, qc->result_tf is later overwritten by ata_qc_complete().
 923         * So, the correctness of qc->result_tf is not affected.
 924         */
 925        ap->ops->sff_tf_read(ap, &qc->result_tf);
 926        ireason = qc->result_tf.nsect;
 927        bc_lo = qc->result_tf.lbam;
 928        bc_hi = qc->result_tf.lbah;
 929        bytes = (bc_hi << 8) | bc_lo;
 930
 931        /* shall be cleared to zero, indicating xfer of data */
 932        if (unlikely(ireason & ATAPI_COD))
 933                goto atapi_check;
 934
 935        /* make sure transfer direction matches expected */
 936        i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 937        if (unlikely(do_write != i_write))
 938                goto atapi_check;
 939
 940        if (unlikely(!bytes))
 941                goto atapi_check;
 942
 943        VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
 944
 945        if (unlikely(__atapi_pio_bytes(qc, bytes)))
 946                goto err_out;
 947        ata_sff_sync(ap); /* flush */
 948
 949        return;
 950
 951 atapi_check:
 952        ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 953                          ireason, bytes);
 954 err_out:
 955        qc->err_mask |= AC_ERR_HSM;
 956        ap->hsm_task_state = HSM_ST_ERR;
 957}
 958
 959/**
 960 *      ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 961 *      @ap: the target ata_port
 962 *      @qc: qc on going
 963 *
 964 *      RETURNS:
 965 *      1 if ok in workqueue, 0 otherwise.
 966 */
 967static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 968                                                struct ata_queued_cmd *qc)
 969{
 970        if (qc->tf.flags & ATA_TFLAG_POLLING)
 971                return 1;
 972
 973        if (ap->hsm_task_state == HSM_ST_FIRST) {
 974                if (qc->tf.protocol == ATA_PROT_PIO &&
 975                   (qc->tf.flags & ATA_TFLAG_WRITE))
 976                    return 1;
 977
 978                if (ata_is_atapi(qc->tf.protocol) &&
 979                   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 980                        return 1;
 981        }
 982
 983        return 0;
 984}
 985
 986/**
 987 *      ata_hsm_qc_complete - finish a qc running on standard HSM
 988 *      @qc: Command to complete
 989 *      @in_wq: 1 if called from workqueue, 0 otherwise
 990 *
 991 *      Finish @qc which is running on standard HSM.
 992 *
 993 *      LOCKING:
 994 *      If @in_wq is zero, spin_lock_irqsave(host lock).
 995 *      Otherwise, none on entry and grabs host lock.
 996 */
 997static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 998{
 999        struct ata_port *ap = qc->ap;
1000
1001        if (ap->ops->error_handler) {
1002                if (in_wq) {
1003                        /* EH might have kicked in while host lock is
1004                         * released.
1005                         */
1006                        qc = ata_qc_from_tag(ap, qc->tag);
1007                        if (qc) {
1008                                if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1009                                        ata_sff_irq_on(ap);
1010                                        ata_qc_complete(qc);
1011                                } else
1012                                        ata_port_freeze(ap);
1013                        }
1014                } else {
1015                        if (likely(!(qc->err_mask & AC_ERR_HSM)))
1016                                ata_qc_complete(qc);
1017                        else
1018                                ata_port_freeze(ap);
1019                }
1020        } else {
1021                if (in_wq) {
1022                        ata_sff_irq_on(ap);
1023                        ata_qc_complete(qc);
1024                } else
1025                        ata_qc_complete(qc);
1026        }
1027}
1028
1029/**
1030 *      ata_sff_hsm_move - move the HSM to the next state.
1031 *      @ap: the target ata_port
1032 *      @qc: qc on going
1033 *      @status: current device status
1034 *      @in_wq: 1 if called from workqueue, 0 otherwise
1035 *
1036 *      RETURNS:
1037 *      1 when poll next status needed, 0 otherwise.
1038 */
1039int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1040                     u8 status, int in_wq)
1041{
1042        struct ata_link *link = qc->dev->link;
1043        struct ata_eh_info *ehi = &link->eh_info;
1044        int poll_next;
1045
1046        lockdep_assert_held(ap->lock);
1047
1048        WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1049
1050        /* Make sure ata_sff_qc_issue() does not throw things
1051         * like DMA polling into the workqueue. Notice that
1052         * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1053         */
1054        WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1055
1056fsm_start:
1057        DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058                ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1059
1060        switch (ap->hsm_task_state) {
1061        case HSM_ST_FIRST:
1062                /* Send first data block or PACKET CDB */
1063
1064                /* If polling, we will stay in the work queue after
1065                 * sending the data. Otherwise, interrupt handler
1066                 * takes over after sending the data.
1067                 */
1068                poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1069
1070                /* check device status */
1071                if (unlikely((status & ATA_DRQ) == 0)) {
1072                        /* handle BSY=0, DRQ=0 as error */
1073                        if (likely(status & (ATA_ERR | ATA_DF)))
1074                                /* device stops HSM for abort/error */
1075                                qc->err_mask |= AC_ERR_DEV;
1076                        else {
1077                                /* HSM violation. Let EH handle this */
1078                                ata_ehi_push_desc(ehi,
1079                                        "ST_FIRST: !(DRQ|ERR|DF)");
1080                                qc->err_mask |= AC_ERR_HSM;
1081                        }
1082
1083                        ap->hsm_task_state = HSM_ST_ERR;
1084                        goto fsm_start;
1085                }
1086
1087                /* Device should not ask for data transfer (DRQ=1)
1088                 * when it finds something wrong.
1089                 * We ignore DRQ here and stop the HSM by
1090                 * changing hsm_task_state to HSM_ST_ERR and
1091                 * let the EH abort the command or reset the device.
1092                 */
1093                if (unlikely(status & (ATA_ERR | ATA_DF))) {
1094                        /* Some ATAPI tape drives forget to clear the ERR bit
1095                         * when doing the next command (mostly request sense).
1096                         * We ignore ERR here to workaround and proceed sending
1097                         * the CDB.
1098                         */
1099                        if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1100                                ata_ehi_push_desc(ehi, "ST_FIRST: "
1101                                        "DRQ=1 with device error, "
1102                                        "dev_stat 0x%X", status);
1103                                qc->err_mask |= AC_ERR_HSM;
1104                                ap->hsm_task_state = HSM_ST_ERR;
1105                                goto fsm_start;
1106                        }
1107                }
1108
1109                if (qc->tf.protocol == ATA_PROT_PIO) {
1110                        /* PIO data out protocol.
1111                         * send first data block.
1112                         */
1113
1114                        /* ata_pio_sectors() might change the state
1115                         * to HSM_ST_LAST. so, the state is changed here
1116                         * before ata_pio_sectors().
1117                         */
1118                        ap->hsm_task_state = HSM_ST;
1119                        ata_pio_sectors(qc);
1120                } else
1121                        /* send CDB */
1122                        atapi_send_cdb(ap, qc);
1123
1124                /* if polling, ata_sff_pio_task() handles the rest.
1125                 * otherwise, interrupt handler takes over from here.
1126                 */
1127                break;
1128
1129        case HSM_ST:
1130                /* complete command or read/write the data register */
1131                if (qc->tf.protocol == ATAPI_PROT_PIO) {
1132                        /* ATAPI PIO protocol */
1133                        if ((status & ATA_DRQ) == 0) {
1134                                /* No more data to transfer or device error.
1135                                 * Device error will be tagged in HSM_ST_LAST.
1136                                 */
1137                                ap->hsm_task_state = HSM_ST_LAST;
1138                                goto fsm_start;
1139                        }
1140
1141                        /* Device should not ask for data transfer (DRQ=1)
1142                         * when it finds something wrong.
1143                         * We ignore DRQ here and stop the HSM by
1144                         * changing hsm_task_state to HSM_ST_ERR and
1145                         * let the EH abort the command or reset the device.
1146                         */
1147                        if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148                                ata_ehi_push_desc(ehi, "ST-ATAPI: "
1149                                        "DRQ=1 with device error, "
1150                                        "dev_stat 0x%X", status);
1151                                qc->err_mask |= AC_ERR_HSM;
1152                                ap->hsm_task_state = HSM_ST_ERR;
1153                                goto fsm_start;
1154                        }
1155
1156                        atapi_pio_bytes(qc);
1157
1158                        if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1159                                /* bad ireason reported by device */
1160                                goto fsm_start;
1161
1162                } else {
1163                        /* ATA PIO protocol */
1164                        if (unlikely((status & ATA_DRQ) == 0)) {
1165                                /* handle BSY=0, DRQ=0 as error */
1166                                if (likely(status & (ATA_ERR | ATA_DF))) {
1167                                        /* device stops HSM for abort/error */
1168                                        qc->err_mask |= AC_ERR_DEV;
1169
1170                                        /* If diagnostic failed and this is
1171                                         * IDENTIFY, it's likely a phantom
1172                                         * device.  Mark hint.
1173                                         */
1174                                        if (qc->dev->horkage &
1175                                            ATA_HORKAGE_DIAGNOSTIC)
1176                                                qc->err_mask |=
1177                                                        AC_ERR_NODEV_HINT;
1178                                } else {
1179                                        /* HSM violation. Let EH handle this.
1180                                         * Phantom devices also trigger this
1181                                         * condition.  Mark hint.
1182                                         */
1183                                        ata_ehi_push_desc(ehi, "ST-ATA: "
1184                                                "DRQ=0 without device error, "
1185                                                "dev_stat 0x%X", status);
1186                                        qc->err_mask |= AC_ERR_HSM |
1187                                                        AC_ERR_NODEV_HINT;
1188                                }
1189
1190                                ap->hsm_task_state = HSM_ST_ERR;
1191                                goto fsm_start;
1192                        }
1193
1194                        /* For PIO reads, some devices may ask for
1195                         * data transfer (DRQ=1) alone with ERR=1.
