linux/drivers/ata/sata_mv.c
<<
>>
Prefs
   1/*
   2 * sata_mv.c - Marvell SATA support
   3 *
   4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
   5 * Copyright 2005: EMC Corporation, all rights reserved.
   6 * Copyright 2005 Red Hat, Inc.  All rights reserved.
   7 *
   8 * Originally written by Brett Russ.
   9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10 *
  11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; version 2 of the License.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 */
  27
  28/*
  29 * sata_mv TODO list:
  30 *
  31 * --> Develop a low-power-consumption strategy, and implement it.
  32 *
  33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  34 *
  35 * --> [Experiment, Marvell value added] Is it possible to use target
  36 *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
  37 *       creating LibATA target mode support would be very interesting.
  38 *
  39 *       Target mode, for those without docs, is the ability to directly
  40 *       connect two SATA ports.
  41 */
  42
  43/*
  44 * 80x1-B2 errata PCI#11:
  45 *
  46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
  47 * should be careful to insert those cards only onto PCI-X bus #0,
  48 * and only in device slots 0..7, not higher.  The chips may not
  49 * work correctly otherwise  (note: this is a pretty rare condition).
  50 */
  51
  52#include <linux/kernel.h>
  53#include <linux/module.h>
  54#include <linux/pci.h>
  55#include <linux/init.h>
  56#include <linux/blkdev.h>
  57#include <linux/delay.h>
  58#include <linux/interrupt.h>
  59#include <linux/dmapool.h>
  60#include <linux/dma-mapping.h>
  61#include <linux/device.h>
  62#include <linux/clk.h>
  63#include <linux/phy/phy.h>
  64#include <linux/platform_device.h>
  65#include <linux/ata_platform.h>
  66#include <linux/mbus.h>
  67#include <linux/bitops.h>
  68#include <linux/gfp.h>
  69#include <linux/of.h>
  70#include <linux/of_irq.h>
  71#include <scsi/scsi_host.h>
  72#include <scsi/scsi_cmnd.h>
  73#include <scsi/scsi_device.h>
  74#include <linux/libata.h>
  75
  76#define DRV_NAME        "sata_mv"
  77#define DRV_VERSION     "1.28"
  78
  79/*
  80 * module options
  81 */
  82
  83#ifdef CONFIG_PCI
  84static int msi;
  85module_param(msi, int, S_IRUGO);
  86MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  87#endif
  88
  89static int irq_coalescing_io_count;
  90module_param(irq_coalescing_io_count, int, S_IRUGO);
  91MODULE_PARM_DESC(irq_coalescing_io_count,
  92                 "IRQ coalescing I/O count threshold (0..255)");
  93
  94static int irq_coalescing_usecs;
  95module_param(irq_coalescing_usecs, int, S_IRUGO);
  96MODULE_PARM_DESC(irq_coalescing_usecs,
  97                 "IRQ coalescing time threshold in usecs");
  98
  99enum {
 100        /* BAR's are enumerated in terms of pci_resource_start() terms */
 101        MV_PRIMARY_BAR          = 0,    /* offset 0x10: memory space */
 102        MV_IO_BAR               = 2,    /* offset 0x18: IO space */
 103        MV_MISC_BAR             = 3,    /* offset 0x1c: FLASH, NVRAM, SRAM */
 104
 105        MV_MAJOR_REG_AREA_SZ    = 0x10000,      /* 64KB */
 106        MV_MINOR_REG_AREA_SZ    = 0x2000,       /* 8KB */
 107
 108        /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
 109        COAL_CLOCKS_PER_USEC    = 150,          /* for calculating COAL_TIMEs */
 110        MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
 111        MAX_COAL_IO_COUNT       = 255,          /* completed I/O count */
 112
 113        MV_PCI_REG_BASE         = 0,
 114
 115        /*
 116         * Per-chip ("all ports") interrupt coalescing feature.
 117         * This is only for GEN_II / GEN_IIE hardware.
 118         *
 119         * Coalescing defers the interrupt until either the IO_THRESHOLD
 120         * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 121         */
 122        COAL_REG_BASE           = 0x18000,
 123        IRQ_COAL_CAUSE          = (COAL_REG_BASE + 0x08),
 124        ALL_PORTS_COAL_IRQ      = (1 << 4),     /* all ports irq event */
 125
 126        IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
 127        IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
 128
 129        /*
 130         * Registers for the (unused here) transaction coalescing feature:
 131         */
 132        TRAN_COAL_CAUSE_LO      = (COAL_REG_BASE + 0x88),
 133        TRAN_COAL_CAUSE_HI      = (COAL_REG_BASE + 0x8c),
 134
 135        SATAHC0_REG_BASE        = 0x20000,
 136        FLASH_CTL               = 0x1046c,
 137        GPIO_PORT_CTL           = 0x104f0,
 138        RESET_CFG               = 0x180d8,
 139
 140        MV_PCI_REG_SZ           = MV_MAJOR_REG_AREA_SZ,
 141        MV_SATAHC_REG_SZ        = MV_MAJOR_REG_AREA_SZ,
 142        MV_SATAHC_ARBTR_REG_SZ  = MV_MINOR_REG_AREA_SZ,         /* arbiter */
 143        MV_PORT_REG_SZ          = MV_MINOR_REG_AREA_SZ,
 144
 145        MV_MAX_Q_DEPTH          = 32,
 146        MV_MAX_Q_DEPTH_MASK     = MV_MAX_Q_DEPTH - 1,
 147
 148        /* CRQB needs alignment on a 1KB boundary. Size == 1KB
 149         * CRPB needs alignment on a 256B boundary. Size == 256B
 150         * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
 151         */
 152        MV_CRQB_Q_SZ            = (32 * MV_MAX_Q_DEPTH),
 153        MV_CRPB_Q_SZ            = (8 * MV_MAX_Q_DEPTH),
 154        MV_MAX_SG_CT            = 256,
 155        MV_SG_TBL_SZ            = (16 * MV_MAX_SG_CT),
 156
 157        /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
 158        MV_PORT_HC_SHIFT        = 2,
 159        MV_PORTS_PER_HC         = (1 << MV_PORT_HC_SHIFT), /* 4 */
 160        /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
 161        MV_PORT_MASK            = (MV_PORTS_PER_HC - 1),   /* 3 */
 162
 163        /* Host Flags */
 164        MV_FLAG_DUAL_HC         = (1 << 30),  /* two SATA Host Controllers */
 165
 166        MV_COMMON_FLAGS         = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
 167
 168        MV_GEN_I_FLAGS          = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
 169
 170        MV_GEN_II_FLAGS         = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
 171                                  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
 172
 173        MV_GEN_IIE_FLAGS        = MV_GEN_II_FLAGS | ATA_FLAG_AN,
 174
 175        CRQB_FLAG_READ          = (1 << 0),
 176        CRQB_TAG_SHIFT          = 1,
 177        CRQB_IOID_SHIFT         = 6,    /* CRQB Gen-II/IIE IO Id shift */
 178        CRQB_PMP_SHIFT          = 12,   /* CRQB Gen-II/IIE PMP shift */
 179        CRQB_HOSTQ_SHIFT        = 17,   /* CRQB Gen-II/IIE HostQueTag shift */
 180        CRQB_CMD_ADDR_SHIFT     = 8,
 181        CRQB_CMD_CS             = (0x2 << 11),
 182        CRQB_CMD_LAST           = (1 << 15),
 183
 184        CRPB_FLAG_STATUS_SHIFT  = 8,
 185        CRPB_IOID_SHIFT_6       = 5,    /* CRPB Gen-II IO Id shift */
 186        CRPB_IOID_SHIFT_7       = 7,    /* CRPB Gen-IIE IO Id shift */
 187
 188        EPRD_FLAG_END_OF_TBL    = (1 << 31),
 189
 190        /* PCI interface registers */
 191
 192        MV_PCI_COMMAND          = 0xc00,
 193        MV_PCI_COMMAND_MWRCOM   = (1 << 4),     /* PCI Master Write Combining */
 194        MV_PCI_COMMAND_MRDTRIG  = (1 << 7),     /* PCI Master Read Trigger */
 195
 196        PCI_MAIN_CMD_STS        = 0xd30,
 197        STOP_PCI_MASTER         = (1 << 2),
 198        PCI_MASTER_EMPTY        = (1 << 3),
 199        GLOB_SFT_RST            = (1 << 4),
 200
 201        MV_PCI_MODE             = 0xd00,
 202        MV_PCI_MODE_MASK        = 0x30,
 203
 204        MV_PCI_EXP_ROM_BAR_CTL  = 0xd2c,
 205        MV_PCI_DISC_TIMER       = 0xd04,
 206        MV_PCI_MSI_TRIGGER      = 0xc38,
 207        MV_PCI_SERR_MASK        = 0xc28,
 208        MV_PCI_XBAR_TMOUT       = 0x1d04,
 209        MV_PCI_ERR_LOW_ADDRESS  = 0x1d40,
 210        MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
 211        MV_PCI_ERR_ATTRIBUTE    = 0x1d48,
 212        MV_PCI_ERR_COMMAND      = 0x1d50,
 213
 214        PCI_IRQ_CAUSE           = 0x1d58,
 215        PCI_IRQ_MASK            = 0x1d5c,
 216        PCI_UNMASK_ALL_IRQS     = 0x7fffff,     /* bits 22-0 */
 217
 218        PCIE_IRQ_CAUSE          = 0x1900,
 219        PCIE_IRQ_MASK           = 0x1910,
 220        PCIE_UNMASK_ALL_IRQS    = 0x40a,        /* assorted bits */
 221
 222        /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
 223        PCI_HC_MAIN_IRQ_CAUSE   = 0x1d60,
 224        PCI_HC_MAIN_IRQ_MASK    = 0x1d64,
 225        SOC_HC_MAIN_IRQ_CAUSE   = 0x20020,
 226        SOC_HC_MAIN_IRQ_MASK    = 0x20024,
 227        ERR_IRQ                 = (1 << 0),     /* shift by (2 * port #) */
 228        DONE_IRQ                = (1 << 1),     /* shift by (2 * port #) */
 229        HC0_IRQ_PEND            = 0x1ff,        /* bits 0-8 = HC0's ports */
 230        HC_SHIFT                = 9,            /* bits 9-17 = HC1's ports */
 231        DONE_IRQ_0_3            = 0x000000aa,   /* DONE_IRQ ports 0,1,2,3 */
 232        DONE_IRQ_4_7            = (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
 233        PCI_ERR                 = (1 << 18),
 234        TRAN_COAL_LO_DONE       = (1 << 19),    /* transaction coalescing */
 235        TRAN_COAL_HI_DONE       = (1 << 20),    /* transaction coalescing */
 236        PORTS_0_3_COAL_DONE     = (1 << 8),     /* HC0 IRQ coalescing */
 237        PORTS_4_7_COAL_DONE     = (1 << 17),    /* HC1 IRQ coalescing */
 238        ALL_PORTS_COAL_DONE     = (1 << 21),    /* GEN_II(E) IRQ coalescing */
 239        GPIO_INT                = (1 << 22),
 240        SELF_INT                = (1 << 23),
 241        TWSI_INT                = (1 << 24),
 242        HC_MAIN_RSVD            = (0x7f << 25), /* bits 31-25 */
 243        HC_MAIN_RSVD_5          = (0x1fff << 19), /* bits 31-19 */
 244        HC_MAIN_RSVD_SOC        = (0x3fffffb << 6),     /* bits 31-9, 7-6 */
 245
 246        /* SATAHC registers */
 247        HC_CFG                  = 0x00,
 248
 249        HC_IRQ_CAUSE            = 0x14,
 250        DMA_IRQ                 = (1 << 0),     /* shift by port # */
 251        HC_COAL_IRQ             = (1 << 4),     /* IRQ coalescing */
 252        DEV_IRQ                 = (1 << 8),     /* shift by port # */
 253
 254        /*
 255         * Per-HC (Host-Controller) interrupt coalescing feature.
 256         * This is present on all chip generations.
 257         *
 258         * Coalescing defers the interrupt until either the IO_THRESHOLD
 259         * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
 260         */
 261        HC_IRQ_COAL_IO_THRESHOLD        = 0x000c,
 262        HC_IRQ_COAL_TIME_THRESHOLD      = 0x0010,
 263
 264        SOC_LED_CTRL            = 0x2c,
 265        SOC_LED_CTRL_BLINK      = (1 << 0),     /* Active LED blink */
 266        SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),   /* Multiplex dev presence */
 267                                                /*  with dev activity LED */
 268
 269        /* Shadow block registers */
 270        SHD_BLK                 = 0x100,
 271        SHD_CTL_AST             = 0x20,         /* ofs from SHD_BLK */
 272
 273        /* SATA registers */
 274        SATA_STATUS             = 0x300,  /* ctrl, err regs follow status */
 275        SATA_ACTIVE             = 0x350,
 276        FIS_IRQ_CAUSE           = 0x364,
 277        FIS_IRQ_CAUSE_AN        = (1 << 9),     /* async notification */
 278
 279        LTMODE                  = 0x30c,        /* requires read-after-write */
 280        LTMODE_BIT8             = (1 << 8),     /* unknown, but necessary */
 281
 282        PHY_MODE2               = 0x330,
 283        PHY_MODE3               = 0x310,
 284
 285        PHY_MODE4               = 0x314,        /* requires read-after-write */
 286        PHY_MODE4_CFG_MASK      = 0x00000003,   /* phy internal config field */
 287        PHY_MODE4_CFG_VALUE     = 0x00000001,   /* phy internal config field */
 288        PHY_MODE4_RSVD_ZEROS    = 0x5de3fffa,   /* Gen2e always write zeros */
 289        PHY_MODE4_RSVD_ONES     = 0x00000005,   /* Gen2e always write ones */
 290
 291        SATA_IFCTL              = 0x344,
 292        SATA_TESTCTL            = 0x348,
 293        SATA_IFSTAT             = 0x34c,
 294        VENDOR_UNIQUE_FIS       = 0x35c,
 295
 296        FISCFG                  = 0x360,
 297        FISCFG_WAIT_DEV_ERR     = (1 << 8),     /* wait for host on DevErr */
 298        FISCFG_SINGLE_SYNC      = (1 << 16),    /* SYNC on DMA activation */
 299
 300        PHY_MODE9_GEN2          = 0x398,
 301        PHY_MODE9_GEN1          = 0x39c,
 302        PHYCFG_OFS              = 0x3a0,        /* only in 65n devices */
 303
 304        MV5_PHY_MODE            = 0x74,
 305        MV5_LTMODE              = 0x30,
 306        MV5_PHY_CTL             = 0x0C,
 307        SATA_IFCFG              = 0x050,
 308        LP_PHY_CTL              = 0x058,
 309        LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
 310        LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
 311        LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
 312        LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
 313        LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
 314
 315        MV_M2_PREAMP_MASK       = 0x7e0,
 316
 317        /* Port registers */
 318        EDMA_CFG                = 0,
 319        EDMA_CFG_Q_DEPTH        = 0x1f,         /* max device queue depth */
 320        EDMA_CFG_NCQ            = (1 << 5),     /* for R/W FPDMA queued */
 321        EDMA_CFG_NCQ_GO_ON_ERR  = (1 << 14),    /* continue on error */
 322        EDMA_CFG_RD_BRST_EXT    = (1 << 11),    /* read burst 512B */
 323        EDMA_CFG_WR_BUFF_LEN    = (1 << 13),    /* write buffer 512B */
 324        EDMA_CFG_EDMA_FBS       = (1 << 16),    /* EDMA FIS-Based Switching */
 325        EDMA_CFG_FBS            = (1 << 26),    /* FIS-Based Switching */
 326
 327        EDMA_ERR_IRQ_CAUSE      = 0x8,
 328        EDMA_ERR_IRQ_MASK       = 0xc,
 329        EDMA_ERR_D_PAR          = (1 << 0),     /* UDMA data parity err */
 330        EDMA_ERR_PRD_PAR        = (1 << 1),     /* UDMA PRD parity err */
 331        EDMA_ERR_DEV            = (1 << 2),     /* device error */
 332        EDMA_ERR_DEV_DCON       = (1 << 3),     /* device disconnect */
 333        EDMA_ERR_DEV_CON        = (1 << 4),     /* device connected */
 334        EDMA_ERR_SERR           = (1 << 5),     /* SError bits [WBDST] raised */
 335        EDMA_ERR_SELF_DIS       = (1 << 7),     /* Gen II/IIE self-disable */
 336        EDMA_ERR_SELF_DIS_5     = (1 << 8),     /* Gen I self-disable */
 337        EDMA_ERR_BIST_ASYNC     = (1 << 8),     /* BIST FIS or Async Notify */
 338        EDMA_ERR_TRANS_IRQ_7    = (1 << 8),     /* Gen IIE transprt layer irq */
 339        EDMA_ERR_CRQB_PAR       = (1 << 9),     /* CRQB parity error */
 340        EDMA_ERR_CRPB_PAR       = (1 << 10),    /* CRPB parity error */
 341        EDMA_ERR_INTRL_PAR      = (1 << 11),    /* internal parity error */
 342        EDMA_ERR_IORDY          = (1 << 12),    /* IORdy timeout */
 343
 344        EDMA_ERR_LNK_CTRL_RX    = (0xf << 13),  /* link ctrl rx error */
 345        EDMA_ERR_LNK_CTRL_RX_0  = (1 << 13),    /* transient: CRC err */
 346        EDMA_ERR_LNK_CTRL_RX_1  = (1 << 14),    /* transient: FIFO err */
 347        EDMA_ERR_LNK_CTRL_RX_2  = (1 << 15),    /* fatal: caught SYNC */
 348        EDMA_ERR_LNK_CTRL_RX_3  = (1 << 16),    /* transient: FIS rx err */
 349
 350        EDMA_ERR_LNK_DATA_RX    = (0xf << 17),  /* link data rx error */
 351
 352        EDMA_ERR_LNK_CTRL_TX    = (0x1f << 21), /* link ctrl tx error */
 353        EDMA_ERR_LNK_CTRL_TX_0  = (1 << 21),    /* transient: CRC err */
 354        EDMA_ERR_LNK_CTRL_TX_1  = (1 << 22),    /* transient: FIFO err */
 355        EDMA_ERR_LNK_CTRL_TX_2  = (1 << 23),    /* transient: caught SYNC */
 356        EDMA_ERR_LNK_CTRL_TX_3  = (1 << 24),    /* transient: caught DMAT */
 357        EDMA_ERR_LNK_CTRL_TX_4  = (1 << 25),    /* transient: FIS collision */
 358
 359        EDMA_ERR_LNK_DATA_TX    = (0x1f << 26), /* link data tx error */
 360
 361        EDMA_ERR_TRANS_PROTO    = (1 << 31),    /* transport protocol error */
 362        EDMA_ERR_OVERRUN_5      = (1 << 5),
 363        EDMA_ERR_UNDERRUN_5     = (1 << 6),
 364
 365        EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
 366                                  EDMA_ERR_LNK_CTRL_RX_1 |
 367                                  EDMA_ERR_LNK_CTRL_RX_3 |
 368                                  EDMA_ERR_LNK_CTRL_TX,
 369
 370        EDMA_EH_FREEZE          = EDMA_ERR_D_PAR |
 371                                  EDMA_ERR_PRD_PAR |
 372                                  EDMA_ERR_DEV_DCON |
 373                                  EDMA_ERR_DEV_CON |
 374                                  EDMA_ERR_SERR |
 375                                  EDMA_ERR_SELF_DIS |
 376                                  EDMA_ERR_CRQB_PAR |
 377                                  EDMA_ERR_CRPB_PAR |
 378                                  EDMA_ERR_INTRL_PAR |
 379                                  EDMA_ERR_IORDY |
 380                                  EDMA_ERR_LNK_CTRL_RX_2 |
 381                                  EDMA_ERR_LNK_DATA_RX |
 382                                  EDMA_ERR_LNK_DATA_TX |
 383                                  EDMA_ERR_TRANS_PROTO,
 384
 385        EDMA_EH_FREEZE_5        = EDMA_ERR_D_PAR |
 386                                  EDMA_ERR_PRD_PAR |
 387                                  EDMA_ERR_DEV_DCON |
 388                                  EDMA_ERR_DEV_CON |
 389                                  EDMA_ERR_OVERRUN_5 |
 390                                  EDMA_ERR_UNDERRUN_5 |
 391                                  EDMA_ERR_SELF_DIS_5 |
 392                                  EDMA_ERR_CRQB_PAR |
 393                                  EDMA_ERR_CRPB_PAR |
 394                                  EDMA_ERR_INTRL_PAR |
 395                                  EDMA_ERR_IORDY,
 396
 397        EDMA_REQ_Q_BASE_HI      = 0x10,
 398        EDMA_REQ_Q_IN_PTR       = 0x14,         /* also contains BASE_LO */
 399
 400        EDMA_REQ_Q_OUT_PTR      = 0x18,
 401        EDMA_REQ_Q_PTR_SHIFT    = 5,
 402
 403        EDMA_RSP_Q_BASE_HI      = 0x1c,
 404        EDMA_RSP_Q_IN_PTR       = 0x20,
 405        EDMA_RSP_Q_OUT_PTR      = 0x24,         /* also contains BASE_LO */
 406        EDMA_RSP_Q_PTR_SHIFT    = 3,
 407
 408        EDMA_CMD                = 0x28,         /* EDMA command register */
 409        EDMA_EN                 = (1 << 0),     /* enable EDMA */
 410        EDMA_DS                 = (1 << 1),     /* disable EDMA; self-negated */
 411        EDMA_RESET              = (1 << 2),     /* reset eng/trans/link/phy */
 412
 413        EDMA_STATUS             = 0x30,         /* EDMA engine status */
 414        EDMA_STATUS_CACHE_EMPTY = (1 << 6),     /* GenIIe command cache empty */
 415        EDMA_STATUS_IDLE        = (1 << 7),     /* GenIIe EDMA enabled/idle */
 416
 417        EDMA_IORDY_TMOUT        = 0x34,
 418        EDMA_ARB_CFG            = 0x38,
 419
 420        EDMA_HALTCOND           = 0x60,         /* GenIIe halt conditions */
 421        EDMA_UNKNOWN_RSVD       = 0x6C,         /* GenIIe unknown/reserved */
 422
 423        BMDMA_CMD               = 0x224,        /* bmdma command register */
 424        BMDMA_STATUS            = 0x228,        /* bmdma status register */
 425        BMDMA_PRD_LOW           = 0x22c,        /* bmdma PRD addr 31:0 */
 426        BMDMA_PRD_HIGH          = 0x230,        /* bmdma PRD addr 63:32 */
 427
 428        /* Host private flags (hp_flags) */
 429        MV_HP_FLAG_MSI          = (1 << 0),
 430        MV_HP_ERRATA_50XXB0     = (1 << 1),
 431        MV_HP_ERRATA_50XXB2     = (1 << 2),
 432        MV_HP_ERRATA_60X1B2     = (1 << 3),
 433        MV_HP_ERRATA_60X1C0     = (1 << 4),
 434        MV_HP_GEN_I             = (1 << 6),     /* Generation I: 50xx */
 435        MV_HP_GEN_II            = (1 << 7),     /* Generation II: 60xx */
 436        MV_HP_GEN_IIE           = (1 << 8),     /* Generation IIE: 6042/7042 */
 437        MV_HP_PCIE              = (1 << 9),     /* PCIe bus/regs: 7042 */
 438        MV_HP_CUT_THROUGH       = (1 << 10),    /* can use EDMA cut-through */
 439        MV_HP_FLAG_SOC          = (1 << 11),    /* SystemOnChip, no PCI */
 440        MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),   /* is led blinking enabled? */
 441        MV_HP_FIX_LP_PHY_CTL    = (1 << 13),    /* fix speed in LP_PHY_CTL ? */
 442
 443        /* Port private flags (pp_flags) */
 444        MV_PP_FLAG_EDMA_EN      = (1 << 0),     /* is EDMA engine enabled? */
 445        MV_PP_FLAG_NCQ_EN       = (1 << 1),     /* is EDMA set up for NCQ? */
 446        MV_PP_FLAG_FBS_EN       = (1 << 2),     /* is EDMA set up for FBS? */
 447        MV_PP_FLAG_DELAYED_EH   = (1 << 3),     /* delayed dev err handling */
 448        MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),    /* ignore initial ATA_DRDY */
 449};
 450
 451#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
 452#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
 453#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
 454#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
 455#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
 456
 457#define WINDOW_CTRL(i)          (0x20030 + ((i) << 4))
 458#define WINDOW_BASE(i)          (0x20034 + ((i) << 4))
 459
 460enum {
 461        /* DMA boundary 0xffff is required by the s/g splitting
 462         * we need on /length/ in mv_fill-sg().