1196                         * We respect DRQ here and transfer one
1197                         * block of junk data before changing the
1198                         * hsm_task_state to HSM_ST_ERR.
1199                         *
1200                         * For PIO writes, ERR=1 DRQ=1 doesn't make
1201                         * sense since the data block has been
1202                         * transferred to the device.
1203                         */
1204                        if (unlikely(status & (ATA_ERR | ATA_DF))) {
1205                                /* data might be corrputed */
1206                                qc->err_mask |= AC_ERR_DEV;
1207
1208                                if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1209                                        ata_pio_sectors(qc);
1210                                        status = ata_wait_idle(ap);
1211                                }
1212
1213                                if (status & (ATA_BUSY | ATA_DRQ)) {
1214                                        ata_ehi_push_desc(ehi, "ST-ATA: "
1215                                                "BUSY|DRQ persists on ERR|DF, "
1216                                                "dev_stat 0x%X", status);
1217                                        qc->err_mask |= AC_ERR_HSM;
1218                                }
1219
1220                                /* There are oddball controllers with
1221                                 * status register stuck at 0x7f and
1222                                 * lbal/m/h at zero which makes it
1223                                 * pass all other presence detection
1224                                 * mechanisms we have.  Set NODEV_HINT
1225                                 * for it.  Kernel bz#7241.
1226                                 */
1227                                if (status == 0x7f)
1228                                        qc->err_mask |= AC_ERR_NODEV_HINT;
1229
1230                                /* ata_pio_sectors() might change the
1231                                 * state to HSM_ST_LAST. so, the state
1232                                 * is changed after ata_pio_sectors().
1233                                 */
1234                                ap->hsm_task_state = HSM_ST_ERR;
1235                                goto fsm_start;
1236                        }
1237
1238                        ata_pio_sectors(qc);
1239
1240                        if (ap->hsm_task_state == HSM_ST_LAST &&
1241                            (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1242                                /* all data read */
1243                                status = ata_wait_idle(ap);
1244                                goto fsm_start;
1245                        }
1246                }
1247
1248                poll_next = 1;
1249                break;
1250
1251        case HSM_ST_LAST:
1252                if (unlikely(!ata_ok(status))) {
1253                        qc->err_mask |= __ac_err_mask(status);
1254                        ap->hsm_task_state = HSM_ST_ERR;
1255                        goto fsm_start;
1256                }
1257
1258                /* no more data to transfer */
1259                DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260                        ap->print_id, qc->dev->devno, status);
1261
1262                WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1263
1264                ap->hsm_task_state = HSM_ST_IDLE;
1265
1266                /* complete taskfile transaction */
1267                ata_hsm_qc_complete(qc, in_wq);
1268
1269                poll_next = 0;
1270                break;
1271
1272        case HSM_ST_ERR:
1273                ap->hsm_task_state = HSM_ST_IDLE;
1274
1275                /* complete taskfile transaction */
1276                ata_hsm_qc_complete(qc, in_wq);
1277
1278                poll_next = 0;
1279                break;
1280        default:
1281                poll_next = 0;
1282                WARN(true, "ata%d: SFF host state machine in invalid state %d",
1283                     ap->print_id, ap->hsm_task_state);
1284        }
1285
1286        return poll_next;
1287}
1288EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1289
1290void ata_sff_queue_work(struct work_struct *work)
1291{
1292        queue_work(ata_sff_wq, work);
1293}
1294EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1295
1296void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1297{
1298        queue_delayed_work(ata_sff_wq, dwork, delay);
1299}
1300EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1301
1302void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1303{
1304        struct ata_port *ap = link->ap;
1305
1306        WARN_ON((ap->sff_pio_task_link != NULL) &&
1307                (ap->sff_pio_task_link != link));
1308        ap->sff_pio_task_link = link;
1309
1310        /* may fail if ata_sff_flush_pio_task() in progress */
1311        ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1312}
1313EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1314
1315void ata_sff_flush_pio_task(struct ata_port *ap)
1316{
1317        DPRINTK("ENTER\n");
1318
1319        cancel_delayed_work_sync(&ap->sff_pio_task);
1320
1321        /*
1322         * We wanna reset the HSM state to IDLE.  If we do so without
1323         * grabbing the port lock, critical sections protected by it which
1324         * expect the HSM state to stay stable may get surprised.  For
1325         * example, we may set IDLE in between the time
1326         * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1327         * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1328         */
1329        spin_lock_irq(ap->lock);
1330        ap->hsm_task_state = HSM_ST_IDLE;
1331        spin_unlock_irq(ap->lock);
1332
1333        ap->sff_pio_task_link = NULL;
1334
1335        if (ata_msg_ctl(ap))
1336                ata_port_dbg(ap, "%s: EXIT\n", __func__);
1337}
1338
1339static void ata_sff_pio_task(struct work_struct *work)
1340{
1341        struct ata_port *ap =
1342                container_of(work, struct ata_port, sff_pio_task.work);
1343        struct ata_link *link = ap->sff_pio_task_link;
1344        struct ata_queued_cmd *qc;
1345        u8 status;
1346        int poll_next;
1347
1348        spin_lock_irq(ap->lock);
1349
1350        BUG_ON(ap->sff_pio_task_link == NULL);
1351        /* qc can be NULL if timeout occurred */
1352        qc = ata_qc_from_tag(ap, link->active_tag);
1353        if (!qc) {
1354                ap->sff_pio_task_link = NULL;
1355                goto out_unlock;
1356        }
1357
1358fsm_start:
1359        WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1360
1361        /*
1362         * This is purely heuristic.  This is a fast path.
1363         * Sometimes when we enter, BSY will be cleared in
1364         * a chk-status or two.  If not, the drive is probably seeking
1365         * or something.  Snooze for a couple msecs, then
1366         * chk-status again.  If still busy, queue delayed work.
1367         */
1368        status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1369        if (status & ATA_BUSY) {
1370                spin_unlock_irq(ap->lock);
1371                ata_msleep(ap, 2);
1372                spin_lock_irq(ap->lock);
1373
1374                status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1375                if (status & ATA_BUSY) {
1376                        ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1377                        goto out_unlock;
1378                }
1379        }
1380
1381        /*
1382         * hsm_move() may trigger another command to be processed.
1383         * clean the link beforehand.
1384         */
1385        ap->sff_pio_task_link = NULL;
1386        /* move the HSM */
1387        poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1388
1389        /* another command or interrupt handler
1390         * may be running at this point.
1391         */
1392        if (poll_next)
1393                goto fsm_start;
1394out_unlock:
1395        spin_unlock_irq(ap->lock);
1396}
1397
1398/**
1399 *      ata_sff_qc_issue - issue taskfile to a SFF controller
1400 *      @qc: command to issue to device
1401 *
1402 *      This function issues a PIO or NODATA command to a SFF
1403 *      controller.
1404 *
1405 *      LOCKING:
1406 *      spin_lock_irqsave(host lock)
1407 *
1408 *      RETURNS:
1409 *      Zero on success, AC_ERR_* mask on failure
1410 */
1411unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1412{
1413        struct ata_port *ap = qc->ap;
1414        struct ata_link *link = qc->dev->link;
1415
1416        /* Use polling pio if the LLD doesn't handle
1417         * interrupt driven pio and atapi CDB interrupt.
1418         */
1419        if (ap->flags & ATA_FLAG_PIO_POLLING)
1420                qc->tf.flags |= ATA_TFLAG_POLLING;
1421
1422        /* select the device */
1423        ata_dev_select(ap, qc->dev->devno, 1, 0);
1424
1425        /* start the command */
1426        switch (qc->tf.protocol) {
1427        case ATA_PROT_NODATA:
1428                if (qc->tf.flags & ATA_TFLAG_POLLING)
1429                        ata_qc_set_polling(qc);
1430
1431                ata_tf_to_host(ap, &qc->tf);
1432                ap->hsm_task_state = HSM_ST_LAST;
1433
1434                if (qc->tf.flags & ATA_TFLAG_POLLING)
1435                        ata_sff_queue_pio_task(link, 0);
1436
1437                break;
1438
1439        case ATA_PROT_PIO:
1440                if (qc->tf.flags & ATA_TFLAG_POLLING)
1441                        ata_qc_set_polling(qc);
1442
1443                ata_tf_to_host(ap, &qc->tf);
1444
1445                if (qc->tf.flags & ATA_TFLAG_WRITE) {
1446                        /* PIO data out protocol */
1447                        ap->hsm_task_state = HSM_ST_FIRST;
1448                        ata_sff_queue_pio_task(link, 0);
1449
1450                        /* always send first data block using the
1451                         * ata_sff_pio_task() codepath.
1452                         */
1453                } else {
1454                        /* PIO data in protocol */
1455                        ap->hsm_task_state = HSM_ST;
1456
1457                        if (qc->tf.flags & ATA_TFLAG_POLLING)
1458                                ata_sff_queue_pio_task(link, 0);
1459
1460                        /* if polling, ata_sff_pio_task() handles the
1461                         * rest.  otherwise, interrupt handler takes
1462                         * over from here.
1463                         */
1464                }
1465
1466                break;
1467
1468        case ATAPI_PROT_PIO:
1469        case ATAPI_PROT_NODATA:
1470                if (qc->tf.flags & ATA_TFLAG_POLLING)
1471                        ata_qc_set_polling(qc);
1472
1473                ata_tf_to_host(ap, &qc->tf);
1474
1475                ap->hsm_task_state = HSM_ST_FIRST;
1476
1477                /* send cdb by polling if no cdb interrupt */
1478                if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1479                    (qc->tf.flags & ATA_TFLAG_POLLING))
1480                        ata_sff_queue_pio_task(link, 0);
1481                break;
1482
1483        default:
1484                WARN_ON_ONCE(1);
1485                return AC_ERR_SYSTEM;
1486        }
1487
1488        return 0;
1489}
1490EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1491
1492/**
1493 *      ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1494 *      @qc: qc to fill result TF for
1495 *
1496 *      @qc is finished and result TF needs to be filled.  Fill it
1497 *      using ->sff_tf_read.