 463         */
 464        MV_DMA_BOUNDARY         = 0xffffU,
 465
 466        /* mask of register bits containing lower 32 bits
 467         * of EDMA request queue DMA address
 468         */
 469        EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
 470
 471        /* ditto, for response queue */
 472        EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
 473};
 474
 475enum chip_type {
 476        chip_504x,
 477        chip_508x,
 478        chip_5080,
 479        chip_604x,
 480        chip_608x,
 481        chip_6042,
 482        chip_7042,
 483        chip_soc,
 484};
 485
 486/* Command ReQuest Block: 32B */
 487struct mv_crqb {
 488        __le32                  sg_addr;
 489        __le32                  sg_addr_hi;
 490        __le16                  ctrl_flags;
 491        __le16                  ata_cmd[11];
 492};
 493
 494struct mv_crqb_iie {
 495        __le32                  addr;
 496        __le32                  addr_hi;
 497        __le32                  flags;
 498        __le32                  len;
 499        __le32                  ata_cmd[4];
 500};
 501
 502/* Command ResPonse Block: 8B */
 503struct mv_crpb {
 504        __le16                  id;
 505        __le16                  flags;
 506        __le32                  tmstmp;
 507};
 508
 509/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
 510struct mv_sg {
 511        __le32                  addr;
 512        __le32                  flags_size;
 513        __le32                  addr_hi;
 514        __le32                  reserved;
 515};
 516
 517/*
 518 * We keep a local cache of a few frequently accessed port
 519 * registers here, to avoid having to read them (very slow)
 520 * when switching between EDMA and non-EDMA modes.
 521 */
 522struct mv_cached_regs {
 523        u32                     fiscfg;
 524        u32                     ltmode;
 525        u32                     haltcond;
 526        u32                     unknown_rsvd;
 527};
 528
 529struct mv_port_priv {
 530        struct mv_crqb          *crqb;
 531        dma_addr_t              crqb_dma;
 532        struct mv_crpb          *crpb;
 533        dma_addr_t              crpb_dma;
 534        struct mv_sg            *sg_tbl[MV_MAX_Q_DEPTH];
 535        dma_addr_t              sg_tbl_dma[MV_MAX_Q_DEPTH];
 536
 537        unsigned int            req_idx;
 538        unsigned int            resp_idx;
 539
 540        u32                     pp_flags;
 541        struct mv_cached_regs   cached;
 542        unsigned int            delayed_eh_pmp_map;
 543};
 544
 545struct mv_port_signal {
 546        u32                     amps;
 547        u32                     pre;
 548};
 549
 550struct mv_host_priv {
 551        u32                     hp_flags;
 552        unsigned int            board_idx;
 553        u32                     main_irq_mask;
 554        struct mv_port_signal   signal[8];
 555        const struct mv_hw_ops  *ops;
 556        int                     n_ports;
 557        void __iomem            *base;
 558        void __iomem            *main_irq_cause_addr;
 559        void __iomem            *main_irq_mask_addr;
 560        u32                     irq_cause_offset;
 561        u32                     irq_mask_offset;
 562        u32                     unmask_all_irqs;
 563
 564        /*
 565         * Needed on some devices that require their clocks to be enabled.
 566         * These are optional: if the platform device does not have any
 567         * clocks, they won't be used.  Also, if the underlying hardware
 568         * does not support the common clock framework (CONFIG_HAVE_CLK=n),
 569         * all the clock operations become no-ops (see clk.h).
 570         */
 571        struct clk              *clk;
 572        struct clk              **port_clks;
 573        /*
 574         * Some devices have a SATA PHY which can be enabled/disabled
 575         * in order to save power. These are optional: if the platform
 576         * devices does not have any phy, they won't be used.
 577         */
 578        struct phy              **port_phys;
 579        /*
 580         * These consistent DMA memory pools give us guaranteed
 581         * alignment for hardware-accessed data structures,
 582         * and less memory waste in accomplishing the alignment.
 583         */
 584        struct dma_pool         *crqb_pool;
 585        struct dma_pool         *crpb_pool;
 586        struct dma_pool         *sg_tbl_pool;
 587};
 588
 589struct mv_hw_ops {
 590        void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
 591                           unsigned int port);
 592        void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
 593        void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
 594                           void __iomem *mmio);
 595        int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
 596                        unsigned int n_hc);
 597        void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
 598        void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
 599};
 600
 601static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 602static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 603static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
 604static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
 605static int mv_port_start(struct ata_port *ap);
 606static void mv_port_stop(struct ata_port *ap);
 607static int mv_qc_defer(struct ata_queued_cmd *qc);
 608static void mv_qc_prep(struct ata_queued_cmd *qc);
 609static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
 610static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
 611static int mv_hardreset(struct ata_link *link, unsigned int *class,
 612                        unsigned long deadline);
 613static void mv_eh_freeze(struct ata_port *ap);
 614static void mv_eh_thaw(struct ata_port *ap);
 615static void mv6_dev_config(struct ata_device *dev);
 616
 617static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 618                           unsigned int port);
 619static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 620static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
 621                           void __iomem *mmio);
 622static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 623                        unsigned int n_hc);
 624static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 625static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
 626
 627static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
 628                           unsigned int port);
 629static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
 630static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
 631                           void __iomem *mmio);
 632static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
 633                        unsigned int n_hc);
 634static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
 635static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
 636                                      void __iomem *mmio);
 637static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
 638                                      void __iomem *mmio);
 639static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
 640                                  void __iomem *mmio, unsigned int n_hc);
 641static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
 642                                      void __iomem *mmio);
 643static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
 644static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
 645                                  void __iomem *mmio, unsigned int port);
 646static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
 647static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
 648                             unsigned int port_no);
 649static int mv_stop_edma(struct ata_port *ap);
 650static int mv_stop_edma_engine(void __iomem *port_mmio);
 651static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
 652
 653static void mv_pmp_select(struct ata_port *ap, int pmp);
 654static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
 655                                unsigned long deadline);
 656static int  mv_softreset(struct ata_link *link, unsigned int *class,
 657                                unsigned long deadline);
 658static void mv_pmp_error_handler(struct ata_port *ap);
 659static void mv_process_crpb_entries(struct ata_port *ap,
 660                                        struct mv_port_priv *pp);
 661
 662static void mv_sff_irq_clear(struct ata_port *ap);
 663static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
 664static void mv_bmdma_setup(struct ata_queued_cmd *qc);
 665static void mv_bmdma_start(struct ata_queued_cmd *qc);
 666static void mv_bmdma_stop(struct ata_queued_cmd *qc);
 667static u8   mv_bmdma_status(struct ata_port *ap);
 668static u8 mv_sff_check_status(struct ata_port *ap);
 669
 670/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
 671 * because we have to allow room for worst case splitting of
 672 * PRDs for 64K boundaries in mv_fill_sg().
 673 */
 674#ifdef CONFIG_PCI
 675static struct scsi_host_template mv5_sht = {
 676        ATA_BASE_SHT(DRV_NAME),
 677        .sg_tablesize           = MV_MAX_SG_CT / 2,
 678        .dma_boundary           = MV_DMA_BOUNDARY,
 679};
 680#endif
 681static struct scsi_host_template mv6_sht = {
 682        ATA_NCQ_SHT(DRV_NAME),
 683        .can_queue              = MV_MAX_Q_DEPTH - 1,
 684        .sg_tablesize           = MV_MAX_SG_CT / 2,
 685        .dma_boundary           = MV_DMA_BOUNDARY,
 686};
 687
 688static struct ata_port_operations mv5_ops = {
 689        .inherits               = &ata_sff_port_ops,
 690
 691        .lost_interrupt         = ATA_OP_NULL,
 692
 693        .qc_defer               = mv_qc_defer,
 694        .qc_prep                = mv_qc_prep,
 695        .qc_issue               = mv_qc_issue,
 696
 697        .freeze                 = mv_eh_freeze,
 698        .thaw                   = mv_eh_thaw,
 699        .hardreset              = mv_hardreset,
 700
 701        .scr_read               = mv5_scr_read,
 702        .scr_write              = mv5_scr_write,
 703
 704        .port_start             = mv_port_start,
 705        .port_stop              = mv_port_stop,
 706};
 707
 708static struct ata_port_operations mv6_ops = {
 709        .inherits               = &ata_bmdma_port_ops,
 710
 711        .lost_interrupt         = ATA_OP_NULL,
 712
 713        .qc_defer               = mv_qc_defer,
 714        .qc_prep                = mv_qc_prep,
 715        .qc_issue               = mv_qc_issue,
 716
 717        .dev_config             = mv6_dev_config,
 718
 719        .freeze                 = mv_eh_freeze,
 720        .thaw                   = mv_eh_thaw,
 721        .hardreset              = mv_hardreset,
 722        .softreset              = mv_softreset,
 723        .pmp_hardreset          = mv_pmp_hardreset,
 724        .pmp_softreset          = mv_softreset,
 725        .error_handler          = mv_pmp_error_handler,
 726
 727        .scr_read               = mv_scr_read,
 728        .scr_write              = mv_scr_write,
 729
 730        .sff_check_status       = mv_sff_check_status,
 731        .sff_irq_clear          = mv_sff_irq_clear,
 732        .check_atapi_dma        = mv_check_atapi_dma,
 733        .bmdma_setup            = mv_bmdma_setup,
 734        .bmdma_start            = mv_bmdma_start,
 735        .bmdma_stop             = mv_bmdma_stop,
 736        .bmdma_status           = mv_bmdma_status,
 737
 738        .port_start             = mv_port_start,
 739        .port_stop              = mv_port_stop,
 740};
 741
 742static struct ata_port_operations mv_iie_ops = {
 743        .inherits               = &mv6_ops,
 744        .dev_config             = ATA_OP_NULL,
 745        .qc_prep                = mv_qc_prep_iie,
 746};
 747
 748static const struct ata_port_info mv_port_info[] = {
 749        {  /* chip_504x */
 750                .flags          = MV_GEN_I_FLAGS,
 751                .pio_mask       = ATA_PIO4,
 752                .udma_mask      = ATA_UDMA6,
 753                .port_ops       = &mv5_ops,
 754        },
 755        {  /* chip_508x */
 756                .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 757                .pio_mask       = ATA_PIO4,
 758                .udma_mask      = ATA_UDMA6,
 759                .port_ops       = &mv5_ops,
 760        },
 761        {  /* chip_5080 */
 762                .flags          = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
 763                .pio_mask       = ATA_PIO4,
 764                .udma_mask      = ATA_UDMA6,
 765                .port_ops       = &mv5_ops,
 766        },
 767        {  /* chip_604x */
 768                .flags          = MV_GEN_II_FLAGS,
 769                .pio_mask       = ATA_PIO4,
 770                .udma_mask      = ATA_UDMA6,
 771                .port_ops       = &mv6_ops,
 772        },
 773        {  /* chip_608x */
 774                .flags          = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
 775                .pio_mask       = ATA_PIO4,
 776                .udma_mask      = ATA_UDMA6,
 777                .port_ops       = &mv6_ops,
 778        },
 779        {  /* chip_6042 */
 780                .flags          = MV_GEN_IIE_FLAGS,
 781                .pio_mask       = ATA_PIO4,
 782                .udma_mask      = ATA_UDMA6,
 783                .port_ops       = &mv_iie_ops,
 784        },
 785        {  /* chip_7042 */
 786                .flags          = MV_GEN_IIE_FLAGS,
 787                .pio_mask       = ATA_PIO4,
 788                .udma_mask      = ATA_UDMA6,
 789                .port_ops       = &mv_iie_ops,
 790        },
 791        {  /* chip_soc */
 792                .flags          = MV_GEN_IIE_FLAGS,
 793                .pio_mask       = ATA_PIO4,
 794                .udma_mask      = ATA_UDMA6,
 795                .port_ops       = &mv_iie_ops,
 796        },
 797};
 798
 799static const struct pci_device_id mv_pci_tbl[] = {
 800        { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
 801        { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
 802        { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
 803        { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
 804        /* RocketRAID 1720/174x have different identifiers */
 805        { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
 806        { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
 807        { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
 808
 809        { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
 810        { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
 811        { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
 812        { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
 813        { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
 814
 815        { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
 816
 817        /* Adaptec 1430SA */
 818        { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
 819
 820        /* Marvell 7042 support */
 821        { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
 822
 823        /* Highpoint RocketRAID PCIe series */
 824        { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
 825        { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
 826
 827        { }                     /* terminate list */
 828};
 829
 830static const struct mv_hw_ops mv5xxx_ops = {
 831        .phy_errata             = mv5_phy_errata,
 832        .enable_leds            = mv5_enable_leds,
 833        .read_preamp            = mv5_read_preamp,
 834        .reset_hc               = mv5_reset_hc,
 835        .reset_flash            = mv5_reset_flash,
 836        .reset_bus              = mv5_reset_bus,
 837};
 838
 839static const struct mv_hw_ops mv6xxx_ops = {
 840        .phy_errata             = mv6_phy_errata,
 841        .enable_leds            = mv6_enable_leds,
 842        .read_preamp            = mv6_read_preamp,
 843        .reset_hc               = mv6_reset_hc,
 844        .reset_flash            = mv6_reset_flash,
 845        .reset_bus              = mv_reset_pci_bus,
 846};
 847
 848static const struct mv_hw_ops mv_soc_ops = {
 849        .phy_errata             = mv6_phy_errata,
 850        .enable_leds            = mv_soc_enable_leds,
 851        .read_preamp            = mv_soc_read_preamp,
 852        .reset_hc               = mv_soc_reset_hc,
 853        .reset_flash            = mv_soc_reset_flash,
 854        .reset_bus              = mv_soc_reset_bus,
 855};
 856
 857static const struct mv_hw_ops mv_soc_65n_ops = {
 858        .phy_errata             = mv_soc_65n_phy_errata,
 859        .enable_leds            = mv_soc_enable_leds,
 860        .reset_hc               = mv_soc_reset_hc,
 861        .reset_flash            = mv_soc_reset_flash,
 862        .reset_bus              = mv_soc_reset_bus,
 863};
 864
 865/*
 866 * Functions
 867 */
 868
 869static inline void writelfl(unsigned long data, void __iomem *addr)
 870{
 871        writel(data, addr);
 872        (void) readl(addr);     /* flush to avoid PCI posted write */
 873}
 874
 875static inline unsigned int mv_hc_from_port(unsigned int port)
 876{
 877        return port >> MV_PORT_HC_SHIFT;
 878}
 879
 880static inline unsigned int mv_hardport_from_port(unsigned int port)
 881{
 882        return port & MV_PORT_MASK;
 883}
 884
 885/*
 886 * Consolidate some rather tricky bit shift calculations.
 887 * This is hot-path stuff, so not a function.
 888 * Simple code, with two return values, so macro rather than inline.
 889 *
 890 * port is the sole input, in range 0..7.
 891 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
 892 * hardport is the other output, in range 0..3.
 893 *
 894 * Note that port and hardport may be the same variable in some cases.
 895 */
 896#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)    \
 897{                                                               \
 898        shift    = mv_hc_from_port(port) * HC_SHIFT;            \
 899        hardport = mv_hardport_from_port(port);                 \
 900        shift   += hardport * 2;                                \
 901}
 902
 903static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
 904{
 905        return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
 906}
 907
 908static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
 909                                                 unsigned int port)
 910{
 911        return mv_hc_base(base, mv_hc_from_port(port));
 912}
 913
 914static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
 915{
 916        return  mv_hc_base_from_port(base, port) +
 917                MV_SATAHC_ARBTR_REG_SZ +
 918                (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
 919}
 920
 921static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
 922{
 923        void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
 924        unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
 925
 926        return hc_mmio + ofs;
 927}
 928
 929static inline void __iomem *mv_host_base(struct ata_host *host)
 930{
 931        struct mv_host_priv *hpriv = host->private_data;
 932        return hpriv->base;
 933}
 934
 935static inline void __iomem *mv_ap_base(struct ata_port *ap)
 936{
 937        return mv_port_base(mv_host_base(ap->host), ap->port_no);
 938}
 939
 940static inline int mv_get_hc_count(unsigned long port_flags)
 941{
 942        return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
 943}
 944
 945/**
 946 *      mv_save_cached_regs - (re-)initialize cached port registers
 947 *      @ap: the port whose registers we are caching
 948 *
 949 *      Initialize the local cache of port registers,
 950 *      so that reading them over and over again can
 951 *      be avoided on the hotter paths of this driver.
 952 *      This saves a few microseconds each time we switch
 953 *      to/from EDMA mode to perform (eg.) a drive cache flush.
 954 */
 955static void mv_save_cached_regs(struct ata_port *ap)
 956{
 957        void __iomem *port_mmio = mv_ap_base(ap);
 958        struct mv_port_priv *pp = ap->private_data;
 959
 960        pp->cached.fiscfg = readl(port_mmio + FISCFG);
 961        pp->cached.ltmode = readl(port_mmio + LTMODE);
 962        pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
 963        pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
 964}
 965
 966/**
 967 *      mv_write_cached_reg - write to a cached port register
 968 *      @addr: hardware address of the register
 969 *      @old: pointer to cached value of the register
 970 *      @new: new value for the register
 971 *
 972 *      Write a new value to a cached register,
 973 *      but only if the value is different from before.
 974 */
 975static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
 976{
 977        if (new != *old) {
 978                unsigned long laddr;
 979                *old = new;
 980                /*
 981                 * Workaround for 88SX60x1-B2 FEr SATA#13:
 982                 * Read-after-write is needed to prevent generating 64-bit
 983                 * write cycles on the PCI bus for SATA interface registers
 984                 * at offsets ending in 0x4 or 0xc.
 985                 *
 986                 * Looks like a lot of fuss, but it avoids an unnecessary
 987                 * +1 usec read-after-write delay for unaffected registers.
 988                 */
 989                laddr = (long)addr & 0xffff;
 990                if (laddr >= 0x300 && laddr <= 0x33c) {
 991                        laddr &= 0x000f;
 992                        if (laddr == 0x4 || laddr == 0xc) {
 993                                writelfl(new, addr); /* read after write */
 994                                return;
 995                        }
 996                }
 997                writel(new, addr); /* unaffected by the errata */
 998        }
 999}
1000
1001static void mv_set_edma_ptrs(void __iomem *port_mmio,
1002                             struct mv_host_priv *hpriv,
1003                             struct mv_port_priv *pp)
1004{
1005        u32 index;
1006
1007        /*
1008         * initialize request queue
1009         */
1010        pp->req_idx &= MV_MAX_Q_DEPTH_MASK;     /* paranoia */
1011        index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1012
1013        WARN_ON(pp->crqb_dma & 0x3ff);
1014        writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1015        writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1016                 port_mmio + EDMA_REQ_Q_IN_PTR);
1017        writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1018
1019        /*
1020         * initialize response queue
1021         */
1022        pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;    /* paranoia */
1023        index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1024
1025        WARN_ON(pp->crpb_dma & 0xff);
1026        writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1027        writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1028        writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1029                 port_mmio + EDMA_RSP_Q_OUT_PTR);
1030}
1031
1032static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1033{
1034        /*
1035         * When writing to the main_irq_mask in hardware,
1036         * we must ensure exclusivity between the interrupt coalescing bits
1037         * and the corresponding individual port DONE_IRQ bits.
1038         *
1039         * Note that this register is really an "IRQ enable" register,
1040         * not an "IRQ mask" register as Marvell's naming might suggest.
1041         */
1042        if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1043                mask &= ~DONE_IRQ_0_3;
1044        if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1045                mask &= ~DONE_IRQ_4_7;
1046        writelfl(mask, hpriv->main_irq_mask_addr);
1047}
1048
1049static void mv_set_main_irq_mask(struct ata_host *host,
1050                                 u32 disable_bits, u32 enable_bits)
1051{
1052        struct mv_host_priv *hpriv = host->private_data;
1053        u32 old_mask, new_mask;
1054
1055        old_mask = hpriv->main_irq_mask;
1056        new_mask = (old_mask & ~disable_bits) | enable_bits;
1057        if (new_mask != old_mask) {
1058                hpriv->main_irq_mask = new_mask;
1059                mv_write_main_irq_mask(new_mask, hpriv);
1060        }
1061}
1062
1063static void mv_enable_port_irqs(struct ata_port *ap,
1064                                     unsigned int port_bits)
1065{
1066        unsigned int shift, hardport, port = ap->port_no;
1067        u32 disable_bits, enable_bits;
1068
1069        MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1070
1071        disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1072        enable_bits  = port_bits << shift;
1073        mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1074}
1075
1076static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1077                                          void __iomem *port_mmio,
1078                                          unsigned int port_irqs)
1079{
1080        struct mv_host_priv *hpriv = ap->host->private_data;
1081        int hardport = mv_hardport_from_port(ap->port_no);
1082        void __iomem *hc_mmio = mv_hc_base_from_port(
1083                                mv_host_base(ap->host), ap->port_no);
1084        u32 hc_irq_cause;
1085
1086        /* clear EDMA event indicators, if any */
1087        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1088
1089        /* clear pending irq events */
1090        hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1091        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1092
1093        /* clear FIS IRQ Cause */
1094        if (IS_GEN_IIE(hpriv))
1095                writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1096
1097        mv_enable_port_irqs(ap, port_irqs);
1098}
1099
1100static void mv_set_irq_coalescing(struct ata_host *host,
1101                                  unsigned int count, unsigned int usecs)
1102{
1103        struct mv_host_priv *hpriv = host->private_data;
1104        void __iomem *mmio = hpriv->base, *hc_mmio;
1105        u32 coal_enable = 0;
1106        unsigned long flags;
1107        unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1108        const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1109                                                        ALL_PORTS_COAL_DONE;
1110
1111        /* Disable IRQ coalescing if either threshold is zero */
1112        if (!usecs || !count) {
1113                clks = count = 0;
1114        } else {
1115                /* Respect maximum limits of the hardware */
1116                clks = usecs * COAL_CLOCKS_PER_USEC;
1117                if (clks > MAX_COAL_TIME_THRESHOLD)
1118                        clks = MAX_COAL_TIME_THRESHOLD;
1119                if (count > MAX_COAL_IO_COUNT)
1120                        count = MAX_COAL_IO_COUNT;
1121        }
1122
1123        spin_lock_irqsave(&host->lock, flags);
1124        mv_set_main_irq_mask(host, coal_disable, 0);
1125
1126        if (is_dual_hc && !IS_GEN_I(hpriv)) {
1127                /*
1128                 * GEN_II/GEN_IIE with dual host controllers:
1129                 * one set of global thresholds for the entire chip.
1130                 */
1131                writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1132                writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1133                /* clear leftover coal IRQ bit */
1134                writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1135                if (count)
1136                        coal_enable = ALL_PORTS_COAL_DONE;
1137                clks = count = 0; /* force clearing of regular regs below */
1138        }
1139
1140        /*
1141         * All chips: independent thresholds for each HC on the chip.
1142         */
1143        hc_mmio = mv_hc_base_from_port(mmio, 0);
1144        writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1145        writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1146        writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1147        if (count)
1148                coal_enable |= PORTS_0_3_COAL_DONE;
1149        if (is_dual_hc) {
1150                hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1151                writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1152                writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1153                writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1154                if (count)
1155                        coal_enable |= PORTS_4_7_COAL_DONE;
1156        }
1157
1158        mv_set_main_irq_mask(host, 0, coal_enable);
1159        spin_unlock_irqrestore(&host->lock, flags);
1160}
1161
1162/**
1163 *      mv_start_edma - Enable eDMA engine
1164 *      @base: port base address
1165 *      @pp: port private data
1166 *
1167 *      Verify the local cache of the eDMA state is accurate with a
1168 *      WARN_ON.
1169 *
1170 *      LOCKING:
1171 *      Inherited from caller.
1172 */
1173static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1174                         struct mv_port_priv *pp, u8 protocol)
1175{
1176        int want_ncq = (protocol == ATA_PROT_NCQ);
1177
1178        if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1179                int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1180                if (want_ncq != using_ncq)
1181                        mv_stop_edma(ap);
1182        }
1183        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1184                struct mv_host_priv *hpriv = ap->host->private_data;
1185
1186                mv_edma_cfg(ap, want_ncq, 1);
1187
1188                mv_set_edma_ptrs(port_mmio, hpriv, pp);
1189                mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1190
1191                writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1192                pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1193        }
1194}
1195
1196static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1197{
1198        void __iomem *port_mmio = mv_ap_base(ap);
1199        const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1200        const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1201        int i;
1202
1203        /*
1204         * Wait for the EDMA engine to finish transactions in progress.
1205         * No idea what a good "timeout" value might be, but measurements
1206         * indicate that it often requires hundreds of microseconds
1207         * with two drives in-use.  So we use the 15msec value above
1208         * as a rough guess at what even more drives might require.
1209         */
1210        for (i = 0; i < timeout; ++i) {
1211                u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1212                if ((edma_stat & empty_idle) == empty_idle)
1213                        break;
1214                udelay(per_loop);
1215        }
1216        /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1217}
1218
1219/**
1220 *      mv_stop_edma_engine - Disable eDMA engine
1221 *      @port_mmio: io base address
1222 *
1223 *      LOCKING:
1224 *      Inherited from caller.
1225 */
1226static int mv_stop_edma_engine(void __iomem *port_mmio)
1227{
1228        int i;
1229
1230        /* Disable eDMA.  The disable bit auto clears. */
1231        writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1232
1233        /* Wait for the chip to confirm eDMA is off. */
1234        for (i = 10000; i > 0; i--) {
1235                u32 reg = readl(port_mmio + EDMA_CMD);
1236                if (!(reg & EDMA_EN))
1237                        return 0;
1238                udelay(10);
1239        }
1240        return -EIO;
1241}
1242
1243static int mv_stop_edma(struct ata_port *ap)
1244{
1245        void __iomem *port_mmio = mv_ap_base(ap);
1246        struct mv_port_priv *pp = ap->private_data;
1247        int err = 0;
1248
1249        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1250                return 0;
1251        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1252        mv_wait_for_edma_empty_idle(ap);
1253        if (mv_stop_edma_engine(port_mmio)) {
1254                ata_port_err(ap, "Unable to stop eDMA\n");
1255                err = -EIO;
1256        }
1257        mv_edma_cfg(ap, 0, 0);
1258        return err;
1259}
1260
1261#ifdef ATA_DEBUG
1262static void mv_dump_mem(void __iomem *start, unsigned bytes)
1263{
1264        int b, w;
1265        for (b = 0; b < bytes; ) {
1266                DPRINTK("%p: ", start + b);
1267                for (w = 0; b < bytes && w < 4; w++) {
1268                        printk("%08x ", readl(start + b));
1269                        b += sizeof(u32);
1270                }
1271                printk("\n");
1272        }
1273}
1274#endif
1275#if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1276static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1277{
1278#ifdef ATA_DEBUG
1279        int b, w;
1280        u32 dw;
1281        for (b = 0; b < bytes; ) {
1282                DPRINTK("%02x: ", b);
1283                for (w = 0; b < bytes && w < 4; w++) {
1284                        (void) pci_read_config_dword(pdev, b, &dw);
1285                        printk("%08x ", dw);
1286                        b += sizeof(u32);
1287                }
1288                printk("\n");
1289        }
1290#endif
1291}
1292#endif
1293static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1294                             struct pci_dev *pdev)
1295{
1296#ifdef ATA_DEBUG
1297        void __iomem *hc_base = mv_hc_base(mmio_base,
1298                                           port >> MV_PORT_HC_SHIFT);
1299        void __iomem *port_base;
1300        int start_port, num_ports, p, start_hc, num_hcs, hc;
1301
1302        if (0 > port) {
1303                start_hc = start_port = 0;
1304                num_ports = 8;          /* shld be benign for 4 port devs */
1305                num_hcs = 2;
1306        } else {
1307                start_hc = port >> MV_PORT_HC_SHIFT;
1308                start_port = port;
1309                num_ports = num_hcs = 1;
1310        }
1311        DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1312                num_ports > 1 ? num_ports - 1 : start_port);
1313
1314        if (NULL != pdev) {
1315                DPRINTK("PCI config space regs:\n");
1316                mv_dump_pci_cfg(pdev, 0x68);
1317        }
1318        DPRINTK("PCI regs:\n");
1319        mv_dump_mem(mmio_base+0xc00, 0x3c);
1320        mv_dump_mem(mmio_base+0xd00, 0x34);
1321        mv_dump_mem(mmio_base+0xf00, 0x4);
1322        mv_dump_mem(mmio_base+0x1d00, 0x6c);
1323        for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1324                hc_base = mv_hc_base(mmio_base, hc);
1325                DPRINTK("HC regs (HC %i):\n", hc);
1326                mv_dump_mem(hc_base, 0x1c);
1327        }
1328        for (p = start_port; p < start_port + num_ports; p++) {
1329                port_base = mv_port_base(mmio_base, p);
1330                DPRINTK("EDMA regs (port %i):\n", p);
1331                mv_dump_mem(port_base, 0x54);
1332                DPRINTK("SATA regs (port %i):\n", p);
1333                mv_dump_mem(port_base+0x300, 0x60);
1334        }
1335#endif
1336}
1337
1338static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1339{
1340        unsigned int ofs;
1341
1342        switch (sc_reg_in) {
1343        case SCR_STATUS:
1344        case SCR_CONTROL:
1345        case SCR_ERROR:
1346                ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1347                break;
1348        case SCR_ACTIVE:
1349                ofs = SATA_ACTIVE;   /* active is not with the others */
1350                break;
1351        default:
1352                ofs = 0xffffffffU;
1353                break;
1354        }
1355        return ofs;
1356}
1357
1358static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1359{
1360        unsigned int ofs = mv_scr_offset(sc_reg_in);
1361
1362        if (ofs != 0xffffffffU) {
1363                *val = readl(mv_ap_base(link->ap) + ofs);
1364                return 0;
1365        } else
1366                return -EINVAL;
1367}
1368
1369static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1370{
1371        unsigned int ofs = mv_scr_offset(sc_reg_in);
1372
1373        if (ofs != 0xffffffffU) {
1374                void __iomem *addr = mv_ap_base(link->ap) + ofs;
1375                struct mv_host_priv *hpriv = link->ap->host->private_data;
1376                if (sc_reg_in == SCR_CONTROL) {
1377                        /*
1378                         * Workaround for 88SX60x1 FEr SATA#26:
1379                         *
1380                         * COMRESETs have to take care not to accidentally
1381                         * put the drive to sleep when writing SCR_CONTROL.
1382                         * Setting bits 12..15 prevents this problem.
1383                         *
1384                         * So if we see an outbound COMMRESET, set those bits.
1385                         * Ditto for the followup write that clears the reset.
1386                         *
1387                         * The proprietary driver does this for
1388                         * all chip versions, and so do we.
1389                         */
1390                        if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1391                                val |= 0xf000;
1392
1393                        if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1394                                void __iomem *lp_phy_addr =
1395                                        mv_ap_base(link->ap) + LP_PHY_CTL;
1396                                /*
1397                                 * Set PHY speed according to SControl speed.
1398                                 */
1399                                u32 lp_phy_val =
1400                                        LP_PHY_CTL_PIN_PU_PLL |
1401                                        LP_PHY_CTL_PIN_PU_RX  |
1402                                        LP_PHY_CTL_PIN_PU_TX;
1403
1404                                if ((val & 0xf0) != 0x10)
1405                                        lp_phy_val |=
1406                                                LP_PHY_CTL_GEN_TX_3G |
1407                                                LP_PHY_CTL_GEN_RX_3G;
1408
1409                                writelfl(lp_phy_val, lp_phy_addr);
1410                        }
1411                }
1412                writelfl(val, addr);
1413                return 0;
1414        } else
1415                return -EINVAL;
1416}
1417
1418static void mv6_dev_config(struct ata_device *adev)
1419{
1420        /*
1421         * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1422         *
1423         * Gen-II does not support NCQ over a port multiplier
1424         *  (no FIS-based switching).
1425         */
1426        if (adev->flags & ATA_DFLAG_NCQ) {
1427                if (sata_pmp_attached(adev->link->ap)) {
1428                        adev->flags &= ~ATA_DFLAG_NCQ;
1429                        ata_dev_info(adev,
1430                                "NCQ disabled for command-based switching\n");
1431                }
1432        }
1433}
1434
1435static int mv_qc_defer(struct ata_queued_cmd *qc)
1436{
1437        struct ata_link *link = qc->dev->link;
1438        struct ata_port *ap = link->ap;
1439        struct mv_port_priv *pp = ap->private_data;
1440
1441        /*
1442         * Don't allow new commands if we're in a delayed EH state
1443         * for NCQ and/or FIS-based switching.
1444         */
1445        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1446                return ATA_DEFER_PORT;
1447
1448        /* PIO commands need exclusive link: no other commands [DMA or PIO]
1449         * can run concurrently.
1450         * set excl_link when we want to send a PIO command in DMA mode
1451         * or a non-NCQ command in NCQ mode.
1452         * When we receive a command from that link, and there are no
1453         * outstanding commands, mark a flag to clear excl_link and let
1454         * the command go through.
1455         */
1456        if (unlikely(ap->excl_link)) {
1457                if (link == ap->excl_link) {
1458                        if (ap->nr_active_links)
1459                                return ATA_DEFER_PORT;
1460                        qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1461                        return 0;
1462                } else
1463                        return ATA_DEFER_PORT;
1464        }
1465
1466        /*
1467         * If the port is completely idle, then allow the new qc.