1498 *
1499 *      LOCKING:
1500 *      spin_lock_irqsave(host lock)
1501 *
1502 *      RETURNS:
1503 *      true indicating that result TF is successfully filled.
1504 */
1505bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1506{
1507        qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1508        return true;
1509}
1510EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1511
1512static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1513{
1514        ap->stats.idle_irq++;
1515
1516#ifdef ATA_IRQ_TRAP
1517        if ((ap->stats.idle_irq % 1000) == 0) {
1518                ap->ops->sff_check_status(ap);
1519                if (ap->ops->sff_irq_clear)
1520                        ap->ops->sff_irq_clear(ap);
1521                ata_port_warn(ap, "irq trap\n");
1522                return 1;
1523        }
1524#endif
1525        return 0;       /* irq not handled */
1526}
1527
1528static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1529                                        struct ata_queued_cmd *qc,
1530                                        bool hsmv_on_idle)
1531{
1532        u8 status;
1533
1534        VPRINTK("ata%u: protocol %d task_state %d\n",
1535                ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1536
1537        /* Check whether we are expecting interrupt in this state */
1538        switch (ap->hsm_task_state) {
1539        case HSM_ST_FIRST:
1540                /* Some pre-ATAPI-4 devices assert INTRQ
1541                 * at this state when ready to receive CDB.
1542                 */
1543
1544                /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1545                 * The flag was turned on only for atapi devices.  No
1546                 * need to check ata_is_atapi(qc->tf.protocol) again.
1547                 */
1548                if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1549                        return ata_sff_idle_irq(ap);
1550                break;
1551        case HSM_ST_IDLE:
1552                return ata_sff_idle_irq(ap);
1553        default:
1554                break;
1555        }
1556
1557        /* check main status, clearing INTRQ if needed */
1558        status = ata_sff_irq_status(ap);
1559        if (status & ATA_BUSY) {
1560                if (hsmv_on_idle) {
1561                        /* BMDMA engine is already stopped, we're screwed */
1562                        qc->err_mask |= AC_ERR_HSM;
1563                        ap->hsm_task_state = HSM_ST_ERR;
1564                } else
1565                        return ata_sff_idle_irq(ap);
1566        }
1567
1568        /* clear irq events */
1569        if (ap->ops->sff_irq_clear)
1570                ap->ops->sff_irq_clear(ap);
1571
1572        ata_sff_hsm_move(ap, qc, status, 0);
1573
1574        return 1;       /* irq handled */
1575}
1576
1577/**
1578 *      ata_sff_port_intr - Handle SFF port interrupt
1579 *      @ap: Port on which interrupt arrived (possibly...)
1580 *      @qc: Taskfile currently active in engine
1581 *
1582 *      Handle port interrupt for given queued command.
1583 *
1584 *      LOCKING:
1585 *      spin_lock_irqsave(host lock)
1586 *
1587 *      RETURNS:
1588 *      One if interrupt was handled, zero if not (shared irq).
1589 */
1590unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1591{
1592        return __ata_sff_port_intr(ap, qc, false);
1593}
1594EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1595
1596static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1597        unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1598{
1599        struct ata_host *host = dev_instance;
1600        bool retried = false;
1601        unsigned int i;
1602        unsigned int handled, idle, polling;
1603        unsigned long flags;
1604
1605        /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1606        spin_lock_irqsave(&host->lock, flags);
1607
1608retry:
1609        handled = idle = polling = 0;
1610        for (i = 0; i < host->n_ports; i++) {
1611                struct ata_port *ap = host->ports[i];
1612                struct ata_queued_cmd *qc;
1613
1614                qc = ata_qc_from_tag(ap, ap->link.active_tag);
1615                if (qc) {
1616                        if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1617                                handled |= port_intr(ap, qc);
1618                        else
1619                                polling |= 1 << i;
1620                } else
1621                        idle |= 1 << i;
1622        }
1623
1624        /*
1625         * If no port was expecting IRQ but the controller is actually
1626         * asserting IRQ line, nobody cared will ensue.  Check IRQ
1627         * pending status if available and clear spurious IRQ.
1628         */
1629        if (!handled && !retried) {
1630                bool retry = false;
1631
1632                for (i = 0; i < host->n_ports; i++) {
1633                        struct ata_port *ap = host->ports[i];
1634
1635                        if (polling & (1 << i))
1636                                continue;
1637
1638                        if (!ap->ops->sff_irq_check ||
1639                            !ap->ops->sff_irq_check(ap))
1640                                continue;
1641
1642                        if (idle & (1 << i)) {
1643                                ap->ops->sff_check_status(ap);
1644                                if (ap->ops->sff_irq_clear)
1645                                        ap->ops->sff_irq_clear(ap);
1646                        } else {
1647                                /* clear INTRQ and check if BUSY cleared */
1648                                if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1649                                        retry |= true;
1650                                /*
1651                                 * With command in flight, we can't do
1652                                 * sff_irq_clear() w/o racing with completion.
1653                                 */
1654                        }
1655                }
1656
1657                if (retry) {
1658                        retried = true;
1659                        goto retry;
1660                }
1661        }
1662
1663        spin_unlock_irqrestore(&host->lock, flags);
1664
1665        return IRQ_RETVAL(handled);
1666}
1667
1668/**
1669 *      ata_sff_interrupt - Default SFF ATA host interrupt handler
1670 *      @irq: irq line (unused)
1671 *      @dev_instance: pointer to our ata_host information structure
1672 *
1673 *      Default interrupt handler for PCI IDE devices.  Calls
1674 *      ata_sff_port_intr() for each port that is not disabled.
1675 *
1676 *      LOCKING:
1677 *      Obtains host lock during operation.
1678 *
1679 *      RETURNS:
1680 *      IRQ_NONE or IRQ_HANDLED.
1681 */
1682irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1683{
1684        return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1685}
1686EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1687
1688/**
1689 *      ata_sff_lost_interrupt  -       Check for an apparent lost interrupt
1690 *      @ap: port that appears to have timed out
1691 *
1692 *      Called from the libata error handlers when the core code suspects
1693 *      an interrupt has been lost. If it has complete anything we can and
1694 *      then return. Interface must support altstatus for this faster
1695 *      recovery to occur.
1696 *
1697 *      Locking:
1698 *      Caller holds host lock
1699 */
1700
1701void ata_sff_lost_interrupt(struct ata_port *ap)
1702{
1703        u8 status;
1704        struct ata_queued_cmd *qc;
1705
1706        /* Only one outstanding command per SFF channel */
1707        qc = ata_qc_from_tag(ap, ap->link.active_tag);
1708        /* We cannot lose an interrupt on a non-existent or polled command */
1709        if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1710                return;
1711        /* See if the controller thinks it is still busy - if so the command
1712           isn't a lost IRQ but is still in progress */
1713        status = ata_sff_altstatus(ap);
1714        if (status & ATA_BUSY)
1715                return;
1716
1717        /* There was a command running, we are no longer busy and we have
1718           no interrupt. */
1719        ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1720                                                                status);
1721        /* Run the host interrupt logic as if the interrupt had not been
1722           lost */
1723        ata_sff_port_intr(ap, qc);
1724}
1725EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1726
1727/**
1728 *      ata_sff_freeze - Freeze SFF controller port
1729 *      @ap: port to freeze
1730 *
1731 *      Freeze SFF controller port.
1732 *
1733 *      LOCKING:
1734 *      Inherited from caller.
1735 */
1736void ata_sff_freeze(struct ata_port *ap)
1737{
1738        ap->ctl |= ATA_NIEN;
1739        ap->last_ctl = ap->ctl;
1740
1741        if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1742                ata_sff_set_devctl(ap, ap->ctl);
1743
1744        /* Under certain circumstances, some controllers raise IRQ on
1745         * ATA_NIEN manipulation.  Also, many controllers fail to mask
1746         * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1747         */
1748        ap->ops->sff_check_status(ap);
1749
1750        if (ap->ops->sff_irq_clear)
1751                ap->ops->sff_irq_clear(ap);
1752}
1753EXPORT_SYMBOL_GPL(ata_sff_freeze);
1754
1755/**
1756 *      ata_sff_thaw - Thaw SFF controller port
1757 *      @ap: port to thaw
1758 *
1759 *      Thaw SFF controller port.
1760 *
1761 *      LOCKING:
1762 *      Inherited from caller.
1763 */
1764void ata_sff_thaw(struct ata_port *ap)
1765{
1766        /* clear & re-enable interrupts */
1767        ap->ops->sff_check_status(ap);
1768        if (ap->ops->sff_irq_clear)
1769                ap->ops->sff_irq_clear(ap);
1770        ata_sff_irq_on(ap);
1771}
1772EXPORT_SYMBOL_GPL(ata_sff_thaw);
1773
1774/**
1775 *      ata_sff_prereset - prepare SFF link for reset
1776 *      @link: SFF link to be reset
1777 *      @deadline: deadline jiffies for the operation
1778 *
1779 *      SFF link @link is about to be reset.  Initialize it.  It first
1780 *      calls ata_std_prereset() and wait for !BSY if the port is
1781 *      being softreset.
1782 *
1783 *      LOCKING:
1784 *      Kernel thread context (may sleep)
1785 *
1786 *      RETURNS:
1787 *      0 on success, -errno otherwise.