1468         */
1469        if (ap->nr_active_links == 0)
1470                return 0;
1471
1472        /*
1473         * The port is operating in host queuing mode (EDMA) with NCQ
1474         * enabled, allow multiple NCQ commands.  EDMA also allows
1475         * queueing multiple DMA commands but libata core currently
1476         * doesn't allow it.
1477         */
1478        if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1479            (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1480                if (ata_is_ncq(qc->tf.protocol))
1481                        return 0;
1482                else {
1483                        ap->excl_link = link;
1484                        return ATA_DEFER_PORT;
1485                }
1486        }
1487
1488        return ATA_DEFER_PORT;
1489}
1490
1491static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1492{
1493        struct mv_port_priv *pp = ap->private_data;
1494        void __iomem *port_mmio;
1495
1496        u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1497        u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1498        u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1499
1500        ltmode   = *old_ltmode & ~LTMODE_BIT8;
1501        haltcond = *old_haltcond | EDMA_ERR_DEV;
1502
1503        if (want_fbs) {
1504                fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1505                ltmode = *old_ltmode | LTMODE_BIT8;
1506                if (want_ncq)
1507                        haltcond &= ~EDMA_ERR_DEV;
1508                else
1509                        fiscfg |=  FISCFG_WAIT_DEV_ERR;
1510        } else {
1511                fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1512        }
1513
1514        port_mmio = mv_ap_base(ap);
1515        mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1516        mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1517        mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1518}
1519
1520static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1521{
1522        struct mv_host_priv *hpriv = ap->host->private_data;
1523        u32 old, new;
1524
1525        /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1526        old = readl(hpriv->base + GPIO_PORT_CTL);
1527        if (want_ncq)
1528                new = old | (1 << 22);
1529        else
1530                new = old & ~(1 << 22);
1531        if (new != old)
1532                writel(new, hpriv->base + GPIO_PORT_CTL);
1533}
1534
1535/**
1536 *      mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1537 *      @ap: Port being initialized
1538 *
1539 *      There are two DMA modes on these chips:  basic DMA, and EDMA.
1540 *
1541 *      Bit-0 of the "EDMA RESERVED" register enables/disables use
1542 *      of basic DMA on the GEN_IIE versions of the chips.
1543 *
1544 *      This bit survives EDMA resets, and must be set for basic DMA
1545 *      to function, and should be cleared when EDMA is active.
1546 */
1547static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1548{
1549        struct mv_port_priv *pp = ap->private_data;
1550        u32 new, *old = &pp->cached.unknown_rsvd;
1551
1552        if (enable_bmdma)
1553                new = *old | 1;
1554        else
1555                new = *old & ~1;
1556        mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1557}
1558
1559/*
1560 * SOC chips have an issue whereby the HDD LEDs don't always blink
1561 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1562 * of the SOC takes care of it, generating a steady blink rate when
1563 * any drive on the chip is active.
1564 *
1565 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1566 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1567 *
1568 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1569 * LED operation works then, and provides better (more accurate) feedback.
1570 *
1571 * Note that this code assumes that an SOC never has more than one HC onboard.
1572 */
1573static void mv_soc_led_blink_enable(struct ata_port *ap)
1574{
1575        struct ata_host *host = ap->host;
1576        struct mv_host_priv *hpriv = host->private_data;
1577        void __iomem *hc_mmio;
1578        u32 led_ctrl;
1579
1580        if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1581                return;
1582        hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1583        hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1584        led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1585        writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1586}
1587
1588static void mv_soc_led_blink_disable(struct ata_port *ap)
1589{
1590        struct ata_host *host = ap->host;
1591        struct mv_host_priv *hpriv = host->private_data;
1592        void __iomem *hc_mmio;
1593        u32 led_ctrl;
1594        unsigned int port;
1595
1596        if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1597                return;
1598
1599        /* disable led-blink only if no ports are using NCQ */
1600        for (port = 0; port < hpriv->n_ports; port++) {
1601                struct ata_port *this_ap = host->ports[port];
1602                struct mv_port_priv *pp = this_ap->private_data;
1603
1604                if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1605                        return;
1606        }
1607
1608        hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1609        hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1610        led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1611        writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1612}
1613
1614static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1615{
1616        u32 cfg;
1617        struct mv_port_priv *pp    = ap->private_data;
1618        struct mv_host_priv *hpriv = ap->host->private_data;
1619        void __iomem *port_mmio    = mv_ap_base(ap);
1620
1621        /* set up non-NCQ EDMA configuration */
1622        cfg = EDMA_CFG_Q_DEPTH;         /* always 0x1f for *all* chips */
1623        pp->pp_flags &=
1624          ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1625
1626        if (IS_GEN_I(hpriv))
1627                cfg |= (1 << 8);        /* enab config burst size mask */
1628
1629        else if (IS_GEN_II(hpriv)) {
1630                cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1631                mv_60x1_errata_sata25(ap, want_ncq);
1632
1633        } else if (IS_GEN_IIE(hpriv)) {
1634                int want_fbs = sata_pmp_attached(ap);
1635                /*
1636                 * Possible future enhancement:
1637                 *
1638                 * The chip can use FBS with non-NCQ, if we allow it,
1639                 * But first we need to have the error handling in place
1640                 * for this mode (datasheet section 7.3.15.4.2.3).
1641                 * So disallow non-NCQ FBS for now.
1642                 */
1643                want_fbs &= want_ncq;
1644
1645                mv_config_fbs(ap, want_ncq, want_fbs);
1646
1647                if (want_fbs) {
1648                        pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1649                        cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1650                }
1651
1652                cfg |= (1 << 23);       /* do not mask PM field in rx'd FIS */
1653                if (want_edma) {
1654                        cfg |= (1 << 22); /* enab 4-entry host queue cache */
1655                        if (!IS_SOC(hpriv))
1656                                cfg |= (1 << 18); /* enab early completion */
1657                }
1658                if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1659                        cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1660                mv_bmdma_enable_iie(ap, !want_edma);
1661
1662                if (IS_SOC(hpriv)) {
1663                        if (want_ncq)
1664                                mv_soc_led_blink_enable(ap);
1665                        else
1666                                mv_soc_led_blink_disable(ap);
1667                }
1668        }
1669
1670        if (want_ncq) {
1671                cfg |= EDMA_CFG_NCQ;
1672                pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1673        }
1674
1675        writelfl(cfg, port_mmio + EDMA_CFG);
1676}
1677
1678static void mv_port_free_dma_mem(struct ata_port *ap)
1679{
1680        struct mv_host_priv *hpriv = ap->host->private_data;
1681        struct mv_port_priv *pp = ap->private_data;
1682        int tag;
1683
1684        if (pp->crqb) {
1685                dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1686                pp->crqb = NULL;
1687        }
1688        if (pp->crpb) {
1689                dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1690                pp->crpb = NULL;
1691        }
1692        /*
1693         * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1694         * For later hardware, we have one unique sg_tbl per NCQ tag.
1695         */
1696        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1697                if (pp->sg_tbl[tag]) {
1698                        if (tag == 0 || !IS_GEN_I(hpriv))
1699                                dma_pool_free(hpriv->sg_tbl_pool,
1700                                              pp->sg_tbl[tag],
1701                                              pp->sg_tbl_dma[tag]);
1702                        pp->sg_tbl[tag] = NULL;
1703                }
1704        }
1705}
1706
1707/**
1708 *      mv_port_start - Port specific init/start routine.
1709 *      @ap: ATA channel to manipulate
1710 *
1711 *      Allocate and point to DMA memory, init port private memory,
1712 *      zero indices.
1713 *
1714 *      LOCKING:
1715 *      Inherited from caller.
1716 */
1717static int mv_port_start(struct ata_port *ap)
1718{
1719        struct device *dev = ap->host->dev;
1720        struct mv_host_priv *hpriv = ap->host->private_data;
1721        struct mv_port_priv *pp;
1722        unsigned long flags;
1723        int tag;
1724
1725        pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1726        if (!pp)
1727                return -ENOMEM;
1728        ap->private_data = pp;
1729
1730        pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1731        if (!pp->crqb)
1732                return -ENOMEM;
1733        memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1734
1735        pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1736        if (!pp->crpb)
1737                goto out_port_free_dma_mem;
1738        memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1739
1740        /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1741        if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1742                ap->flags |= ATA_FLAG_AN;
1743        /*
1744         * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1745         * For later hardware, we need one unique sg_tbl per NCQ tag.
1746         */
1747        for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1748                if (tag == 0 || !IS_GEN_I(hpriv)) {
1749                        pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1750                                              GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1751                        if (!pp->sg_tbl[tag])
1752                                goto out_port_free_dma_mem;
1753                } else {
1754                        pp->sg_tbl[tag]     = pp->sg_tbl[0];
1755                        pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1756                }
1757        }
1758
1759        spin_lock_irqsave(ap->lock, flags);
1760        mv_save_cached_regs(ap);
1761        mv_edma_cfg(ap, 0, 0);
1762        spin_unlock_irqrestore(ap->lock, flags);
1763
1764        return 0;
1765
1766out_port_free_dma_mem:
1767        mv_port_free_dma_mem(ap);
1768        return -ENOMEM;
1769}
1770
1771/**
1772 *      mv_port_stop - Port specific cleanup/stop routine.
1773 *      @ap: ATA channel to manipulate
1774 *
1775 *      Stop DMA, cleanup port memory.
1776 *
1777 *      LOCKING:
1778 *      This routine uses the host lock to protect the DMA stop.
1779 */
1780static void mv_port_stop(struct ata_port *ap)
1781{
1782        unsigned long flags;
1783
1784        spin_lock_irqsave(ap->lock, flags);
1785        mv_stop_edma(ap);
1786        mv_enable_port_irqs(ap, 0);
1787        spin_unlock_irqrestore(ap->lock, flags);
1788        mv_port_free_dma_mem(ap);
1789}
1790
1791/**
1792 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1793 *      @qc: queued command whose SG list to source from
1794 *
1795 *      Populate the SG list and mark the last entry.
1796 *
1797 *      LOCKING:
1798 *      Inherited from caller.
1799 */
1800static void mv_fill_sg(struct ata_queued_cmd *qc)
1801{
1802        struct mv_port_priv *pp = qc->ap->private_data;
1803        struct scatterlist *sg;
1804        struct mv_sg *mv_sg, *last_sg = NULL;
1805        unsigned int si;
1806
1807        mv_sg = pp->sg_tbl[qc->tag];
1808        for_each_sg(qc->sg, sg, qc->n_elem, si) {
1809                dma_addr_t addr = sg_dma_address(sg);
1810                u32 sg_len = sg_dma_len(sg);
1811
1812                while (sg_len) {
1813                        u32 offset = addr & 0xffff;
1814                        u32 len = sg_len;
1815
1816                        if (offset + len > 0x10000)
1817                                len = 0x10000 - offset;
1818
1819                        mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1820                        mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1821                        mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1822                        mv_sg->reserved = 0;
1823
1824                        sg_len -= len;
1825                        addr += len;
1826
1827                        last_sg = mv_sg;
1828                        mv_sg++;
1829                }
1830        }
1831
1832        if (likely(last_sg))
1833                last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1834        mb(); /* ensure data structure is visible to the chipset */
1835}
1836
1837static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1838{
1839        u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1840                (last ? CRQB_CMD_LAST : 0);
1841        *cmdw = cpu_to_le16(tmp);
1842}
1843
1844/**
1845 *      mv_sff_irq_clear - Clear hardware interrupt after DMA.
1846 *      @ap: Port associated with this ATA transaction.
1847 *
1848 *      We need this only for ATAPI bmdma transactions,
1849 *      as otherwise we experience spurious interrupts
1850 *      after libata-sff handles the bmdma interrupts.
1851 */
1852static void mv_sff_irq_clear(struct ata_port *ap)
1853{
1854        mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1855}
1856
1857/**
1858 *      mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1859 *      @qc: queued command to check for chipset/DMA compatibility.
1860 *
1861 *      The bmdma engines cannot handle speculative data sizes
1862 *      (bytecount under/over flow).  So only allow DMA for
1863 *      data transfer commands with known data sizes.
1864 *
1865 *      LOCKING:
1866 *      Inherited from caller.
1867 */
1868static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1869{
1870        struct scsi_cmnd *scmd = qc->scsicmd;
1871
1872        if (scmd) {
1873                switch (scmd->cmnd[0]) {
1874                case READ_6:
1875                case READ_10:
1876                case READ_12:
1877                case WRITE_6:
1878                case WRITE_10:
1879                case WRITE_12:
1880                case GPCMD_READ_CD:
1881                case GPCMD_SEND_DVD_STRUCTURE:
1882                case GPCMD_SEND_CUE_SHEET:
1883                        return 0; /* DMA is safe */
1884                }
1885        }
1886        return -EOPNOTSUPP; /* use PIO instead */
1887}
1888
1889/**
1890 *      mv_bmdma_setup - Set up BMDMA transaction
1891 *      @qc: queued command to prepare DMA for.
1892 *
1893 *      LOCKING:
1894 *      Inherited from caller.
1895 */
1896static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1897{
1898        struct ata_port *ap = qc->ap;
1899        void __iomem *port_mmio = mv_ap_base(ap);
1900        struct mv_port_priv *pp = ap->private_data;
1901
1902        mv_fill_sg(qc);
1903
1904        /* clear all DMA cmd bits */
1905        writel(0, port_mmio + BMDMA_CMD);
1906
1907        /* load PRD table addr. */
1908        writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1909                port_mmio + BMDMA_PRD_HIGH);
1910        writelfl(pp->sg_tbl_dma[qc->tag],
1911                port_mmio + BMDMA_PRD_LOW);
1912
1913        /* issue r/w command */
1914        ap->ops->sff_exec_command(ap, &qc->tf);
1915}
1916
1917/**
1918 *      mv_bmdma_start - Start a BMDMA transaction
1919 *      @qc: queued command to start DMA on.
1920 *
1921 *      LOCKING:
1922 *      Inherited from caller.
1923 */
1924static void mv_bmdma_start(struct ata_queued_cmd *qc)
1925{
1926        struct ata_port *ap = qc->ap;
1927        void __iomem *port_mmio = mv_ap_base(ap);
1928        unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1929        u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1930
1931        /* start host DMA transaction */
1932        writelfl(cmd, port_mmio + BMDMA_CMD);
1933}
1934
1935/**
1936 *      mv_bmdma_stop - Stop BMDMA transfer
1937 *      @qc: queued command to stop DMA on.
1938 *
1939 *      Clears the ATA_DMA_START flag in the bmdma control register
1940 *
1941 *      LOCKING:
1942 *      Inherited from caller.
1943 */
1944static void mv_bmdma_stop_ap(struct ata_port *ap)
1945{
1946        void __iomem *port_mmio = mv_ap_base(ap);
1947        u32 cmd;
1948
1949        /* clear start/stop bit */
1950        cmd = readl(port_mmio + BMDMA_CMD);
1951        if (cmd & ATA_DMA_START) {
1952                cmd &= ~ATA_DMA_START;
1953                writelfl(cmd, port_mmio + BMDMA_CMD);
1954
1955                /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1956                ata_sff_dma_pause(ap);
1957        }
1958}
1959
1960static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1961{
1962        mv_bmdma_stop_ap(qc->ap);
1963}
1964
1965/**
1966 *      mv_bmdma_status - Read BMDMA status
1967 *      @ap: port for which to retrieve DMA status.
1968 *
1969 *      Read and return equivalent of the sff BMDMA status register.
1970 *
1971 *      LOCKING:
1972 *      Inherited from caller.
1973 */
1974static u8 mv_bmdma_status(struct ata_port *ap)
1975{
1976        void __iomem *port_mmio = mv_ap_base(ap);
1977        u32 reg, status;
1978
1979        /*
1980         * Other bits are valid only if ATA_DMA_ACTIVE==0,
1981         * and the ATA_DMA_INTR bit doesn't exist.
1982         */
1983        reg = readl(port_mmio + BMDMA_STATUS);
1984        if (reg & ATA_DMA_ACTIVE)
1985                status = ATA_DMA_ACTIVE;
1986        else if (reg & ATA_DMA_ERR)
1987                status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1988        else {
1989                /*
1990                 * Just because DMA_ACTIVE is 0 (DMA completed),
1991                 * this does _not_ mean the device is "done".
1992                 * So we should not yet be signalling ATA_DMA_INTR
1993                 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1994                 */
1995                mv_bmdma_stop_ap(ap);
1996                if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1997                        status = 0;
1998                else
1999                        status = ATA_DMA_INTR;
2000        }
2001        return status;
2002}
2003
2004static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
2005{
2006        struct ata_taskfile *tf = &qc->tf;
2007        /*
2008         * Workaround for 88SX60x1 FEr SATA#24.
2009         *
2010         * Chip may corrupt WRITEs if multi_count >= 4kB.
2011         * Note that READs are unaffected.
2012         *
2013         * It's not clear if this errata really means "4K bytes",
2014         * or if it always happens for multi_count > 7
2015         * regardless of device sector_size.
2016         *
2017         * So, for safety, any write with multi_count > 7
2018         * gets converted here into a regular PIO write instead:
2019         */
2020        if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2021                if (qc->dev->multi_count > 7) {
2022                        switch (tf->command) {
2023                        case ATA_CMD_WRITE_MULTI:
2024                                tf->command = ATA_CMD_PIO_WRITE;
2025                                break;
2026                        case ATA_CMD_WRITE_MULTI_FUA_EXT:
2027                                tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2028                                /* fall through */
2029                        case ATA_CMD_WRITE_MULTI_EXT:
2030                                tf->command = ATA_CMD_PIO_WRITE_EXT;
2031                                break;
2032                        }
2033                }
2034        }
2035}
2036
2037/**
2038 *      mv_qc_prep - Host specific command preparation.
2039 *      @qc: queued command to prepare
2040 *
2041 *      This routine simply redirects to the general purpose routine
2042 *      if command is not DMA.  Else, it handles prep of the CRQB
2043 *      (command request block), does some sanity checking, and calls
2044 *      the SG load routine.
2045 *
2046 *      LOCKING:
2047 *      Inherited from caller.
2048 */
2049static void mv_qc_prep(struct ata_queued_cmd *qc)
2050{
2051        struct ata_port *ap = qc->ap;
2052        struct mv_port_priv *pp = ap->private_data;
2053        __le16 *cw;
2054        struct ata_taskfile *tf = &qc->tf;
2055        u16 flags = 0;
2056        unsigned in_index;
2057
2058        switch (tf->protocol) {
2059        case ATA_PROT_DMA:
2060                if (tf->command == ATA_CMD_DSM)
2061                        return;
2062                /* fall-thru */
2063        case ATA_PROT_NCQ:
2064                break;  /* continue below */
2065        case ATA_PROT_PIO:
2066                mv_rw_multi_errata_sata24(qc);
2067                return;
2068        default:
2069                return;
2070        }
2071
2072        /* Fill in command request block
2073         */
2074        if (!(tf->flags & ATA_TFLAG_WRITE))
2075                flags |= CRQB_FLAG_READ;
2076        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2077        flags |= qc->tag << CRQB_TAG_SHIFT;
2078        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2079
2080        /* get current queue index from software */
2081        in_index = pp->req_idx;
2082
2083        pp->crqb[in_index].sg_addr =
2084                cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2085        pp->crqb[in_index].sg_addr_hi =
2086                cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2087        pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2088
2089        cw = &pp->crqb[in_index].ata_cmd[0];
2090
2091        /* Sadly, the CRQB cannot accommodate all registers--there are
2092         * only 11 bytes...so we must pick and choose required
2093         * registers based on the command.  So, we drop feature and
2094         * hob_feature for [RW] DMA commands, but they are needed for
2095         * NCQ.  NCQ will drop hob_nsect, which is not needed there
2096         * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2097         */
2098        switch (tf->command) {
2099        case ATA_CMD_READ:
2100        case ATA_CMD_READ_EXT:
2101        case ATA_CMD_WRITE:
2102        case ATA_CMD_WRITE_EXT:
2103        case ATA_CMD_WRITE_FUA_EXT:
2104                mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2105                break;
2106        case ATA_CMD_FPDMA_READ:
2107        case ATA_CMD_FPDMA_WRITE:
2108                mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2109                mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2110                break;
2111        default:
2112                /* The only other commands EDMA supports in non-queued and
2113                 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2114                 * of which are defined/used by Linux.  If we get here, this
2115                 * driver needs work.
2116                 *
2117                 * FIXME: modify libata to give qc_prep a return value and
2118                 * return error here.
2119                 */
2120                BUG_ON(tf->command);
2121                break;
2122        }
2123        mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2124        mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2125        mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2126        mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2127        mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2128        mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2129        mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2130        mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2131        mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);    /* last */
2132
2133        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2134                return;
2135        mv_fill_sg(qc);
2136}
2137
2138/**
2139 *      mv_qc_prep_iie - Host specific command preparation.
2140 *      @qc: queued command to prepare
2141 *
2142 *      This routine simply redirects to the general purpose routine
2143 *      if command is not DMA.  Else, it handles prep of the CRQB
2144 *      (command request block), does some sanity checking, and calls
2145 *      the SG load routine.
2146 *
2147 *      LOCKING:
2148 *      Inherited from caller.
2149 */
2150static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2151{
2152        struct ata_port *ap = qc->ap;
2153        struct mv_port_priv *pp = ap->private_data;
2154        struct mv_crqb_iie *crqb;
2155        struct ata_taskfile *tf = &qc->tf;
2156        unsigned in_index;
2157        u32 flags = 0;
2158
2159        if ((tf->protocol != ATA_PROT_DMA) &&
2160            (tf->protocol != ATA_PROT_NCQ))
2161                return;
2162        if (tf->command == ATA_CMD_DSM)
2163                return;  /* use bmdma for this */
2164
2165        /* Fill in Gen IIE command request block */
2166        if (!(tf->flags & ATA_TFLAG_WRITE))
2167                flags |= CRQB_FLAG_READ;
2168
2169        WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2170        flags |= qc->tag << CRQB_TAG_SHIFT;
2171        flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2172        flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2173
2174        /* get current queue index from software */
2175        in_index = pp->req_idx;
2176
2177        crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2178        crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2179        crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2180        crqb->flags = cpu_to_le32(flags);
2181
2182        crqb->ata_cmd[0] = cpu_to_le32(
2183                        (tf->command << 16) |
2184                        (tf->feature << 24)
2185                );
2186        crqb->ata_cmd[1] = cpu_to_le32(
2187                        (tf->lbal << 0) |
2188                        (tf->lbam << 8) |
2189                        (tf->lbah << 16) |
2190                        (tf->device << 24)
2191                );
2192        crqb->ata_cmd[2] = cpu_to_le32(
2193                        (tf->hob_lbal << 0) |
2194                        (tf->hob_lbam << 8) |
2195                        (tf->hob_lbah << 16) |
2196                        (tf->hob_feature << 24)
2197                );
2198        crqb->ata_cmd[3] = cpu_to_le32(
2199                        (tf->nsect << 0) |
2200                        (tf->hob_nsect << 8)
2201                );
2202
2203        if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2204                return;
2205        mv_fill_sg(qc);
2206}
2207
2208/**
2209 *      mv_sff_check_status - fetch device status, if valid
2210 *      @ap: ATA port to fetch status from
2211 *
2212 *      When using command issue via mv_qc_issue_fis(),
2213 *      the initial ATA_BUSY state does not show up in the
2214 *      ATA status (shadow) register.  This can confuse libata!
2215 *
2216 *      So we have a hook here to fake ATA_BUSY for that situation,
2217 *      until the first time a BUSY, DRQ, or ERR bit is seen.
2218 *
2219 *      The rest of the time, it simply returns the ATA status register.
2220 */
2221static u8 mv_sff_check_status(struct ata_port *ap)
2222{
2223        u8 stat = ioread8(ap->ioaddr.status_addr);
2224        struct mv_port_priv *pp = ap->private_data;
2225
2226        if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2227                if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2228                        pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2229                else
2230                        stat = ATA_BUSY;
2231        }
2232        return stat;
2233}
2234
2235/**
2236 *      mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2237 *      @fis: fis to be sent
2238 *      @nwords: number of 32-bit words in the fis
2239 */
2240static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2241{
2242        void __iomem *port_mmio = mv_ap_base(ap);
2243        u32 ifctl, old_ifctl, ifstat;
2244        int i, timeout = 200, final_word = nwords - 1;
2245
2246        /* Initiate FIS transmission mode */
2247        old_ifctl = readl(port_mmio + SATA_IFCTL);
2248        ifctl = 0x100 | (old_ifctl & 0xf);
2249        writelfl(ifctl, port_mmio + SATA_IFCTL);
2250
2251        /* Send all words of the FIS except for the final word */
2252        for (i = 0; i < final_word; ++i)
2253                writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2254
2255        /* Flag end-of-transmission, and then send the final word */
2256        writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2257        writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2258
2259        /*
2260         * Wait for FIS transmission to complete.
2261         * This typically takes just a single iteration.
2262         */
2263        do {
2264                ifstat = readl(port_mmio + SATA_IFSTAT);
2265        } while (!(ifstat & 0x1000) && --timeout);
2266
2267        /* Restore original port configuration */
2268        writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2269
2270        /* See if it worked */
2271        if ((ifstat & 0x3000) != 0x1000) {
2272                ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2273                              __func__, ifstat);
2274                return AC_ERR_OTHER;
2275        }
2276        return 0;
2277}
2278
2279/**
2280 *      mv_qc_issue_fis - Issue a command directly as a FIS
2281 *      @qc: queued command to start
2282 *
2283 *      Note that the ATA shadow registers are not updated
2284 *      after command issue, so the device will appear "READY"
2285 *      if polled, even while it is BUSY processing the command.
2286 *
2287 *      So we use a status hook to fake ATA_BUSY until the drive changes state.
2288 *
2289 *      Note: we don't get updated shadow regs on *completion*
2290 *      of non-data commands. So avoid sending them via this function,
2291 *      as they will appear to have completed immediately.
2292 *
2293 *      GEN_IIE has special registers that we could get the result tf from,
2294 *      but earlier chipsets do not.  For now, we ignore those registers.
2295 */
2296static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2297{
2298        struct ata_port *ap = qc->ap;
2299        struct mv_port_priv *pp = ap->private_data;
2300        struct ata_link *link = qc->dev->link;
2301        u32 fis[5];
2302        int err = 0;
2303
2304        ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2305        err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2306        if (err)
2307                return err;
2308
2309        switch (qc->tf.protocol) {
2310        case ATAPI_PROT_PIO:
2311                pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2312                /* fall through */
2313        case ATAPI_PROT_NODATA:
2314                ap->hsm_task_state = HSM_ST_FIRST;
2315                break;
2316        case ATA_PROT_PIO:
2317                pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2318                if (qc->tf.flags & ATA_TFLAG_WRITE)
2319                        ap->hsm_task_state = HSM_ST_FIRST;
2320                else
2321                        ap->hsm_task_state = HSM_ST;
2322                break;
2323        default:
2324                ap->hsm_task_state = HSM_ST_LAST;
2325                break;
2326        }
2327
2328        if (qc->tf.flags & ATA_TFLAG_POLLING)
2329                ata_sff_queue_pio_task(link, 0);
2330        return 0;
2331}
2332
2333/**
2334 *      mv_qc_issue - Initiate a command to the host
2335 *      @qc: queued command to start
2336 *
2337 *      This routine simply redirects to the general purpose routine
2338 *      if command is not DMA.  Else, it sanity checks our local
2339 *      caches of the request producer/consumer indices then enables
2340 *      DMA and bumps the request producer index.
2341 *
2342 *      LOCKING:
2343 *      Inherited from caller.
2344 */
2345static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2346{
2347        static int limit_warnings = 10;
2348        struct ata_port *ap = qc->ap;
2349        void __iomem *port_mmio = mv_ap_base(ap);
2350        struct mv_port_priv *pp = ap->private_data;
2351        u32 in_index;
2352        unsigned int port_irqs;
2353
2354        pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2355
2356        switch (qc->tf.protocol) {
2357        case ATA_PROT_DMA:
2358                if (qc->tf.command == ATA_CMD_DSM) {
2359                        if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2360                                return AC_ERR_OTHER;
2361                        break;  /* use bmdma for this */
2362                }
2363                /* fall thru */
2364        case ATA_PROT_NCQ:
2365                mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2366                pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2367                in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2368
2369                /* Write the request in pointer to kick the EDMA to life */
2370                writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2371                                        port_mmio + EDMA_REQ_Q_IN_PTR);
2372                return 0;
2373
2374        case ATA_PROT_PIO:
2375                /*
2376                 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2377                 *
2378                 * Someday, we might implement special polling workarounds
2379                 * for these, but it all seems rather unnecessary since we
2380                 * normally use only DMA for commands which transfer more
2381                 * than a single block of data.
2382                 *
2383                 * Much of the time, this could just work regardless.
2384                 * So for now, just log the incident, and allow the attempt.
2385                 */
2386                if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2387                        --limit_warnings;
2388                        ata_link_warn(qc->dev->link, DRV_NAME
2389                                      ": attempting PIO w/multiple DRQ: "
2390                                      "this may fail due to h/w errata\n");
2391                }
2392                /* drop through */
2393        case ATA_PROT_NODATA:
2394        case ATAPI_PROT_PIO:
2395        case ATAPI_PROT_NODATA:
2396                if (ap->flags & ATA_FLAG_PIO_POLLING)
2397                        qc->tf.flags |= ATA_TFLAG_POLLING;
2398                break;
2399        }
2400
2401        if (qc->tf.flags & ATA_TFLAG_POLLING)
2402                port_irqs = ERR_IRQ;    /* mask device interrupt when polling */
2403        else
2404                port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2405
2406        /*
2407         * We're about to send a non-EDMA capable command to the
2408         * port.  Turn off EDMA so there won't be problems accessing
2409         * shadow block, etc registers.
2410         */
2411        mv_stop_edma(ap);
2412        mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2413        mv_pmp_select(ap, qc->dev->link->pmp);
2414
2415        if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2416                struct mv_host_priv *hpriv = ap->host->private_data;
2417                /*
2418                 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2419                 *
2420                 * After any NCQ error, the READ_LOG_EXT command
2421                 * from libata-eh *must* use mv_qc_issue_fis().
2422                 * Otherwise it might fail, due to chip errata.
2423                 *
2424                 * Rather than special-case it, we'll just *always*
2425                 * use this method here for READ_LOG_EXT, making for
2426                 * easier testing.
2427                 */
2428                if (IS_GEN_II(hpriv))
2429                        return mv_qc_issue_fis(qc);
2430        }
2431        return ata_bmdma_qc_issue(qc);
2432}
2433
2434static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2435{
2436        struct mv_port_priv *pp = ap->private_data;
2437        struct ata_queued_cmd *qc;
2438
2439        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2440                return NULL;
2441        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2442        if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2443                return qc;
2444        return NULL;
2445}
2446
2447static void mv_pmp_error_handler(struct ata_port *ap)
2448{
2449        unsigned int pmp, pmp_map;
2450        struct mv_port_priv *pp = ap->private_data;
2451
2452        if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2453                /*
2454                 * Perform NCQ error analysis on failed PMPs
2455                 * before we freeze the port entirely.
2456                 *
2457                 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2458                 */
2459                pmp_map = pp->delayed_eh_pmp_map;
2460                pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2461                for (pmp = 0; pmp_map != 0; pmp++) {
2462                        unsigned int this_pmp = (1 << pmp);
2463                        if (pmp_map & this_pmp) {
2464                                struct ata_link *link = &ap->pmp_link[pmp];
2465                                pmp_map &= ~this_pmp;
2466                                ata_eh_analyze_ncq_error(link);
2467                        }
2468                }
2469                ata_port_freeze(ap);
2470        }
2471        sata_pmp_error_handler(ap);
2472}
2473
2474static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2475{
2476        void __iomem *port_mmio = mv_ap_base(ap);
2477
2478        return readl(port_mmio + SATA_TESTCTL) >> 16;
2479}
2480
2481static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2482{
2483        struct ata_eh_info *ehi;
2484        unsigned int pmp;
2485
2486        /*
2487         * Initialize EH info for PMPs which saw device errors
2488         */
2489        ehi = &ap->link.eh_info;
2490        for (pmp = 0; pmp_map != 0; pmp++) {
2491                unsigned int this_pmp = (1 << pmp);
2492                if (pmp_map & this_pmp) {
2493                        struct ata_link *link = &ap->pmp_link[pmp];
2494
2495                        pmp_map &= ~this_pmp;
2496                        ehi = &link->eh_info;
2497                        ata_ehi_clear_desc(ehi);
2498                        ata_ehi_push_desc(ehi, "dev err");
2499                        ehi->err_mask |= AC_ERR_DEV;
2500                        ehi->action |= ATA_EH_RESET;
2501                        ata_link_abort(link);
2502                }
2503        }
2504}
2505
2506static int mv_req_q_empty(struct ata_port *ap)
2507{
2508        void __iomem *port_mmio = mv_ap_base(ap);
2509        u32 in_ptr, out_ptr;
2510
2511        in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2512                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2513        out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2514                        >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2515        return (in_ptr == out_ptr);     /* 1 == queue_is_empty */
2516}
2517
2518static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2519{
2520        struct mv_port_priv *pp = ap->private_data;
2521        int failed_links;
2522        unsigned int old_map, new_map;
2523
2524        /*
2525         * Device error during FBS+NCQ operation:
2526         *
2527         * Set a port flag to prevent further I/O being enqueued.
2528         * Leave the EDMA running to drain outstanding commands from this port.
2529         * Perform the post-mortem/EH only when all responses are complete.
2530         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2531         */
2532        if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2533                pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2534                pp->delayed_eh_pmp_map = 0;
2535        }
2536        old_map = pp->delayed_eh_pmp_map;
2537        new_map = old_map | mv_get_err_pmp_map(ap);
2538
2539        if (old_map != new_map) {
2540                pp->delayed_eh_pmp_map = new_map;
2541                mv_pmp_eh_prep(ap, new_map & ~old_map);
2542        }
2543        failed_links = hweight16(new_map);
2544
2545        ata_port_info(ap,
2546                      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2547                      __func__, pp->delayed_eh_pmp_map,
2548                      ap->qc_active, failed_links,
2549                      ap->nr_active_links);
2550
2551        if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2552                mv_process_crpb_entries(ap, pp);
2553                mv_stop_edma(ap);
2554                mv_eh_freeze(ap);
2555                ata_port_info(ap, "%s: done\n", __func__);
2556                return 1;       /* handled */
2557        }
2558        ata_port_info(ap, "%s: waiting\n", __func__);
2559        return 1;       /* handled */
2560}
2561
2562static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2563{
2564        /*
2565         * Possible future enhancement:
2566         *
2567         * FBS+non-NCQ operation is not yet implemented.
2568         * See related notes in mv_edma_cfg().
2569         *
2570         * Device error during FBS+non-NCQ operation:
2571         *
2572         * We need to snapshot the shadow registers for each failed command.
2573         * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2574         */
2575        return 0;       /* not handled */
2576}
2577
2578static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2579{
2580        struct mv_port_priv *pp = ap->private_data;
2581
2582        if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2583                return 0;       /* EDMA was not active: not handled */
2584        if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2585                return 0;       /* FBS was not active: not handled */
2586
2587        if (!(edma_err_cause & EDMA_ERR_DEV))
2588                return 0;       /* non DEV error: not handled */
2589        edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2590        if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2591                return 0;       /* other problems: not handled */
2592
2593        if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2594                /*
2595                 * EDMA should NOT have self-disabled for this case.
2596                 * If it did, then something is wrong elsewhere,
2597                 * and we cannot handle it here.
2598                 */
2599                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2600                        ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2601                                      __func__, edma_err_cause, pp->pp_flags);
2602                        return 0; /* not handled */
2603                }
2604                return mv_handle_fbs_ncq_dev_err(ap);
2605        } else {
2606                /*
2607                 * EDMA should have self-disabled for this case.
2608                 * If it did not, then something is wrong elsewhere,
2609                 * and we cannot handle it here.
2610                 */
2611                if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2612                        ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2613                                      __func__, edma_err_cause, pp->pp_flags);
2614                        return 0; /* not handled */
2615                }
2616                return mv_handle_fbs_non_ncq_dev_err(ap);
2617        }
2618        return 0;       /* not handled */
2619}
2620
2621static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2622{
2623        struct ata_eh_info *ehi = &ap->link.eh_info;
2624        char *when = "idle";
2625
2626        ata_ehi_clear_desc(ehi);
2627        if (edma_was_enabled) {
2628                when = "EDMA enabled";
2629        } else {
2630                struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2631                if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2632                        when = "polling";
2633        }
2634        ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2635        ehi->err_mask |= AC_ERR_OTHER;
2636        ehi->action   |= ATA_EH_RESET;
2637        ata_port_freeze(ap);
2638}
2639
2640/**
2641 *      mv_err_intr - Handle error interrupts on the port
2642 *      @ap: ATA channel to manipulate
2643 *
2644 *      Most cases require a full reset of the chip's state machine,
2645 *      which also performs a COMRESET.
2646 *      Also, if the port disabled DMA, update our cached copy to match.
2647 *
2648 *      LOCKING:
2649 *      Inherited from caller.
2650 */
2651static void mv_err_intr(struct ata_port *ap)
2652{
2653        void __iomem *port_mmio = mv_ap_base(ap);
2654        u32 edma_err_cause, eh_freeze_mask, serr = 0;
2655        u32 fis_cause = 0;
2656        struct mv_port_priv *pp = ap->private_data;
2657        struct mv_host_priv *hpriv = ap->host->private_data;
2658        unsigned int action = 0, err_mask = 0;
2659        struct ata_eh_info *ehi = &ap->link.eh_info;
2660        struct ata_queued_cmd *qc;
2661        int abort = 0;
2662
2663        /*
2664         * Read and clear the SError and err_cause bits.
2665         * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2666         * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2667         */
2668        sata_scr_read(&ap->link, SCR_ERROR, &serr);
2669        sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2670
2671        edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2672        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2673                fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2674                writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2675        }
2676        writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2677
2678        if (edma_err_cause & EDMA_ERR_DEV) {
2679                /*
2680                 * Device errors during FIS-based switching operation
2681                 * require special handling.