1788 */
1789int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1790{
1791        struct ata_eh_context *ehc = &link->eh_context;
1792        int rc;
1793
1794        rc = ata_std_prereset(link, deadline);
1795        if (rc)
1796                return rc;
1797
1798        /* if we're about to do hardreset, nothing more to do */
1799        if (ehc->i.action & ATA_EH_HARDRESET)
1800                return 0;
1801
1802        /* wait for !BSY if we don't know that no device is attached */
1803        if (!ata_link_offline(link)) {
1804                rc = ata_sff_wait_ready(link, deadline);
1805                if (rc && rc != -ENODEV) {
1806                        ata_link_warn(link,
1807                                      "device not ready (errno=%d), forcing hardreset\n",
1808                                      rc);
1809                        ehc->i.action |= ATA_EH_HARDRESET;
1810                }
1811        }
1812
1813        return 0;
1814}
1815EXPORT_SYMBOL_GPL(ata_sff_prereset);
1816
1817/**
1818 *      ata_devchk - PATA device presence detection
1819 *      @ap: ATA channel to examine
1820 *      @device: Device to examine (starting at zero)
1821 *
1822 *      This technique was originally described in
1823 *      Hale Landis's ATADRVR (www.ata-atapi.com), and
1824 *      later found its way into the ATA/ATAPI spec.
1825 *
1826 *      Write a pattern to the ATA shadow registers,
1827 *      and if a device is present, it will respond by
1828 *      correctly storing and echoing back the
1829 *      ATA shadow register contents.
1830 *
1831 *      LOCKING:
1832 *      caller.
1833 */
1834static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1835{
1836        struct ata_ioports *ioaddr = &ap->ioaddr;
1837        u8 nsect, lbal;
1838
1839        ap->ops->sff_dev_select(ap, device);
1840
1841        iowrite8(0x55, ioaddr->nsect_addr);
1842        iowrite8(0xaa, ioaddr->lbal_addr);
1843
1844        iowrite8(0xaa, ioaddr->nsect_addr);
1845        iowrite8(0x55, ioaddr->lbal_addr);
1846
1847        iowrite8(0x55, ioaddr->nsect_addr);
1848        iowrite8(0xaa, ioaddr->lbal_addr);
1849
1850        nsect = ioread8(ioaddr->nsect_addr);
1851        lbal = ioread8(ioaddr->lbal_addr);
1852
1853        if ((nsect == 0x55) && (lbal == 0xaa))
1854                return 1;       /* we found a device */
1855
1856        return 0;               /* nothing found */
1857}
1858
1859/**
1860 *      ata_sff_dev_classify - Parse returned ATA device signature
1861 *      @dev: ATA device to classify (starting at zero)
1862 *      @present: device seems present
1863 *      @r_err: Value of error register on completion
1864 *
1865 *      After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1866 *      an ATA/ATAPI-defined set of values is placed in the ATA
1867 *      shadow registers, indicating the results of device detection
1868 *      and diagnostics.
1869 *
1870 *      Select the ATA device, and read the values from the ATA shadow
1871 *      registers.  Then parse according to the Error register value,
1872 *      and the spec-defined values examined by ata_dev_classify().
1873 *
1874 *      LOCKING:
1875 *      caller.
1876 *
1877 *      RETURNS:
1878 *      Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1879 */
1880unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1881                                  u8 *r_err)
1882{
1883        struct ata_port *ap = dev->link->ap;
1884        struct ata_taskfile tf;
1885        unsigned int class;
1886        u8 err;
1887
1888        ap->ops->sff_dev_select(ap, dev->devno);
1889
1890        memset(&tf, 0, sizeof(tf));
1891
1892        ap->ops->sff_tf_read(ap, &tf);
1893        err = tf.feature;
1894        if (r_err)
1895                *r_err = err;
1896
1897        /* see if device passed diags: continue and warn later */
1898        if (err == 0)
1899                /* diagnostic fail : do nothing _YET_ */
1900                dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1901        else if (err == 1)
1902                /* do nothing */ ;
1903        else if ((dev->devno == 0) && (err == 0x81))
1904                /* do nothing */ ;
1905        else
1906                return ATA_DEV_NONE;
1907
1908        /* determine if device is ATA or ATAPI */
1909        class = ata_dev_classify(&tf);
1910
1911        if (class == ATA_DEV_UNKNOWN) {
1912                /* If the device failed diagnostic, it's likely to
1913                 * have reported incorrect device signature too.
1914                 * Assume ATA device if the device seems present but
1915                 * device signature is invalid with diagnostic
1916                 * failure.
1917                 */
1918                if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1919                        class = ATA_DEV_ATA;
1920                else
1921                        class = ATA_DEV_NONE;
1922        } else if ((class == ATA_DEV_ATA) &&
1923                   (ap->ops->sff_check_status(ap) == 0))
1924                class = ATA_DEV_NONE;
1925
1926        return class;
1927}
1928EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1929
1930/**
1931 *      ata_sff_wait_after_reset - wait for devices to become ready after reset
1932 *      @link: SFF link which is just reset
1933 *      @devmask: mask of present devices
1934 *      @deadline: deadline jiffies for the operation
1935 *
1936 *      Wait devices attached to SFF @link to become ready after
1937 *      reset.  It contains preceding 150ms wait to avoid accessing TF
1938 *      status register too early.
1939 *
1940 *      LOCKING:
1941 *      Kernel thread context (may sleep).
1942 *
1943 *      RETURNS:
1944 *      0 on success, -ENODEV if some or all of devices in @devmask
1945 *      don't seem to exist.  -errno on other errors.
1946 */
1947int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1948                             unsigned long deadline)
1949{
1950        struct ata_port *ap = link->ap;
1951        struct ata_ioports *ioaddr = &ap->ioaddr;
1952        unsigned int dev0 = devmask & (1 << 0);
1953        unsigned int dev1 = devmask & (1 << 1);
1954        int rc, ret = 0;
1955
1956        ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1957
1958        /* always check readiness of the master device */
1959        rc = ata_sff_wait_ready(link, deadline);
1960        /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1961         * and TF status is 0xff, bail out on it too.
1962         */
1963        if (rc)
1964                return rc;
1965
1966        /* if device 1 was found in ata_devchk, wait for register
1967         * access briefly, then wait for BSY to clear.
1968         */
1969        if (dev1) {
1970                int i;
1971
1972                ap->ops->sff_dev_select(ap, 1);
1973
1974                /* Wait for register access.  Some ATAPI devices fail
1975                 * to set nsect/lbal after reset, so don't waste too
1976                 * much time on it.  We're gonna wait for !BSY anyway.
1977                 */
1978                for (i = 0; i < 2; i++) {
1979                        u8 nsect, lbal;
1980
1981                        nsect = ioread8(ioaddr->nsect_addr);
1982                        lbal = ioread8(ioaddr->lbal_addr);
1983                        if ((nsect == 1) && (lbal == 1))
1984                                break;
1985                        ata_msleep(ap, 50);     /* give drive a breather */
1986                }
1987
1988                rc = ata_sff_wait_ready(link, deadline);
1989                if (rc) {
1990                        if (rc != -ENODEV)
1991                                return rc;
1992                        ret = rc;
1993                }
1994        }
1995
1996        /* is all this really necessary? */
1997        ap->ops->sff_dev_select(ap, 0);
1998        if (dev1)
1999                ap->ops->sff_dev_select(ap, 1);
2000        if (dev0)
2001                ap->ops->sff_dev_select(ap, 0);
2002
2003        return ret;
2004}
2005EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2006
2007static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2008                             unsigned long deadline)
2009{
2010        struct ata_ioports *ioaddr = &ap->ioaddr;
2011
2012        DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2013
2014        if (ap->ioaddr.ctl_addr) {
2015                /* software reset.  causes dev0 to be selected */
2016                iowrite8(ap->ctl, ioaddr->ctl_addr);
2017                udelay(20);     /* FIXME: flush */
2018                iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2019                udelay(20);     /* FIXME: flush */
2020                iowrite8(ap->ctl, ioaddr->ctl_addr);
2021                ap->last_ctl = ap->ctl;
2022        }
2023
2024        /* wait the port to become ready */
2025        return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2026}
2027
2028/**
2029 *      ata_sff_softreset - reset host port via ATA SRST
2030 *      @link: ATA link to reset
2031 *      @classes: resulting classes of attached devices
2032 *      @deadline: deadline jiffies for the operation
2033 *
2034 *      Reset host port using ATA SRST.
2035 *
2036 *      LOCKING:
2037 *      Kernel thread context (may sleep)
2038 *
2039 *      RETURNS:
2040 *      0 on success, -errno otherwise.
2041 */
2042int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2043                      unsigned long deadline)
2044{
2045        struct ata_port *ap = link->ap;
2046        unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2047        unsigned int devmask = 0;
2048        int rc;
2049        u8 err;
2050
2051        DPRINTK("ENTER\n");
2052
2053        /* determine if device 0/1 are present */
2054        if (ata_devchk(ap, 0))
2055                devmask |= (1 << 0);
2056        if (slave_possible && ata_devchk(ap, 1))
2057                devmask |= (1 << 1);
2058
2059        /* select device 0 again */
2060        ap->ops->sff_dev_select(ap, 0);
2061
2062        /* issue bus reset */
2063        DPRINTK("about to softreset, devmask=%x\n", devmask);
2064        rc = ata_bus_softreset(ap, devmask, deadline);
2065        /* if link is occupied, -ENODEV too is an error */
2066        if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2067                ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2068                return rc;
2069        }
2070
2071        /* determine by signature whether we have ATA or ATAPI devices */
2072        classes[0] = ata_sff_dev_classify(&link->device[0],
2073                                          devmask & (1 << 0), &err);
2074        if (slave_possible && err != 0x81)
2075                classes[1] = ata_sff_dev_classify(&link->device[1],
2076                                                  devmask & (1 << 1), &err);
2077
2078        DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2079        return 0;
2080}
2081EXPORT_SYMBOL_GPL(ata_sff_softreset);
2082
2083/**
2084 *      sata_sff_hardreset - reset host port via SATA phy reset
2085 *      @link: link to reset
2086 *      @class: resulting class of attached device
2087 *      @deadline: deadline jiffies for the operation
2088 *
2089 *      SATA phy-reset host port using DET bits of SControl register,
2090 *      wait for !BSY and classify the attached device.