2682                 */
2683                if (mv_handle_dev_err(ap, edma_err_cause))
2684                        return;
2685        }
2686
2687        qc = mv_get_active_qc(ap);
2688        ata_ehi_clear_desc(ehi);
2689        ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2690                          edma_err_cause, pp->pp_flags);
2691
2692        if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2693                ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2694                if (fis_cause & FIS_IRQ_CAUSE_AN) {
2695                        u32 ec = edma_err_cause &
2696                               ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2697                        sata_async_notification(ap);
2698                        if (!ec)
2699                                return; /* Just an AN; no need for the nukes */
2700                        ata_ehi_push_desc(ehi, "SDB notify");
2701                }
2702        }
2703        /*
2704         * All generations share these EDMA error cause bits:
2705         */
2706        if (edma_err_cause & EDMA_ERR_DEV) {
2707                err_mask |= AC_ERR_DEV;
2708                action |= ATA_EH_RESET;
2709                ata_ehi_push_desc(ehi, "dev error");
2710        }
2711        if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2712                        EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2713                        EDMA_ERR_INTRL_PAR)) {
2714                err_mask |= AC_ERR_ATA_BUS;
2715                action |= ATA_EH_RESET;
2716                ata_ehi_push_desc(ehi, "parity error");
2717        }
2718        if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2719                ata_ehi_hotplugged(ehi);
2720                ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2721                        "dev disconnect" : "dev connect");
2722                action |= ATA_EH_RESET;
2723        }
2724
2725        /*
2726         * Gen-I has a different SELF_DIS bit,
2727         * different FREEZE bits, and no SERR bit:
2728         */
2729        if (IS_GEN_I(hpriv)) {
2730                eh_freeze_mask = EDMA_EH_FREEZE_5;
2731                if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2732                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2733                        ata_ehi_push_desc(ehi, "EDMA self-disable");
2734                }
2735        } else {
2736                eh_freeze_mask = EDMA_EH_FREEZE;
2737                if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2738                        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2739                        ata_ehi_push_desc(ehi, "EDMA self-disable");
2740                }
2741                if (edma_err_cause & EDMA_ERR_SERR) {
2742                        ata_ehi_push_desc(ehi, "SError=%08x", serr);
2743                        err_mask |= AC_ERR_ATA_BUS;
2744                        action |= ATA_EH_RESET;
2745                }
2746        }
2747
2748        if (!err_mask) {
2749                err_mask = AC_ERR_OTHER;
2750                action |= ATA_EH_RESET;
2751        }
2752
2753        ehi->serror |= serr;
2754        ehi->action |= action;
2755
2756        if (qc)
2757                qc->err_mask |= err_mask;
2758        else
2759                ehi->err_mask |= err_mask;
2760
2761        if (err_mask == AC_ERR_DEV) {
2762                /*
2763                 * Cannot do ata_port_freeze() here,
2764                 * because it would kill PIO access,
2765                 * which is needed for further diagnosis.
2766                 */
2767                mv_eh_freeze(ap);
2768                abort = 1;
2769        } else if (edma_err_cause & eh_freeze_mask) {
2770                /*
2771                 * Note to self: ata_port_freeze() calls ata_port_abort()
2772                 */
2773                ata_port_freeze(ap);
2774        } else {
2775                abort = 1;
2776        }
2777
2778        if (abort) {
2779                if (qc)
2780                        ata_link_abort(qc->dev->link);
2781                else
2782                        ata_port_abort(ap);
2783        }
2784}
2785
2786static bool mv_process_crpb_response(struct ata_port *ap,
2787                struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2788{
2789        u8 ata_status;
2790        u16 edma_status = le16_to_cpu(response->flags);
2791
2792        /*
2793         * edma_status from a response queue entry:
2794         *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2795         *   MSB is saved ATA status from command completion.
2796         */
2797        if (!ncq_enabled) {
2798                u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2799                if (err_cause) {
2800                        /*
2801                         * Error will be seen/handled by
2802                         * mv_err_intr().  So do nothing at all here.
2803                         */
2804                        return false;
2805                }
2806        }
2807        ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2808        if (!ac_err_mask(ata_status))
2809                return true;
2810        /* else: leave it for mv_err_intr() */
2811        return false;
2812}
2813
2814static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2815{
2816        void __iomem *port_mmio = mv_ap_base(ap);
2817        struct mv_host_priv *hpriv = ap->host->private_data;
2818        u32 in_index;
2819        bool work_done = false;
2820        u32 done_mask = 0;
2821        int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2822
2823        /* Get the hardware queue position index */
2824        in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2825                        >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2826
2827        /* Process new responses from since the last time we looked */
2828        while (in_index != pp->resp_idx) {
2829                unsigned int tag;
2830                struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2831
2832                pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2833
2834                if (IS_GEN_I(hpriv)) {
2835                        /* 50xx: no NCQ, only one command active at a time */
2836                        tag = ap->link.active_tag;
2837                } else {
2838                        /* Gen II/IIE: get command tag from CRPB entry */
2839                        tag = le16_to_cpu(response->id) & 0x1f;
2840                }
2841                if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2842                        done_mask |= 1 << tag;
2843                work_done = true;
2844        }
2845
2846        if (work_done) {
2847                ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2848
2849                /* Update the software queue position index in hardware */
2850                writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2851                         (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2852                         port_mmio + EDMA_RSP_Q_OUT_PTR);
2853        }
2854}
2855
2856static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2857{
2858        struct mv_port_priv *pp;
2859        int edma_was_enabled;
2860
2861        /*
2862         * Grab a snapshot of the EDMA_EN flag setting,
2863         * so that we have a consistent view for this port,
2864         * even if something we call of our routines changes it.
2865         */
2866        pp = ap->private_data;
2867        edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2868        /*
2869         * Process completed CRPB response(s) before other events.
2870         */
2871        if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2872                mv_process_crpb_entries(ap, pp);
2873                if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2874                        mv_handle_fbs_ncq_dev_err(ap);
2875        }
2876        /*
2877         * Handle chip-reported errors, or continue on to handle PIO.
2878         */
2879        if (unlikely(port_cause & ERR_IRQ)) {
2880                mv_err_intr(ap);
2881        } else if (!edma_was_enabled) {
2882                struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2883                if (qc)
2884                        ata_bmdma_port_intr(ap, qc);
2885                else
2886                        mv_unexpected_intr(ap, edma_was_enabled);
2887        }
2888}
2889
2890/**
2891 *      mv_host_intr - Handle all interrupts on the given host controller
2892 *      @host: host specific structure
2893 *      @main_irq_cause: Main interrupt cause register for the chip.
2894 *
2895 *      LOCKING:
2896 *      Inherited from caller.
2897 */
2898static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2899{
2900        struct mv_host_priv *hpriv = host->private_data;
2901        void __iomem *mmio = hpriv->base, *hc_mmio;
2902        unsigned int handled = 0, port;
2903
2904        /* If asserted, clear the "all ports" IRQ coalescing bit */
2905        if (main_irq_cause & ALL_PORTS_COAL_DONE)
2906                writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2907
2908        for (port = 0; port < hpriv->n_ports; port++) {
2909                struct ata_port *ap = host->ports[port];
2910                unsigned int p, shift, hardport, port_cause;
2911
2912                MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2913                /*
2914                 * Each hc within the host has its own hc_irq_cause register,
2915                 * where the interrupting ports bits get ack'd.
2916                 */
2917                if (hardport == 0) {    /* first port on this hc ? */
2918                        u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2919                        u32 port_mask, ack_irqs;
2920                        /*
2921                         * Skip this entire hc if nothing pending for any ports
2922                         */
2923                        if (!hc_cause) {
2924                                port += MV_PORTS_PER_HC - 1;
2925                                continue;
2926                        }
2927                        /*
2928                         * We don't need/want to read the hc_irq_cause register,
2929                         * because doing so hurts performance, and
2930                         * main_irq_cause already gives us everything we need.
2931                         *
2932                         * But we do have to *write* to the hc_irq_cause to ack
2933                         * the ports that we are handling this time through.
2934                         *
2935                         * This requires that we create a bitmap for those
2936                         * ports which interrupted us, and use that bitmap
2937                         * to ack (only) those ports via hc_irq_cause.
2938                         */
2939                        ack_irqs = 0;
2940                        if (hc_cause & PORTS_0_3_COAL_DONE)
2941                                ack_irqs = HC_COAL_IRQ;
2942                        for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2943                                if ((port + p) >= hpriv->n_ports)
2944                                        break;
2945                                port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2946                                if (hc_cause & port_mask)
2947                                        ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2948                        }
2949                        hc_mmio = mv_hc_base_from_port(mmio, port);
2950                        writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2951                        handled = 1;
2952                }
2953                /*
2954                 * Handle interrupts signalled for this port:
2955                 */
2956                port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2957                if (port_cause)
2958                        mv_port_intr(ap, port_cause);
2959        }
2960        return handled;
2961}
2962
2963static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2964{
2965        struct mv_host_priv *hpriv = host->private_data;
2966        struct ata_port *ap;
2967        struct ata_queued_cmd *qc;
2968        struct ata_eh_info *ehi;
2969        unsigned int i, err_mask, printed = 0;
2970        u32 err_cause;
2971
2972        err_cause = readl(mmio + hpriv->irq_cause_offset);
2973
2974        dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2975
2976        DPRINTK("All regs @ PCI error\n");
2977        mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2978
2979        writelfl(0, mmio + hpriv->irq_cause_offset);
2980
2981        for (i = 0; i < host->n_ports; i++) {
2982                ap = host->ports[i];
2983                if (!ata_link_offline(&ap->link)) {
2984                        ehi = &ap->link.eh_info;
2985                        ata_ehi_clear_desc(ehi);
2986                        if (!printed++)
2987                                ata_ehi_push_desc(ehi,
2988                                        "PCI err cause 0x%08x", err_cause);
2989                        err_mask = AC_ERR_HOST_BUS;
2990                        ehi->action = ATA_EH_RESET;
2991                        qc = ata_qc_from_tag(ap, ap->link.active_tag);
2992                        if (qc)
2993                                qc->err_mask |= err_mask;
2994                        else
2995                                ehi->err_mask |= err_mask;
2996
2997                        ata_port_freeze(ap);
2998                }
2999        }
3000        return 1;       /* handled */
3001}
3002
3003/**
3004 *      mv_interrupt - Main interrupt event handler
3005 *      @irq: unused
3006 *      @dev_instance: private data; in this case the host structure
3007 *
3008 *      Read the read only register to determine if any host
3009 *      controllers have pending interrupts.  If so, call lower level
3010 *      routine to handle.  Also check for PCI errors which are only
3011 *      reported here.
3012 *
3013 *      LOCKING:
3014 *      This routine holds the host lock while processing pending
3015 *      interrupts.
3016 */
3017static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3018{
3019        struct ata_host *host = dev_instance;
3020        struct mv_host_priv *hpriv = host->private_data;
3021        unsigned int handled = 0;
3022        int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3023        u32 main_irq_cause, pending_irqs;
3024
3025        spin_lock(&host->lock);
3026
3027        /* for MSI:  block new interrupts while in here */
3028        if (using_msi)
3029                mv_write_main_irq_mask(0, hpriv);
3030
3031        main_irq_cause = readl(hpriv->main_irq_cause_addr);
3032        pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3033        /*
3034         * Deal with cases where we either have nothing pending, or have read
3035         * a bogus register value which can indicate HW removal or PCI fault.
3036         */
3037        if (pending_irqs && main_irq_cause != 0xffffffffU) {
3038                if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3039                        handled = mv_pci_error(host, hpriv->base);
3040                else
3041                        handled = mv_host_intr(host, pending_irqs);
3042        }
3043
3044        /* for MSI: unmask; interrupt cause bits will retrigger now */
3045        if (using_msi)
3046                mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3047
3048        spin_unlock(&host->lock);
3049
3050        return IRQ_RETVAL(handled);
3051}
3052
3053static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3054{
3055        unsigned int ofs;
3056
3057        switch (sc_reg_in) {
3058        case SCR_STATUS:
3059        case SCR_ERROR:
3060        case SCR_CONTROL:
3061                ofs = sc_reg_in * sizeof(u32);
3062                break;
3063        default:
3064                ofs = 0xffffffffU;
3065                break;
3066        }
3067        return ofs;
3068}
3069
3070static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3071{
3072        struct mv_host_priv *hpriv = link->ap->host->private_data;
3073        void __iomem *mmio = hpriv->base;
3074        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3075        unsigned int ofs = mv5_scr_offset(sc_reg_in);
3076
3077        if (ofs != 0xffffffffU) {
3078                *val = readl(addr + ofs);
3079                return 0;
3080        } else
3081                return -EINVAL;
3082}
3083
3084static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3085{
3086        struct mv_host_priv *hpriv = link->ap->host->private_data;
3087        void __iomem *mmio = hpriv->base;
3088        void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3089        unsigned int ofs = mv5_scr_offset(sc_reg_in);
3090
3091        if (ofs != 0xffffffffU) {
3092                writelfl(val, addr + ofs);
3093                return 0;
3094        } else
3095                return -EINVAL;
3096}
3097
3098static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3099{
3100        struct pci_dev *pdev = to_pci_dev(host->dev);
3101        int early_5080;
3102
3103        early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3104
3105        if (!early_5080) {
3106                u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3107                tmp |= (1 << 0);
3108                writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3109        }
3110
3111        mv_reset_pci_bus(host, mmio);
3112}
3113
3114static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3115{
3116        writel(0x0fcfffff, mmio + FLASH_CTL);
3117}
3118
3119static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3120                           void __iomem *mmio)
3121{
3122        void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3123        u32 tmp;
3124
3125        tmp = readl(phy_mmio + MV5_PHY_MODE);
3126
3127        hpriv->signal[idx].pre = tmp & 0x1800;  /* bits 12:11 */
3128        hpriv->signal[idx].amps = tmp & 0xe0;   /* bits 7:5 */
3129}
3130
3131static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3132{
3133        u32 tmp;
3134
3135        writel(0, mmio + GPIO_PORT_CTL);
3136
3137        /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3138
3139        tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3140        tmp |= ~(1 << 0);
3141        writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3142}
3143
3144static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3145                           unsigned int port)
3146{
3147        void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3148        const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3149        u32 tmp;
3150        int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3151
3152        if (fix_apm_sq) {
3153                tmp = readl(phy_mmio + MV5_LTMODE);
3154                tmp |= (1 << 19);
3155                writel(tmp, phy_mmio + MV5_LTMODE);
3156
3157                tmp = readl(phy_mmio + MV5_PHY_CTL);
3158                tmp &= ~0x3;
3159                tmp |= 0x1;
3160                writel(tmp, phy_mmio + MV5_PHY_CTL);
3161        }
3162
3163        tmp = readl(phy_mmio + MV5_PHY_MODE);
3164        tmp &= ~mask;
3165        tmp |= hpriv->signal[port].pre;
3166        tmp |= hpriv->signal[port].amps;
3167        writel(tmp, phy_mmio + MV5_PHY_MODE);
3168}
3169
3170
3171#undef ZERO
3172#define ZERO(reg) writel(0, port_mmio + (reg))
3173static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3174                             unsigned int port)
3175{
3176        void __iomem *port_mmio = mv_port_base(mmio, port);
3177
3178        mv_reset_channel(hpriv, mmio, port);
3179
3180        ZERO(0x028);    /* command */
3181        writel(0x11f, port_mmio + EDMA_CFG);
3182        ZERO(0x004);    /* timer */
3183        ZERO(0x008);    /* irq err cause */
3184        ZERO(0x00c);    /* irq err mask */
3185        ZERO(0x010);    /* rq bah */
3186        ZERO(0x014);    /* rq inp */
3187        ZERO(0x018);    /* rq outp */
3188        ZERO(0x01c);    /* respq bah */
3189        ZERO(0x024);    /* respq outp */
3190        ZERO(0x020);    /* respq inp */
3191        ZERO(0x02c);    /* test control */
3192        writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3193}
3194#undef ZERO
3195
3196#define ZERO(reg) writel(0, hc_mmio + (reg))
3197static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3198                        unsigned int hc)
3199{
3200        void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3201        u32 tmp;
3202
3203        ZERO(0x00c);
3204        ZERO(0x010);
3205        ZERO(0x014);
3206        ZERO(0x018);
3207
3208        tmp = readl(hc_mmio + 0x20);
3209        tmp &= 0x1c1c1c1c;
3210        tmp |= 0x03030303;
3211        writel(tmp, hc_mmio + 0x20);
3212}
3213#undef ZERO
3214
3215static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3216                        unsigned int n_hc)
3217{
3218        unsigned int hc, port;
3219
3220        for (hc = 0; hc < n_hc; hc++) {
3221                for (port = 0; port < MV_PORTS_PER_HC; port++)
3222                        mv5_reset_hc_port(hpriv, mmio,
3223                                          (hc * MV_PORTS_PER_HC) + port);
3224
3225                mv5_reset_one_hc(hpriv, mmio, hc);
3226        }
3227
3228        return 0;
3229}
3230
3231#undef ZERO
3232#define ZERO(reg) writel(0, mmio + (reg))
3233static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3234{
3235        struct mv_host_priv *hpriv = host->private_data;
3236        u32 tmp;
3237
3238        tmp = readl(mmio + MV_PCI_MODE);
3239        tmp &= 0xff00ffff;
3240        writel(tmp, mmio + MV_PCI_MODE);
3241
3242        ZERO(MV_PCI_DISC_TIMER);
3243        ZERO(MV_PCI_MSI_TRIGGER);
3244        writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3245        ZERO(MV_PCI_SERR_MASK);
3246        ZERO(hpriv->irq_cause_offset);
3247        ZERO(hpriv->irq_mask_offset);
3248        ZERO(MV_PCI_ERR_LOW_ADDRESS);
3249        ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3250        ZERO(MV_PCI_ERR_ATTRIBUTE);
3251        ZERO(MV_PCI_ERR_COMMAND);
3252}
3253#undef ZERO
3254
3255static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3256{
3257        u32 tmp;
3258
3259        mv5_reset_flash(hpriv, mmio);
3260
3261        tmp = readl(mmio + GPIO_PORT_CTL);
3262        tmp &= 0x3;
3263        tmp |= (1 << 5) | (1 << 6);
3264        writel(tmp, mmio + GPIO_PORT_CTL);
3265}
3266
3267/**
3268 *      mv6_reset_hc - Perform the 6xxx global soft reset
3269 *      @mmio: base address of the HBA
3270 *
3271 *      This routine only applies to 6xxx parts.
3272 *
3273 *      LOCKING:
3274 *      Inherited from caller.
3275 */
3276static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3277                        unsigned int n_hc)
3278{
3279        void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3280        int i, rc = 0;
3281        u32 t;
3282
3283        /* Following procedure defined in PCI "main command and status
3284         * register" table.