2091 *
2092 *      LOCKING:
2093 *      Kernel thread context (may sleep)
2094 *
2095 *      RETURNS:
2096 *      0 on success, -errno otherwise.
2097 */
2098int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2099                       unsigned long deadline)
2100{
2101        struct ata_eh_context *ehc = &link->eh_context;
2102        const unsigned long *timing = sata_ehc_deb_timing(ehc);
2103        bool online;
2104        int rc;
2105
2106        rc = sata_link_hardreset(link, timing, deadline, &online,
2107                                 ata_sff_check_ready);
2108        if (online)
2109                *class = ata_sff_dev_classify(link->device, 1, NULL);
2110
2111        DPRINTK("EXIT, class=%u\n", *class);
2112        return rc;
2113}
2114EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2115
2116/**
2117 *      ata_sff_postreset - SFF postreset callback
2118 *      @link: the target SFF ata_link
2119 *      @classes: classes of attached devices
2120 *
2121 *      This function is invoked after a successful reset.  It first
2122 *      calls ata_std_postreset() and performs SFF specific postreset
2123 *      processing.
2124 *
2125 *      LOCKING:
2126 *      Kernel thread context (may sleep)
2127 */
2128void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2129{
2130        struct ata_port *ap = link->ap;
2131
2132        ata_std_postreset(link, classes);
2133
2134        /* is double-select really necessary? */
2135        if (classes[0] != ATA_DEV_NONE)
2136                ap->ops->sff_dev_select(ap, 1);
2137        if (classes[1] != ATA_DEV_NONE)
2138                ap->ops->sff_dev_select(ap, 0);
2139
2140        /* bail out if no device is present */
2141        if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2142                DPRINTK("EXIT, no device\n");
2143                return;
2144        }
2145
2146        /* set up device control */
2147        if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2148                ata_sff_set_devctl(ap, ap->ctl);
2149                ap->last_ctl = ap->ctl;
2150        }
2151}
2152EXPORT_SYMBOL_GPL(ata_sff_postreset);
2153
2154/**
2155 *      ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2156 *      @qc: command
2157 *
2158 *      Drain the FIFO and device of any stuck data following a command
2159 *      failing to complete. In some cases this is necessary before a
2160 *      reset will recover the device.
2161 *
2162 */
2163
2164void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2165{
2166        int count;
2167        struct ata_port *ap;
2168
2169        /* We only need to flush incoming data when a command was running */
2170        if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2171                return;
2172
2173        ap = qc->ap;
2174        /* Drain up to 64K of data before we give up this recovery method */
2175        for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2176                                                && count < 65536; count += 2)
2177                ioread16(ap->ioaddr.data_addr);
2178
2179        /* Can become DEBUG later */
2180        if (count)
2181                ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2182
2183}
2184EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2185
2186/**
2187 *      ata_sff_error_handler - Stock error handler for SFF controller
2188 *      @ap: port to handle error for
2189 *
2190 *      Stock error handler for SFF controller.  It can handle both
2191 *      PATA and SATA controllers.  Many controllers should be able to
2192 *      use this EH as-is or with some added handling before and
2193 *      after.
2194 *
2195 *      LOCKING:
2196 *      Kernel thread context (may sleep)
2197 */
2198void ata_sff_error_handler(struct ata_port *ap)
2199{
2200        ata_reset_fn_t softreset = ap->ops->softreset;
2201        ata_reset_fn_t hardreset = ap->ops->hardreset;
2202        struct ata_queued_cmd *qc;
2203        unsigned long flags;
2204
2205        qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2206        if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2207                qc = NULL;
2208
2209        spin_lock_irqsave(ap->lock, flags);
2210
2211        /*
2212         * We *MUST* do FIFO draining before we issue a reset as
2213         * several devices helpfully clear their internal state and
2214         * will lock solid if we touch the data port post reset. Pass
2215         * qc in case anyone wants to do different PIO/DMA recovery or
2216         * has per command fixups
2217         */
2218        if (ap->ops->sff_drain_fifo)
2219                ap->ops->sff_drain_fifo(qc);
2220
2221        spin_unlock_irqrestore(ap->lock, flags);
2222
2223        /* ignore built-in hardresets if SCR access is not available */
2224        if ((hardreset == sata_std_hardreset ||
2225             hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2226                hardreset = NULL;
2227
2228        ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2229                  ap->ops->postreset);
2230}
2231EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2232
2233/**
2234 *      ata_sff_std_ports - initialize ioaddr with standard port offsets.
2235 *      @ioaddr: IO address structure to be initialized
2236 *
2237 *      Utility function which initializes data_addr, error_addr,
2238 *      feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2239 *      device_addr, status_addr, and command_addr to standard offsets
2240 *      relative to cmd_addr.
2241 *
2242 *      Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2243 */
2244void ata_sff_std_ports(struct ata_ioports *ioaddr)
2245{
2246        ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2247        ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2248        ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2249        ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2250        ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2251        ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2252        ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2253        ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2254        ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2255        ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2256}
2257EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2258
2259#ifdef CONFIG_PCI
2260
2261static int ata_resources_present(struct pci_dev *pdev, int port)
2262{
2263        int i;
2264
2265        /* Check the PCI resources for this channel are enabled */
2266        port = port * 2;
2267        for (i = 0; i < 2; i++) {
2268                if (pci_resource_start(pdev, port + i) == 0 ||
2269                    pci_resource_len(pdev, port + i) == 0)
2270                        return 0;
2271        }
2272        return 1;
2273}
2274
2275/**
2276 *      ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2277 *      @host: target ATA host
2278 *
2279 *      Acquire native PCI ATA resources for @host and initialize the
2280 *      first two ports of @host accordingly.  Ports marked dummy are
2281 *      skipped and allocation failure makes the port dummy.
2282 *
2283 *      Note that native PCI resources are valid even for legacy hosts
2284 *      as we fix up pdev resources array early in boot, so this
2285 *      function can be used for both native and legacy SFF hosts.
2286 *
2287 *      LOCKING:
2288 *      Inherited from calling layer (may sleep).
2289 *
2290 *      RETURNS:
2291 *      0 if at least one port is initialized, -ENODEV if no port is
2292 *      available.
2293 */
2294int ata_pci_sff_init_host(struct ata_host *host)
2295{
2296        struct device *gdev = host->dev;
2297        struct pci_dev *pdev = to_pci_dev(gdev);
2298        unsigned int mask = 0;
2299        int i, rc;
2300
2301        /* request, iomap BARs and init port addresses accordingly */
2302        for (i = 0; i < 2; i++) {
2303                struct ata_port *ap = host->ports[i];
2304                int base = i * 2;
2305                void __iomem * const *iomap;
2306
2307                if (ata_port_is_dummy(ap))
2308                        continue;
2309
2310                /* Discard disabled ports.  Some controllers show
2311                 * their unused channels this way.  Disabled ports are
2312                 * made dummy.
2313                 */
2314                if (!ata_resources_present(pdev, i)) {
2315                        ap->ops = &ata_dummy_port_ops;
2316                        continue;
2317                }
2318
2319                rc = pcim_iomap_regions(pdev, 0x3 << base,
2320                                        dev_driver_string(gdev));
2321                if (rc) {
2322                        dev_warn(gdev,
2323                                 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324                                 i, rc);
2325                        if (rc == -EBUSY)
2326                                pcim_pin_device(pdev);
2327                        ap->ops = &ata_dummy_port_ops;
2328                        continue;
2329                }
2330                host->iomap = iomap = pcim_iomap_table(pdev);
2331
2332                ap->ioaddr.cmd_addr = iomap[base];
2333                ap->ioaddr.altstatus_addr =
2334                ap->ioaddr.ctl_addr = (void __iomem *)
2335                        ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2336                ata_sff_std_ports(&ap->ioaddr);
2337
2338                ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2339                        (unsigned long long)pci_resource_start(pdev, base),
2340                        (unsigned long long)pci_resource_start(pdev, base + 1));
2341
2342                mask |= 1 << i;
2343        }
2344
2345        if (!mask) {
2346                dev_err(gdev, "no available native port\n");
2347                return -ENODEV;
2348        }
2349
2350        return 0;
2351}
2352EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2353
2354/**
2355 *      ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2356 *      @pdev: target PCI device
2357 *      @ppi: array of port_info, must be enough for two ports
2358 *      @r_host: out argument for the initialized ATA host
2359 *
2360 *      Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2361 *      all PCI resources and initialize it accordingly in one go.
2362 *
2363 *      LOCKING:
2364 *      Inherited from calling layer (may sleep).
2365 *
2366 *      RETURNS:
2367 *      0 on success, -errno otherwise.
2368 */
2369int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2370                             const struct ata_port_info * const *ppi,
2371                             struct ata_host **r_host)
2372{
2373        struct ata_host *host;
2374        int rc;
2375
2376        if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2377                return -ENOMEM;
2378
2379        host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2380        if (!host) {
2381                dev_err(&pdev->dev, "failed to allocate ATA host\n");
2382                rc = -ENOMEM;
2383                goto err_out;
2384        }
2385
2386        rc = ata_pci_sff_init_host(host);
2387        if (rc)
2388                goto err_out;
2389
2390        devres_remove_group(&pdev->dev, NULL);
2391        *r_host = host;
2392        return 0;
2393
2394err_out:
2395        devres_release_group(&pdev->dev, NULL);
2396        return rc;
2397}
2398EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2399
2400/**
2401 *      ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2402 *      @host: target SFF ATA host
2403 *      @irq_handler: irq_handler used when requesting IRQ(s)
2404 *      @sht: scsi_host_template to use when registering the host
2405 *
2406 *      This is the counterpart of ata_host_activate() for SFF ATA
2407 *      hosts.  This separate helper is necessary because SFF hosts
2408 *      use two separate interrupts in legacy mode.