3285         */
3286        t = readl(reg);
3287        writel(t | STOP_PCI_MASTER, reg);
3288
3289        for (i = 0; i < 1000; i++) {
3290                udelay(1);
3291                t = readl(reg);
3292                if (PCI_MASTER_EMPTY & t)
3293                        break;
3294        }
3295        if (!(PCI_MASTER_EMPTY & t)) {
3296                printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3297                rc = 1;
3298                goto done;
3299        }
3300
3301        /* set reset */
3302        i = 5;
3303        do {
3304                writel(t | GLOB_SFT_RST, reg);
3305                t = readl(reg);
3306                udelay(1);
3307        } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3308
3309        if (!(GLOB_SFT_RST & t)) {
3310                printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3311                rc = 1;
3312                goto done;
3313        }
3314
3315        /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3316        i = 5;
3317        do {
3318                writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3319                t = readl(reg);
3320                udelay(1);
3321        } while ((GLOB_SFT_RST & t) && (i-- > 0));
3322
3323        if (GLOB_SFT_RST & t) {
3324                printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3325                rc = 1;
3326        }
3327done:
3328        return rc;
3329}
3330
3331static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3332                           void __iomem *mmio)
3333{
3334        void __iomem *port_mmio;
3335        u32 tmp;
3336
3337        tmp = readl(mmio + RESET_CFG);
3338        if ((tmp & (1 << 0)) == 0) {
3339                hpriv->signal[idx].amps = 0x7 << 8;
3340                hpriv->signal[idx].pre = 0x1 << 5;
3341                return;
3342        }
3343
3344        port_mmio = mv_port_base(mmio, idx);
3345        tmp = readl(port_mmio + PHY_MODE2);
3346
3347        hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3348        hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3349}
3350
3351static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3352{
3353        writel(0x00000060, mmio + GPIO_PORT_CTL);
3354}
3355
3356static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3357                           unsigned int port)
3358{
3359        void __iomem *port_mmio = mv_port_base(mmio, port);
3360
3361        u32 hp_flags = hpriv->hp_flags;
3362        int fix_phy_mode2 =
3363                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3364        int fix_phy_mode4 =
3365                hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3366        u32 m2, m3;
3367
3368        if (fix_phy_mode2) {
3369                m2 = readl(port_mmio + PHY_MODE2);
3370                m2 &= ~(1 << 16);
3371                m2 |= (1 << 31);
3372                writel(m2, port_mmio + PHY_MODE2);
3373
3374                udelay(200);
3375
3376                m2 = readl(port_mmio + PHY_MODE2);
3377                m2 &= ~((1 << 16) | (1 << 31));
3378                writel(m2, port_mmio + PHY_MODE2);
3379
3380                udelay(200);
3381        }
3382
3383        /*
3384         * Gen-II/IIe PHY_MODE3 errata RM#2:
3385         * Achieves better receiver noise performance than the h/w default:
3386         */
3387        m3 = readl(port_mmio + PHY_MODE3);
3388        m3 = (m3 & 0x1f) | (0x5555601 << 5);
3389
3390        /* Guideline 88F5182 (GL# SATA-S11) */
3391        if (IS_SOC(hpriv))
3392                m3 &= ~0x1c;
3393
3394        if (fix_phy_mode4) {
3395                u32 m4 = readl(port_mmio + PHY_MODE4);
3396                /*
3397                 * Enforce reserved-bit restrictions on GenIIe devices only.
3398                 * For earlier chipsets, force only the internal config field
3399                 *  (workaround for errata FEr SATA#10 part 1).
3400                 */
3401                if (IS_GEN_IIE(hpriv))
3402                        m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3403                else
3404                        m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3405                writel(m4, port_mmio + PHY_MODE4);
3406        }
3407        /*
3408         * Workaround for 60x1-B2 errata SATA#13:
3409         * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3410         * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3411         * Or ensure we use writelfl() when writing PHY_MODE4.
3412         */
3413        writel(m3, port_mmio + PHY_MODE3);
3414
3415        /* Revert values of pre-emphasis and signal amps to the saved ones */
3416        m2 = readl(port_mmio + PHY_MODE2);
3417
3418        m2 &= ~MV_M2_PREAMP_MASK;
3419        m2 |= hpriv->signal[port].amps;
3420        m2 |= hpriv->signal[port].pre;
3421        m2 &= ~(1 << 16);
3422
3423        /* according to mvSata 3.6.1, some IIE values are fixed */
3424        if (IS_GEN_IIE(hpriv)) {
3425                m2 &= ~0xC30FF01F;
3426                m2 |= 0x0000900F;
3427        }
3428
3429        writel(m2, port_mmio + PHY_MODE2);
3430}
3431
3432/* TODO: use the generic LED interface to configure the SATA Presence */
3433/* & Acitivy LEDs on the board */
3434static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3435                                      void __iomem *mmio)
3436{
3437        return;
3438}
3439
3440static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3441                           void __iomem *mmio)
3442{
3443        void __iomem *port_mmio;
3444        u32 tmp;
3445
3446        port_mmio = mv_port_base(mmio, idx);
3447        tmp = readl(port_mmio + PHY_MODE2);
3448
3449        hpriv->signal[idx].amps = tmp & 0x700;  /* bits 10:8 */
3450        hpriv->signal[idx].pre = tmp & 0xe0;    /* bits 7:5 */
3451}
3452
3453#undef ZERO
3454#define ZERO(reg) writel(0, port_mmio + (reg))
3455static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3456                                        void __iomem *mmio, unsigned int port)
3457{
3458        void __iomem *port_mmio = mv_port_base(mmio, port);
3459
3460        mv_reset_channel(hpriv, mmio, port);
3461
3462        ZERO(0x028);            /* command */
3463        writel(0x101f, port_mmio + EDMA_CFG);
3464        ZERO(0x004);            /* timer */
3465        ZERO(0x008);            /* irq err cause */
3466        ZERO(0x00c);            /* irq err mask */
3467        ZERO(0x010);            /* rq bah */
3468        ZERO(0x014);            /* rq inp */
3469        ZERO(0x018);            /* rq outp */
3470        ZERO(0x01c);            /* respq bah */
3471        ZERO(0x024);            /* respq outp */
3472        ZERO(0x020);            /* respq inp */
3473        ZERO(0x02c);            /* test control */
3474        writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3475}
3476
3477#undef ZERO
3478
3479#define ZERO(reg) writel(0, hc_mmio + (reg))
3480static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3481                                       void __iomem *mmio)
3482{
3483        void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3484
3485        ZERO(0x00c);
3486        ZERO(0x010);
3487        ZERO(0x014);
3488
3489}
3490
3491#undef ZERO
3492
3493static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3494                                  void __iomem *mmio, unsigned int n_hc)
3495{
3496        unsigned int port;
3497
3498        for (port = 0; port < hpriv->n_ports; port++)
3499                mv_soc_reset_hc_port(hpriv, mmio, port);
3500
3501        mv_soc_reset_one_hc(hpriv, mmio);
3502
3503        return 0;
3504}
3505
3506static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3507                                      void __iomem *mmio)
3508{
3509        return;
3510}
3511
3512static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3513{
3514        return;
3515}
3516
3517static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3518                                  void __iomem *mmio, unsigned int port)
3519{
3520        void __iomem *port_mmio = mv_port_base(mmio, port);
3521        u32     reg;
3522
3523        reg = readl(port_mmio + PHY_MODE3);
3524        reg &= ~(0x3 << 27);    /* SELMUPF (bits 28:27) to 1 */
3525        reg |= (0x1 << 27);
3526        reg &= ~(0x3 << 29);    /* SELMUPI (bits 30:29) to 1 */
3527        reg |= (0x1 << 29);
3528        writel(reg, port_mmio + PHY_MODE3);
3529
3530        reg = readl(port_mmio + PHY_MODE4);
3531        reg &= ~0x1;    /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3532        reg |= (0x1 << 16);
3533        writel(reg, port_mmio + PHY_MODE4);
3534
3535        reg = readl(port_mmio + PHY_MODE9_GEN2);
3536        reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3537        reg |= 0x8;
3538        reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3539        writel(reg, port_mmio + PHY_MODE9_GEN2);
3540
3541        reg = readl(port_mmio + PHY_MODE9_GEN1);
3542        reg &= ~0xf;    /* TXAMP[3:0] (bits 3:0) to 8 */
3543        reg |= 0x8;
3544        reg &= ~(0x1 << 14);    /* TXAMP[4] (bit 14) to 0 */
3545        writel(reg, port_mmio + PHY_MODE9_GEN1);
3546}
3547
3548/**
3549 *      soc_is_65 - check if the soc is 65 nano device
3550 *
3551 *      Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3552 *      register, this register should contain non-zero value and it exists only
3553 *      in the 65 nano devices, when reading it from older devices we get 0.
3554 */
3555static bool soc_is_65n(struct mv_host_priv *hpriv)
3556{
3557        void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3558
3559        if (readl(port0_mmio + PHYCFG_OFS))
3560                return true;
3561        return false;
3562}
3563
3564static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3565{
3566        u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3567
3568        ifcfg = (ifcfg & 0xf7f) | 0x9b1000;     /* from chip spec */
3569        if (want_gen2i)
3570                ifcfg |= (1 << 7);              /* enable gen2i speed */
3571        writelfl(ifcfg, port_mmio + SATA_IFCFG);
3572}
3573
3574static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3575                             unsigned int port_no)
3576{
3577        void __iomem *port_mmio = mv_port_base(mmio, port_no);
3578
3579        /*
3580         * The datasheet warns against setting EDMA_RESET when EDMA is active
3581         * (but doesn't say what the problem might be).  So we first try
3582         * to disable the EDMA engine before doing the EDMA_RESET operation.
3583         */
3584        mv_stop_edma_engine(port_mmio);
3585        writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3586
3587        if (!IS_GEN_I(hpriv)) {
3588                /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3589                mv_setup_ifcfg(port_mmio, 1);
3590        }
3591        /*
3592         * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3593         * link, and physical layers.  It resets all SATA interface registers
3594         * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3595         */
3596        writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3597        udelay(25);     /* allow reset propagation */
3598        writelfl(0, port_mmio + EDMA_CMD);
3599
3600        hpriv->ops->phy_errata(hpriv, mmio, port_no);
3601
3602        if (IS_GEN_I(hpriv))
3603                mdelay(1);
3604}
3605
3606static void mv_pmp_select(struct ata_port *ap, int pmp)
3607{
3608        if (sata_pmp_supported(ap)) {
3609                void __iomem *port_mmio = mv_ap_base(ap);
3610                u32 reg = readl(port_mmio + SATA_IFCTL);
3611                int old = reg & 0xf;
3612
3613                if (old != pmp) {
3614                        reg = (reg & ~0xf) | pmp;
3615                        writelfl(reg, port_mmio + SATA_IFCTL);
3616                }
3617        }
3618}
3619
3620static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3621                                unsigned long deadline)
3622{
3623        mv_pmp_select(link->ap, sata_srst_pmp(link));
3624        return sata_std_hardreset(link, class, deadline);
3625}
3626
3627static int mv_softreset(struct ata_link *link, unsigned int *class,
3628                                unsigned long deadline)
3629{
3630        mv_pmp_select(link->ap, sata_srst_pmp(link));
3631        return ata_sff_softreset(link, class, deadline);
3632}
3633
3634static int mv_hardreset(struct ata_link *link, unsigned int *class,
3635                        unsigned long deadline)
3636{
3637        struct ata_port *ap = link->ap;
3638        struct mv_host_priv *hpriv = ap->host->private_data;
3639        struct mv_port_priv *pp = ap->private_data;
3640        void __iomem *mmio = hpriv->base;
3641        int rc, attempts = 0, extra = 0;
3642        u32 sstatus;
3643        bool online;
3644
3645        mv_reset_channel(hpriv, mmio, ap->port_no);
3646        pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3647        pp->pp_flags &=
3648          ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3649
3650        /* Workaround for errata FEr SATA#10 (part 2) */
3651        do {
3652                const unsigned long *timing =
3653                                sata_ehc_deb_timing(&link->eh_context);
3654
3655                rc = sata_link_hardreset(link, timing, deadline + extra,
3656                                         &online, NULL);
3657                rc = online ? -EAGAIN : rc;
3658                if (rc)
3659                        return rc;
3660                sata_scr_read(link, SCR_STATUS, &sstatus);
3661                if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3662                        /* Force 1.5gb/s link speed and try again */
3663                        mv_setup_ifcfg(mv_ap_base(ap), 0);
3664                        if (time_after(jiffies + HZ, deadline))
3665                                extra = HZ; /* only extend it once, max */
3666                }
3667        } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3668        mv_save_cached_regs(ap);
3669        mv_edma_cfg(ap, 0, 0);
3670
3671        return rc;
3672}
3673
3674static void mv_eh_freeze(struct ata_port *ap)
3675{
3676        mv_stop_edma(ap);
3677        mv_enable_port_irqs(ap, 0);
3678}
3679
3680static void mv_eh_thaw(struct ata_port *ap)
3681{
3682        struct mv_host_priv *hpriv = ap->host->private_data;
3683        unsigned int port = ap->port_no;
3684        unsigned int hardport = mv_hardport_from_port(port);
3685        void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3686        void __iomem *port_mmio = mv_ap_base(ap);
3687        u32 hc_irq_cause;
3688
3689        /* clear EDMA errors on this port */
3690        writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3691
3692        /* clear pending irq events */
3693        hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3694        writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3695
3696        mv_enable_port_irqs(ap, ERR_IRQ);
3697}
3698
3699/**
3700 *      mv_port_init - Perform some early initialization on a single port.
3701 *      @port: libata data structure storing shadow register addresses
3702 *      @port_mmio: base address of the port
3703 *
3704 *      Initialize shadow register mmio addresses, clear outstanding
3705 *      interrupts on the port, and unmask interrupts for the future
3706 *      start of the port.
3707 *
3708 *      LOCKING:
3709 *      Inherited from caller.
3710 */
3711static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3712{
3713        void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3714
3715        /* PIO related setup
3716         */
3717        port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3718        port->error_addr =
3719                port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3720        port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3721        port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3722        port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3723        port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3724        port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3725        port->status_addr =
3726                port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3727        /* special case: control/altstatus doesn't have ATA_REG_ address */
3728        port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3729
3730        /* Clear any currently outstanding port interrupt conditions */
3731        serr = port_mmio + mv_scr_offset(SCR_ERROR);
3732        writelfl(readl(serr), serr);
3733        writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3734
3735        /* unmask all non-transient EDMA error interrupts */
3736        writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3737
3738        VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3739                readl(port_mmio + EDMA_CFG),
3740                readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3741                readl(port_mmio + EDMA_ERR_IRQ_MASK));
3742}
3743
3744static unsigned int mv_in_pcix_mode(struct ata_host *host)
3745{
3746        struct mv_host_priv *hpriv = host->private_data;
3747        void __iomem *mmio = hpriv->base;
3748        u32 reg;
3749
3750        if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3751                return 0;       /* not PCI-X capable */
3752        reg = readl(mmio + MV_PCI_MODE);
3753        if ((reg & MV_PCI_MODE_MASK) == 0)
3754                return 0;       /* conventional PCI mode */
3755        return 1;       /* chip is in PCI-X mode */
3756}
3757
3758static int mv_pci_cut_through_okay(struct ata_host *host)
3759{
3760        struct mv_host_priv *hpriv = host->private_data;
3761        void __iomem *mmio = hpriv->base;
3762        u32 reg;
3763
3764        if (!mv_in_pcix_mode(host)) {
3765                reg = readl(mmio + MV_PCI_COMMAND);
3766                if (reg & MV_PCI_COMMAND_MRDTRIG)
3767                        return 0; /* not okay */
3768        }
3769        return 1; /* okay */
3770}
3771
3772static void mv_60x1b2_errata_pci7(struct ata_host *host)
3773{
3774        struct mv_host_priv *hpriv = host->private_data;
3775        void __iomem *mmio = hpriv->base;
3776
3777        /* workaround for 60x1-B2 errata PCI#7 */
3778        if (mv_in_pcix_mode(host)) {
3779                u32 reg = readl(mmio + MV_PCI_COMMAND);
3780                writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3781        }
3782}
3783
3784static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3785{
3786        struct pci_dev *pdev = to_pci_dev(host->dev);
3787        struct mv_host_priv *hpriv = host->private_data;
3788        u32 hp_flags = hpriv->hp_flags;
3789
3790        switch (board_idx) {
3791        case chip_5080:
3792                hpriv->ops = &mv5xxx_ops;
3793                hp_flags |= MV_HP_GEN_I;
3794
3795                switch (pdev->revision) {
3796                case 0x1:
3797                        hp_flags |= MV_HP_ERRATA_50XXB0;
3798                        break;
3799                case 0x3:
3800                        hp_flags |= MV_HP_ERRATA_50XXB2;
3801                        break;
3802                default:
3803                        dev_warn(&pdev->dev,
3804                                 "Applying 50XXB2 workarounds to unknown rev\n");
3805                        hp_flags |= MV_HP_ERRATA_50XXB2;
3806                        break;
3807                }
3808                break;
3809
3810        case chip_504x:
3811        case chip_508x:
3812                hpriv->ops = &mv5xxx_ops;
3813                hp_flags |= MV_HP_GEN_I;
3814
3815                switch (pdev->revision) {
3816                case 0x0:
3817                        hp_flags |= MV_HP_ERRATA_50XXB0;
3818                        break;
3819                case 0x3:
3820                        hp_flags |= MV_HP_ERRATA_50XXB2;
3821                        break;
3822                default:
3823                        dev_warn(&pdev->dev,
3824                                 "Applying B2 workarounds to unknown rev\n");
3825                        hp_flags |= MV_HP_ERRATA_50XXB2;
3826                        break;
3827                }
3828                break;
3829
3830        case chip_604x:
3831        case chip_608x:
3832                hpriv->ops = &mv6xxx_ops;
3833                hp_flags |= MV_HP_GEN_II;
3834
3835                switch (pdev->revision) {
3836                case 0x7:
3837                        mv_60x1b2_errata_pci7(host);
3838                        hp_flags |= MV_HP_ERRATA_60X1B2;
3839                        break;
3840                case 0x9:
3841                        hp_flags |= MV_HP_ERRATA_60X1C0;
3842                        break;
3843                default:
3844                        dev_warn(&pdev->dev,
3845                                 "Applying B2 workarounds to unknown rev\n");
3846                        hp_flags |= MV_HP_ERRATA_60X1B2;
3847                        break;
3848                }
3849                break;
3850
3851        case chip_7042:
3852                hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3853                if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3854                    (pdev->device == 0x2300 || pdev->device == 0x2310))
3855                {
3856                        /*
3857                         * Highpoint RocketRAID PCIe 23xx series cards:
3858                         *
3859                         * Unconfigured drives are treated as "Legacy"
3860                         * by the BIOS, and it overwrites sector 8 with
3861                         * a "Lgcy" metadata block prior to Linux boot.
3862                         *
3863                         * Configured drives (RAID or JBOD) leave sector 8
3864                         * alone, but instead overwrite a high numbered
3865                         * sector for the RAID metadata.  This sector can
3866                         * be determined exactly, by truncating the physical
3867                         * drive capacity to a nice even GB value.
3868                         *
3869                         * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3870                         *
3871                         * Warn the user, lest they think we're just buggy.
3872                         */
3873                        printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3874                                " BIOS CORRUPTS DATA on all attached drives,"
3875                                " regardless of if/how they are configured."
3876                                " BEWARE!\n");
3877                        printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3878                                " use sectors 8-9 on \"Legacy\" drives,"
3879                                " and avoid the final two gigabytes on"
3880                                " all RocketRAID BIOS initialized drives.\n");
3881                }
3882                /* drop through */
3883        case chip_6042:
3884                hpriv->ops = &mv6xxx_ops;
3885                hp_flags |= MV_HP_GEN_IIE;
3886                if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3887                        hp_flags |= MV_HP_CUT_THROUGH;
3888
3889                switch (pdev->revision) {
3890                case 0x2: /* Rev.B0: the first/only public release */
3891                        hp_flags |= MV_HP_ERRATA_60X1C0;
3892                        break;
3893                default:
3894                        dev_warn(&pdev->dev,
3895                                 "Applying 60X1C0 workarounds to unknown rev\n");
3896                        hp_flags |= MV_HP_ERRATA_60X1C0;
3897                        break;
3898                }
3899                break;
3900        case chip_soc:
3901                if (soc_is_65n(hpriv))
3902                        hpriv->ops = &mv_soc_65n_ops;
3903                else
3904                        hpriv->ops = &mv_soc_ops;
3905                hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3906                        MV_HP_ERRATA_60X1C0;
3907                break;
3908
3909        default:
3910                dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3911                return 1;
3912        }
3913
3914        hpriv->hp_flags = hp_flags;
3915        if (hp_flags & MV_HP_PCIE) {
3916                hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3917                hpriv->irq_mask_offset  = PCIE_IRQ_MASK;
3918                hpriv->unmask_all_irqs  = PCIE_UNMASK_ALL_IRQS;
3919        } else {
3920                hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3921                hpriv->irq_mask_offset  = PCI_IRQ_MASK;
3922                hpriv->unmask_all_irqs  = PCI_UNMASK_ALL_IRQS;
3923        }
3924
3925        return 0;
3926}
3927
3928/**
3929 *      mv_init_host - Perform some early initialization of the host.
3930 *      @host: ATA host to initialize
3931 *
3932 *      If possible, do an early global reset of the host.  Then do
3933 *      our port init and clear/unmask all/relevant host interrupts.
3934 *
3935 *      LOCKING:
3936 *      Inherited from caller.
3937 */
3938static int mv_init_host(struct ata_host *host)
3939{
3940        int rc = 0, n_hc, port, hc;
3941        struct mv_host_priv *hpriv = host->private_data;
3942        void __iomem *mmio = hpriv->base;
3943
3944        rc = mv_chip_id(host, hpriv->board_idx);
3945        if (rc)
3946                goto done;
3947
3948        if (IS_SOC(hpriv)) {
3949                hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3950                hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3951        } else {
3952                hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3953                hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3954        }
3955
3956        /* initialize shadow irq mask with register's value */
3957        hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3958
3959        /* global interrupt mask: 0 == mask everything */
3960        mv_set_main_irq_mask(host, ~0, 0);
3961
3962        n_hc = mv_get_hc_count(host->ports[0]->flags);
3963
3964        for (port = 0; port < host->n_ports; port++)
3965                if (hpriv->ops->read_preamp)
3966                        hpriv->ops->read_preamp(hpriv, port, mmio);
3967
3968        rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3969        if (rc)
3970                goto done;
3971
3972        hpriv->ops->reset_flash(hpriv, mmio);
3973        hpriv->ops->reset_bus(host, mmio);
3974        hpriv->ops->enable_leds(hpriv, mmio);
3975
3976        for (port = 0; port < host->n_ports; port++) {
3977                struct ata_port *ap = host->ports[port];
3978                void __iomem *port_mmio = mv_port_base(mmio, port);
3979
3980                mv_port_init(&ap->ioaddr, port_mmio);
3981        }
3982
3983        for (hc = 0; hc < n_hc; hc++) {
3984                void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3985
3986                VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3987                        "(before clear)=0x%08x\n", hc,
3988                        readl(hc_mmio + HC_CFG),
3989                        readl(hc_mmio + HC_IRQ_CAUSE));
3990
3991                /* Clear any currently outstanding hc interrupt conditions */
3992                writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3993        }
3994
3995        if (!IS_SOC(hpriv)) {
3996                /* Clear any currently outstanding host interrupt conditions */
3997                writelfl(0, mmio + hpriv->irq_cause_offset);
3998
3999                /* and unmask interrupt generation for host regs */
4000                writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
4001        }
4002
4003        /*
4004         * enable only global host interrupts for now.
4005         * The per-port interrupts get done later as ports are set up.
4006         */
4007        mv_set_main_irq_mask(host, 0, PCI_ERR);
4008        mv_set_irq_coalescing(host, irq_coalescing_io_count,
4009                                    irq_coalescing_usecs);
4010done:
4011        return rc;
4012}
4013
4014static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4015{
4016        hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4017                                                             MV_CRQB_Q_SZ, 0);
4018        if (!hpriv->crqb_pool)
4019                return -ENOMEM;
4020
4021        hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4022                                                             MV_CRPB_Q_SZ, 0);
4023        if (!hpriv->crpb_pool)
4024                return -ENOMEM;
4025
4026        hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4027                                                             MV_SG_TBL_SZ, 0);
4028        if (!hpriv->sg_tbl_pool)
4029                return -ENOMEM;
4030
4031        return 0;
4032}
4033
4034static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4035                                 const struct mbus_dram_target_info *dram)
4036{
4037        int i;
4038
4039        for (i = 0; i < 4; i++) {
4040                writel(0, hpriv->base + WINDOW_CTRL(i));
4041                writel(0, hpriv->base + WINDOW_BASE(i));
4042        }
4043
4044        for (i = 0; i < dram->num_cs; i++) {
4045                const struct mbus_dram_window *cs = dram->cs + i;
4046
4047                writel(((cs->size - 1) & 0xffff0000) |
4048                        (cs->mbus_attr << 8) |
4049                        (dram->mbus_dram_target_id << 4) | 1,
4050                        hpriv->base + WINDOW_CTRL(i));
4051                writel(cs->base, hpriv->base + WINDOW_BASE(i));
4052        }
4053}
4054
4055/**
4056 *      mv_platform_probe - handle a positive probe of an soc Marvell
4057 *      host
4058 *      @pdev: platform device found
4059 *
4060 *      LOCKING:
4061 *      Inherited from caller.
4062 */
4063static int mv_platform_probe(struct platform_device *pdev)
4064{
4065        const struct mv_sata_platform_data *mv_platform_data;
4066        const struct mbus_dram_target_info *dram;
4067        const struct ata_port_info *ppi[] =
4068            { &mv_port_info[chip_soc], NULL };
4069        struct ata_host *host;
4070        struct mv_host_priv *hpriv;
4071        struct resource *res;
4072        int n_ports = 0, irq = 0;
4073        int rc;
4074        int port;
4075
4076        ata_print_version_once(&pdev->dev, DRV_VERSION);
4077
4078        /*
4079         * Simple resource validation ..
4080         */
4081        if (unlikely(pdev->num_resources != 2)) {
4082                dev_err(&pdev->dev, "invalid number of resources\n");
4083                return -EINVAL;
4084        }
4085
4086        /*
4087         * Get the register base first
4088         */
4089        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4090        if (res == NULL)
4091                return -EINVAL;
4092
4093        /* allocate host */
4094        if (pdev->dev.of_node) {
4095                of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4096                irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4097        } else {
4098                mv_platform_data = dev_get_platdata(&pdev->dev);
4099                n_ports = mv_platform_data->n_ports;
4100                irq = platform_get_irq(pdev, 0);
4101        }
4102
4103        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4104        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4105
4106        if (!host || !hpriv)
4107                return -ENOMEM;
4108        hpriv->port_clks = devm_kzalloc(&pdev->dev,
4109                                        sizeof(struct clk *) * n_ports,
4110                                        GFP_KERNEL);
4111        if (!hpriv->port_clks)
4112                return -ENOMEM;
4113        hpriv->port_phys = devm_kzalloc(&pdev->dev,
4114                                        sizeof(struct phy *) * n_ports,
4115                                        GFP_KERNEL);
4116        if (!hpriv->port_phys)
4117                return -ENOMEM;
4118        host->private_data = hpriv;
4119        hpriv->board_idx = chip_soc;
4120
4121        host->iomap = NULL;
4122        hpriv->base = devm_ioremap(&pdev->dev, res->start,
4123                                   resource_size(res));
4124        hpriv->base -= SATAHC0_REG_BASE;
4125
4126        hpriv->clk = clk_get(&pdev->dev, NULL);
4127        if (IS_ERR(hpriv->clk))
4128                dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4129        else
4130                clk_prepare_enable(hpriv->clk);
4131
4132        for (port = 0; port < n_ports; port++) {
4133                char port_number[16];
4134                sprintf(port_number, "%d", port);
4135                hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4136                if (!IS_ERR(hpriv->port_clks[port]))
4137                        clk_prepare_enable(hpriv->port_clks[port]);
4138
4139                sprintf(port_number, "port%d", port);
4140                hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4141                                                               port_number);
4142                if (IS_ERR(hpriv->port_phys[port])) {
4143                        rc = PTR_ERR(hpriv->port_phys[port]);
4144                        hpriv->port_phys[port] = NULL;
4145                        if (rc != -EPROBE_DEFER)
4146                                dev_warn(&pdev->dev, "error getting phy %d", rc);
4147
4148                        /* Cleanup only the initialized ports */
4149                        hpriv->n_ports = port;
4150                        goto err;
4151                } else
4152                        phy_power_on(hpriv->port_phys[port]);
4153        }
4154
4155        /* All the ports have been initialized */
4156        hpriv->n_ports = n_ports;
4157
4158        /*
4159         * (Re-)program MBUS remapping windows if we are asked to.
4160         */
4161        dram = mv_mbus_dram_info();
4162        if (dram)
4163                mv_conf_mbus_windows(hpriv, dram);
4164
4165        rc = mv_create_dma_pools(hpriv, &pdev->dev);
4166        if (rc)
4167                goto err;
4168
4169        /*
4170         * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4171         * updated in the LP_PHY_CTL register.
4172         */
4173        if (pdev->dev.of_node &&
4174                of_device_is_compatible(pdev->dev.of_node,
4175                                        "marvell,armada-370-sata"))
4176                hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4177
4178        /* initialize adapter */
4179        rc = mv_init_host(host);
4180        if (rc)
4181                goto err;
4182
4183        dev_info(&pdev->dev, "slots %u ports %d\n",
4184                 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4185
4186        rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4187        if (!rc)
4188                return 0;
4189
4190err:
4191        if (!IS_ERR(hpriv->clk)) {
4192                clk_disable_unprepare(hpriv->clk);
4193                clk_put(hpriv->clk);
4194        }
4195        for (port = 0; port < hpriv->n_ports; port++) {
4196                if (!IS_ERR(hpriv->port_clks[port])) {
4197                        clk_disable_unprepare(hpriv->port_clks[port]);
4198                        clk_put(hpriv->port_clks[port]);
4199                }
4200                phy_power_off(hpriv->port_phys[port]);
4201        }
4202
4203        return rc;
4204}
4205
4206/*
4207 *
4208 *      mv_platform_remove    -       unplug a platform interface
4209 *      @pdev: platform device
4210 *
4211 *      A platform bus SATA device has been unplugged. Perform the needed
4212 *      cleanup. Also called on module unload for any active devices.
4213 */
4214static int mv_platform_remove(struct platform_device *pdev)
4215{
4216        struct ata_host *host = platform_get_drvdata(pdev);
4217        struct mv_host_priv *hpriv = host->private_data;
4218        int port;
4219        ata_host_detach(host);
4220
4221        if (!IS_ERR(hpriv->clk)) {
4222                clk_disable_unprepare(hpriv->clk);
4223                clk_put(hpriv->clk);
4224        }
4225        for (port = 0; port < host->n_ports; port++) {
4226                if (!IS_ERR(hpriv->port_clks[port])) {
4227                        clk_disable_unprepare(hpriv->port_clks[port]);
4228                        clk_put(hpriv->port_clks[port]);
4229                }
4230                phy_power_off(hpriv->port_phys[port]);
4231        }
4232        return 0;
4233}
4234
4235#ifdef CONFIG_PM_SLEEP
4236static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4237{
4238        struct ata_host *host = platform_get_drvdata(pdev);
4239        if (host)
4240                return ata_host_suspend(host, state);
4241        else
4242                return 0;
4243}
4244
4245static int mv_platform_resume(struct platform_device *pdev)
4246{
4247        struct ata_host *host = platform_get_drvdata(pdev);
4248        const struct mbus_dram_target_info *dram;
4249        int ret;
4250
4251        if (host) {
4252                struct mv_host_priv *hpriv = host->private_data;
4253
4254                /*
4255                 * (Re-)program MBUS remapping windows if we are asked to.
4256                 */
4257                dram = mv_mbus_dram_info();
4258                if (dram)
4259                        mv_conf_mbus_windows(hpriv, dram);
4260
4261                /* initialize adapter */
4262                ret = mv_init_host(host);
4263                if (ret) {
4264                        printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4265                        return ret;
4266                }
4267                ata_host_resume(host);
4268        }
4269
4270        return 0;
4271}
4272#else
4273#define mv_platform_suspend NULL
4274#define mv_platform_resume NULL
4275#endif
4276
4277#ifdef CONFIG_OF
4278static struct of_device_id mv_sata_dt_ids[] = {
4279        { .compatible = "marvell,armada-370-sata", },
4280        { .compatible = "marvell,orion-sata", },
4281        {},
4282};
4283MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4284#endif
4285
4286static struct platform_driver mv_platform_driver = {
4287        .probe          = mv_platform_probe,
4288        .remove         = mv_platform_remove,
4289        .suspend        = mv_platform_suspend,
4290        .resume         = mv_platform_resume,
4291        .driver         = {
4292                .name = DRV_NAME,
4293                .of_match_table = of_match_ptr(mv_sata_dt_ids),
4294        },
4295};
4296
4297
4298#ifdef CONFIG_PCI
4299static int mv_pci_init_one(struct pci_dev *pdev,
4300                           const struct pci_device_id *ent);
4301#ifdef CONFIG_PM_SLEEP
4302static int mv_pci_device_resume(struct pci_dev *pdev);
4303#endif
4304
4305
4306static struct pci_driver mv_pci_driver = {
4307        .name                   = DRV_NAME,
4308        .id_table               = mv_pci_tbl,
4309        .probe                  = mv_pci_init_one,
4310        .remove                 = ata_pci_remove_one,
4311#ifdef CONFIG_PM_SLEEP
4312        .suspend                = ata_pci_device_suspend,
4313        .resume                 = mv_pci_device_resume,
4314#endif
4315
4316};
4317
4318/* move to PCI layer or libata core? */
4319static int pci_go_64(struct pci_dev *pdev)
4320{
4321        int rc;
4322
4323        if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
4324                rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
4325                if (rc) {
4326                        rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4327                        if (rc) {
4328                                dev_err(&pdev->dev,
4329                                        "64-bit DMA enable failed\n");
4330                                return rc;
4331                        }
4332                }
4333        } else {
4334                rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4335                if (rc) {
4336                        dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4337                        return rc;
4338                }
4339                rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4340                if (rc) {
4341                        dev_err(&pdev->dev,
4342                                "32-bit consistent DMA enable failed\n");
4343                        return rc;
4344                }
4345        }
4346
4347        return rc;
4348}
4349
4350/**
4351 *      mv_print_info - Dump key info to kernel log for perusal.
4352 *      @host: ATA host to print info about
4353 *
4354 *      FIXME: complete this.
4355 *
4356 *      LOCKING:
4357 *      Inherited from caller.
4358 */
4359static void mv_print_info(struct ata_host *host)
4360{
4361        struct pci_dev *pdev = to_pci_dev(host->dev);
4362        struct mv_host_priv *hpriv = host->private_data;
4363        u8 scc;
4364        const char *scc_s, *gen;
4365
4366        /* Use this to determine the HW stepping of the chip so we know
4367         * what errata to workaround
4368         */
4369        pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4370        if (scc == 0)
4371                scc_s = "SCSI";
4372        else if (scc == 0x01)
4373                scc_s = "RAID";
4374        else
4375                scc_s = "?";
4376
4377        if (IS_GEN_I(hpriv))
4378                gen = "I";
4379        else if (IS_GEN_II(hpriv))
4380                gen = "II";
4381        else if (IS_GEN_IIE(hpriv))
4382                gen = "IIE";
4383        else
4384                gen = "?";
4385
4386        dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4387                 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4388                 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4389}
4390
4391/**
4392 *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4393 *      @pdev: PCI device found
4394 *      @ent: PCI device ID entry for the matched host
4395 *
4396 *      LOCKING:
4397 *      Inherited from caller.
4398 */
4399static int mv_pci_init_one(struct pci_dev *pdev,
4400                           const struct pci_device_id *ent)
4401{
4402        unsigned int board_idx = (unsigned int)ent->driver_data;
4403        const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4404        struct ata_host *host;
4405        struct mv_host_priv *hpriv;
4406        int n_ports, port, rc;
4407
4408        ata_print_version_once(&pdev->dev, DRV_VERSION);
4409
4410        /* allocate host */
4411        n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4412
4413        host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4414        hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4415        if (!host || !hpriv)
4416                return -ENOMEM;
4417        host->private_data = hpriv;
4418        hpriv->n_ports = n_ports;
4419        hpriv->board_idx = board_idx;
4420
4421        /* acquire resources */
4422        rc = pcim_enable_device(pdev);
4423        if (rc)
4424                return rc;
4425
4426        rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4427        if (rc == -EBUSY)
4428                pcim_pin_device(pdev);
4429        if (rc)
4430                return rc;
4431        host->iomap = pcim_iomap_table(pdev);
4432        hpriv->base = host->iomap[MV_PRIMARY_BAR];
4433
4434        rc = pci_go_64(pdev);
4435        if (rc)
4436                return rc;
4437
4438        rc = mv_create_dma_pools(hpriv, &pdev->dev);
4439        if (rc)
4440                return rc;
4441
4442        for (port = 0; port < host->n_ports; port++) {
4443                struct ata_port *ap = host->ports[port];
4444                void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4445                unsigned int offset = port_mmio - hpriv->base;
4446
4447                ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4448                ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4449        }
4450
4451        /* initialize adapter */
4452        rc = mv_init_host(host);
4453        if (rc)
4454                return rc;
4455
4456        /* Enable message-switched interrupts, if requested */
4457        if (msi && pci_enable_msi(pdev) == 0)
4458                hpriv->hp_flags |= MV_HP_FLAG_MSI;
4459
4460        mv_dump_pci_cfg(pdev, 0x68);
4461        mv_print_info(host);
4462
4463        pci_set_master(pdev);
4464        pci_try_set_mwi(pdev);
4465        return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4466                                 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4467}
4468
4469#ifdef CONFIG_PM_SLEEP
4470static int mv_pci_device_resume(struct pci_dev *pdev)
4471{
4472        struct ata_host *host = pci_get_drvdata(pdev);
4473        int rc;
4474
4475        rc = ata_pci_device_do_resume(pdev);
4476        if (rc)
4477                return rc;
4478
4479        /* initialize adapter */
4480        rc = mv_init_host(host);
4481        if (rc)
4482                return rc;
4483
4484        ata_host_resume(host);
4485
4486        return 0;
4487}
4488#endif
4489#endif
4490
4491static int __init mv_init(void)
4492{
4493        int rc = -ENODEV;
4494#ifdef CONFIG_PCI
4495        rc = pci_register_driver(&mv_pci_driver);
4496        if (rc < 0)
4497                return rc;
4498#endif
4499        rc = platform_driver_register(&mv_platform_driver);
4500
4501#ifdef CONFIG_PCI
4502        if (rc < 0)
4503                pci_unregister_driver(&mv_pci_driver);
4504#endif
4505        return rc;
4506}
4507
4508static void __exit mv_exit(void)
4509{
4510#ifdef CONFIG_PCI
4511        pci_unregister_driver(&mv_pci_driver);
4512#endif
4513        platform_driver_unregister(&mv_platform_driver);
4514}
4515
4516MODULE_AUTHOR("Brett Russ");
4517MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4518MODULE_LICENSE("GPL");
4519MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4520MODULE_VERSION(DRV_VERSION);
4521MODULE_ALIAS("platform:" DRV_NAME);
4522
4523module_init(mv_init);
4524module_exit(mv_exit);
4525