2409 *
2410 *      LOCKING:
2411 *      Inherited from calling layer (may sleep).
2412 *
2413 *      RETURNS:
2414 *      0 on success, -errno otherwise.
2415 */
2416int ata_pci_sff_activate_host(struct ata_host *host,
2417                              irq_handler_t irq_handler,
2418                              struct scsi_host_template *sht)
2419{
2420        struct device *dev = host->dev;
2421        struct pci_dev *pdev = to_pci_dev(dev);
2422        const char *drv_name = dev_driver_string(host->dev);
2423        int legacy_mode = 0, rc;
2424
2425        rc = ata_host_start(host);
2426        if (rc)
2427                return rc;
2428
2429        if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2430                u8 tmp8, mask;
2431
2432                /* TODO: What if one channel is in native mode ... */
2433                pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2434                mask = (1 << 2) | (1 << 0);
2435                if ((tmp8 & mask) != mask)
2436                        legacy_mode = 1;
2437        }
2438
2439        if (!devres_open_group(dev, NULL, GFP_KERNEL))
2440                return -ENOMEM;
2441
2442        if (!legacy_mode && pdev->irq) {
2443                int i;
2444
2445                rc = devm_request_irq(dev, pdev->irq, irq_handler,
2446                                      IRQF_SHARED, drv_name, host);
2447                if (rc)
2448                        goto out;
2449
2450                for (i = 0; i < 2; i++) {
2451                        if (ata_port_is_dummy(host->ports[i]))
2452                                continue;
2453                        ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2454                }
2455        } else if (legacy_mode) {
2456                if (!ata_port_is_dummy(host->ports[0])) {
2457                        rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2458                                              irq_handler, IRQF_SHARED,
2459                                              drv_name, host);
2460                        if (rc)
2461                                goto out;
2462
2463                        ata_port_desc(host->ports[0], "irq %d",
2464                                      ATA_PRIMARY_IRQ(pdev));
2465                }
2466
2467                if (!ata_port_is_dummy(host->ports[1])) {
2468                        rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2469                                              irq_handler, IRQF_SHARED,
2470                                              drv_name, host);
2471                        if (rc)
2472                                goto out;
2473
2474                        ata_port_desc(host->ports[1], "irq %d",
2475                                      ATA_SECONDARY_IRQ(pdev));
2476                }
2477        }
2478
2479        rc = ata_host_register(host, sht);
2480out:
2481        if (rc == 0)
2482                devres_remove_group(dev, NULL);
2483        else
2484                devres_release_group(dev, NULL);
2485
2486        return rc;
2487}
2488EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2489
2490static const struct ata_port_info *ata_sff_find_valid_pi(
2491                                        const struct ata_port_info * const *ppi)
2492{
2493        int i;
2494
2495        /* look up the first valid port_info */
2496        for (i = 0; i < 2 && ppi[i]; i++)
2497                if (ppi[i]->port_ops != &ata_dummy_port_ops)
2498                        return ppi[i];
2499
2500        return NULL;
2501}
2502
2503static int ata_pci_init_one(struct pci_dev *pdev,
2504                const struct ata_port_info * const *ppi,
2505                struct scsi_host_template *sht, void *host_priv,
2506                int hflags, bool bmdma)
2507{
2508        struct device *dev = &pdev->dev;
2509        const struct ata_port_info *pi;
2510        struct ata_host *host = NULL;
2511        int rc;
2512
2513        DPRINTK("ENTER\n");
2514
2515        pi = ata_sff_find_valid_pi(ppi);
2516        if (!pi) {
2517                dev_err(&pdev->dev, "no valid port_info specified\n");
2518                return -EINVAL;
2519        }
2520
2521        if (!devres_open_group(dev, NULL, GFP_KERNEL))
2522                return -ENOMEM;
2523
2524        rc = pcim_enable_device(pdev);
2525        if (rc)
2526                goto out;
2527
2528#ifdef CONFIG_ATA_BMDMA
2529        if (bmdma)
2530                /* prepare and activate BMDMA host */
2531                rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2532        else
2533#endif
2534                /* prepare and activate SFF host */
2535                rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2536        if (rc)
2537                goto out;
2538        host->private_data = host_priv;
2539        host->flags |= hflags;
2540
2541#ifdef CONFIG_ATA_BMDMA
2542        if (bmdma) {
2543                pci_set_master(pdev);
2544                rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2545        } else
2546#endif
2547                rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2548out:
2549        if (rc == 0)
2550                devres_remove_group(&pdev->dev, NULL);
2551        else
2552                devres_release_group(&pdev->dev, NULL);
2553
2554        return rc;
2555}
2556
2557/**
2558 *      ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2559 *      @pdev: Controller to be initialized
2560 *      @ppi: array of port_info, must be enough for two ports
2561 *      @sht: scsi_host_template to use when registering the host
2562 *      @host_priv: host private_data
2563 *      @hflag: host flags
2564 *
2565 *      This is a helper function which can be called from a driver's
2566 *      xxx_init_one() probe function if the hardware uses traditional
2567 *      IDE taskfile registers and is PIO only.
2568 *
2569 *      ASSUMPTION:
2570 *      Nobody makes a single channel controller that appears solely as
2571 *      the secondary legacy port on PCI.
2572 *
2573 *      LOCKING:
2574 *      Inherited from PCI layer (may sleep).
2575 *
2576 *      RETURNS:
2577 *      Zero on success, negative on errno-based value on error.
2578 */
2579int ata_pci_sff_init_one(struct pci_dev *pdev,
2580                 const struct ata_port_info * const *ppi,
2581                 struct scsi_host_template *sht, void *host_priv, int hflag)
2582{
2583        return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2584}
2585EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2586
2587#endif /* CONFIG_PCI */
2588
2589/*
2590 *      BMDMA support
2591 */
2592
2593#ifdef CONFIG_ATA_BMDMA
2594
2595const struct ata_port_operations ata_bmdma_port_ops = {
2596        .inherits               = &ata_sff_port_ops,
2597
2598        .error_handler          = ata_bmdma_error_handler,
2599        .post_internal_cmd      = ata_bmdma_post_internal_cmd,
2600
2601        .qc_prep                = ata_bmdma_qc_prep,
2602        .qc_issue               = ata_bmdma_qc_issue,
2603
2604        .sff_irq_clear          = ata_bmdma_irq_clear,
2605        .bmdma_setup            = ata_bmdma_setup,
2606        .bmdma_start            = ata_bmdma_start,
2607        .bmdma_stop             = ata_bmdma_stop,
2608        .bmdma_status           = ata_bmdma_status,
2609
2610        .port_start             = ata_bmdma_port_start,
2611};
2612EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2613
2614const struct ata_port_operations ata_bmdma32_port_ops = {
2615        .inherits               = &ata_bmdma_port_ops,
2616
2617        .sff_data_xfer          = ata_sff_data_xfer32,
2618        .port_start             = ata_bmdma_port_start32,
2619};
2620EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2621
2622/**
2623 *      ata_bmdma_fill_sg - Fill PCI IDE PRD table
2624 *      @qc: Metadata associated with taskfile to be transferred
2625 *
2626 *      Fill PCI IDE PRD (scatter-gather) table with segments
2627 *      associated with the current disk command.
2628 *
2629 *      LOCKING:
2630 *      spin_lock_irqsave(host lock)
2631 *
2632 */
2633static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2634{
2635        struct ata_port *ap = qc->ap;
2636        struct ata_bmdma_prd *prd = ap->bmdma_prd;
2637        struct scatterlist *sg;
2638        unsigned int si, pi;
2639
2640        pi = 0;
2641        for_each_sg(qc->sg, sg, qc->n_elem, si) {
2642                u32 addr, offset;
2643                u32 sg_len, len;
2644
2645                /* determine if physical DMA addr spans 64K boundary.
2646                 * Note h/w doesn't support 64-bit, so we unconditionally
2647                 * truncate dma_addr_t to u32.
2648                 */
2649                addr = (u32) sg_dma_address(sg);
2650                sg_len = sg_dma_len(sg);
2651
2652                while (sg_len) {
2653                        offset = addr & 0xffff;
2654                        len = sg_len;
2655                        if ((offset + sg_len) > 0x10000)
2656                                len = 0x10000 - offset;
2657
2658                        prd[pi].addr = cpu_to_le32(addr);
2659                        prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2660                        VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2661
2662                        pi++;
2663                        sg_len -= len;
2664                        addr += len;
2665                }
2666        }
2667
2668        prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2669}
2670
2671/**
2672 *      ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2673 *      @qc: Metadata associated with taskfile to be transferred
2674 *
2675 *      Fill PCI IDE PRD (scatter-gather) table with segments
2676 *      associated with the current disk command. Perform the fill
2677 *      so that we avoid writing any length 64K records for
2678 *      controllers that don't follow the spec.
2679 *
2680 *      LOCKING:
2681 *      spin_lock_irqsave(host lock)
2682 *
2683 */
2684static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2685{
2686        struct ata_port *ap = qc->ap;
2687        struct ata_bmdma_prd *prd = ap->bmdma_prd;
2688        struct scatterlist *sg;
2689        unsigned int si, pi;
2690
2691        pi = 0;
2692        for_each_sg(qc->sg, sg, qc->n_elem, si) {
2693                u32 addr, offset;
2694                u32 sg_len, len, blen;
2695
2696                /* determine if physical DMA addr spans 64K boundary.
2697                 * Note h/w doesn't support 64-bit, so we unconditionally
2698                 * truncate dma_addr_t to u32.
2699                 */
2700                addr = (u32) sg_dma_address(sg);
2701                sg_len = sg_dma_len(sg);
2702
2703                while (sg_len) {
2704                        offset = addr & 0xffff;
2705                        len = sg_len;
2706                        if ((offset + sg_len) > 0x10000)
2707                                len = 0x10000 - offset;
2708
2709                        blen = len & 0xffff;
2710                        prd[pi].addr = cpu_to_le32(addr);
2711                        if (blen == 0) {
2712                                /* Some PATA chipsets like the CS5530 can't
2713                                   cope with 0x0000 meaning 64K as the spec
2714                                   says */
2715                                prd[pi].flags_len = cpu_to_le32(0x8000);
2716                                blen = 0x8000;
2717                                prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2718                        }
2719                        prd[pi].flags_len = cpu_to_le32(blen);
2720                        VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2721
2722                        pi++;
2723                        sg_len -= len;
2724                        addr += len;
2725                }
2726        }
2727
2728        prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2729}
2730
2731/**
2732 *      ata_bmdma_qc_prep - Prepare taskfile for submission
2733 *      @qc: Metadata associated with taskfile to be prepared
2734 *
2735 *      Prepare ATA taskfile for submission.
2736 *
2737 *      LOCKING:
2738 *      spin_lock_irqsave(host lock)
2739 */
2740void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2741{
2742        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2743                return;
2744
2745        ata_bmdma_fill_sg(qc);
2746}
2747EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2748
2749/**
2750 *      ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2751 *      @qc: Metadata associated with taskfile to be prepared
2752 *
2753 *      Prepare ATA taskfile for submission.
2754 *
2755 *      LOCKING:
2756 *      spin_lock_irqsave(host lock)
2757 */
2758void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2759{
2760        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2761                return;
2762
2763        ata_bmdma_fill_sg_dumb(qc);
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2766
2767/**
2768 *      ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2769 *      @qc: command to issue to device
2770 *
2771 *      This function issues a PIO, NODATA or DMA command to a
2772 *      SFF/BMDMA controller.  PIO and NODATA are handled by
2773 *      ata_sff_qc_issue().
2774 *
2775 *      LOCKING:
2776 *      spin_lock_irqsave(host lock)
2777 *
2778 *      RETURNS:
2779 *      Zero on success, AC_ERR_* mask on failure
2780 */
2781unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2782{
2783        struct ata_port *ap = qc->ap;
2784        struct ata_link *link = qc->dev->link;
2785
2786        /* defer PIO handling to sff_qc_issue */
2787        if (!ata_is_dma(qc->tf.protocol))
2788                return ata_sff_qc_issue(qc);
2789
2790        /* select the device */
2791        ata_dev_select(ap, qc->dev->devno, 1, 0);
2792
2793        /* start the command */
2794        switch (qc->tf.protocol) {
2795        case ATA_PROT_DMA:
2796                WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2797
2798                ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2799                ap->ops->bmdma_setup(qc);           /* set up bmdma */
2800                ap->ops->bmdma_start(qc);           /* initiate bmdma */
2801                ap->hsm_task_state = HSM_ST_LAST;
2802                break;
2803
2804        case ATAPI_PROT_DMA:
2805                WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2806
2807                ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2808                ap->ops->bmdma_setup(qc);           /* set up bmdma */
2809                ap->hsm_task_state = HSM_ST_FIRST;
2810
2811                /* send cdb by polling if no cdb interrupt */
2812                if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2813                        ata_sff_queue_pio_task(link, 0);
2814                break;
2815
2816        default:
2817                WARN_ON(1);
2818                return AC_ERR_SYSTEM;
2819        }
2820
2821        return 0;
2822}
2823EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2824
2825/**
2826 *      ata_bmdma_port_intr - Handle BMDMA port interrupt
2827 *      @ap: Port on which interrupt arrived (possibly...)
2828 *      @qc: Taskfile currently active in engine
2829 *
2830 *      Handle port interrupt for given queued command.
2831 *
2832 *      LOCKING:
2833 *      spin_lock_irqsave(host lock)
2834 *
2835 *      RETURNS:
2836 *      One if interrupt was handled, zero if not (shared irq).
2837 */
2838unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2839{
2840        struct ata_eh_info *ehi = &ap->link.eh_info;
2841        u8 host_stat = 0;
2842        bool bmdma_stopped = false;
2843        unsigned int handled;
2844
2845        if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2846                /* check status of DMA engine */
2847                host_stat = ap->ops->bmdma_status(ap);
2848                VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2849
2850                /* if it's not our irq... */
2851                if (!(host_stat & ATA_DMA_INTR))
2852                        return ata_sff_idle_irq(ap);
2853
2854                /* before we do anything else, clear DMA-Start bit */
2855                ap->ops->bmdma_stop(qc);
2856                bmdma_stopped = true;
2857
2858                if (unlikely(host_stat & ATA_DMA_ERR)) {
2859                        /* error when transferring data to/from memory */
2860                        qc->err_mask |= AC_ERR_HOST_BUS;
2861                        ap->hsm_task_state = HSM_ST_ERR;
2862                }
2863        }
2864
2865        handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2866
2867        if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2868                ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2869
2870        return handled;
2871}
2872EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2873
2874/**
2875 *      ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2876 *      @irq: irq line (unused)
2877 *      @dev_instance: pointer to our ata_host information structure
2878 *
2879 *      Default interrupt handler for PCI IDE devices.  Calls
2880 *      ata_bmdma_port_intr() for each port that is not disabled.
2881 *
2882 *      LOCKING:
2883 *      Obtains host lock during operation.
2884 *
2885 *      RETURNS:
2886 *      IRQ_NONE or IRQ_HANDLED.
2887 */
2888irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2889{
2890        return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2891}
2892EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2893
2894/**
2895 *      ata_bmdma_error_handler - Stock error handler for BMDMA controller
2896 *      @ap: port to handle error for
2897 *
2898 *      Stock error handler for BMDMA controller.  It can handle both
2899 *      PATA and SATA controllers.  Most BMDMA controllers should be
2900 *      able to use this EH as-is or with some added handling before
2901 *      and after.
2902 *
2903 *      LOCKING:
2904 *      Kernel thread context (may sleep)
2905 */
2906void ata_bmdma_error_handler(struct ata_port *ap)
2907{
2908        struct ata_queued_cmd *qc;
2909        unsigned long flags;
2910        bool thaw = false;
2911
2912        qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2913        if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2914                qc = NULL;
2915
2916        /* reset PIO HSM and stop DMA engine */
2917        spin_lock_irqsave(ap->lock, flags);
2918
2919        if (qc && ata_is_dma(qc->tf.protocol)) {
2920                u8 host_stat;
2921
2922                host_stat = ap->ops->bmdma_status(ap);
2923
2924                /* BMDMA controllers indicate host bus error by
2925                 * setting DMA_ERR bit and timing out.  As it wasn't
2926                 * really a timeout event, adjust error mask and
2927                 * cancel frozen state.
2928                 */
2929                if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2930                        qc->err_mask = AC_ERR_HOST_BUS;
2931                        thaw = true;
2932                }
2933
2934                ap->ops->bmdma_stop(qc);
2935
2936                /* if we're gonna thaw, make sure IRQ is clear */
2937                if (thaw) {
2938                        ap->ops->sff_check_status(ap);
2939                        if (ap->ops->sff_irq_clear)
2940                                ap->ops->sff_irq_clear(ap);
2941                }
2942        }
2943
2944        spin_unlock_irqrestore(ap->lock, flags);
2945
2946        if (thaw)
2947                ata_eh_thaw_port(ap);
2948
2949        ata_sff_error_handler(ap);
2950}
2951EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2952
2953/**
2954 *      ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2955 *      @qc: internal command to clean up
2956 *
2957 *      LOCKING:
2958 *      Kernel thread context (may sleep)
2959 */
2960void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2961{
2962        struct ata_port *ap = qc->ap;
2963        unsigned long flags;
2964
2965        if (ata_is_dma(qc->tf.protocol)) {
2966                spin_lock_irqsave(ap->lock, flags);
2967                ap->ops->bmdma_stop(qc);
2968                spin_unlock_irqrestore(ap->lock, flags);
2969        }
2970}
2971EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2972
2973/**
2974 *      ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2975 *      @ap: Port associated with this ATA transaction.
2976 *
2977 *      Clear interrupt and error flags in DMA status register.
2978 *
2979 *      May be used as the irq_clear() entry in ata_port_operations.
2980 *
2981 *      LOCKING:
2982 *      spin_lock_irqsave(host lock)
2983 */
2984void ata_bmdma_irq_clear(struct ata_port *ap)
2985{
2986        void __iomem *mmio = ap->ioaddr.bmdma_addr;
2987
2988        if (!mmio)
2989                return;
2990
2991        iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2992}
2993EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2994
2995/**
2996 *      ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2997 *      @qc: Info associated with this ATA transaction.
2998 *
2999 *      LOCKING:
3000 *      spin_lock_irqsave(host lock)
3001 */
3002void ata_bmdma_setup(struct ata_queued_cmd *qc)
3003{
3004        struct ata_port *ap = qc->ap;
3005        unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3006        u8 dmactl;
3007
3008        /* load PRD table addr. */
3009        mb();   /* make sure PRD table writes are visible to controller */
3010        iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3011
3012        /* specify data direction, triple-check start bit is clear */
3013        dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3014        dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3015        if (!rw)
3016                dmactl |= ATA_DMA_WR;
3017        iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3018
3019        /* issue r/w command */
3020        ap->ops->sff_exec_command(ap, &qc->tf);
3021}
3022EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3023
3024/**
3025 *      ata_bmdma_start - Start a PCI IDE BMDMA transaction
3026 *      @qc: Info associated with this ATA transaction.
3027 *
3028 *      LOCKING:
3029 *      spin_lock_irqsave(host lock)
3030 */
3031void ata_bmdma_start(struct ata_queued_cmd *qc)
3032{
3033        struct ata_port *ap = qc->ap;
3034        u8 dmactl;
3035
3036        /* start host DMA transaction */
3037        dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3038        iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3039
3040        /* Strictly, one may wish to issue an ioread8() here, to
3041         * flush the mmio write.  However, control also passes
3042         * to the hardware at this point, and it will interrupt
3043         * us when we are to resume control.  So, in effect,
3044         * we don't care when the mmio write flushes.
3045         * Further, a read of the DMA status register _immediately_
3046         * following the write may not be what certain flaky hardware
3047         * is expected, so I think it is best to not add a readb()
3048         * without first all the MMIO ATA cards/mobos.
3049         * Or maybe I'm just being paranoid.
3050         *
3051         * FIXME: The posting of this write means I/O starts are
3052         * unnecessarily delayed for MMIO
3053         */
3054}
3055EXPORT_SYMBOL_GPL(ata_bmdma_start);
3056
3057/**
3058 *      ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3059 *      @qc: Command we are ending DMA for
3060 *
3061 *      Clears the ATA_DMA_START flag in the dma control register
3062 *
3063 *      May be used as the bmdma_stop() entry in ata_port_operations.
3064 *
3065 *      LOCKING:
3066 *      spin_lock_irqsave(host lock)
3067 */
3068void ata_bmdma_stop(struct ata_queued_cmd *qc)
3069{
3070        struct ata_port *ap = qc->ap;
3071        void __iomem *mmio = ap->ioaddr.bmdma_addr;
3072
3073        /* clear start/stop bit */
3074        iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3075                 mmio + ATA_DMA_CMD);
3076
3077        /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3078        ata_sff_dma_pause(ap);
3079}
3080EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3081
3082/**
3083 *      ata_bmdma_status - Read PCI IDE BMDMA status
3084 *      @ap: Port associated with this ATA transaction.
3085 *
3086 *      Read and return BMDMA status register.
3087 *
3088 *      May be used as the bmdma_status() entry in ata_port_operations.
3089 *
3090 *      LOCKING:
3091 *      spin_lock_irqsave(host lock)
3092 */
3093u8 ata_bmdma_status(struct ata_port *ap)
3094{
3095        return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3096}
3097EXPORT_SYMBOL_GPL(ata_bmdma_status);
3098
3099
3100/**
3101 *      ata_bmdma_port_start - Set port up for bmdma.
3102 *      @ap: Port to initialize
3103 *
3104 *      Called just after data structures for each port are
3105 *      initialized.  Allocates space for PRD table.
3106 *
3107 *      May be used as the port_start() entry in ata_port_operations.
3108 *
3109 *      LOCKING:
3110 *      Inherited from caller.
3111 */
3112int ata_bmdma_port_start(struct ata_port *ap)
3113{
3114        if (ap->mwdma_mask || ap->udma_mask) {
3115                ap->bmdma_prd =
3116                        dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3117                                            &ap->bmdma_prd_dma, GFP_KERNEL);
3118                if (!ap->bmdma_prd)
3119                        return -ENOMEM;
3120        }
3121
3122        return 0;
3123}
3124EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3125
3126/**
3127 *      ata_bmdma_port_start32 - Set port up for dma.
3128 *      @ap: Port to initialize
3129 *
3130 *      Called just after data structures for each port are
3131 *      initialized.  Enables 32bit PIO and allocates space for PRD
3132 *      table.
3133 *
3134 *      May be used as the port_start() entry in ata_port_operations for
3135 *      devices that are capable of 32bit PIO.
3136 *
3137 *      LOCKING:
3138 *      Inherited from caller.
3139 */
3140int ata_bmdma_port_start32(struct ata_port *ap)
3141{
3142        ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3143        return ata_bmdma_port_start(ap);
3144}
3145EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3146
3147#ifdef CONFIG_PCI
3148
3149/**
3150 *      ata_pci_bmdma_clear_simplex -   attempt to kick device out of simplex
3151 *      @pdev: PCI device
3152 *
3153 *      Some PCI ATA devices report simplex mode but in fact can be told to
3154 *      enter non simplex mode. This implements the necessary logic to
3155 *      perform the task on such devices. Calling it on other devices will
3156 *      have -undefined- behaviour.
3157 */
3158int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3159{
3160        unsigned long bmdma = pci_resource_start(pdev, 4);
3161        u8 simplex;
3162
3163        if (bmdma == 0)
3164                return -ENOENT;
3165
3166        simplex = inb(bmdma + 0x02);
3167        outb(simplex & 0x60, bmdma + 0x02);
3168        simplex = inb(bmdma + 0x02);
3169        if (simplex & 0x80)
3170                return -EOPNOTSUPP;
3171        return 0;
3172}
3173EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3174
3175static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3176{
3177        int i;
3178
3179        dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3180
3181        for (i = 0; i < 2; i++) {
3182                host->ports[i]->mwdma_mask = 0;
3183                host->ports[i]->udma_mask = 0;
3184        }
3185}
3186
3187/**
3188 *      ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3189 *      @host: target ATA host
3190 *
3191 *      Acquire PCI BMDMA resources and initialize @host accordingly.
3192 *
3193 *      LOCKING:
3194 *      Inherited from calling layer (may sleep).
3195 */
3196void ata_pci_bmdma_init(struct ata_host *host)
3197{
3198        struct device *gdev = host->dev;
3199        struct pci_dev *pdev = to_pci_dev(gdev);
3200        int i, rc;
3201
3202        /* No BAR4 allocation: No DMA */
3203        if (pci_resource_start(pdev, 4) == 0) {
3204                ata_bmdma_nodma(host, "BAR4 is zero");
3205                return;
3206        }
3207
3208        /*
3209         * Some controllers require BMDMA region to be initialized
3210         * even if DMA is not in use to clear IRQ status via
3211         * ->sff_irq_clear method.  Try to initialize bmdma_addr
3212         * regardless of dma masks.
3213         */
3214        rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3215        if (rc)
3216                ata_bmdma_nodma(host, "failed to set dma mask");
3217        if (!rc) {
3218                rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3219                if (rc)
3220                        ata_bmdma_nodma(host,
3221                                        "failed to set consistent dma mask");
3222        }
3223
3224        /* request and iomap DMA region */
3225        rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3226        if (rc) {
3227                ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3228                return;
3229        }
3230        host->iomap = pcim_iomap_table(pdev);
3231
3232        for (i = 0; i < 2; i++) {
3233                struct ata_port *ap = host->ports[i];
3234                void __iomem *bmdma = host->iomap[4] + 8 * i;
3235
3236                if (ata_port_is_dummy(ap))
3237                        continue;
3238
3239                ap->ioaddr.bmdma_addr = bmdma;
3240                if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3241                    (ioread8(bmdma + 2) & 0x80))
3242                        host->flags |= ATA_HOST_SIMPLEX;
3243
3244                ata_port_desc(ap, "bmdma 0x%llx",
3245                    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3246        }
3247}
3248EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3249
3250/**
3251 *      ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3252 *      @pdev: target PCI device
3253 *      @ppi: array of port_info, must be enough for two ports
3254 *      @r_host: out argument for the initialized ATA host
3255 *
3256 *      Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3257 *      resources and initialize it accordingly in one go.
3258 *
3259 *      LOCKING:
3260 *      Inherited from calling layer (may sleep).
3261 *
3262 *      RETURNS:
3263 *      0 on success, -errno otherwise.
3264 */
3265int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3266                               const struct ata_port_info * const * ppi,
3267                               struct ata_host **r_host)
3268{
3269        int rc;
3270
3271        rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3272        if (rc)
3273                return rc;
3274
3275        ata_pci_bmdma_init(*r_host);
3276        return 0;
3277}
3278EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3279
3280/**
3281 *      ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3282 *      @pdev: Controller to be initialized
3283 *      @ppi: array of port_info, must be enough for two ports
3284 *      @sht: scsi_host_template to use when registering the host
3285 *      @host_priv: host private_data
3286 *      @hflags: host flags
3287 *
3288 *      This function is similar to ata_pci_sff_init_one() but also
3289 *      takes care of BMDMA initialization.
3290 *
3291 *      LOCKING:
3292 *      Inherited from PCI layer (may sleep).
3293 *
3294 *      RETURNS:
3295 *      Zero on success, negative on errno-based value on error.
3296 */
3297int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3298                           const struct ata_port_info * const * ppi,
3299                           struct scsi_host_template *sht, void *host_priv,
3300                           int hflags)
3301{
3302        return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3303}
3304EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3305
3306#endif /* CONFIG_PCI */
3307#endif /* CONFIG_ATA_BMDMA */
3308
3309/**
3310 *      ata_sff_port_init - Initialize SFF/BMDMA ATA port
3311 *      @ap: Port to initialize
3312 *
3313 *      Called on port allocation to initialize SFF/BMDMA specific
3314 *      fields.
3315 *
3316 *      LOCKING:
3317 *      None.
3318 */
3319void ata_sff_port_init(struct ata_port *ap)
3320{
3321        INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3322        ap->ctl = ATA_DEVCTL_OBS;
3323        ap->last_ctl = 0xFF;
3324}
3325
3326int __init ata_sff_init(void)
3327{
3328        ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3329        if (!ata_sff_wq)
3330                return -ENOMEM;
3331
3332        return 0;
3333}
3334
3335void ata_sff_exit(void)
3336{
3337        destroy_workqueue(ata_sff_wq);
3338}
3339